
Department of Computer Science
Series of Publications A

Report A-2020-1

Methods for Learning Directed and Undirected
Graphical Models

Janne Leppä-aho

Doctoral dissertation, to be presented for public examination with
the permission of the Faculty of Science of the University of
Helsinki, in Auditorium B123, Exactum, on January 24th, 2020
at 12 o’clock noon.

University of Helsinki
Finland

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/286389085?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Supervisor
Teemu Roos, University of Helsinki, Finland

Pre-examiners
Joe Suzuki, Osaka University, Japan
Wray Buntine, Monash University, Australia

Opponent
Brandon Malone, NEC Laboratories Europe, Germany

Custos
Teemu Roos, University of Helsinki, Finland

Contact information

Department of Computer Science
P.O. Box 68 (Pietari Kalmin katu 5)
FI-00014 University of Helsinki
Finland

Email address: info@cs.helsinki.fi
URL: http://cs.helsinki.fi/
Telephone: +358 2941 911

Copyright c© 2020 Janne Leppä-aho
ISSN 1238-8645
ISBN 978-951-51-5771-3 (paperback)
ISBN 978-951-51-5772-0 (PDF)
Helsinki 2020
Unigrafia

Methods for Learning Directed and Undirected Graphical
Models

Janne Leppä-aho

Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
janne.leppa-aho@helsinki.fi

PhD Thesis, Series of Publications A, Report A-2020-1
Helsinki, January 2020, 50+84 pages
ISSN 1238-8645
ISBN 978-951-51-5771-3 (paperback)
ISBN 978-951-51-5772-0 (PDF)

Abstract

Probabilistic graphical models provide a general framework for modeling
relationships between multiple random variables. The main tool in this
framework is a mathematical object called graph which visualizes the as-
sertions of conditional independence between the variables. This thesis
investigates methods for learning these graphs from observational data.

Regarding undirected graphical models, we propose a new scoring criterion
for learning a dependence structure of a Gaussian graphical model. The
scoring criterion is derived as an approximation to often intractable Bayesian
marginal likelihood. We prove that the scoring criterion is consistent and
demonstrate its applicability to high-dimensional problems when combined
with an efficient search algorithm.

Secondly, we present a non-parametric method for learning undirected
graphs from continuous data. The method combines a conditional mu-
tual information estimator with a permutation test in order to perform
conditional independence testing without assuming any specific paramet-
ric distributions for the involved random variables. Accompanying this
test with a constraint-based structure learning algorithm creates a method
which performs well in numerical experiments when the data generating
mechanisms involve non-linearities.

For directed graphical models, we propose a new scoring criterion for learning

iii

iv

Bayesian network structures from discrete data. The criterion approximates
a hard-to-compute quantity called the normalized maximum likelihood. We
study the theoretical properties of the score and compare it experimentally
to popular alternatives. Experiments show that the proposed criterion
provides a robust and safe choice for structure learning and prediction over
a wide variety of different settings.

Finally, as an application of directed graphical models, we derive a closed
form expression for Bayesian network Fisher kernel. This provides us with
a similarity measure over discrete data vectors, capable of taking into
account the dependence structure between the components. We illustrate
the similarity measured by this kernel with an example where we use it
to seek sets of observations that are important and representative of the
underlying Bayesian network model.

Computing Reviews (2012) Categories and Subject
Descriptors:

Computing methodologies → Machine learning
Mathematics of computing → Probability and statistics
Mathematics of computing → Bayesian networks
Mathematics of computing → Markov networks

General Terms:
machine learning, probabilistic graphical models, model selection

Additional Key Words and Phrases:
Bayesian networks, Markov networks, Bayesian statistics, information
theory, pseudo-likelihood, mutual information, normalized maximum
likelihood, Fisher kernel

Acknowledgements

I would like to thank my supervisor Professor Teemu Roos for all the
guidance and support during my PhD studies. I really appreciate the free
and inspiring working environment that has been present throughout my
PhD journey.

I am grateful to pre-examiners, Professors Joe Suzuki and Wray Buntine,
for taking time to go through this manuscript carefully and providing
comments at short notice. I would also like to thank Dr Brandon Malone
for agreeing to be the opponent in my defence.

A big thanks goes to all the co-authors of the joint publications included
in this thesis. I would especially like to thank Dr Tomi Silander for sharing
great ideas and collaboration that resulted in two publications.

I would like to thank all the members, past and present, of the ”Informa-
tion, Complexity and Learning” research group: Jussi Määttä, Yuan Zou,
Ville Hyvönen, Elias Jääsaari, Teemu Pitkänen, Jukka Kohonen, Ioanna
Bouri, Santeri Räisänen, Sotiris Tasoulis, Yang Zhao and Quan (Eric)
Nguyen.

I acknowledge the financial support from Doctoral Programme in Com-
puter Science (DoCS) and Academy of Finland (COIN CoE and project
TENSORML).

Finally, my heartfelt thanks go to all my friends and family. My parents,
Jaakko and Eija-Liisa, thank you for always being there and providing
support and encouragement.

And Aurora, your unconditional love and support has been the biggest
thing that kept me going through this journey.

Helsinki, December 2019
Janne Leppä-aho

v

vi

Contents

1 Introduction 1

1.1 Probabilistic graphical models 1

1.2 Learning graphical models 2

1.3 Outline of the thesis . 3

1.4 Main contributions . 4

2 Preliminaries: graphical models 7

2.1 General notation . 7

2.2 Directed graphical models 7

2.3 Undirected graphical models 9

2.4 Graphical model structure learning 10

2.4.1 Defining the problem 11

2.4.2 Score-based learning 11

2.4.3 Constraint-based learning 12

3 Learning undirected graphical models 13

3.1 Learning high dimensional Gaussian graphical models . . . 13

3.1.1 Bayesian learning of GGMs 14

3.1.2 Objective comparison of Gaussian DAGs 15

3.1.3 FMPL score . 16

3.1.4 Properties of FMPL 17

3.1.5 Optimizing the FMPL score 18

3.1.6 On the empirical performance 19

3.2 Learning non-parametric graphical models 20

3.2.1 Going beyond Gaussian 20

3.2.2 Mutual information and its estimation 22

3.2.3 Permutation test for conditional independence . . . 23

3.2.4 Empirical performance 25

vii

viii Contents

4 Learning and applying directed graphical models 29
4.1 Scoring criteria for structure learning in the discrete setting 29

4.1.1 BDeu . 30
4.1.2 BIC . 30
4.1.3 fNML . 31

4.2 qNML score . 32
4.2.1 Definition . 32
4.2.2 Theoretical properties of the score 33
4.2.3 On the empirical performance 34

4.3 Application: Bayesian network Fisher kernel 35
4.3.1 Fisher kernel . 36
4.3.2 Fisher kernel for Bayesian networks 36
4.3.3 Properties of the kernel 37
4.3.4 Applying the Fisher kernel 38

5 Conclusions 43

References 45

Original publications

This thesis is based on the following publications. They are reprinted at
the end of the thesis.

I. J. Leppä-aho, J. Pensar, T. Roos, and J. Corander. Learning Gaussian
graphical models with fractional marginal pseudo-likelihood. Interna-
tional Journal of Approximate Reasoning, 83:21 – 42, 2017.

II. J. Leppä-aho, S. Räisänen, X. Yang, and T. Roos. Learning non-
parametric Markov networks with mutual information. In V. Kra-
tochv́ıl and M. Studený, editors, Proceedings of the Ninth International
Conference on Probabilistic Graphical Models, volume 72 of Proceed-
ings of Machine Learning Research, pages 213–224, Prague, Czech
Republic, 11–14 Sep 2018. PMLR.

III. T. Silander, J. Leppä-aho, E. Jääsaari, and T. Roos. Quotient nor-
malized maximum likelihood criterion for learning Bayesian network
structures. In A. Storkey and F. Perez-Cruz, editors, Proceedings of
the Twenty-First International Conference on Artificial Intelligence
and Statistics, volume 84 of Proceedings of Machine Learning Research,
pages 948–957, Playa Blanca, Lanzarote, Canary Islands, 09–11 Apr
2018. PMLR.

IV. J. Leppä-aho, T. Silander, and T. Roos. Bayesian network Fisher
kernel for categorical feature spaces. Accepted for publication in
Behaviormetrika, 2019.

Author contributions:

Article I: JL formulated and proved the consistency results, performed
the experiments and wrote the majority of the paper.

Article II: Based on the idea and preliminary work by SR, XY and TR,
JL implemented the method, performed the experiments, and wrote the
paper.

ix

x Contents

Article III: JL proved the consistency and the regularity of the method,
wrote the corresponding sections, and took part in analyzing the experimen-
tal results.

Article IV: JL proved the invariance theorem, implemented the method,
performed the experiments and participated in writing the paper.

None of the articles have been included in any other theses.

Chapter 1

Introduction

I don’t know what that would be
— I like graphs. And that doesn’t
mean I’m going to try to build
one. I’m looking for something
more like the following graphs.

An excerpt from the output of
GPT-2 language model built by

Adam King when inputted:
”This is a nice quote for a

computer science PhD thesis:”.

This chapter provides a gentle introduction to probabilistic graphical
models. Graphical models have been around already for couple of decades
and there exists several thorough overviews regarding the subject [25, 29, 63].
We scratch the surface here, going through the general framework briefly
and then turn our focus to the main question addressed in this thesis, the
problem of learning the structures of graphical models from a set of data.
We conclude the chapter by describing the outline for the rest of the chapters
and summarize the contributions of the original articles forming this thesis.

1.1 Probabilistic graphical models

Probabilistic graphical models provide a convenient tool for representing and
analyzing complex probability distributions over multiple random variables.
The graphical models considered in this thesis consist of two main building
blocks: 1) a collection of random variables whose joint distribution we are
interested in modeling; and 2) a graph, a mathematical object that contains

1

2 1 Introduction

one node for each random variable and a set of edges between these nodes.
The edges in the graph can be undirected or directed, depending whether
we are considering Markov networks (equivalently undirected graphs) or
Bayesian networks (directed acyclic graphical models). Regardless of which
of these two model classes we are using, the graph depicts relationships
between the variables by encoding certain assertions of conditional inde-
pendence that are present in the joint distribution. As such, the graph
provides a visual representation of the dependence structure, making some
properties of the complex multivariate distribution readily available at a
glance, and what is more, the graph can be often used to decompose the
distribution into smaller components that admit easier interpretation and
are more tractable to handle computationally.

By providing a very general framework for representing multivariate
distributions, graphical models are applied widely in the fields of machine
learning and statistics. For instance, the structures of many commonly
encountered models in these areas are easily described using a directed
graphical model. Some classical examples include [4]: mixture models,
(probabilistic) principal component analysis, factor analysis, naive Bayes,
and also, to name a more recent example, variational auto-encoders [24].

When treating graphical models, the discussion separates intrinsically in
three distinct topics [25]: representation, inference, and learning. We started
our discussion by noting how graphical models are a tool for representing
complex probability distributions. Then, having specified the distribution
with the help of a graph, we might want to use our model to answer
probabilistic queries regarding some of the variables. This is the part where
the inference comes into play and often the graph structure is in the key
role by determining how efficiently we can run our inference procedures.
However, the part we are dedicating most of the focus in this thesis is the
learning which tackles the problem of coming up with the graphical model
in the first place.

1.2 Learning graphical models

In the learning part, we are given a set of observed data on some variables
and our goal is to learn the graph that specifies the dependence structure
among variables. This part is called structure learning. Additionally, we
might also be interested in learning the parameters for this structure which
might involve a separate step or happen at the same time with the structure
learning, depending on the used method.

1.3 Outline of the thesis 3

The motivation for structure learning might be knowledge discovery:
by learning the graph, we gain insight on the variables in our domain as
we know how they depend on each other. For instance, directed graphical
models have been used to model potential relationships in protein signaling
networks [47] and brain-region connectivity using fMRI data [19]. The
graph learning might also be motivated as an initial step for the subsequent
prediction or inference tasks. For instance, in a classification task, we are
interested in predicting the value for a class variable given the values for
predictor variables. Examples of graphical models that are learned with the
classification in mind include: naive Bayes, tree augmented naive Bayes [13]
and limited dependence Bayesian network [48] classifiers.

In general, the learning of graphical models is a challenging problem. For
the undirected graphs, the number of possible graphs increases exponentially
with respect to the number of variables. In case of directed acyclic graphs,
there exists even more possible graph structures for a given set of variables.

The approaches for learning graphical models are commonly divided
in two categories. The score-based methods cast the learning as a model
selection problem. In this approach, each graph implies a model over our
data that we can score using some criterion. The learning reduces thus to
finding the highest scoring structure.

The constraint-based methods approach the problem from a different
angle. They utilize the fact that the edges in the graphical model imply a
set of conditional independence statements over the variables. Based on the
observed data, we can test whether a particular independence statements
are likely to hold with the help of the well-known machinery from statistical
literature called hypothesis testing.

1.3 Outline of the thesis

This thesis studies the learning of graphical models in different scenarios.
Without yet going much into the details, we will be tackling the following
kinds of questions:

• Assume that we have a large number of variables and possibly a small
amount of observations. Assume further that we model the data with
a multivariate normal distribution. How can we learn an undirected
graph describing the dependence structure of variables?

• What about if we do not want to make restrictive assumption of
multivariate normality? Here, we focus on situations where the number
of variables is relatively small but the variables might depend on each

4 1 Introduction

other in a complex, non-linear way. How do we learn an undirected
graph in this situation?

• Assume now that the variables are categorical and we want to learn a
directed acyclic graph. Adopting a score-based approach, there are
plenty of scoring functions to choose from, each with its own virtues
and vices. Can we come up with a new one that would avoid at least
some of the shortcomings of the previous approaches?

In addition to problems related to learning, we also consider one appli-
cation where we make use of the learned Bayesian network. We start with
a completely specified Bayesian network model over categorical variables.
Using this network we address the following problem:

• How can we measure similarity among data vectors with the aid of
our Bayesian network? In general, being able to compute similarity
for categorical data would give rise to myriad of applications but what
would be the thing that this model induced similarity is the most
suitable for?

The rest of the thesis is organized as follows. After providing the
summaries of the original articles in this thesis, we move on to the Chapter 2
where we dive into the world of graphical models in an increased level of
formality, providing notations and concepts needed to grasp the content
of the remaining chapters. Then the two subsequent chapters treat the
content of the original articles: Chapter 3 is based on original articles I
and II with an underlying theme of learning undirected graphical models,
and articles III and IV are discussed in Chapter 4, where the main topic
is directed acyclic graphs. Chapter 4 is not purely focused on learning as
we also present an application on how to make use of the learned networks.
Finally, conclusions are presented in Chapter 5.

1.4 Main contributions

In this section, we briefly summarize the main contributions of the original
articles.

Article I: Learning Gaussian graphical models with fractional
marginal pseudo-likelihood. We propose a new scoring criterion for
learning the dependence structure of the Gaussian graphical model. The
criterion makes use of pseudo-likelihood in order to express the approxi-
mative marginal likelihood for any undirected graph in closed form. It is

1.4 Main contributions 5

applicable in high dimensional settings and also shown to be consistent. In
the experiments, we pair the criterion with an efficient greedy algorithm
and evaluate the performance of the method against the leading methods
for learning Gaussian graphical models.

Article II: Learning non-parametric Markov networks with mu-
tual information. We propose a method for learning Markov network
structures without restricting the learned network to belong to any spe-
cific family of parametric distributions. The method makes use of a non-
parametric estimator of conditional mutual information to test independence
assertions. The resulting independence test is combined with a constraint-
based learning algorithm, and shown to work well in the settings where the
relationships between variables involve non-linearities.

Article III: Quotient normalized maximum likelihood criterion
for learning Bayesian network structures. We present a new scoring
criterion for learning Bayesian network structures in the discrete setting.
The criterion is motivated as an approximation to information theoretic
quantity called Normalized Maximum Likelihood. We discuss the theoretical
properties of the score and compare it empirically to other commonly used
criteria.

Article IV: Bayesian network Fisher kernel for categorical feature
spaces. In this article, we derive a closed form expression for a Fisher
kernel derived from a general Bayesian network model over categorical
variables. We show that the resulting kernel is invariant for Bayesian
networks expressing the same assertions of conditional independence. The
Bayesian network Fisher kernel is studied empirically in experiments where
the aim is to use the kernel to gain insight into the underlying Bayesian
network.

6 1 Introduction

Chapter 2

Preliminaries: graphical models

This chapter introduces the notation and basic concepts related to graphical
models. After the overview, we start with the Bayesian networks and then
move on to the undirected graphical models. With the general notation
fixed, we then discuss the structure learning of graphical models more in
detail.

2.1 General notation

Let X = (X1, . . . , Xd)
T denote a d-dimensional random vector. Let G =

(V,E) denote a graph, where V = {1, . . . , d} is the set of nodes and E ⊂
V × V denotes the set of edges. We associate each random variable Xi

with the node i ∈ V , i = 1, . . . , d. The terms node and variable are used
interchangeably. We use XA, A ⊂ {1, . . . , d} to refer to a subvector of X
restricted to variables in the set A.

The edges in the graph can be directed or undirected. In this thesis, we
treat only graphs that include one of the aforementioned type at a given
time. We say that there exists a directed edge from Xi to Xj , denoted also
as Xi → Xj , if and only if (i, j) ∈ E. If (i, j) ∈ E, variable Xi is said to be
a parent of Xj . In case of an undirected edge between Xi and Xj , Xi −Xj ,
the edge set E contains tuples (i, j) and (j, i).

2.2 Directed graphical models

This section considers Bayesian networks, or equivalently, directed acyclic
graph (DAG) models. Assume that G is a directed acyclic graph, implying
that all the edges are directed and there does not exist any directed cycle in
G. Let p(X) denote the joint distribution of X. The graph G encodes a set

7

8 2 Preliminaries: graphical models

of conditional independence assertions between the components of X that
can be characterized with Markov properties [29]. The local directed Markov
property states that each variable Xi is independent of its non-descendants
given its parents Xπ(i). A variable Xi is non-descendant of Xj if there does
not exist a directed path from Xj to Xi. We use π(i) = {j | (j, i) ∈ E}
to denote the parent set of variable Xi. The local Markov property is
equivalent to the following factorization of p(X) according to G:

p(X) =

d∏
i=1

p(Xi | Xπ(i)). (2.1)

This decomposition (2.1) to a product of conditional distributions is
sometimes referred as the chain rule for Bayesian networks. It allows us to
parametrize the joint distribution p(X | θ) conveniently through defining
local parameters θi for each conditional distribution p(Xi | Xπ(i), θi).

For instance, assuming our variables are continuous, we can take condi-
tional distributions to be linear Gaussian

Xi | Xπ(i) = xπ(i) ∼ N (wT
i xπ(i), σ

2
i), (2.2)

with the local parameters θi being now the vector of edge strengths wi

which defines the mean of the distribution and the conditional variance σ2
i .

If we define the conditional distributions using (2.2), the joint over X will
be a multivariate normal Nd(0,Σ), where Σ can be determined from the
collection of the local parameter sets [38].

Assume next that the variables are discrete, meaning that each Xi can
take values from 1 to ri ∈ N \ {0, 1} (variables are treated categorical even
though encoded using integers). In this case, it is common to parametrize
the DAG structure using conditional probability tables by enumerating all
the possible combinations of values for parents Xπ(i) of Xi, and defining

θijk = P (Xi = k | Xπ(i) = j), (2.3)

where i ∈ {1, . . . , d}, k ∈ {1, . . . , ri} and j ∈ {1, . . . , qi} with qi denoting
the number of possible parent combinations and Xπ(i) = j meaning that the

parent variables take values according to the jth configuration. For each i,
the local distribution contains qi ·(ri−1) free parameters, as the probabilities
need to sum to one for any given parent combination. In other words, we
model each variable with one categorical/multinomial distribution for each
possible assignment of its parent variables. The parameter vectors related
to these conditional distributions are denoted by θij = {θijk | k = 1, . . . , ri}.

2.3 Undirected graphical models 9

This allows us to express the likelihood of θ for a single data point X = x as

p(x | θ,G) =

d∏
i=1

qi∏
j=1

ri∏
k=1

θ
I(xi=k, xπ(i)=j)
ijk , (2.4)

where the indicator function I(xi = k, xπ(i) = j) = 1 if xi = k and xπ(i) = j;
and I(xi = k, xπ(i) = j) = 0, otherwise.

With directed graphical models it is possible that two different DAG
structures G1 and G2 represent exactly the same assertions of conditional
independence. The graphs G1 and G2 are then said to independence equiva-
lent. In case of the above two examples where the conditional distributions
are linear Gaussian or multinomial, independence equivalence implies also
that the two DAGs G1 and G2 represent the same set of joint distributions
over X [14].

2.3 Undirected graphical models

The undirected graphical models (Markov networks), as the name implies,
represent the independence structure for a set of random variables with
the help of an undirected graph G. The possible sets of conditional inde-
pendence assertions that can be represented with undirected graphs are
generally different from those we can represent using DAGs. However, there
exists a class of graphs called chordal or decomposable graphs consisting of
independence structures that are equally well representable using DAGs or
undirected graphs.

Also in the undirected case, we can characterize the independence
assumptions using similar Markov properties as those mentioned in the
directed case. Since the edges do not have directions, we do not have
concepts like ”parent” or ”child” and the properties admit maybe a bit
simpler form.

Let mb(i) denote the Markov blanket of variable Xi. The set mb(i)
includes all nodes that are connected to i by an edge in G. Now, the
pairwise, local, and global Markov properties can be stated as follows:

1. If there is no edge between Xi and Xj , the variable Xi is independent
of Xj given the remaining variables.

2. Given its Markov blanket, each variable Xi is conditionally indepen-
dent of all the remaining variables.

3. For disjoint subsets of nodes, A,B,C ⊂ V , it holds that XA is condi-
tionally independent of XB given XC , if C separates A and B in the
graph G.

10 2 Preliminaries: graphical models

These three properties are equivalent assuming the positivity of the distri-
bution p(X) [29].

Even though the independence assertions are somewhat easier to look
up from an undirected graph, the distribution does not in general factorize
into as intuitive components as the conditional probability distributions in
case of DAGs. With Markov networks, the distribution factorizes over the
maximal cliques of the graph. A clique is a set of nodes in a graph such
that each node is connected by an edge to all the remaining nodes in the
clique. Moreover, a clique is maximal if there does not exist a node in the
graph which could be added to it while still satisfying the clique definition.
Let C denote the set of maximal cliques in G. Now,

p(X) =
1

Z

∏
C∈C

φ(XC), (2.5)

where φ(XC) are called clique potentials which map the values of ran-
dom variables to (usually) strictly positive values. The term Z−1 =∑

x

∏
C∈C φ(XC = xC) is the normalization constant which guarantees

that the product defines a valid distribution. In case of continuous variables
the sum would be replaced by an integral. As the requirement for a mapping
to be a potential function is rather loose, we generally lose the ability to
interpret these as probability distributions.

One specific class of undirected graphical models encountered also later
in this thesis is Gaussian graphical models. In Gaussian graphical models,
we have an undirected graph G and a random vector X following a multi-
variate normal distribution Nd(0,Ω−1), where the matrix Ω is the inverse of
covariance, aka the precision matrix. Due to the properties of multivariate
normal distribution, the graph structure is easily read from the precision
matrix. To be more precise, Xi is conditionally independent of Xj given
the rest of variables if, and only if Ωij = 0. This means that there is no
edge between these variables in the graph G. In other words, in undirected
Gaussian graphical models, the graph structure is visible in the zero pattern
of Ω but otherwise the elements are unrestricted as long as the resulting
matrix is positive definite.

2.4 Graphical model structure learning

In this section, we define the problem of learning the structure of graphical
model a bit more carefully, review the outlines of the common strategies
when tackling this problem and mention some related concepts we will
encounter later in the thesis.

2.4 Graphical model structure learning 11

2.4.1 Defining the problem

In every article included in this thesis, we are either proposing a method
for solving, or just encountering the following problem: we are given a
data matrix X = (x1, . . . ,xn) consisting of d-dimensional observations xj .
Depending on the problem, components xji might be real numbers or integers
representing the values of continuous or categorical variables, respectively.
We have the underlying assumptions that xj are realizations of independent
and identically distributed (i.i.d.) random variables following a distribution
whose dependence structure obeys the Markov properties implied by graph
G. Based on the observational data X, our aim is to recover G.

Next, we will discuss the score-based methods and how they approach
this problem.

2.4.2 Score-based learning

The score-based approach treats the problem of learning a graph structure
as a model selection problem. With d variables, we have a finite amount
of possible graphs G to choose from, and each graph is associated with a
model MG for our data. Model

MG = { p(· | G, θ) | θ ∈ ΘG ⊆ Rk }

means here a set of probability distributions for data X that have a common
functional form depending on G, and that are indexed by some k-dimensional
parameter vector θ.

A scoring function is mapping which returns a scalar value for every
admissible input of X and G. We can interpret this scalar value to describe
how well our model fits the observed data. Making our models more complex,
we can naturally fit the data better, thus scoring functions usually include a
term that takes into account the complexity of the model, making the total
score a trade-off between the goodness-of-fit and model complexity penalty.

There exists a wide variety of possible scoring functions devised under
different assumptions. In this thesis, we will discuss scoring functions
that draw their motivation from Bayesian statistics [2, 15] and Minimum
Description Length (MDL) principle [17, 44].

With the scoring function given, the learning problem becomes an
optimization problem over the possible graph structures. When learning
DAGs, most of the scoring functions are decomposable, meaning that the
score for the whole network can be expressed as a variable-wise product
(or a sum) where the ith local term depends only on the data on Xi and
its parents Xπ(i). This allows the score to be optimized by traversing the

12 2 Preliminaries: graphical models

space of graphs with the help of local updates that affect only a couple of
terms in the decomposition. Decomposability is not that often encountered
when learning undirected graphs, although we will see a counter-example in
Chapter 3.

Another theoretical property that we will discuss later in the thesis
when proposing new scoring functions is consistency. Consistency roughly
guarantees that our scoring function will eventually give the highest score
to the true generating graph as we let our data size n tend to infinity.

2.4.3 Constraint-based learning

In the constraint-based approach, we make use of the fact that the graph
defines a certain set of independence assumptions over the variables in our
domain. These are the Markov properties we reviewed earlier. Based on the
observed data, we can then perform a series of queries to try to find Markov
properties that hold and parse our graph together from these results. In
practice, a single query is a conditional independence test which can be
formulated as a hypothesis test. For an overview on hypothesis testing, see
Casella and Berger [6].

The result of performing a hypothesis test is a yes/no answer, which
usually indicates a presence or absence of an edge in the graphical model.
Various algorithms have been proposed in order to be able to learn the
network structures efficiently without resorting to testing every possible
assertion of conditional independence.

For instance, in Chapter 3, we will use an algorithm that makes use of
the local Markov property when learning an undirected graph. The idea is
to find the Markov blanket for each variable, eq. the smallest set of variables
that renders the variable conditionally independent of the remaining ones.

Chapter 3

Learning undirected graphical
models

In this chapter, we discuss two methods for learning undirected graphical
models with continuous variables that differ greatly in modeling assumptions
they are making about the underlying data generating distribution. In the
first approach, we model our data with a multivariate normal distribution,
and using an approximation to the likelihood called pseudo-likelihood, we
derive a computationally attractive scoring function, titled as fractional
marginal pseudo-likelihood (FMPL), that allows us to learn graphs with
very large number of variables. In the second part, we devise a test for
conditional independence that does not require us to assume any particular
parametric form of the distribution for the variables involved. This allows
us to identify complex interactions among variables more accurately but
the resulting method is also computationally more involved.

3.1 Learning high dimensional Gaussian graphi-
cal models

We assume that our data X = (x1, . . . ,xn) are i.i.d samples from a multi-
variate normal distribution Nd(0,Ω−1), where the structure of the (positive
definite) precision matrix Ω is determined by some undirected graph G∗,
which describes the dependency structure of the generating distribution. In
other words, we are modeling our data using the Gaussian graphical model
(GGM), mentioned in Chapter 2.

13

14 3 Learning undirected graphical models

3.1.1 Bayesian learning of GGMs

We adopt a score-based approach to learning and make use of the Bayesian
framework in deriving our scoring function. To briefly summarize, the
Bayesian approach requires us to first construct a joint probability model
for all the relevant quantities (observed and unobserved) in our problem
domain, which involves expressing our beliefs on unobserved quantities
by assigning prior distributions over them. Next task is to compute the
posterior distribution for quantities under interest, and then finally use
this posterior as the basis of decision making. In the context of score-
based learning, Bayesian approach boils down to finding the graph with the
highest posterior probability p(G |X). The posterior for G can be written
as follows:

p(G |X) ∝ p(X, G) = p(X | G) · p(G), (3.1)

where p(G) is the prior probability for G and p(X | G) denotes the marginal
likelihood. In the first proportionality, we omitted the term p(X) as this is
constant for every G, and can be ignored when we are only interested in
finding the G with the maximum posterior probability. Marginal likelihood
is the only data dependent term in Eq. (3.1). It is defined as follows:

p(X | G) =

∫
θ∈ΘG

p(X | θ,G) p(θ | G) dθ, (3.2)

where ΘG denotes the set of possible parameter values under G. Assuming
uniform prior over graphs, the structure learning problem reduces to finding
the graph with the highest marginal likelihood. However, even with our
Gaussian assumption, there are several problems when trying to evaluate
the marginal likelihood integral under a general graph structure G:

1. We need to be able to specify the parameter prior p(θ | G) for any
given network structure. Eliciting the prior distributions subjectively
might quickly become a daunting task as the number of variables
increases.

2. Marginal likelihood is easily1 evaluated in closed form only if the
underlying graph is chordal [10].

3. Methods based on numerical approximations of marginal likelihood
tend to get computationally very demanding as the number of variables
grows. For instance, Wang and Li [62] report that approximating the

1Recent work [60] shows that there exists, in principle, a way to evaluate marginal
likelihood in closed form for a general graph structure.

3.1 Learning high dimensional Gaussian graphical models 15

marginal likelihood of a 100 node graph using Monte Carlo integration
would take approximately two days2.

However, evaluating the marginal likelihood for a Gaussian directed
graphical model is easier. In addition, there exists work on the objective
comparison of Gaussian DAGs [8] which helps us to deal with the difficulty of
eliciting the prior distributions. We will next review these results briefly and
then describe how we can use pseudo-likelihood to connect the framework
developed for the Gaussian DAGs to our problem of learning the undirected
graph structures.

3.1.2 Objective comparison of Gaussian DAGs

Consonni and La Rocca [8] describe a framework for computing marginal
likelihoods objectively for any Gaussian DAG structures. Objectivity is
attained using an uninformative, usually also an improper, prior over the
model parameters. Their methodology is based on a more general framework
introduced by Geiger and Heckerman [14] which requires specifying only a
single prior for the parameters of the complete DAG model (the precision
matrix Ω for a model implying no assertions of conditional independence).
If certain regularity assumptions are satisfied, this allows one to obtain the
marginal likelihood for any Gaussian DAG D using the formula

p(X | D) =
d∏
i=1

p(Xi |Xπ(i), Dc) =
d∏
i=1

p(Xfa(i) | Dc)

p(Xπ(i) | Dc)
, (3.3)

where Dc refers to a complete DAG model, for which we have specified the
prior distribution, fa(i) is the shorthand notation for π(i) ∪ {i}, and the
terms appearing on the right-hand side of (3.3) are marginal likelihoods
corresponding to data on subvectors of X under Dc. For the parameters of
the full DAG model, Ω, Consonni and La Rocca use a default, uninformative
prior of the form

p(θ |Dc) = p(Ω) ∝ |Ω|(α−d−1)/2,

where | · | denotes the matrix determinant and α is a free parameter which
we will take to be α = d− 1, yielding p(Ω) ∝ |Ω|−1. In order to cope with
the possible difficulties arising from the use of an improper prior, Consonni
and La Rocca apply fractional Bayes factors [40].

In the fractional Bayes framework, we use a fraction 0 < b < 1 of the
likelihood, p(X | θ)b, to update the improper prior p(θ) to a proper posterior,

2Using a quad-CPU 3.33GHz desktop computer.

16 3 Learning undirected graphical models

called the fractional prior. This fractional prior is then paired with the 1− b
fraction of the likelihood when computing the marginal likelihood. In our
setting, with α = d− 1, we can take b = 1/n, which results the fractional
prior over Ω being a proper, data dependent Wishart distribution. This
then allows one to express the terms in Eq. (3.3) in closed form.

3.1.3 FMPL score

Next we will make use of pseudo-likelihood [3] in order to connect the
marginal likelihood results of the directed case to the undirected one. Pseudo-
likelihood replaces the true likelihood function with an approximation that
is computationally more tractable. Using the chain rule, we can always
write

p(X | θ,G) =
d∏
i=1

p(Xi |X1, . . .Xi−1, θ, G). (3.4)

The main trick in pseudo-likelihood is to add more conditioning variables
in each term of Eq. (3.4). Denoting X1, . . . Xi−1, Xi+1, . . . , Xd = X−i, we
get the pseudo-likelihood as

d∏
i=1

p(Xi |X1, . . .Xi−1, θ, G) ≈
d∏
i=1

p(Xi |X−i, θ, G),

and using the Markov properties implied by G, this simplifies further to

d∏
i=1

p(Xi |Xmb(i), θ).

Now replacing the likelihood in (3.2) with the above pseudo-likelihood, and
assuming that the marginal likelihood integral factorizes over parameter sets
θi related to conditional distributions p(Xi | Xmb(i)), we obtain marginal
pseudo-likelihood as

p̂(X | G) ≡
d∏
i=1

p̂(Xi |Xmb(i)) =
d∏
i=1

∫
θi

p(Xi |Xmb(i), θi) p(θi) dθi. (3.5)

Marginal pseudo-likelihood was originally introduced in the context of
discrete undirected graphical models by Pensar et al. [42]. We refer to terms
p̂(Xi |Xmb(i)) as the local marginal pseudo-likelihoods.

Marginal pseudo-likelihood bears a resemblance to the marginal likeli-
hood under a DAG model as seen by comparing Eq. (3.5) to Eq. (3.3). Thus,
by using the available closed form formula for (3.3), replacing pa(i)→ mb(i)

3.1 Learning high dimensional Gaussian graphical models 17

and re-defining fa(i) = mb(i) ∪ {i}, we obtain fractional marginal pseudo-
likelihood as

p̂(X | G) =
d∏
i=1

π−
(n−1)

2
Γ
(n+pi

2

)
Γ
(
pi+1

2

)n− 2pi+1

2

(|Sfa(i)|
|Smb(i)|

)−n−1
2

, (3.6)

where pi is the size of the set mb(i), S = XTX is the unscaled covariance
matrix (assuming X has observations on rows), and the notation SA refers
to the submatrix of S restricted to variables in set A. The above score is
well-defined if matrices Sfa(i) and Smb(i) are positive definite.

3.1.4 Properties of FMPL

The FMPL score defined in the last section is completely free of any tunable
hyper-parameters, which is naturally an attractive property. However, the
derivation presented in the last section might seem a bit heuristic. To
put the score on a firmer ground, we formulate and prove the following
theorem in Article I which verifies that FMPL is consistent estimator for
the undirected graph structure:

Theorem 3.1 (Theorem 2 in Article I). Let X ∼ Nd(0, (Ω
∗)−1) and

G∗ = (V,E∗) denote the the undirected graph that completely determines
the conditional independence statements between the components of X. Let
{mb∗(1), . . . ,mb∗(d)} denote the set of Markov blankets, which uniquely
define G∗.

Suppose we have a complete random sample X of size n obtained from
Nd(0, (Ω

∗)−1). Then for every i ∈ V , the local fractional marginal pseudo-
likelihood estimator

m̂b(i) = arg maxmb(i)⊂V \{i}p̂(Xi |Xmb(i))

is consistent, that is, m̂b(i) = mb∗(i) with probability tending to 1, as
n→∞.

As the Markov blankets define the graph uniquely, Theorem 3.1 guaran-
tees that the true graph will eventually receive the highest score.

Another remarkable property of the FMPL scoring function is that it
is decomposable, a property not so often encountered in the context of
undirected graphs, and we can optimize it independently for each variable
while still guaranteeing the consistency in the limit of infinite data. We will
make use of this property in the next section, where we will review a greedy
algorithm for optimizing the FMPL score. In Article I, we also provide

18 3 Learning undirected graphical models

theoretical results showing that this greedy algorithm equipped with FMPL
score will eventually identify the true Markov blankets when given enough
data.

3.1.5 Optimizing the FMPL score

Our approach to optimizing the FMPL score is divided in two steps:

1. We start by finding the Markov blanket for each node independently.
This is done by using a greedy algorithm that is similar in spirit to a
constraint-based algorithm called interIAMB [58]. The found Markov
blankets are combined to two undirected graphs: GOR and GAND.

2. Making further use of the decomposability of the score, we run greedy
hill-climbing based on local changes starting from an empty graph.
The allowed operations are adding or deleting an edge from the graph.
As a further restriction, only edges present in GOR are considered
when edges are added. The algorithm terminates after no local change
provides an increase in FMPL score. The output graph is called GHC .

To describe the first step more carefully, the algorithm starts from
an empty blanket and then adds a node there that results in the highest
increase in the score. Successful addition steps are followed by deletion
steps, where nodes are removed from the blanket if that increases the score.
The algorithm terminates after one unsuccessful addition step.

Even though the FMPL score is consistent, this result applies only
asymptotically, and the Markov blankets found in the first step with any
finite sample sizes might not be coherent. By coherent, we mean that if
we found i to belong to the Markov blanket of j then j should also be in
the blanket of i as per definition of an undirected graph. To enforce this
property with finite sample sizes, we output two graphs mentioned already
above: GAND includes only the edges that were found in both directions
during independent Markov blanket searches, and for denser GOR it is
enough that edge was found in one direction.

This procedure is suitable for high-dimensional settings as the Markov
blanket searches in the first step can be computed completely in parallel.
Also, the edge addition and deletion operations involved in the second step
are efficient to evaluate due to the decomposability of the score: the score
needs to be recomputed only for the two nodes involved in the local change.

A similar two step strategy was used in the context of learning discrete
undirected graphs by Pensar et al. [42]. In general, the procedure resembles
the two step algorithm for learning DAG structures called Max-Min Hill-
Climbing [59]. The main difference is that Max-Min Hill-Climbing uses a

3.1 Learning high dimensional Gaussian graphical models 19

constraint-based algorithm in the first step when learning the undirected
skeleton of the network.

3.1.6 On the empirical performance

To evaluate the FMPL method in practice, we compared it to three commonly
used methods for learning Gaussian graphical models: graphical lasso
(glasso) [12, 64], neighbourhood selection (NBS) [36], and Sparse Partial
Correlation Estimation (SPACE) [41]. The common denominator in all
the aforementioned methods is that they use `1-penalty in their objective
functions in order to promote sparsity in the solutions. In the experiments,
we also included an additional sparsity promoting prior on the sizes of
Markov blankets to FMPL score. A more detailed description of the prior
is found in Article I.

The different methods were evaluated in two tasks: structure learning
and prediction. In the structure learning experiments, the graphs found by
the considered methods were compared to the ground truth graph using
Hamming distance (the number of edges to be added and deleted in order
to obtain the true graph). In the prediction experiments, the task was to
predict a value for a variable given the values of all the other variables based
on a model learned from training data.

To briefly summarize the conclusions from the experiments: in terms of
structure learning, the AND and HC graphs outputted by FMPL method
were generally closer to the true generating graph than the ones produced
by the competitors. However, in terms of prediction, the compared methods
performed quite similarly and one clear winner for all the settings was hard
to pick. In the prediction experiments, OR graph seemed to outperform the
other graphs outputted by FMPL.

To highlight some of the numerical results, we show in Figures 3.1 and
3.2 the results for the different methods in structure learning experiments
with synthetic data. The ground truth graphs had the number of nodes
ranging from 64 from 1024 with the corresponding number of edges ranging
from 78 to 1248. The inverse of covariance was randomly created with the
zero pattern implied by the graph, and the data was sampled from the
multivariate normal distribution determined by the inverse of covariance.
Figure 3.1 shows the comparison of AND graph of FMPL and the `1-based
methods. We can see that generally, the AND method performs the best
with NBS on tail. Figure 3.2 shows the comparison between the different
graphs outputted by FMPL method. We can see that HC and AND graphs
perform quite similarly, while the OR graph does a good job in the settings
with less variables (where the true graph is relatively denser).

20 3 Learning undirected graphical models

Sample size (x 1000)

0.125 0.25 0.5 1 2 4

H
a

m
m

in
g

 d
is

ta
n

c
e

0

20

40

60

80

100
d = 64

Sample size (x 1000)

0.125 0.25 0.5 1 2 4
H

a
m

m
in

g
 d

is
ta

n
c

e

0

40

80

120

160

200
d = 128

Sample size (x 1000)

0.125 0.25 0.5 1 2 4

H
a

m
m

in
g

 d
is

ta
n

c
e

0

80

160

240

320

400
d = 256

Sample size (x 1000)

0.125 0.25 0.5 1 2 4

H
a

m
m

in
g

 d
is

ta
n

c
e

0

140

280

420

560

700
d = 512

Sample size (x 1000)

0.125 0.25 0.5 1 2 4

H
a

m
m

in
g

 d
is

ta
n

c
e

0

260

520

780

1040

1300
d = 1024

AND

glasso

NBS

space

Figure 3.1: Hamming distance with different sample sizes in the structure
learning experiments with synthetic data for FMPL and `1-methods. Here,
AND graph represents the output of our proposed method. Figure reprinted
from Article I.

When the Markov blanket searches were run on a standard 2.3 GHz
workstation without utilizing parallelization, the running time of finding all
the FMPL graphs ranged roughly from half a second, in case with d = 64
variables, to couple minutes in d = 1024 case.

3.2 Learning non-parametric graphical models

We continue under the theme of learning undirected graphical models. We
will present a method for learning undirected graph structures without
assuming any particular distribution the data should follow. In order to do
this, we will first review some concepts from information theory and try to
motivate why the Gaussian assumption might not always be suitable.

3.2.1 Going beyond Gaussian

In the last section our main underlying modeling assumption was that the
data follows a multivariate normal distribution. This allowed us to derive
a scoring function which was efficient to evaluate even for a high number

3.2 Learning non-parametric graphical models 21

Sample size (x 1000)

0.125 0.25 0.5 1 2 4

H
a

m
m

in
g

 d
is

ta
n

c
e

0

10

20

30

40

50
d = 64

Sample size (x 1000)

0.125 0.25 0.5 1 2 4

H
a

m
m

in
g

 d
is

ta
n

c
e

0

20

40

60

80

100

120

d = 128

Sample size (x 1000)

0.125 0.25 0.5 1 2 4

H
a

m
m

in
g

 d
is

ta
n

c
e

0

100

200

300

400
d = 256

Sample size (x 1000)

0.125 0.25 0.5 1 2 4

H
a

m
m

in
g

 d
is

ta
n

c
e

0

200

400

600

800

d = 512

Sample size (x 1000)

0.125 0.25 0.5 1 2 4

H
a

m
m

in
g

 d
is

ta
n

c
e

0

500

1000

1500

2000

2500

d = 1024

OR

AND

HC

Figure 3.2: Hamming distance with different sample sizes in the structure
learning experiments with synthetic data for different FMPL graphs. Figure
reprinted from Article I.

of variables. However, assumption that our data follows a multivariate
Gaussian distribution is quite rigid, and puts some constraints on the
types of relationships between the variables we can model. To be more
specific, by assuming normality, the task of deciding whether two variables
are independent given some others reduces to testing whether the partial
correlation between them is non-zero. As the correlation measures only
the strength of a linear relationship, we might not to be able to detect
dependencies correctly if the relationships are more complex than linear or
if data deviates strongly from Gaussian distribution.

One class of methods that try to deal with this, while still retaining
the Gaussian assumption partly, go under the name Gaussian copulas or
non-paranormal methods [33, 34]. The main idea is to find univariate
transformations for each variable so that after the transformation the data
can be taken to follow multivariate normal distribution. The transformed
data can be then dealt with using any method developed for the Gaussian
data.

Kernel methods (see, for instance, [65]) are a second example of methods
that are applicable in this situation. Their approach consists roughly of
mapping the data to some possibly infinite dimensional space where the

22 3 Learning undirected graphical models

representation of data allows one to detect complex relationships among
the variables.

Our proposed solution to tackle with this problem will use mutual
information to devise a non-parametric independence test which can be
then paired with a constraint-based structure learning algorithm.

3.2.2 Mutual information and its estimation

Mutual information I(X,Y) [9] measures the information that a random
variable X carries from some other variable Y . For two continuous random
variables with joint density pXY (x, y), it is defined as follows:

I(X,Y) =

∫
x∈X

∫
y∈Y

pXY (x, y) log
pXY (x, y)

pX(x)pY (y)
dxdy, (3.7)

where pX and pY denote the marginal densities of the corresponding random
variables. As a measure of association, mutual information is not restricted
to detecting mere linear relationships like correlation. Mutual information
equals zero if and only if the variables are independent.

However, estimating mutual information based on observed samples of
X and Y might prove tricky in the general case, since if blindly following the
definition, we would first need to estimate the densities appearing in (3.7).
To bypass this, we will make use of the non-parametric mutual information
estimator by Kraskov et al. [28] which relies on the kth-nearest neighbor
statistics computed from the observed data.

The Kraskov estimator is based on a previous entropy estimator from
Kozachenko and Leonenko [27] which estimates the entropy using the as-
sumption that the probability density is constant inside the hyperspheres
containing the k − 1 nearest neighbors of each data point. The resulting
formula for entropy involves distances from each data point to their kth near-
est neighbors. As mutual information is expressible through (differential)
entropies, denoted H(·), as

I(X,Y) = H(X) +H(Y)−H(X,Y), (3.8)

Kraskov et al. apply the estimator to each of entropies appearing in Eq.
(3.8) while taking into account that the length scales in joint and marginal
spaces might be different, effectively canceling the aforementioned distance
terms. After finding the kth nearest neighbor of each point (xi, yi) in the
joint space and recording the corresponding distance εi, the Kraskov mutual
information estimator takes the form

Î(X,Y) = ψ(n) + ψ(k)− 1

n

n∑
i=1

[ψ(nx(i) + 1) + ψ(ny(i) + 1)], (3.9)

3.2 Learning non-parametric graphical models 23

where ψ(·) denotes the digamma function, n is the sample size and nx(i)
stands for the number of points found around xi in the marginal space of
X within the distance εi (and ny is defined similarly). The choice of the
value for k is connected to bias-variance trade-off, as smaller k means that
the assumption of constant density is made in smaller volumes.

As our ultimate interest will be to apply the estimator for structure
learning, we need to measure association between random variables given the
values of some other variables. To this end, we will need conditional mutual
information I(X,Y | Z). An important property regarding independence
testing is that conditional mutual information is zero if the variables in
question are conditionally independent, specifically

I(X,Y | Z) = 0 if and only if X ⊥⊥ Y | Z.

Conditional mutual information also admits a decomposition through en-
tropies which makes it possible to estimate it with similar techniques as
used in ordinary Kraskov estimator. A formula resembling Eq. (3.9) for
computing the conditional mutual information, Î(X,Y | Z), is provided by
Vejmelka and Paluš [61]. Similarly to Eq. (3.9), computing the conditional
mutual information requires performing the nearest neighbor search first in
the joint space (X,Y, Z), and then counting points inside given radii in the
marginal spaces.

3.2.3 Permutation test for conditional independence

While computing the value for conditional mutual information Î(X,Y | Z)
proved to be straightforward, applying it to independence testing poses
another challenge. Even if the random variables under consideration are
conditionally independent, the estimator Î(X,Y | Z) generally never equals
exactly zero due to random fluctuations.

If we knew the distribution of conditional mutual information estimator
under the hypothesis of independence, we could just check where the ob-
served value lands and use this to guide us when deciding on independence.
However, to our best knowledge, the analytical form of the distribution of
the estimator still remains elusive, and we need to resort to other means.

To cope with this problem, we will use a permutation test. Given
the observed data of size n denoted x = (x1, . . . , xn), y = (y1, . . . , yn)
and z = (z1, . . . , zn), we try to simulate the conditional independence
by randomly permuting the samples y and thus breaking the dependence
between X and Y . The idea is to repeatedly permute the data T times, and
compute mutual information Î(X,Y | Z) using the permuted data. This

24 3 Learning undirected graphical models

gives us T new different values for mutual information. Using these, we can
compare where the initially estimated value ranks among them. Denoting by
K the number of permuted values that exceed the initial value, we get the
following estimate for the p-value under the null hypothesis of independence:

p̂ =
1 +K

1 + T
.

This value can be then compared to predetermined significance level α in
order to decide on the independence. This gives us our non-parametric test
for conditional independence.

Regarding the computational complexity of mutual information based
independence testing, although the permutation test can be done completely
in parallel, the single conditional mutual information estimations require
nearest neighbor searches that can get computationally demanding as the
number of samples n, or the dimension (through adding more conditioning
variables) gets large. The brute force approach would scale as O(kdn2),
where d refers to the dimension of (X,Y, Z) space. Using data structures
such as kd-trees [1] one can bring the complexity with respect to the sample
size down to O(n log n).

In our implementation, we also included simple heuristic rules-of-thumb
that determine couple situations when the permutation could be skipped and
independence deduced. For instance, if fast-to-perform partial correlation
based test accepts independence, and estimated conditional mutual infor-
mation is below 0.001 nats, we accept the independence without performing
the test. For more details, we refer to Sec. 2.3. in Article II.

Even though the permutation test described above breaks the dependence
between y and x as desired, Runge [46] notes that this also results in the
dependence between permuted y and conditioning z being broken which is
in principle wrong when testing for conditional independence. He proposes
a local permutation scheme to counter this. This approach involves defining
neighborhoods for each data point in Z space, and then permuting y locally
with help of these neighborhoods. This introduces an additional tunable
hyperparameter, kperm, defining the number of points in the neighborhood.
We ran some experiments comparing local permutation scheme to the
simple one and found out that local permutation strategy did not seem to
result in a more accurate structure recovery when accompanied with the
algorithm discussed in the next section. Therefore, we opt to use the simple
permutation scheme. For details, we refer to Appendix A of Article II.

3.2 Learning non-parametric graphical models 25

3.2.4 Empirical performance

To test the method in practice in structure learning, we need to accompany
it with a constraint-based learning algorithm. Our strategy will resemble the
first step of FMPL algorithm in the last section. That is, we use a constraint-
based algorithm to learn the Markov blankets of each variable which we will
then combine using the AND-rule, also described when discussing FMPL,
to form the final undirected graph.

To learn the Markov blankets for each node, we use IAMB (incremental
association Markov Blanket) algorithm [58]. The algorithm consists of
two phases where in the first we add variables to the blanket if they are
found to be conditionally dependent given the current blanket. Order in
which variables are considered to be added is determined by a dynamic
heuristic which in case of our non-parametric test will be the conditional
mutual information. In the second phase, we try to identify the possible
false positives by removing the nodes that are found to be conditionally
independent given the remaining blanket.

The resulting method is referred to as knnMI. Next, we will briefly
describe some of the results from experiments in Article II.

We will compare knnMI with k = 5 to other independence tests paired
with the same structure learning algorithm. These tests include: Fisher-Z
test for partial correlation (assumes Gaussian data, see, for instance, Kalisch
and Bühlmann [22]), KCIT [65] which is a non-parametric kernel based
method, and RCIT [53], also a kernel method but based on approximations
in order to make the test more scalable. Significance level was set to α = 0.05
for every test. In addition to these, we include also the familiar glasso and
NBS methods which are applied to data after performing a non-paranormal
transformation. These methods are referred to as NPN glasso and NPN mb,
respectively.

In the experiments, our main interest was to study how the different
methods react when the data generating mechanism deviates from the
simple linear Gaussian structure. To that end, we created a data from a
small network containing seven nodes and eight edges. To ease the data
generation, the graph was selected to be chordal, meaning that we can
represent it equally well using a DAG or an undirected graph. We used the
DAG form, as it allows us to sample data for each variable given the values
of its parents, and varied the following properties in the data generating
mechanism:

1. Each variable Xi was defined either as a linear or a non-linear function
of its parent variables plus an additive noise term, denoted εi. The

26 3 Learning undirected graphical models

used non-linearities included, for instance, trigonometric functions,
logarithm, and absolute value.

2. The additive noise distribution was taken to be either standard Gaus-
sian, uniformly distributed between [−1, 1], or standard t with two
degrees of freedom.

Considering all the options for noise distributions in linear and non-linear
settings yields six different scenarios. The results of applying aforementioned
structure learning methods to these data sets with different sample sizes
are presented in Figure 3.3. The goodness of the learned structures was
measured using Hamming distance.

By looking at Figure 3.3, we can see that in the linear case (top-row),
kernel methods and the Gaussian test are the most accurate. The proposed
method knnMI seems to converge to the right graph but with a slower pace
than the leading methods. However, we observe drastic difference in results
when we change the relationships in the generating model to be non-linear.
In this case (the bottom-row of Figure 3.3) knnMI is generally the best in
capturing the underlying structure. KCIT is the runner-up while the other
methods do not seem to be able to converge to the right structure.

We considered also a larger version of the non-linear data generating
structure. The larger version was created by combining three seven node
networks discussed above to create a network with 21 variables. The
conclusion from this experiment was the same: knnMI and KCIT were the
only methods that seemed to work consistently, knnMI slightly better with
small sample sizes.

In addition to this, the methods were tested with non-paranormal data.
The data was generated from a Gaussian undirected graphical model with
10 or 20 nodes, and then put through a power transformation. The non-
paranormal methods were the best in the larger setting. The exact kernel
method KCIT worked also well in these settings and the performance of
knnMI was comparable to KCIT with the smallest and the largest sample
sizes considered.

To summarize, our method was found to outperform the other methods
in case the data generating mechanism involved non-linearities. Out of the
tested methods, only the kernel method KCIT could achieve comparable
performance in these settings. Comparison of computational complexities
for these two methods favors knnMI as the KCIT scales cubicly in the
sample size. That being said, all the other compared methods scale better
to larger data sets. But as seen in the experiments, the gain in speed might
come with a trade-off in accuracy.

3.2 Learning non-parametric graphical models 27

0
1
2
3
4
5
6
7

H
am

m
in

g
di

st
an

ce Linear + Gaussian

0
1
2
3
4
5
6
7 Linear + t

0
1
2
3
4
5
6 Linear + Uniform

125 250 500 1000 2000
Sample size

0
1
2
3
4
5
6
7
8
9

H
am

m
in

g
di

st
an

ce Non-linear + Gaussian

125 250 500 1000 2000
Sample size

0
1
2
3
4
5
6
7
8 Non-linear + t

125 250 500 1000 2000
Sample size

0
1
2
3
4
5
6
7
8
9Non-linear + Uniform

knnMI
fisherZ

NPN_mb
NPN_glasso

NPN_mb_auto
RCIT

KCIT

Figure 3.3: Structure learning with data generated using linear (top-row)
and non-linear (bottom-row) relationships with additive noise (columns).
Figure reprinted from Article II.

28 3 Learning undirected graphical models

Chapter 4

Learning and applying directed
graphical models

In this chapter, we change our setting in two major ways: 1) we consider
discrete random variables instead of continuous, 2) the graphical models
we study are directed, Bayesian networks. We start by going through some
common scoring criteria that are used when learning Bayesian network struc-
tures, and then propose a new one, called Quotient Normalized Maximum
Likelihood (qNML). After discussing qNML and its properties, we move on
to an application of Bayesian networks. To that end, we review the concept
of Fisher kernel and show how it can be combined with Bayesian networks
to produce a similarity measure for categorical data vectors.

4.1 Scoring criteria for structure learning in the
discrete setting

Let X denote a n×d data matrix consisting of n observations on d categorical
variables X = (X1, . . . , Xd). Recall from Chapter 2, that the Bayesian
network consists of DAG G and parameters θijk = P (Xi = k | Xπ(i) = j).
Recall also that Bayesian network allows us to express the likelihood function
(see Eq. (2.4)) given n i.i.d. data points X as

p(X | G, θ) =

d∏
i=1

qi∏
j=1

ri∏
k=1

θ
Nijk
ijk , (4.1)

where Nijk denotes the number of times we observe Xi taking value k when
its parents Xπ(i) take value j in our data X.

All the scoring functions we consider next are decomposable. Recall that
this means we can express them as a sum (or a product) of local scoring

29

30 4 Learning and applying directed graphical models

functions: f(G,X) =
∑

i fi(Xi |Xπ(i)), where the local terms depend only
on the data through variable Xi and its parents Xπ(i).

4.1.1 BDeu

As we have already seen in Chapter 3, one common choice for f(G,X) is
to consider the posterior probability of the graph given the observed data,
p(G |X), which simplifies to marginal likelihood, assuming uniform prior
over different graphs.

In the discrete setting, assuming parameter sets θij follow independent
Dirichlet distributions, θij ∼ Dir(αij1, . . . , αijri), allows one to evaluate the
marginal likelihood in closed form. The resulting score is called Bayesian-
Dirichlet-score (BD) [18]. BD-score requires the user to specify hyperpa-
rameters αijk which might not be straightforward. A very widely used
form of BD-score, called Bayesian-Diriclet equivalence uniform (BDeu), tries
to solve this by requiring the user to provide only one tuning parameter:
the equivalent sample size, α > 0. Using this, the hyperparameters are
set to αijk = α/(riqi). BDeu-score is also score equivalent. This property
guarantees that two Bayesian networks G1 and G2 that imply exactly the
same assertions of independence, are scored equally.

Even though depending only on one hyperparameter, the BDeu-score
can be really sensitive with respect of this choice: in [50], it is shown how
the highest scoring DAG structure can vary even from an empty graph to
the full network only by changing the value of α.

Another shortcoming of BDeu was noted by Suzuki [54]. Suzuki shows
how BDeu violates regularity in model selection. A decomposable scoring
function fi(Xi |Xπ(i)) is said not to be regular if it prefers a larger parent
set over a smaller one, even though the larger set does not provide a better
fit to data. The fit to data is here defined via empirical conditional entropy
H(Xi |Xπ(i)), with the smaller entropy implying a better fit. The example
in [54] where BDeu violates the regularity involves deterministic relationships
between the variables. In [55], it is also argued that regular scores are more
efficient when applied with branch-and-bound type search algorithms for
structure learning.

4.1.2 BIC

Another very popular scoring function is Bayesian Information Criterion
(BIC), which is derived as an asymptotic expansion of the log marginal

4.1 Scoring criteria for structure learning in the discrete setting 31

likelihood. For the Bayesian networks, it admits the following form:

BIC(G,X) =
d∑
i=1

log p̂(Xi |Xπ(i))−
ki
2

log n, (4.2)

where log p̂(Xi |Xπ(i)) = maxθi log p(Xi |Xπ(i), θi) denotes the maximized
log-likelihood function for Xi given the parents Xπ(i), and ki = qi(ri − 1) is
the number of free parameters in the conditional distribution of Xi.

BIC is often stated to have tendency to underfit, preferring simple
models unless a lot of data is available. This behaviour is observed for
instance in [51], where BIC requires large sample sizes before converging to
the correct structure.

4.1.3 fNML

The factorized Normalized Maximum Likelihood (fNML) [51] is a close
relative to the qNML criterion that we will present in the next section. Both
of these criteria draw their motivation from information theory as they are
approximations to a normalized maximum likelihood (NML) criterion which
itself is an instance of a more general MDL principle.

Utilizing the NML for learning a Bayesian network structure requires us
to compute the NML distribution under any given DAG G defined as

pNML(X | G) =
p(X | G, θ̂(X))∑

X′∈X p(X
′ | G, θ̂(X ′))

=

∏d
i=1 p̂(Xi |Xπ(i))∑

X′∈X
∏d
i=1 p̂(X

′
i |X ′π(i))

,

(4.3)
where X represents the set off all possible n × d data matrices for our
variables X. We have also used notation θ̂(·) to make the data set from
which the maximum likelihood parameters are computed explicit. Taking a
log of (4.3) and comparing the result to BIC formula (4.2) shows a clear
resemblance, the only difference being the penalty term.

The logarithm of the penalty term, that is, the denominator in (4.3)
is called parametric complexity or regret. This huge sum does not admit
a simple factorization over variables, and for a general Bayesian network
structure, this term is impossible to compute in reasonable time. However,
in case of n observations on a single categorical variable Xi, the regret
reg(n, ri) = log

∑
X′i∈Xi

p̂(X ′i) and therefore the NML distribution, can be

computed efficiently with an exact, linear time (with respect to n and ri)
algorithm [26] or by constant time approximations [56, 57]. Both, the fNML
and the soon-to-be-presented qNML make use of these results.

32 4 Learning and applying directed graphical models

The fNML solution for circumventing the intractability of the regret
computation in (4.3) is to approximate regret by a similar in spirit, but
decomposable object:

log
∑

X′∈X
p(X ′ | G, θ̂(X ′)) ≈

d∑
i=1

log
∑

X′i∈Xi

p̂(X ′i |Xπ(i)). (4.4)

While now being decomposable, the penalty term is also dependant on the
observed data X. After some manipulations [51], the local penalty (ith term
of the sum in (4.4)) can be expressed as

log
∑

X′i∈Xi

p̂(X ′i |Xπ(i)) =

qi∑
j=1

reg(Nij , ri), (4.5)

where Nij =
∑ri

k=1Nijk is the number of times we have observed the parents
of Xi taking the value j. This gives us the fNML score:

fNML(G,X) =
d∑
i=1

log p̂(Xi |Xπ(i))−
qi∑
j=1

reg(Nij , ri). (4.6)

When compared to BDeu, fNML does not require the user to set any
hyperparameters which is an attractive property. Also empirically, the
models learned by fNML are generally better in prediction than the ones
given by BDeu [51]. However, fNML is not score equivalent. As seen in
Article III, it seems also on some occasions to learn rather complex networks
which would be hard to interpret.

4.2 qNML score

We are now ready to define the qNML score presented in Article III. The
goal is to introduce a new score overcoming some of the negative theoretical
properties of the previously mentioned criteria while also maintaining good
empirical properties in terms of prediction.

4.2.1 Definition

Again, we aim at computing the NML distribution in (4.3), but resorting this
time to a different approximation. First, consider the usual decomposition
for the probability of X according to a DAG G

p(X | G) =

d∏
i=1

p(Xi |Xπ(i)) =

d∏
i=1

p(Xfa(i))

p(Xπ(i))
, (4.7)

4.2 qNML score 33

where the last equation is just the definition of conditional probability and
fa(i) = π(i) ∪ {i}.

Next, we will again utilize the fact that we know how to compute the
NML distribution for a single categorical variable. To that end, we assume
that the parent variables Xπ(i) form a fully connected graph. This means
that we can treat Xπ(i) and Xfa(i) as a two single categorical variables that
can take qi and ri · qi different values, respectively. Now, simply replacing
the probabilities appearing in (4.7) by one-dimensional NML probabilities
and taking the logarithm, we get the qNML score

qNML(G,X) =
d∑
i=1

log
p1
NML(Xfa(i))

p1
NML(Xπ(i))

, (4.8)

where
log p1

NML(XA) = log p̂1(XA)− reg(n,
∏
i∈A

ri) (4.9)

with the superscripted 1 emphasizing that the multivariate input is treated
as a single categorical variable.

By combining the maximized likelihood terms corresponding to variable
sets fa(i) and π(i), qNML takes the familiar form of a penalized maximum
likelihood:

qNML(G,X) =

d∑
i=1

log p̂(Xi |Xπ(i))− (reg(n, ri · qi)− reg(n, qi)) (4.10)

Compared to fNML, an evident difference is that the penalty function is not
dependent on the particular observed data vectors but only on the sample
size n and the numbers of possible categories for the variables. Similarly to
BIC and fNML, qNML is completely free of any tunable hyperparameters.

4.2.2 Theoretical properties of the score

We will now review the properties of qNML. For the proofs, reader is referred
to Article III and its Supplementary Material.

All the scoring functions mentioned in the previous section are consistent,
meaning roughly that they will give the highest score to the data generating
network when enough data is available. qNML is not an exception to this:

Theorem 4.1 (Sec. 3.2 in Article III). qNML is consistent.

When discussing fNML, we noted that it is not score equivalent. One
can, in a quite straightforward way, verify the following for qNML:

34 4 Learning and applying directed graphical models

Theorem 4.2 (Sec 3.1 in Article III). qNML is score equivalent.

Regarding BDeu, we noted the recent finding of it not being a regular
scoring function. After some slightly tedious derivations, one can show that:

Theorem 4.3 (Appendix B of Article III). qNML is regular.

As qNML and fNML are approximations to NML, it is interesting to ask
if there exists situations where they would be equal to the exact NML. For
the fNML, the equality holds only in the case when the score is evaluated
for an empty network [45]. qNML too agrees with NML on empty networks
but also in cases where the network consists of separate, fully connected
subgraphs.

4.2.3 On the empirical performance

The properties mentioned in the last section demonstrate that the qNML
holds certain theoretical advantages over BDeu and fNML but we would
naturally want this to translate into a good empirical performance. To
that end, Article III features experiments where qNML was compared to
the three previously mentioned scoring criteria in structure learning and
prediction.

In the structure learning experiments, data sets of sizes ranging from
10 to 103 were created from seven known ground truth network structures.
The highest scoring structures for each criterion were found using an exact
structure learning algorithm and the discrepancy to the ground truth was
measured using Structural Hamming Distance (SHD) [59]. The SHD mea-
sures similarity by counting the missing, extra or wrongly oriented edges as
compared to the true network, while taking into account that not all the
edge directions are distinguishable statistically.

We ranked the methods from 1 (the best) to 4 (the worst) according to
the SHD in each performed experiment. Looking at the average rank over
all the networks and repeated experiments at different sample sizes, qNML
was found never to have the worst average ranking. It had the best ranking
for sample sizes greater than 300. On the smaller sample sizes BIC was the
best but it did not fare so well with the larger ones.

In the prediction experiments, the scoring criteria were compared using
20 data sets from UCI repository. The data sets were split in training
and test sets with varying proportions. The network structure and the
parameters were learned from the training data and the performance was
measured by recording the negative log-likelihood evaluated for the test
set. Ranking the scores again from best to worst according to predictive

4.3 Application: Bayesian network Fisher kernel 35

performance and then averaging over all the data sets, sample sizes and
experiment repetitions, resulted fNML to have the best ranking with qNML
as the runner-up. BIC seemed the best with the smallest data sets and
the worst with the biggest ones. fNML fared the best with the bigger data
sets and the performance of qNML was usually somewhere between them,
making it a safe choice across all the sample sizes.

Lastly, a closer look was taken into the average number of parameters
in the learned networks with the same data sets and 10% of data used
for training. The previously mentioned observation that fNML seemed to
sometimes prefer quite complex networks was visible in the results (7/20
cases the network chosen by fNML was the most complex one) and qNML
was observed to produce sparser networks on average.

To conclude, none of the scores could be declared as winner in all
situations but qNML seemed to offer an overall robust and safe choice, being
generally never the worst one in any of the tasks or settings considered.

4.3 Application: Bayesian network Fisher kernel

Until this point, we have been mostly dedicated to different strategies for
learning the network structures from observational data. Next, we move on
to a different part of the pipeline and present an application where we make
use of the fully specified DAG model which can be learned, for instance,
by plugging any of the scores from the previous section in to some search
algorithm. This section is based on Article IV.

Our main goal here is to form a similarity measure for d-dimensional
categorical data vectors x and y. We assume that x and y are realizations
of X = (X1, . . . , Xd) whose distribution we model using a Bayesian network
model M = (G, θ), where G denotes the DAG and θ the parameters.

In general, measuring similarity between categorical vectors is not as
straightforward as measuring similarity of quantitative data vectors. Nev-
ertheless, various similarity measures appear in literature [5], the simplest
ones basically count the number of components where the vectors agree.
Literature on similarity measures that would take into account the possible
dependencies between the components is scarce. Some approaches exist that
consider the pairwise dependencies between components [11, 35, 39, 43]. A
Bayesian network would provide a natural solution to this by modeling the
whole dependency structure, beyond the pairwise one, with the help of a
DAG.

In order to make use of the Bayesian network, we will build a Fisher
kernel based on it. Fisher kernels have been constructed for some models

36 4 Learning and applying directed graphical models

that can be expressed as Bayesian networks (Hidden Markov Models [21]
and Probabilistic Latent Semantic Analysis [7]) but the general formula for
the Fisher kernel under any DAG model over categorical variables seems to
be missing from the literature.

4.3.1 Fisher kernel

Kernel methods [49] are based on embedding the observed data vectors to
some other (possible infinite dimensional) space called the feature space. The
kernel function, denoted K(x,y), allows us to evaluate the inner products
for observed data vectors in this feature space without ever explicitly
constructing the feature representations. As a myriad of machine learning
algorithms can be written in terms of inner products between vectors, kernel
methods provide us a convenient way for discovering relationships between
the data vectors in complex feature spaces.

Fisher kernel [20] provides a way of constructing a kernel function with
the aid of a parametric probabilistic model p(· | θ). Assume that θ contains
k free parameters. Fisher kernel is defined as follows:

K(x,y; θ) = ∇θ log p(x | θ)TI−1(θ)∇θ log p(y | θ), (4.11)

where∇θ log p(x | θ) ∈ Rk is the gradient vector (wrt. parameters) evaluated
at x and I−1(θ) denotes the inverse of the Fisher information matrix. Fisher
information is a k × k matrix with elements defined as

I(θ)ij = −EX
[
∂2 log p(X | θ′)

∂θi′θj ′

]
θ′=θ

. (4.12)

Intuitively, Fisher kernel measures similarity by looking at in which direction
x would like to change the parameters of the model which is quantified
via the gradient vector ∇θ log p(x | θ). If the gradient for the y points to
the same direction as ∇θ log p(x | θ), then the two points would be deemed
similar.

4.3.2 Fisher kernel for Bayesian networks

In order to derive the Fisher kernel for Bayesian networks, we just need to
replace the likelihood function p(· | θ) appearing in (4.11) by the likelihood
function given by some Bayesian network model M = (G, θ) (see, Eq. (4.1)).
This results in a straightforward, albeit a bit lengthy and messy calculation,

4.3 Application: Bayesian network Fisher kernel 37

which gives us the following result:

K(x,y; θ) =

d∑
i=1

Ki(x,y; θ), where (4.13)

Ki(x,y; θ) =

0, if xπ(i) 6= yπ(i),

− 1
p(xπ(i)|θ)

, if xπ(i) = yπ(i)

and xi 6= yi,

1
p(xπ(i)|θ)

·
(

1
θixπ(i)xi

− 1

)
, if xπ(i) = yπ(i)

and xi = yi.

For the detailed derivation, we refer to the Article IV.

To put (4.13) into words, Fisher kernel for Bayesian networks decomposes
into a sum over nodes i. Looking at the local term Ki(x,y; θ), we see that
this term evaluates to zero, if the parent variables Xπ(i) take different values
in data vectors x and y. If the values for parents agree, the value for
this term depends on the values of Xi in x and y. In case they do not
agree, xi 6= yi, the local term takes a negative value: −1/p(xπ(i) | θ), which
involves the marginal probability of the parent variables. And in case they
agree, the value for the local term is 1/p(xπ(i) | θ)(1/θixπ(i)xi − 1), in which
θixπ(i)xi = p(Xi = xi | Xπ(i) = xπ(i)).

4.3.3 Properties of the kernel

As we have noted couple times before, some Bayesian network structures are
equivalent in a sense that even though not being structurally exactly similar,
they still represent the same assertions of conditional independence, and
can be used to represent the same set of joint distributions with the right
choice of parameters. This gives rise to a question whether the resulting
Fisher kernel is dependent on the used network structure. The answer is
given in the following theorem:

Theorem 4.4 (Theorem 3 in Article IV). Let M1 = (G1, θ
1) and M2 =

(G2, θ
2) be two Bayesian networks with equivalent structures such that they

represent the same distribution over X. Now,

K(x,y; θ1) = K(x,y; θ2), ∀x,y.

In other words, Bayesian network Fisher kernel is indifferent to whichever
of the equivalent structures we use to construct it.

38 4 Learning and applying directed graphical models

It is also easy to generalize the Fisher kernel to comparing pairs of i.i.d.
observation sets instead of only pairs of observations. Namely, the Fisher
kernel between two sets of i.i.d. observations is the average over all the
pairwise kernel evaluations for these two sets [7]. To express this formally,
let X = (x1, . . . ,xn) and Y = (y1, . . . ,ym) denote two sets of observations
of size n and m, respectively. Now, the set kernel is defined as:

KS(X,Y ; θ) =
1

nm

n∑
i=1

m∑
j=1

K(xi,yj ; θ), (4.14)

where the right-hand side could be further simplified by expressing it with
help of the counts of different variable and parent combinations in data sets
X and Y .

Since the set kernel in (4.14) allows us to compute inner products between
sets of observations, we can use this in order to compute distances between
these sets too. This follows by applying the kernel trick [49] to Euclidean
distance, that is, expressing the usual (squared) Euclidean distance with
the help of the inner products between vectors, and replacing those with
the set kernel evaluations:

d(X,Y) = KS(X,X; θ) +KS(Y ,Y ; θ)− 2 ·KS(X,Y ; θ). (4.15)

In Article IV we also point out the connection between the distance given by
(4.15) and the empirical version of a kernel based statistic called Maximum
Mean Discrepancy (MMD) [16] which can be used for testing whether two
data sets originate from a common distribution.

In the next section, we discuss experiments where we make use of
d(X,Y) and refer to it as MMD distance. Even though calling the distance
MMD, we note that in order to make use of all the machinery and theoretical
results regarding MMD developed in [16] would require checking certain
theoretical properties of the Fisher kernel, which we do not pursue here.

4.3.4 Applying the Fisher kernel

To demonstrate the nature of the similarity that Bayesian network Fisher
kernel measures, we drew inspiration from the area of interpretable machine
learning (see, for instance, [37]). Our goal is to gain insight into the
underlying Bayesian network model upon which the kernel is built by using
the kernel to find data points that are representative for the model. As noted
in [23], Fisher kernel is naturally suited to these kinds of interpretation
tasks as the similarity for the data points is defined from the point of the
view of the model.

4.3 Application: Bayesian network Fisher kernel 39

Our experiments are similar in spirit to the data summarization experi-
ments in [23]. In the experiments, we first learn a Bayesian network model
based on a large training data set X. Then we construct a Fisher kernel
based on the network and use it to seek a much smaller representative subset
of observations XS of size k ≡ |S| that are ”important” according to the
model. By important we roughly mean that the performance of the model
whose parameters are re-trained using only XS should not deteriorate too
much in predictive tasks when compared to the original model based on
the full data X. Here S ⊂ {1, . . . , n} denotes the indices of the data points
that are included in this subset.

In practice, the representative subset is found by using a simple greedy
algorithm aiming to minimize the MMD d(XS ,X) with respect to S. Details
on the algorithm can be found in the Article IV.

The algorithm was applied to three data sets from the UCI repository:
letter (n = 20000, d = 17), nursery (n = 12960, d = 9) and waveform-5000
(n = 5000, d = 41). The data sets were split in half to form training and
test sets. The Bayesian network model was learned from training set using
a hill-climbing algorithm with BIC as the scoring function. In order to
quantify the goodness of the found representative subsets, we first recorded
the log-likelihood for the test set which was obtained using the model trained
on the full training set. Then the representative subsets with varying size
of k (between 200 and 1000) were found using the algorithm. With each
of the found subsets, the parameters of the model were retrained using
the subset XS and the resulting model was used in computing the test set
log-likelihood. The results are shown in Figure 4.1.

In Figure 4.1, Fisher kernel based subset selection (greedy Fisher MMD)
is compared to a baseline (random baseline), where the network parameters
are retrained based on a randomly sampled subset XS . Each randomly
trained network is used in computing the test set log-likelihood and the
average result over 1000 subsets is shown in the figure.

In addition to a random baseline, we included a heuristic method (greedy
ChiSq heuristic) which tries to find subset XS in which all the marginal
distributions of variables match well with the marginals in the whole set X.
Criterion is based on the classical χ2-test and it is paired with the same
greedy optimization algorithm as the Fisher kernel MMD.

Fisher kernel based MMD was also applied to Bayesian network classi-
fiers. We used Tree Augmented Naive Bayes (TAN) [13] and K-dependence
Bayesian (KDB) [48] classifiers. In the classification experiments, the perfor-
mance was evaluated with (conditional) log-likelihood and misclassification
rate on the test set. Otherwise the test setting was exactly as described

40 4 Learning and applying directed graphical models

200 400 600 800 1000

13

14

15

16

A
vg

. n
eg

at
iv

e
lo

g-
lik

el
ih

oo
d

letter (N=10000)

200 400 600 800 1000
Training set size

9.75

9.80

9.85

9.90

9.95

nursery (N=6480)

200 400 600 800 1000
37.6

37.8

38.0

38.2

38.4

38.6

waveform-5000 (N=2500)
Greedy Fisher MMD
Greedy ChiSq heuristic
Full set
Random baseline

Figure 4.1: Negative log-likelihoods for different subset sizes and criteria in
UCI datasets. Full set represents the accuracy of the model trained with
all the available data and random baseline is averaged result over models
retrained with random subsets. Figure adapted from Article IV.

previously. We show results for data sets letter and nursery for TAN and
KDB-3 in Figures 4.2 and 4.3, respectively. The results in waveform-5000
were similar.

Looking at the results, we can see that Fisher kernel based subset selec-
tion criterion seems to generally find subsets that are important, capturing
well the main characteristics in the whole data set, and thus resulting in
a predictive performance that is closer to the baseline than the compared
methods. This is especially seen in Figures 4.1 and 4.2. However, we
note that in the classification experiments with the smallest sample sizes,
KDB classifier with K = 3 did not always have better performance than
the compared methods. This can be seen in Figure 4.3 with the data set
nursery. One thing explaining this might be that Fisher kernel measures
the similarity of data points with respect the whole model through all of its
parameters, whereas the evaluation criteria in the classification experiment
are strongly focused on the class variable and parameters governing its
conditional distribution.

4.3 Application: Bayesian network Fisher kernel 41

200 400 600 800 1000
0.4

0.6

M
is

cl
as

si
fic

at
io

n
ra

te

200 400 600 800 1000
Training set size

1.5

2.0

2.5

Lo
g-

lo
ss

TAN: letter

200 400 600 800 1000

0.10

0.15

200 400 600 800 1000
Training set size

0.2

0.4

TAN: nursery

Figure 4.2: Results on classification experiments for TAN in data sets letter
(left) and nursery (right). Missclassification rate on top and log-loss on
the bottom. Labeling of the lines follows Figure 4.1. Figure adapted from
Article IV.

200 400 600 800 1000

0.4

0.6

M
is

cl
as

si
fic

at
io

n
ra

te

200 400 600 800 1000
Training set size

1

2

Lo
g-

lo
ss

KDB-3: letter

200 400 600 800 1000

0.05

0.10

0.15

200 400 600 800 1000
Training set size

0.2

0.4

KDB-3: nursery

Figure 4.3: Results on classification experiments for KDB (K = 3) in data
sets letter (left) and nursery (right). Missclassification rate on top and
log-loss on the bottom. Labeling of the lines follows Figure 4.1. Figure
adapted from Article IV.

42 4 Learning and applying directed graphical models

Chapter 5

Conclusions

In this thesis, we have discussed graphical models, mainly focusing on maybe
the most challenging task related to them: learning the graph structure
from observed data. The discussion about the original research articles
forming up this thesis was divided in two chapters treating undirected and
directed graphical models.

The chapter on learning the undirected graphical models introduced to
us two different methods for learning the graph structures. The profound
difference of methods lies in their way of modeling the distribution of the
input data. First, we presented the FMPL method which relied on somewhat
rigid assumption on the multivariate normally distributed data. However,
this assumption with the aid of the technique called pseudo-likelihood
allowed us to derive a provably consistent and tuning-parameter free scoring
function that was demonstrated in the experiments to be applicable even in
high-dimensional settings.

Next, letting go of the Gaussian assumption, we used mutual information
and permutation test to devise a non-parametric conditional independence
test. In the numerical experiments, we found the method to work really
well when the data generating mechanism involved non-linearities.

After this, we moved on to the realm of directed graphical models. We
introduced a new scoring criterion called qNML, studied its theoretical
properties and conducted numerical experiments. Even though none of
the scores dominated in all aspects of the experimental evaluation, qNML
maintained robust performance and was concluded to be an overall safe
choice across a wide variety of settings.

Finally, we discussed how Bayesian networks can be used in defining a
similarity measure over categorical feature vectors with help of an Fisher
kernel. We derived a closed form formula for this Bayesian network Fisher
kernel, and applied it to a task of finding small representative sets of

43

44 5 Conclusions

samples with respect to the model from larger training sets, a task drawing
its motivation from the literature on interpretable machine learning.

We can see that a recurring theme in all the problems we have discussed
in this thesis is some intractable, completely unknown, or hard-to-define
quantity relevant to our learning problem: with Article I it is the marginal
likelihood which plays a similar role as the normalized maximum likelihood
discussed in Article III. Both of these we know how to compute, but the
problem becomes intractable beyond toy examples. In Article II, the quantity
is the sampling distribution of mutual information estimator, not a single
number but something that we do not know how to express analytically.
Finally, in Article IV, this quantity is the similarity between multivariate
categorical data which does not even admit a single, clear definition.

Having proposed some strategies to overcome the aforementioned prob-
lems, we can still think of future directions that might provide interesting
problems to consider in the follow-up work:

1. Regarding the mutual information estimation, analytic form for the
sampling distribution would naturally be an important and ambi-
tious goal. A more straightforward route to make the estimation
faster would be to consider some approximate nearest neighbor search
schemes. But an important question here is how to keep the accuracy
not deteriorating too much and at the same time obtain worthwhile
computational savings.

2. In Article III we noted that qNML agrees with the exact NML for
specific networks structures. But what is the relation between these
two scores for other networks? As the two criteria differ only on the
penalty term, the difference is not dependent on the specific observed
data, only on the sample size and the number of categories of variables.

3. Regarding Fisher kernel, for discrete Bayesian networks, it is possible
that the conditional distribution of X given its parents Z is exactly the
same for two values Z = z1 and Z = z2. Intuitively, one would then
think that the vectors (x, z1) and (x, z2) should be similar. However,
the contribution of X to the total Fisher similarity between these
example vectors would be zero, as the parents do not match, z1 6=
z2. One way to address this could be to consider a model that
introduces some structure to the local distributions by using only
a single parameter vector for modeling both p(X | Z = z1) and
p(X | Z = z2). This would naturally change the form of log-likelihood,
and thus require us to derive Fisher kernel again at least partly.

References

[1] J. L. Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, 1975.

[2] J. M. Bernardo and A. F. M. Smith. Bayesian Theory. John Wiley &
Sons, 1994.

[3] J. E. Besag. Nearest-neighbour systems and the auto-logistic model
for binary data. Journal of the Royal Statistical Society. Series B
(Methodological), 34(1):75–83, 1972.

[4] C. M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, 2006.

[5] S. Boriah, V. Chandola, and V. Kumar. Similarity measures for
categorical data: A comparative evaluation. In SIAM Data Mining
Conference, pages 243–254, 2008.

[6] G. Casella and R. L. Berger. Statistical Inference. Wadsworth Group,
Duxbury, 2002.

[7] J.-C. Chappelier and E. Eckard. PLSI: The true Fisher kernel and
beyond. In Machine Learning and Knowledge Discovery in Databases,
pages 195–210, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[8] G. Consonni and L. La Rocca. Objective Bayes factors for Gaussian
directed acyclic graphical models. Scandinavian Journal of Statistics,
39(4):743–756, 2012.

[9] T. M. Cover and J. A. Thomas. Elements of Information Theory 2nd
Edition. Wiley-Interscience, 2006.

[10] A. P. Dawid and S. L. Lauritzen. Hyper Markov laws in the statistical
analysis of decomposable graphical models. The Annals of Statistics,
21(3):1272–1317, 1993.

45

46 References

[11] A. Desai, H. Singh, and V. Pudi. DISC: Data-intensive similarity
measure for categorical data. In Advances in Knowledge Discovery and
Data Mining: 15th Pacific-Asia Conference, pages 469–481. Springer,
Berlin, Heidelberg, 2011.

[12] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance
estimation with the graphical lasso. Biostatistics, 9(3):432–441, 2008.

[13] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classi-
fiers. Machine Learning, 29(2):131–163, 1997.

[14] D. Geiger and D. Heckerman. Parameter priors for directed acyclic
graphical models and the characterization of several probability distri-
butions. The Annals of Statistics, 30(5):1412–1440, 2002.

[15] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and
D. B. Rubin. Bayesian Data Analysis. Chapman and Hall/CRC, 2014.

[16] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola.
A kernel two-sample test. JMLR, 13:723–773, 2012.

[17] P. Grünwald. The Minimum Description Length Principle. MIT Press,
2007.

[18] D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian
networks: The combination of knowledge and statistical data. Machine
Learning, 20(3):197–243, Sep 1995.

[19] J. S. Ide, S. Zhang, and C. R. Li. Bayesian network models in brain
functional connectivity analysis. International Journal of Approximate
Reasoning, 55(1, Part 1):23 – 35, 2014. Applications of Bayesian
Networks.

[20] T. Jaakkola and D. Haussler. Exploiting generative models in dis-
criminative classifiers. In Advances in Neural Information Processing
Systems 11, pages 487–493. MIT Press, 1998.

[21] T. S. Jaakkola, M. Diekhans, and D. Haussler. A discriminative frame-
work for detecting remote protein homologies. Journal of computational
biology, 7(1-2):95–114, 2000.

[22] M. Kalisch and P. Bühlmann. Estimating high-dimensional directed
acyclic graphs with the PC-algorithm. JMLR, 8:613–636, 2007.

References 47

[23] R. Khanna, B. Kim, J. Ghosh, and S. Koyejo. Interpreting black box
predictions using Fisher kernels. In K. Chaudhuri and M. Sugiyama,
editors, Proceedings of Machine Learning Research, volume 89 of Pro-
ceedings of Machine Learning Research, pages 3382–3390. PMLR, 16–18
Apr 2019.

[24] D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In
International Conference on Learning Representations (ICLR), 2014.

[25] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles
and Techniques. MIT press, 2009.

[26] P. Kontkanen and P. Myllymäki. A linear-time algorithm for computing
the multinomial stochastic complexity. Information Processing Letters,
103(6):227–233, 2007.

[27] L. Kozachenko and N. N. Leonenko. Sample estimate of the entropy of
a random vector. Problemy Peredachi Informatsii, 23(2):9–16, 1987.

[28] A. Kraskov, H. Stögbauer, and P. Grassberger. Estimating mutual
information. Physical Review E, 69(6), 2004.

[29] S. Lauritzen. Graphical Models. Clarendon Press, 1996.

[30] J. Leppä-aho, J. Pensar, T. Roos, and J. Corander. Learning Gaussian
graphical models with fractional marginal pseudo-likelihood. Interna-
tional Journal of Approximate Reasoning, 83:21 – 42, 2017.

[31] J. Leppä-aho, S. Räisänen, X. Yang, and T. Roos. Learning non-
parametric Markov networks with mutual information. In V. Kra-
tochv́ıl and M. Studený, editors, Proceedings of the Ninth International
Conference on Probabilistic Graphical Models, volume 72 of Proceedings
of Machine Learning Research, pages 213–224, Prague, Czech Republic,
11–14 Sep 2018. PMLR.

[32] J. Leppä-aho, T. Silander, and T. Roos. Bayesian network Fisher
kernel for categorical feature spaces. Accepted for publication in Be-
haviormetrika, 2019.

[33] H. Liu, J. Lafferty, and L. Wasserman. The nonparanormal: Semipara-
metric estimation of high dimensional undirected graphs. JMLR, 10:
2295–2328, 2009.

[34] H. Liu, F. Han, M. Yuan, J. Lafferty, and L. Wasserman. High-
dimensional semiparametric Gaussian copula graphical models. The
Annals of Statistics, 40(4):2293–2326, 2012.

48 References

[35] B. McCane and M. Albert. Distance functions for categorical and
mixed variables. Pattern Recognition Letters, 29(7):986–993, 2008.

[36] N. Meinshausen and P. Bühlmann. High-dimensional graphs and
variable selection with the lasso. The Annals of Statistics, 34(3):1436–
1462, 2006.

[37] W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu.
Interpretable machine learning: Definitions, methods, and applications.
arXiv e-prints, art. arXiv:1901.04592, Jan 2019.

[38] K. P. Murphy. Machine Learning: A Probabilistic Perspective. MIT
Press, 2012.

[39] H. Niitsuma and T. Okada. Covariance and PCA for categorical
variables. In T. B. Ho, D. Cheung, and H. Liu, editors, Advances in
Knowledge Discovery and Data Mining: 9th Pacific-Asia Conference,
pages 523–528, Hanoi, Vietnam, May 18–20 2005. Springer, Berlin,
Heidelberg.

[40] A. O’Hagan. Fractional Bayes factors for model comparison. Journal of
the Royal Statistical Society. Series B (Methodological), 57(1):99–138,
1995.

[41] J. Peng, P. Wang, N. Zhou, and J. Zhu. Partial correlation estimation
by joint sparse regression models. Journal of the American Statistical
Association, 104(486):735–746, 2009.

[42] J. Pensar, H. Nyman, J. Niiranen, and J. Corander. Marginal pseudo-
likelihood learning of discrete Markov network structures. Bayesian
Analysis, 12(4):1195–1215, 2017.

[43] M. Ring, F. Otto, M. Becker, T. Niebler, D. Landes, and A. Hotho.
ConDist: A context-driven categorical distance measure. In A. Appice,
P. P. Rodrigues, V. Santos Costa, C. Soares, J. Gama, and A. Jorge,
editors, Machine Learning and Knowledge Discovery in Databases:
European Conference, pages 251–266, Porto, Portugal, September 7–11
2015. Springer International Publishing.

[44] J. Rissanen. Modeling by shortest data description. Automatica, 14:
445–471, 1978.

[45] T. Roos, T. Silander, P. Kontkanen, and M. P. Bayesian network struc-
ture learning using factorized NML universal models. In Proceedings

References 49

of the Information Theory and Applications Workshop (ITA-08), San
Diego, CA, January 2008.

[46] J. Runge. Conditional independence testing based on a nearest-neighbor
estimator of conditional mutual information. In Proceedings of the
Twenty-First International Conference on Artificial Intelligence and
Statistics, pages 938–947, 2018.

[47] K. Sachs, D. Gifford, T. Jaakkola, P. Sorger, and D. A. Lauffenburger.
Bayesian network approach to cell signaling pathway modeling. Sci-
ence’s STKE, 2002(148):pe38, 2002.

[48] M. Sahami. Learning limited dependence Bayesian classifiers. In
Proceedings of the Second International Conference on Knowledge Dis-
covery and Data Mining, pages 335–338. AAAI Press, 1996.

[49] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Anal-
ysis. Cambridge University Press, 2004.

[50] T. Silander, P. Kontkanen, and P. Myllymäki. On sensitivity of the MAP
Bayesian network structure to the equivalent sample size parameter.
In R. Parr and L. van der Gaag, editors, Proceedings of the 23rd
Conference on Uncertainty in Artificial Intelligence (UAI–07), pages
360–367. AUAI Press, 2007.

[51] T. Silander, T. Roos, and P. Myllymäki. Learning locally minimax
optimal Bayesian networks. International Journal of Approximate
Reasoning, 51(5):544 – 557, 2010.

[52] T. Silander, J. Leppä-aho, E. Jääsaari, and T. Roos. Quotient nor-
malized maximum likelihood criterion for learning Bayesian network
structures. In A. Storkey and F. Perez-Cruz, editors, Proceedings of
the Twenty-First International Conference on Artificial Intelligence
and Statistics, volume 84 of Proceedings of Machine Learning Research,
pages 948–957, Playa Blanca, Lanzarote, Canary Islands, 09–11 Apr
2018. PMLR.

[53] E. V. Strobl, K. Zhang, and S. Visweswaran. Approximate kernel-based
conditional independence tests for fast non-parametric causal discovery.
ArXiv e-prints, 2017.

[54] J. Suzuki. A theoretical analysis of the BDeu scores in Bayesian network
structure learning. Behaviormetrika, 44(1):97–116, 2017.

50 References

[55] J. Suzuki and J. Kawahara. Branch and bound for regular Bayesian
network structure learning. The 33rd Conference on Uncertainty in
Artificial Intelligence, UAI 2017, August 11-15, 2017, Sydney, Australia,
2017.

[56] W. Szpankowski. Average case analysis of algorithms on sequences.
John Wiley & Sons, 2001.

[57] W. Szpankowski and M. J. Weinberger. Minimax pointwise redundancy
for memoryless models over large alphabets. IEEE Transactions on
Information Theory, 58(7):4094–4104, July 2012.

[58] I. Tsamardinos, C. F. Aliferis, and A. Statnikov. Algorithms for large
scale Markov blanket discovery. In I. Russell and S. Haller, editors, The
16th International FLAIRS Conference, pages 376–380. AAAI Press,
2003.

[59] I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-
climbing Bayesian network structure learning algorithm. Machine
Learning, 65(1):31–78, 2006.

[60] C. Uhler, A. Lenkoski, and D. Richards. Exact formulas for the
normalizing constants of Wishart distributions for graphical models.
The Annals of Statistics, 46(1):90–118, 2018.

[61] M. Vejmelka and M. Paluš. Inferring the directionality of coupling with
conditional mutual information. Physical Review E, 77, 2008.

[62] H. Wang and S. Z. Li. Efficient Gaussian graphical model determination
under G-Wishart prior distributions. Electronic Journal of Statistics,
6:168–198, 2012.

[63] J. Whittaker. Graphical Models in Applied Multivariate Statistics. John
Wiley & Sons, 1990.

[64] D. M. Witten, J. H. Friedman, and N. Simon. New insights and faster
computations for the graphical lasso. Journal of Computational and
Graphical Statistics, 20(4):892–900, 2011.

[65] K. Zhang, J. Peters, D. Janzing, and B. Schölkopf. Kernel-based
conditional independence test and application in causal discovery. In
Proceedings of the Twenty-Seventh Conference on Uncertainty in Arti-
ficial Intelligence, pages 804–813, 2011.

TIETOJENKÄSITTELYTIETEEN OSASTO DEPARTMENT OF COMPUTER SCIENCE
PL 68 (Pietari Kalmin katu 5) P.O. Box 68 (Pietari Kalmin katu 5)
00014 Helsingin yliopisto FI-00014 University of Helsinki, Finland

JULKAISUSARJA A SERIES OF PUBLICATIONS A

Reports are available on the e-thesis site of the University of Helsinki.

A-2014-1 J. Korhonen: Graph and Hypergraph Decompositions for Exact Algorithms. 62+66 pp.
(Ph.D. Thesis)

A-2014-2 J. Paalasmaa: Monitoring Sleep with Force Sensor Measurement. 59+47 pp. (Ph.D.
Thesis)

A-2014-3 L. Langohr: Methods for Finding Interesting Nodes in Weighted Graphs. 70+54 pp.
(Ph.D. Thesis)

A-2014-4 S. Bhattacharya: Continuous Context Inference on Mobile Platforms. 94+67 pp.
(Ph.D. Thesis)

A-2014-5 E. Lagerspetz: Collaborative Mobile Energy Awareness. 60+46 pp. (Ph.D. Thesis)

A-2015-1 L. Wang: Content, Topology and Cooperation in In-network Caching. 190 pp. (Ph.D.
Thesis)

A-2015-2 T. Niinimäki: Approximation Strategies for Structure Learning in Bayesian Networks.
64+93 pp. (Ph.D. Thesis)

A-2015-3 D. Kempa: Efficient Construction of Fundamental Data Structures in Large-Scale Text
Indexing. 68+88 pp. (Ph.D. Thesis)

A-2015-4 K. Zhao: Understanding Urban Human Mobility for Network Applications. 62+46 pp.
(Ph.D. Thesis)

A-2015-5 A. Laaksonen: Algorithms for Melody Search and Transcription. 36+54 pp. (Ph.D.
Thesis)

A-2015-6 Y. Ding: Collaborative Traffic Offloading for Mobile Systems. 223 pp. (Ph.D. Thesis)

A-2015-7 F. Fagerholm: Software Developer Experience: Case Studies in Lean-Agile and Open
Source Environments. 118+68 pp. (Ph.D. Thesis)

A-2016-1 T. Ahonen: Cover Song Identification using Compression-based Distance Measures.
122+25 pp. (Ph.D. Thesis)

A-2016-2 O. Gross: World Associations as a Language Model for Generative and Creative Tasks.
60+10+54 pp. (Ph.D. Thesis)

A-2016-3 J. Määttä: Model Selection Methods for Linear Regression and Phylogenetic Recon-
struction. 44+73 pp. (Ph.D. Thesis)

A-2016-4 J. Toivanen: Methods and Models in Linguistic and Musical Computational Creativity.
56+8+79 pp. (Ph.D. Thesis)

A-2016-5 K. Athukorala: Information Search as Adaptive Interaction. 122 pp. (Ph.D. Thesis)

A-2016-6 J.-K. Kangas: Combinatorial Algorithms with Applications in Learning Graphical
Models. 66+90 pp. (Ph.D. Thesis)

A-2017-1 Y. Zou: On Model Selection for Bayesian Networks and Sparse Logistic Regression.
58+61 pp. (Ph.D. Thesis)

A-2017-2 Y.-T. Hsieh: Exploring Hand-Based Haptic Interfaces for Mobile Interaction Design.
79+120 pp. (Ph.D. Thesis)

A-2017-3 D. Valenzuela: Algorithms and Data Structures for Sequence Analysis in the Pan-
Genomic Era. 74+78 pp. (Ph.D. Thesis)

A-2017-4 A. Hellas: Retention in Introductory Programming. 68+88 pp. (Ph.D. Thesis)

A-2017-5 M. Du: Natural Language Processing System for Business Intelligence. 78+72 pp.
(Ph.D. Thesis)

A-2017-6 A. Kuosmanen: Third-Generation RNA-Sequencing Analysis: Graph Alignment and
Transcript Assembly with Long Reads. 64+69 pp. (Ph.D. Thesis)

A-2018-1 M. Nelimarkka: Performative Hybrid Interaction: Understanding Planned Events across
Collocated and Mediated Interaction Spheres. 64+82 pp. (Ph.D. Thesis)

A-2018-2 E. Peltonen: Crowdsensed Mobile Data Analytics. 100+91 pp. (Ph.D. Thesis)

A-2018-3 O. Barral: Implicit Interaction with Textual Information using Physiological Signals.
72+145 pp. (Ph.D. Thesis)

A-2018-4 I. Kosunen: Exploring the Dynamics of the Biocybernetic Loop in Physiological Com-
puting. 91+161 pp. (Ph.D. Thesis)

A-2018-5 J. Berg: Solving Optimization Problems via Maximum Satisfiability: Encodings and
Re-Encodings. 86+102 pp. (Ph.D. Thesis)

A-2018-6 J. Pyykkö: Online Personalization in Exploratory Search. 101+63 pp. (Ph.D. Thesis)

A-2018-7 L. Pivovarova: Classification and Clustering in Media Monitoring: from Knowledge
Engineering to Deep Learning. 78+56 pp. (Ph.D. Thesis)

A-2019-1 K. Salo: Modular Audio Platform for Youth Engagement in a Museum Context.
97+78 pp. (Ph.D. Thesis)

A-2019-2 A. Koski: On the Provisioning of Mission Critical Information Systems based on Public
Tenders. 96+79 pp. (Ph.D. Thesis)

A-2019-3 A. Kantosalo: Human-Computer Co-Creativity - Designing, Evaluating and Modelling
Computational Collaborators for Poetry Writing. 74+86 pp. (Ph.D. Thesis)

A-2019-4 O. Karkulahti: Understanding Social Media through Large Volume Measurements.
116 pp. (Ph.D. Thesis)

A-2019-5 S. Yaman: Initiating the Transition towards Continuous Experimentation: Empiri-
cal Studies with Software Development Teams and Practitioners. 81+90 pp. (Ph.D.
Thesis)

A-2019-6 N. Mohan: Edge Computing Platforms and Protocols. 87+69 pp. (Ph.D. Thesis)

A-2019-7 I. Järvinen: Congestion Control and Active Queue Management During Flow Startup.
87+48 pp. (Ph.D. Thesis)

A-2019-8 J. Leinonen: Keystroke Data in Programming Courses. 56+53 pp. (Ph.D. Thesis)

A-2019-9 T. Talvitie: Counting and Sampling Directed Acyclic Graphs for Learning Bayesian
Networks. 70+54 pp. (Ph.D. Thesis)

A-2019-10 J. Toivonen: Modeling and Learning Monomeric and Dimeric Transcription Factor
Binding Motifs. 61+109 pp. (Ph.D. Thesis)

A-2019-11 S. Hemminki: Advances in Motion Sensing on Mobile Devices. 113+89 pp. (Ph.D.
Thesis)

A-2019-12 P. Saikko: Implicit Hitting Set Algorithms for Constraint Optimization. 70+54 pp.
(Ph.D. Thesis)

	Abstract
	Acknowledgements
	Contents
	Original publications
	Chapter 1: Introduction
	Chapter 2: Preliminaries: graphical models
	Chapter 3: Learning undirected graphical models
	Chapter 4: Learning and applying directed graphical models
	Chapter 5: Conclusions
	References

