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ABSTRACT 11 

Viscosity of cereal β-glucan during digestion is considered to be a vital factor for its health effects. 12 

Thus, studies on solution properties and gelation are essential for understanding the mechanisms of 13 

the β-glucan functionality. The aim of this study was to investigate the effect of the dissolution 14 

temperature on gelation of cereal β-glucan at low concentrations that are relevant for food products. 15 

The rheological properties of oat and barley β-glucans (OBG and BBG) using three dissolution 16 

temperatures (37 ˚C, 57 ˚C and 85 ˚C) at low concentration (1.5% and 1%, respectively) were 17 

studied for 7 days. Additionally, the β-glucans were oxidised with 70 mM H2O2 and 1 mM 18 

FeSO4×7H2O as a catalyst, to evaluate the consequence of oxidative degradation on the gelation 19 

properties. The study showed that dissolution at 85 ˚C did not result in gelation. The optimal 20 

dissolution temperature for gelation of OBG was 37 ˚C and for gelation of BBG 57 ˚C. At these 21 

temperatures, also the oxidised OBG and BBG gelled, although the gel strength was somewhat 22 

lower than in the non-oxidised ones. Gelation was suggested to require partial dissolution of β-23 

glucan, which depended on the molar mass and aggregation state of the β-glucan molecule. 24 

Therefore, the state of β-glucan in solution and its thermal treatment history may affect its 25 

technological and physiological functionality.  26 
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1 INTRODUCTION 31 

Mixed linkage β-glucan or (1→3)(1→4)-β-D-glucan (β-glucan) is a major non-starch 32 

polysaccharide in both oat and barley, where the contents vary from 3% to 7% and from 3% to 33 

11%, respectively (Cui & Wood, 2000). Oat and barley β-glucans have been sufficiently shown to 34 

have health effects and there are health claims for their ability to lower blood cholesterol levels and 35 

postprandial glucose response (EFSA, 2010, 2011a, b; FDA, 1997, 2005). The effect of β-glucan on 36 

postprandial glucose response is related to its ability to increase luminal viscosity, which reduces 37 

digestive activity and hinders nutrition absorption (Wood, 2010). However, the exact mechanism for 38 

its cholesterol lowering effect is still unknown even though it has been suggested to be linked to the 39 

increased viscosity, as well (EFSA, 2010, 2011b; Wolever et al., 2010). The increased intestinal 40 

viscosity has been proposed to hinder the absorption of bile acids, thus leading to their excretion, 41 

which in turn, would result in increased synthesis of new bile acids from cholesterol (EFSA, 2010; 42 

Othman et al. 2011). Additionally, the increased viscosity of intestinal digest has been linked to the 43 

decreased absorption of dietary cholesterol (Othman et al., 2011).  44 

The structure of β-glucan is composed of consecutive (1→4)-β-linked segments of mostly three 45 

(cellotriosyl, DP3) or four (cellotetraosyl, DP4) glucose units, although also longer segments are 46 

found. These linear cellulose-like segments are linked via (1→3)-β-linkages, which causes bending 47 

of the molecule and enhances water-solubility. For the ability to form viscous solutions, the 48 

solubility of β-glucan, which is affected by the structural factors such as the ratio of (1→4)-β- to 49 

(1→3)-β-linkages and ratio of cellotriosyl units to cellotetraosyl units (DP3:DP4 ratio), is vital 50 

(Izydorczyk & Biliaderis, 2000; Wood, 2010). Additionally, the molar mass and concentration of β-51 

glucan affect the viscosity formation (Lazaridou, Biliaderis, & Izydorczyk, 2003; Tosh, Wood, 52 

Wang, & Weisz, 2004b; Vaikousi, Biliaderis, & Izydorczyk, 2004) 53 
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It has been suggested that gelation of β-glucan is also affected by both the concentration and molar 54 

mass, which influence the probability of the molecules to encounter and the mobility of the 55 

molecules, respectively (Böhm & Kulicke, 1999). There are two proposed mechanisms for the 56 

formation of a β-glucan gel network. The first is based on the long cellulosic segments, which can 57 

interact to form junction zones (Fincher & Stone, 1986). However, these longer segments in the β-58 

glucan structure are only few, and thus, it is not likely that this is the only mechanism occurring. 59 

The second – and more probable – mechanism is based on the repeated cellotriosyl segments in the 60 

structure that give rise to the gel network (Böhm & Kulicke, 1999). Barley β-glucan has higher 61 

DP3:DP4 ratio than oat β-glucan (Tosh, Brummer, Wood, Wang, & Weisz, 2004a), which supports 62 

this theory as barley β-glucan has been shown to have a higher gelation rate.  63 

Previous studies have shown that cereal β-glucan is able to form gel structures but gelation has been 64 

shown to require quite high β-glucan concentration when compared to the concentrations that would 65 

be relevant in food products. Lazaridou et al. (2003) reported the critical concentration for gelation 66 

to be 3.5% and 4.4% for oat β-glucans with a molar mass of 35 000 g/mol and 110 000 g/mol, 67 

respectively. Also acid hydrolysed oat and barley β-glucans (with a molar mass of 40 000-70 000 68 

g/mol) have been shown to gel at a concentration of 6% (Tosh, Wood, & Wang, 2003). Lazaridou 69 

& Biliaderis (2004) showed gelation of oat and barley β-glucans at low concentrations (1%) through 70 

repeated freeze-thaw cycles (cryogelation), and thus, indicated that gelation may take place in 71 

frozen products. However, there is no knowledge on gelation of cereal β-glucan at low 72 

concentrations without freeze-thaw cycles.  73 

The rheological properties of β-glucan may be altered during processing and storage of foods. 74 

Besides enzymatic and acid hydrolysis, also oxidation has been shown to cause degradation of β-75 

glucan (Faure, Andersen, & Nyström, 2012; Kivelä, Gates, & Sontag-Strohm, 2009a; Kivelä, 76 

Nyström, Salovaara, & Sontag-Strohm, 2009b; Kivelä, Henniges, Sontag-Strohm, & Potthast, 2012; 77 

Mäkelä, Sontag-Strohm, & Maina, 2015, Mäkelä et al., 2016). The initiation of β-glucan oxidation 78 
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can occur in the presence of reactive oxygen species (ROS), the hydroxyl radical (∙OH) being the 79 

most reactive one. The hydroxyl radicals can originate from hydrogen peroxide (H2O2) 80 

decomposition catalysed by transition metals (Haber & Weiss, 1934). Additionally, lipid radicals 81 

have been shown to be able to cause oxidation of β-glucan (Wang, Mäkelä, Maina, Lampi, & 82 

Sontag-Strohm, 2016). Oxidation of β-glucan leads to a decrease in molar mass and consequently to 83 

a loss of viscosity, which may threaten the physiological and technological functionality of β-84 

glucan (Kivelä et al., 2009a; Lazaridou & Biliaderis, 2007; Wood, 2010). However, for gelation the 85 

degradation of β-glucan can be considered as a benefit, since the smaller molar mass molecules 86 

have higher mobility, and thus, may form interactions faster (Böhm and Kulicke, 1999; Tosh et al., 87 

2004b). 88 

The aim of this study was to investigate the gelation of oat and barley β-glucans at low 89 

concentration induced by different dissolution temperatures. The oat and barley β-glucans were 90 

compared in relation to the structural differences of these β-glucans. Another objective was to study 91 

how the gelation phenomenon changes when β-glucan is oxidised, as oxidation has been considered 92 

to decrease molar mass and viscosity, which on the other hand may lead to gelation. 93 

 94 

2 MATERIALS AND METHODS 95 

2.1 Preparation of the samples 96 

Barley β-glucan (BBG, High Viscosity, purity > 94 %) and oat β-glucan (OBG, High Viscosity, 97 

purity > 94 %) were purchased from Megazyme (Ireland). 1.25% (w/w) BBG and 1.875% (w/w) 98 

OBG solutions were prepared by wetting the sample with 99.5% ethanol (AA ethanol, Altia Oy, 99 

Finland) prior to the dissolution with MilliQ water. The dissolution of barley and oat β-glucans was 100 

done at 37 ˚C (BBG37 and OBG37), 57 ˚C (BBG57 and OBG57) and 85 ˚C (BBG85 and OBG85) 101 

for 2 hours with constant stirring. After 2 hours the samples were allowed to cool down and the 102 



6 
 

evaporated water was compensated by adding MilliQ water to obtain the desired concentration. 103 

Stirring was then continued for an hour at room temperature.  104 

Three replicates of the non-oxidised and oxidised samples were prepared from each sample solution 105 

(BBG37, BBG57, BBG85, OBG37, OBG57, OBG85). The oxidation was initiated by adding 70 106 

mM hydrogen peroxide (30% H2O2, Merck, Germany) and 1 mM iron (II) sulphate heptahydrate 107 

(FeSO4×7H2O, Merck, Germany) as a catalyst. MilliQ was added to adjust the concentration of the 108 

BBG and OBG samples to 1% (w/w) and 1.5% (w/w), respectively. The non-oxidised samples were 109 

diluted to the same concentration with MilliQ.  110 

From each sample 3 moulds (cylindrical plastic moulds, ø35 mm, 3 g of sample per each) were 111 

prepared for the oscillatory measurements. The rest of the samples were stored in test tubes for the 112 

viscosity measurements. All samples were covered to prevent drying during storage at room 113 

temperature. 114 

2.2 Viscosity measurement 115 

The viscosity (flow curve) was measured at 20 °C with Haake RheoStress 600 rheometer (Thermo 116 

Electron GmbH, Germany). A cone and plate geometry was used with a 35 mm diameter and 2° 117 

cone angle. A stepwise rotation program with a shear rate ranging from 1 to 100 s-1 and 100 to 1 s-1 118 

was used for all the samples. The viscosity of the samples was measured on day 1, day 4 and day 7, 119 

and the shear stress curves and viscosity values at 14 s-1 were compared. 120 

2.3 Dynamic oscillation measurement 121 

The storage modulus (G’) and loss modulus (G’’) were measured with Haake RheoStress 600 122 

rheometer (Thermo Electron GmbH, Germany). The measurements were conducted at 20 °C with a 123 

parallel plate and plate geometry using a 35 mm plate. The oscillation frequency ranged from 0.01 124 

to 10 Hz and the strain was 0.4 in all the measurements (the strain sweep was used to ensure that the 125 
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analysis was carried out within the linear viscoelastic range of the samples). The samples were 126 

measured on days 1, 4 and 7.  127 

2.4 Fluorescent microscopy 128 

The samples were stained with calcofluor (Calcofluor White, Megazyme, Ireland) and for this 129 

purpose 10 g/l stock solution of calcofluor was prepared freshly by dissolving it in 100 mM sodium 130 

carbonate (pH 10, Merck, Germany). The β-glucan samples were mixed with the calcofluor stock 131 

solution (1:1). Both the stock solution and the samples were protected from light prior to analysis. 132 

The imaging of the stained samples was conducted using a microscope (Axio Scope.A1, Carl Zeiss 133 

MicroImaging GmbH, Germany) coupled with an illuminator (HXP-120, Carl Zeiss MicroImaging 134 

GmbH, Germany).  135 

2.5 Statistical analyses 136 

The results were calculated as an average of three replicate samples and the results are reported as 137 

averages ± standard error of mean (SEM). Statistical analyses were accomplished with Statistical 138 

Package for the Social Science (SPSS Statistics version 24, IBM, USA), using the one-way analysis 139 

of variance (ANOVA) with a post-hoc LSD test. A logarithmic transformation of the viscosity data 140 

was applied prior to the statistical analysis because of the >10-fold differences in the values. 141 

Differences were considered as significant at P<0.05. 142 

 143 

3 RESULTS AND DISCUSSION 144 

3.1 Viscosities and hysteresis of barley and oat β-glucans dissolved at different temperatures 145 

In this study, the possible entanglements and structure formation in the β-glucan samples were 146 

investigated using shear stress curves. When the shear stress is plotted as a function of the shear 147 

rate, a hysteresis loop is obtained for materials that encounter structural changes due to the flow 148 
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(Mewis & Wagner, 2009). The changes can be either reversible (thixotropy), when the viscosity 149 

recovers with some lag-time, or they can be irreversible.  150 

Clear hysteresis was observed in BBG37, BBG57 and OBG37 (Fig 1a, b and c), and in the case of 151 

BBG37 and OBG37 the oxidised sample showed a larger hysteresis loop. Joly & Mehrabian (1976) 152 

described the hysteresis loop as an indicator of the structural breakdown and more precisely the 153 

large hysteresis loop results from a significant structural breakage and smaller hysteresis loops from 154 

a small breakdown. Thus, in this study BBG37, BBG57 and OBG37 were observed to have some 155 

structural changes that caused hysteresis during the measurement.  156 

For the samples that did not show hysteresis, only viscosities were measured at three time points 157 

(day 1, day 4, day 7) (Table 1). The samples dissolved at 85 ˚C were viscous solutions and the 158 

viscosity loss of BBG85 and OBG85 was about 94% and 78% on day 1, respectively, and about 159 

98% and 94% on day 7. Thus, slower decrease in viscosity was observed in OBG than in BBG. This 160 

corresponds well with the results of Faure et al. (2012), which showed faster formation of hydroxyl 161 

radicals in BBG than in OBG during the first 6 h of oxidation and similar contents of hydroxyl 162 

radicals in both BBG and OBG after 24 h of oxidation. The difference in the effectiveness of 163 

hydrogen peroxide to oxidatively degrade BBG85 and OBG85 was already shown in our former 164 

study (Mäkelä et al., 2016), where significantly higher Mw decrease was observed in BBG85 when 165 

the oxidative degradation of BBG and OBG were compared. According to Wang, Maina, Ekholm, 166 

Lampi, & Sontag-Strohm (2016), this difference was caused by a variation in the phytate content of 167 

these commercial β-glucans.  168 

In OBG57 no hysteresis was observed (Fig. 1d) and the viscosity of the non-oxidised sample did 169 

not change significantly (P=0.54) with time (360 mPas on day 1 and 440 mPas on day 7 measured 170 

at 14 s-1) (Table 1). Although the viscosity of the non-oxidised OBG57 and OBG85 were similar 171 

(P=0.87) on day 1 (360 mPas and 330 mPas, respectively), the behaviour of the oxidised samples 172 



9 
 

was somewhat different. The viscosity of OBG85 decreased continuously during the 7-day 173 

oxidation, which resulted in a significant difference (P=0.00) in the viscosities of day 1 and day 7 174 

samples (71 mPas and 20 mPas, respectively). Instead, in OBG57 the viscosity first decreased but 175 

stayed constant (P=0.54) after the first oxidation day (100 mPas on day 1 and 130 mPas on day 7). 176 

Possibly, some structure formation may have occurred in the oxidised OBG57, which then 177 

compensated the effect of the molar mass decrease on the viscosity. Even though gel formation was 178 

not expected in OBG57 based on the shear stress measurement, this was still confirmed by the 179 

oscillatory measurement, because of the viscosity behaviour suggesting some structure formation. 180 

In the oscillatory measurement, G’ of the non-oxidised OBG57 was 0.52 Pa and G’’ was 2.8 Pa on 181 

day 7 (Table 2, Figure 2), which confirmed that no gelation occurred. Thus, the behaviour 182 

difference of OBG57 and OBG85 is suggested to be caused by the formation of some 183 

entanglements in the OBG57 samples. Usually the entanglements are formed when the critical 184 

overlap concentration C* is reached as reviewed by Saha & Bhattacharya (2010). However, in this 185 

case the concentration is similar in OBG57 and OBG85 and hence the reason for the higher 186 

viscosity in OBG57 is more likely the junction zones caused by the lower dissolution temperature.  187 

In BBG57 and OBG37, the non-oxidised sample had higher viscosity (about 15-fold and 1.4-fold 188 

on day 7 at shear rate of 14 s-1, respectively) than the oxidised sample (Table 1). Interestingly, the 189 

oxidised BBG37 had about 2.5-fold higher viscosity compared to the non-oxidised BBG37. 190 

However, both samples were highly heterogeneous and consisted of large particles that were 191 

floating in a watery continuous phase (Figure 3). This may have caused some error during the 192 

measurements, which was also supported by the high standard error for this sample. Consequently, 193 

despite the large hysteresis loop observed in the samples (Fig 1a), they were not used in oscillatory 194 

measurements and it was obvious that the sample did not form continuous gel network.  In 195 

rheological measurements the particles can interfere if their size is not small enough compared to 196 

the height of the gap in the plate and plate geometry.  197 
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 198 

3.2 Gelation behaviour of oat and barley β-glucans 199 

Based on the shear stress measurements, BBG57 and OBG37 were proposed to have some 200 

entanglements or formation of a gel network, since they showed hysteresis (Figure 1b and c). The 201 

oscillatory measurements were done at three different time points (day 1, day 4 and day 7) and the 202 

mechanical spectra are shown for day 1 and day 7 samples (Fig 4 and 5 for BBG57 and OBG37, 203 

respectively). The mechanical spectra show the storage modulus (G’) and loss modulus (G’’) as a 204 

function of frequency. The storage modulus reflects the elastic properties of the material and for an 205 

ideal elastic solid the measured shear stress would be in-phase with the applied strain (Mitchell, 206 

1980). The loss modulus describes the viscous properties of the material and for an ideal liquid there 207 

would be 90˚ phase difference in applied strain and measured shear stress. For viscoelastic materials 208 

the phase difference is between 0˚ and 90˚.  209 

Both BBG57 and OBG37 showed gel-like behaviour in the oscillatory measurements (Fig 4 and 5). 210 

The gel strength of the non-oxidised sample (Fig 4a and 5a) was higher compared to the oxidised 211 

one (Fig 4b and 5b) in both BBG57 and OBG37 but in BBG57 the difference was more 212 

pronounced. Based on the storage moduli, the elasticity of the non-oxidised BBG57 and OBG37 did 213 

not differ significantly (P=0.16), since G’ was 38 and 32, respectively, on day 7 at 1 Hz. However, 214 

the oxidised BBG57 formed a significantly weaker (P=0.00) gel than the oxidised OBG37 (4 Pa 215 

compared to 21 Pa measured on day 7 at 1 Hz, respectively). This therefore showed that the high 216 

mobility of the β-glucan molecules due to low molar mass after oxidation did not enhance gelation.  217 

In this study, the molar masses of OBG and BBG were different (361 000 g/mol and 495 000 g/mol, 218 

respectively), which has to be considered when comparing the results. The rigidity of the gel is 219 

affected by the density of the junction zones during the formation of the gel network, and this is 220 

influenced by both the concentration and the molar mass (Böhm & Kulicke, 1999). Preliminary 221 
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studies indicated that gel formation did not occur with 1% OBG, which was most likely due to its 222 

lower molar mass. Consequently, to compensate the lower molar mass, the concentration of OBG 223 

was increased to 1.5%, while for BBG the concentration was 1%. The gel strengths were similar 224 

when comparing the G’ values in the optimal dissolution temperature of each β-glucan (37 ˚C for 225 

OBG and 57 ˚C for BBG). Böhm & Kulicke (1999) indicated that for increasing the gel strength, the 226 

concentration is more effective than the molar mass. Thus, despite being lower in molar mass, OBG 227 

had similar gel strength to BBG due to its higher concentration.  228 

A correlation between the increase in DP3:DP4 ratio and the increase in gelling ability has been 229 

reported (Böhm & Kulicke, 1999; Cui, Wood, Blackwell, & Nikiforuk, 2000; Tosh et al., 2004a). 230 

Thus, in this study BBG was hypothesised to gel more than OBG, since the DP3:DP4 ratio in barley 231 

β-glucan has been shown to be higher than in oat β-glucan (2.7–3.6 and 1.7–2.4 in barley and oat β-232 

glucan, as reviewed by Wood (2010)). However, these results showed that the gelation was similar 233 

in both BBG57 and OBG37 and no structure-related difference was observed with low 234 

concentrations when using the optimised dissolution temperatures for each β-glucan.  235 

At high concentrations the molecules are more prone to interact because of the higher density and 236 

closer proximity (Böhm & Kulicke, 1999). Thus, it is reasonable that the gelation tendency at high 237 

concentrations follows the regularity of the structure, since the initiation of a gel network formation 238 

is not restricted by the lack of encounter. However, in this study the concentration was low and the 239 

DP3:DP4 ratio likely could not significantly affect the gelation. Therefore, the gelation of β-glucan 240 

at low concentrations is hypothesised to be driven by partial dissolution of the β-glucan molecules. 241 

Based on BBG85 and OBG85, it seems that when β-glucan is totally dissolved, gel formation does 242 

not occur at these low concentrations. However, with lower temperatures the samples are shown to 243 

gel, most likely because partially dissolved β-glucans act as nucleation sites for gelation. Junction 244 

zones – also described as well-ordered domains – are needed in order to form β-glucan gels (Böhm 245 

& Kulicke, 1999). Usually the formation of junction zones is considered to be favoured when there 246 
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is high amount of DP3 segments in the β-glucan structure. However, since in this study barley β-247 

glucan did not show more gelation than oat β-glucan, possibly the junctions of the gel network were 248 

not formed only by the cellotriose units but also by the undissolved parts of β-glucan. According to 249 

the behaviour of BBG37, which had large particles suspended in a watery medium, it can be 250 

concluded that too low temperature leads to insufficient dissolution, and thus, the molecules are 251 

closely packed in the solution and unable to form a large continuous gel network that can entrap 252 

water.    253 

Interestingly, the optimal dissolution temperatures differed significantly as OBG gelled at 37 ˚C 254 

while BBG at 57 ˚C, and additionally the dissolution temperature range leading to gelation was 255 

wider for OBG. The optimal dissolution temperature was verified by testing temperatures near 37 256 

˚C and 57 ˚C for OBG and BBG, respectively, to see which temperature gave the strongest gel. 257 

These tests showed that BBG gelled only at 57 ˚C but with OBG some gelation was observed at all 258 

tested dissolution temperatures ranging from 35 ˚C to 50 ˚C (data not shown). However, the 259 

strongest OBG gels were obtained when the dissolution temperature was 37–40 ˚C. The reason for 260 

the differences in the optimal dissolution temperatures of OBG and BBG is not known and we 261 

hypothesise that the state of the molecule after dissolution has a significant role in the formation of 262 

a gel network at low concentrations. Thus, the temperature difference can be considered to reflect 263 

differences in the susceptibility of the β-glucans to dissolution. Based on the higher optimal 264 

dissolution temperature of BBG compared to OBG, it seems that BBG requires more energy to 265 

sufficiently open the structure. The temperatures (37 ˚C and 57 ˚C) are possibly optimal to ensure 266 

partial dissolution, thus resulting in nucleation sites that enhance gelation. One possible factor that 267 

determines the optimal dissolution temperature for gelation is the molar mass. When dissolving β-268 

glucan, higher temperature may be required in order to dissolve the molecules with high molar 269 

mass, since there are more interactions between the molecules and more energy is needed to break 270 

these interactions. Additionally, structural features such as DP3:D4 ratio also contribute to the 271 
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optimal dissolution temperature by affecting the aggregation of molecules, and hence, the solubility. 272 

Izydorczyk, Macri, & MacGregor (1998) extracted barley β-glucan at 40 ˚C and 65 ˚C and showed 273 

higher DP3:DP4 ratio in β-glucan extracted at higher temperature. This finding was considered to 274 

be linked to the lower solubility of the β-glucan with higher DP3:DP4 ratio, most likely due to 275 

intermolecular interactions resulting from structural regularity. It is therefore likely that due to a 276 

lower DP3:DP4 ratio the OBG powder used in our study had less aggregates than BBG powder, and 277 

thus, the partial dissolution of OBG structure needed for the gelation occurred at lower temperature. 278 

The β-glucan extracts that can be used in food formulation vary in molar mass and purity. There is a 279 

wide variation in reported molar masses in different studies: e.g. 180 000–2 700 000 g/mol for oat 280 

β-glucan (Autio, Myllymäki, Suortti, Saastamoinen, & Poutanen, 1992; Beer, Wood, & Weisz, 281 

1997; Cui et al. 2000; Johansson et al. 2000; Skendi, Biliaderis, Lazaridou, & Izydorczyk, 2003; 282 

Sundberg et al. 1996) and 450 000–2 500 000 g/mol for barley β-glucan (Beer et al. 1997; Cui et al. 283 

2000; Gómez, Navarro, Manzanares, Horta, & Carbonell, 1997). The current study on gelation of 284 

the non-oxidised and oxidised β-glucans gives an interesting field for further studies. As the health 285 

effects of β-glucan are generally linked to its viscosity in small intestine, the finding that OBG can 286 

actually gel even at low concentrations at physiological temperature (37 ˚C) indicates that a 287 

combination of β-glucan structure and dissolution temperature can be optimised to enhance 288 

physiological functionality. However, more studies are needed to understand the factors enhancing 289 

the gelation, and how these factors are linked to processing and physiological functionality.  290 

 291 

4 CONCLUSIONS 292 

The physicochemical properties of β-glucan are important for its health benefits. Though the 293 

benefits have mainly been related to enhancement of viscosity in vivo, often conflicting results have 294 

been obtained when investigations to correlate molar mass, concentration and extractability have 295 
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been carried out. This indicates that there may be other factors that enhance or hinder physiological 296 

functionality. The results from this study indicate that even at low concentration under the optimal 297 

conditions β-glucan can gel, implying that in addition to physicochemical properties, the physical 298 

state of β-glucan molecules and factors such as thermal treatment history, may contribute to the 299 

solution properties of β-glucan. How this is related to physiological functionality, requires further 300 

investigation. 301 
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CAPTIONS 

Table 1. Viscosities of 1% (w/w) barley β-glucan (BBG) and 1.5% (w/w) oat β-glucan (OBG) 

dissolved at different temperatures. Oxidised samples were treated with 70 mM H2O2 and 1 mM 

FeSO4×7H2O. Measurements were conducted at 20 ˚C. 

Table 2. Storage and loss moduli (G’ and G’’, respectively) of 1% (w/w) barley β-glucan dissolved at 

57 °C (BBG57) and 1.5% (w/w) oat β-glucan dissolved at 37 °C (OBG37) and 57 °C (OBG57). 

Samples for these oscillatory measurements were chosen based on the viscosity measurements. 

Oxidised samples were treated with 70 mM H2O2 and 1 mM FeSO4×7H2O. Measurements conducted at 

20 ˚C. 

Figure 1. Shear stress curves of 1% (w/w) barley (a, c, e) and 1.5% (w/w) oat (b, d, f) β-glucans 

dissolved at 37 °C (a, b), 57 °C (c, d) and 85 °C (e, f). Curves for non-oxidised samples shown with 

dark grey and for oxidised (70 mM H2O2, 1 mM FeSO4×7H2O) samples with light grey. Measurements 

were conducted at 20 ˚C after 7 days of storage at room temperature.  

Figure 2. Frequency sweeps (0.4 strain, 20 ˚C) of non-oxidised (a) and oxidised (b) OBG57 (1.5%, 

w/w) on day 1 and day 7.  

Figure 3. a) The visual structure of the non-oxidised BBG37 (1%, w/w) on day 7 showing large 

particles in a watery medium. b) Fluorescent microscopy picture showing the structure of the non-

oxidised BBG37 (1%, w/w) on day 7. 

Figure 4. Frequency sweeps (0.4 strain, 20 ˚C) of non-oxidised (a) and oxidised (b) BBG57 (1%, w/w) 

on day 1 and day 7. 



Figure 5. Frequency sweeps (0.4 strain, 20 ˚C) of non-oxidised (a) and oxidised (b) OBG37 (1.5%, 

w/w) on day 1 and day 7. 

 



Table 1 

Sample 
material 

Dissolution 
temperature 

Gelation 
time 

Viscositya (mPas) 

Non-oxidised Oxidised 

BBG 

37 ˚C 

Day 1 1300 ± 900 2100 ± 400 

Day 4 1600 ± 600 1500 ± 500 

Day 7 810 ± 170 2000 ± 700 

57 ˚C 

Day 1 530 ± 10 76 ± 18 

Day 4 740 ± 20 120 ± 20 

Day 7 770 ± 30 50 ± 2 

85 ˚C 

Day 1 290 ± 10 16 ± 2 

Day 4 300 ± 10 6.7 ± 0.2 

Day 7 290 ± 10 6.4 ± 0.6 

OBG 

37 ˚C 

Day 1 660 ± 60 340 ± 90 

Day 4 950 ± 90 840 ± 270 

Day 7 1400 ± 200 1000 ± 300 

57 ˚C 

Day 1 360 ± 20 100 ± 10 

Day 4 390 ± 50 110 ± 10 

Day 7 440 ± 50 130 ± 20 

85 ˚C 

Day 1 330 ± 0 71 ± 8 

Day 4 330 ± 10 30 ± 3 

Day 7 340 ± 10 20 ± 1 

aThe average viscosities at 14 s-1. 

 



Table 2 

Sample 
material 

Dissolution 
temperature 

Gelation 
time 

Treatment G' a (Pa) G'' b (Pa)  

BBG 57 ˚C 

Day 1 
Non-oxidised 12 ± 1 8.7 ± 0.6  

Oxidised 1.2 ± 0.4 0.31 ± 0.07  

Day 4 
Non-oxidised 26 ± 1 7.4 ± 1.4  

Oxidised 2.7 ± 0.9 0.46 ± 0.11  

Day 7 
Non-oxidised 38 ± 5 13 ± 4  

Oxidised 3.8 ± 0.8 0.79 ± 0.20  

OBG 

37 ˚C 

Day 1 
Non-oxidised 10 ± 2 6.3 ± 1.1  

Oxidised 12 ± 3 4.9 ± 1.2  

Day 4 
Non-oxidised 27 ± 3 11 ± 2  

Oxidised 22 ± 2 13 ± 4  

Day 7 
Non-oxidised 32 ± 6 12 ± 2  

Oxidised 21 ± 1 14 ± 5  

57 ˚C 

Day 1 
Non-oxidised 1.1 ± 0.5 3.9 ± 1.2  

Oxidised 0.23 ± 0.17 1.5 ± 0.7  

Day 4 
Non-oxidised 0.84 ± 0.31 3.5 ± 0.9  

Oxidised 0.057 ± 0.014 0.48 ± 0.26  

Day 7 
Non-oxidised 0.52 ± 0.14 2.8 ± 0.6  

Oxidised 0.15 ± 0.14 0.50 ± 0.18  

aThe average storage moduli at 1 Hz.   

bThe average loss moduli at 1 Hz.    
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Figure 4
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