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Eileen G Hoal6 and Mark J Daly1,2,3,7

Available online at www.sciencedirect.com

ScienceDirect

provided by Helsingin yliopiston digit
Human genetic studies have long been vastly Eurocentric,

raising a key question about the generalizability of these study

findings to other populations. Because humans originated in

Africa, these populations retain more genetic diversity, and yet

individuals of African descent have been tremendously

underrepresented in genetic studies. The diversity in Africa

affords ample opportunities to improve fine-mapping

resolution for associated loci, discover novel genetic

associations with phenotypes, build more generalizable

genetic risk prediction models, and better understand the

genetic architecture of complex traits and diseases subject to

varying environmental pressures. Thus, it is both ethically and

scientifically imperative that geneticists globally surmount

challenges that have limited progress in African genetic

studies to date. Additionally, African investigators need to be

meaningfully included, as greater inclusivity and enhanced

research capacity afford enormous opportunities to

accelerate genomic discoveries that translate more effectively

to all populations. We review the advantages, challenges, and

examples of genetic architecture studies of complex traits and

diseases in Africa. For example, with greater genetic diversity

comes greater ancestral heterogeneity; this higher level of

understudied diversity can yield novel genetic findings, but

some methods that assume homogeneous population

structure and work well in European populations may work

less well in the presence of greater heterogeneity in African

populations. Consequently, we advocate for methodological

development that will accelerate studies important for all

populations, especially those currently underrepresented in

genetics.
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Historical biases in genetic studies
Nearly a decade ago, 96% of participants in genome-wide

association studies (GWAS) were of European descent

[1]. While European individuals now account for 78% of

GWAS participants [2�], the non-European proportion

has stagnated since 2014. African ancestry individuals

constitute merely 2.4% of participants (although notably

account for 7% of all associations) [2�]. This participant

bias results in interpretability gaps by ancestry with

medically relevant consequences [3,4]. For example,

while easily avoidable, African American patients were

more likely than white Americans to be incorrectly told

they have a genetic mutation that increases their risk of

hypertrophic cardiomyopathy, an early-onset life-threat-

ening heart disease, at leading genetic testing labs [5].

Additionally, drug metabolism genes such as CYP3A4
contain mutations that can alter dosage requirements,

but pharmacogenetic variants are disproportionately

uncatalogued among African populations [6], so geno-

type-based dosage guidelines are less useful. In the US,

the National Human Genome Research Institute has

prioritized increased diversity in genetic studies [7�].
This prioritization is an important step that, if heeded,

will aid interpretations in medical genomics for all eth-

nicities [8]. Greater inclusivity of African populations in

medical genomics is important for accelerating genomic

discoveries, enabling reconstruction of modern human

origins, producing results that can be translated across

populations more accurately, identifying genetic associa-

tions with traits for variants absent elsewhere, and build-

ing research capacity in Africa.

Genetic study biases have not happened in a vacuum, but

have had widespread consequences for GWAS tools and
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Map of publicly available African samples and corresponding language

families from previous studies. Reference data comes from several

previous studies [12,15,38,39,83–87].
resources in African populations. Genotyping arrays have

traditionally been biased towards alleles most frequent

and imputable in European populations [9,10], com-

pounding biases in which GWAS identify variant associa-

tions most common in the study population [11�,12]. In

contrast, array backbones prioritizing SNPs that maxi-

mally tag variants across all populations improve imputa-

tion performance, providing more even genomic coverage

[13]. Perhaps more importantly, imputation panels are

vastly Eurocentric, shortchanging representation of the

greater haplotypic diversity present in Africans from

deeper recombination history [12,14,15]. The most

widely available African sequencing resources have

biased representation towards African Americans and

West Africans [8,12], leaving huge swaths of African

diversity uncatalogued.

Existing challenges to surmount for African
genetics studies
To empower African genetic studies and build capacity

for research aiding biological understanding across a

diverse swath of humanity, we review challenges that

need to be confronted and continually addressed.

Historical

Africa has long been subjected to a violent and oppressive

colonial history that has bred suspicion and an anticipa-

tion of resource exploitation. This understandable mis-

trust continues to strain ongoing relations, with new actors

such as China in addition to European groups scrambling

for African resources [16,17]. The impact on research

collaborations is evident, with some authors discussing

‘neo-colonial science’ [18]. Such strained relations are

more pronounced in collaborations involving genetic

studies, especially when shipping samples out of Africa

and the global south [19]. Some discuss ‘genomic

sovereignty’ of Africans and ownership of African genetic

material [20]. Proponents of international collaborations

argue that working with high income countries will even-

tually ensure equity, justice, and benefit to Africans, with

capacity building for genomic research providing imme-

diate benefit for African institutions [21�], although con-

cerns have been raised about the sustainability of these

efforts. Ongoing tensions weigh the benefit to Africans by

including more African researchers and DNA in global

research against the challenges of promoting African

science while integrating and importing the best science

around the world into Africa (Figure 1).

Infrastructural

Conducting genetic studies in Africa is not an easy task.

Infrastructural problems can include unreliable or no

electricity in clinics and laboratories that process samples,

impassable roads in some areas, and crime or political

instability making some areas dangerous and/or inacces-

sible for researchers. Many African countries do not have

sufficient laboratory equipment or facilities for genomics
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research, and most require imported reagents. Importing

is not only time-consuming, but also costly—reagents are

often many times more expensive in Africa than Western

countries in real terms, not including shipment costs.

Biobanks are less abundant, partially due to power inter-

ruptions affecting storage and processing of samples.

Some African institutions have experience in large-scale

human genetic analyses; the H3ABionet consortium has

developed core bioinformatics infrastructure in Africa

[22�]. However, high-speed internet connections and

powerful computers are not always available to access

large data files. Human resource issues can also be a

challenge, namely high staff turnover due to inadequate

pay, competing demands for time from qualified staff,

and/or too few qualified staff. Relatedly, brain drain is a

major issue, as many skilled African scientists leave the

continent in search of greener pastures [23,24]. To be

sensitive to these challenges, some major international

research initiatives such as H3Africa have required a

relatively long embargo period on publication for African

researchers [25�]. Connecting African researchers to ade-

quate computing power (e.g. stable wireless connections

to cloud computing) may offer more direct means to

facilitate research. Compared with the relative ease of

acquiring samples in the global north, the focus of data-

banks on European/white populations is unsurprising, but

it is nonetheless imperative that researchers rise to these

challenges for the benefit of all.

Funding

Genetics research is expensive, and a lack of attention

from African policy makers in resource-limited settings is

primarily driven by competing priorities for more imme-

diate public health concerns, including infectious
www.sciencedirect.com
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diseases over inherited conditions [26,27]. Data genera-

tion is still the most expensive part of genomics, whereas

data analysis is more affordable and therefore a viable

option for capacity building [28]. Furthermore, journals

from the developed world often exist behind expensive

pay-walls that are inaccessible to some researchers and do

not always encourage publication of work from the global

south, often returning manuscripts without review citing a

lack of ‘sufficient general interest’. Having fewer pub-

lications has a knock-on effect on future grant funding

and attracting students.

Nearly all funding for genetics research comes from

outside Africa, raising questions for African scientists

about the utility of investigating disease genetics with

less long-term funding security and intellectual freedom

to prioritize their field of study. Incentives differ from the

West, heavily favoring medicine over research training—

clinical demands are heavier, PhD programs are scarce,

and research often does not pay. However, some external

research funding in genomics, most notably by the

Human Heredity and Health in Africa (H3Africa) Initia-

tive, are being led by African scientists. H3Africa funding

by the NIH (USA) and Wellcome Trust (UK) totals more

than $216 million in 2015 for 185 projects in 28 African

countries [29�]. Its aim is to build the capacity for African

scientists to conduct genomic research on heritable dis-

eases afflicting Africans [30,31]. This international sup-

port is essential for African geneticists to continue their

research [21�].

Ethical

Ethics review boards may lack familiarity with genomics

research, which creates challenges for advising long-term,

large-scale collaborative genetic studies that can in turn

delay funded projects [28]. These challenges are partially

driven by restrictive ethical guidelines and uncertainty

about the benefits of such studies to African populations

[28]. Unlike in the US, genetics projects are subject to

ethics review both at the provincial and national levels as

a legacy of colonialism, which can lead to years-long

delays. Ethics approval by regulatory bodies in Africa is

mostly restricted to project-specific research questions,

often raising questions around ‘broad consent’ and

‘indefinite storage’ of samples that are not easy to answer.

A primary concern about loss of control and ownership

over the DNA samples arises when they are shipped

abroad [32]. Burgeoning interest in building large-scale

genomics collaborations in Africa has resulted in a recent

best practices ethical framework for genomics research

and biobanking in Africa [25�].

Some communities have set up local councils to oversee

research projects and publication of results allowed from

the research [33]. While these are excellent in theory, in

practice there can be long delays, misunderstanding due

to unfamiliarity of lay people with jargon, and a lack of
www.sciencedirect.com 
continuity in leadership. Consequently, even when

extensive consultation on planned or existing research

projects has taken place, this often needs to be repeated

at each subsequent visit. New council leaders sometimes

try to enforce sample destruction before allowing further

sampling, even when consent forms specify long sample

storage. A middle ground of continuous community

leadership from members more familiar with research

methodology and terminology that is acceptable to the

council would be ideal, but is often infeasible. Further-

more, while returning scientific discoveries to commu-

nities or participants should be the norm, re-contacting

study participants in communities can be challenging as

people lose cell phones or move for employment

opportunities.

Respect and consent

To ensure mutual respect in collaborative African genet-

ics studies, it is important to avoid generalizing ‘African-

ness’ in such a vast continent, comprising not only more

genetic diversity than the rest of the world, but also many

cultures, language groups, and world views, some of

which are marginalized or discriminated against. Thus,

it is important to obtain perspectives from diverse conti-

nental Africans when communicating science broadly.

Furthermore, meaningful engagement with African col-

leagues is vital to healthy collaborations and to avoid

tokenism. Additionally, obtaining informed consent for

genomics research can be complex in any setting, but

poses more challenges where there are lower income and

literacy levels or language barriers. Furthermore, some

diseases such as mental illness are subject to greater

stigma in some African communities, requiring cultural

awareness and sensitivity to differences. Participants may

misunderstand the study purpose or expect benefits that

are not included, such as better disease treatment [34�] or

individual-level ancestry results useful for land claims.

Additionally, in some African societies, decisions to par-

ticipate in research studies are made collectively as well as

at the individual level [35], necessitating consultation

with community leaders.

Communicating science respectfully can be challenging

when nomenclature is subject to sociopolitical debate, as

with the descendants of the original hunter-gatherers of

Southern Africa. In an attempt to be politically correct,

many population geneticists use ‘KhoeSan’ to refer to the

Khoe and San groups collectively. However, the San

Council of Southern Africa prefers to keep these terms

separate (i.e., San and Khoe or Nama) to denote different

cultures. Many ‘San’ individuals prefer being called

‘Bushmen’, while others consider the word to be pejora-

tive. Labels are only useful insofar as they are universally

informative, and respect is imperative. Wide pre-publica-

tion consultation is obviously necessary [36], but com-

plete consensus is unlikely.
Current Opinion in Genetics & Development 2018, 53:113–120
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GWAS design challenges in Africa
Unlike most of the GWAS and complex trait studies that

have been conducted in Europe, assumptions of homo-

geneous population structure are more likely to be vio-

lated in Africa, as few populations have remained isolated

and unchanged over the past 4000 years [37]. This higher

level of diversity across African populations relative to

others [38,39] creates greater challenges when attempting

to balance case/control collections at the outset of many

studies due to greater complexities in population struc-

ture, including variable LD patterns between study sites.

Consequently, false positives are more likely to arise from

confounding due to unaccounted population stratifica-

tion, especially for rare variants, which are challenging

to analyze [40,41]. Higher rates of genetic diversity also

result in a larger number of effective tests, meaning that

the standard multiple testing threshold of p < 5e-8 needs

to be roughly twice as stringent in African GWAS (p <
�2.5e-8) [42]. Additional challenges arise from a dearth of

large, easily accessible reference panels in Africa. While

the African Genome Variation Project and related pro-

jects have worked to ameliorate this gap, data access is

somewhat more challenging and slower than the publicly

available 1000 Genomes Project [15].

Because some complex trait genetics methods assume

homogeneity that is more often violated in African popu-

lations with higher diversity, methodological advance-

ments that explicitly account for structure over a range

of time periods will be especially useful [43]. For exam-

ple, heritability estimates in the presence of admixture

can be biased and inflated [44]. Alternatively, higher

heritability estimates may be driven by higher relatedness

among geographically proximal individuals. The pres-

ence of structure can create challenges disentangling

the heritable component due to genetics versus similar

environments [44]. Other methods for inferring heritabil-

ity (e.g. LD score regression) are suboptimal in the

presence of admixture, as LD from these populations

are often not reflective of the study cohort and vary locally

[45,46]. Other methods for inferring genetic architecture,

including Bayesian linear mixed models (LMMs) such as

the Bayesian sparse LMM (BSLMM), Bayes R, and

BOLT-LMM, have been shown to be effective at con-

trolling population stratification, cryptic relatedness, and

also increase power in structured populations [47�,48–50].
These studies demonstrate that more advanced GWAS

methods may be more fruitful generally, but especially in

Africa where higher rates of substructure are typical.

Successful GWAS strategies in African and
African descent populations
Despite these challenges, many successful examples illu-

minate paths forward. Because of high prioritization of

infectious disease studies, most positive examples exist

for genetic susceptibility studies, including of tuberculosis

[51–53], malaria [54], sickle cell disease modifiers [55], HIV
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[56–59], nontyphoidal Salmonella [60�], and trypanosomes

[61]. Significant findings were aided by simpler genetic

architectures and higher genetic risk divergence between

endemic cases versus high-risk controls due to natural

selection. Some challenges of studying these evolutionarily

important traits, however, are high levels of genetic diver-

sity in the parasite and variable LD patterns among popu-

lations, sometimes necessitating specialized association

approaches that allow for multiple independent origins

of resistance loci and/or allelic heterogeneity [54]. Some

anthropometric studies have faced similar challenges and

advantages due to high divergence, natural selection, and

genetic architectures, such as in skin pigmentation

[62�,63�]. In smaller cohorts that are underpowered for

discovering individual loci, gene-based associations can

sometimes be useful in conjunction with functional follow

up [64]. Studies of traits with elevated prevalence in African

Americans, such as BMI, prostate cancer, and low birth

weight [65–67] have analyzed genome-wide significant loci

by local ancestry and/or more easily fine-mapped variants

with narrower LD. Additionally, multiethnic studies

including African Americans have demonstrated the utility

of integrative genomics approaches for fine-mapping, e.g.

with pulmonary function variants [68�]. Several recent

GWAS reviewed here have used linear mixed models, with

a random effect to account for genetic relatedness. These

models are useful but can produce inflated heritability

estimates, which can be corrected using a second random

effect to measure spatial distance as a proxy for environ-

mental effects [69�].

Advantages and opportunities for genetic
architecture studies in Africa
The opportunities for large-scale genetic studies in Africa

are ample. Growing inclusion of African Americans in

medical genomics studies is crucial, but still leaves

behind many populations and large swaths of sub-Saharan

African genetic diversity, and these populations may

greatly increase our understanding of complex trait

genetic architecture [70]. There is more genetic and often

phenotypic diversity in Africa that has been understu-

died, meaning there is considerable low-hanging fruit for

novel findings and insights into the genetic architectures

and etiologies of complex traits. More rapid LD decay in

Africa also means there is greater fine-mapping resolution

to pinpoint causal variants influencing traits than will be

discovered in any other global population [71], as

reviewed recently [72]. For example, several variants in

TCF7L2 were associated with type 2 diabetes in Euro-

pean and East Asian populations in the early GWAS era,

but candidate loci were narrowed considerably via com-

parison with more diverse West African cohorts, even

with smaller cohort sizes [73].

Major opportunities also present themselves in precision

medicine. For example, polygenic risk scores have been

of growing interest as large-scale GWAS now offer low-
www.sciencedirect.com
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cost tests that can outpace the clinical status quo [74,75].

However, these scores generalize poorly across diverse

populations [11]. European GWAS results consistently

predict genetic risk several-fold less accurately in non-

Europeans, performing the worst in African Americans

(and by extension, likely even worse in eastern, central,

and southern African populations) [76–79]. A typical but

somewhat misguided argument in favor of immediate

translational implementation of polygenic risk scores is

that standard clinical lab tests from blood panels are often

differentially informative across ethnicities and more

reliable in European descent populations. However,

interpretability gaps for current clinical tests are less

acutely and consistently worse in non-European popula-

tions than genetic risk prediction; the underlying biology

remains the same, such that for all diseases, drugs do not

routinely work many-fold better in European than Afri-

can-descent populations. Further, new population-spe-

cific interpretation of common clinical lab tests enables

better prognostic value than existing reference intervals

[80�]. In contrast, the most significant and highest fre-

quency genetic variants from GWAS used to predict

genetic risk are not likely to be the same across popula-

tions, even when the underlying causal variants are the

same. This is due to GWAS discovery biases, as variants

used to predict risk tend to explain more phenotypic

variation in the study population. While improved ana-

lytical methods hold promise, the only way genetic pre-

diction power of inherited diseases in non-Europeans can

truly be made equal is with massive investments to

produce similar-sized GWAS of these phenotypes in

non-European populations. Additionally, discoveries

based on African genetics contribute to global knowledge,

but many African population groups are sufficiently dif-

ferent [37] that insights made from trans-ethnic studies

can similarly be gained by analyzing multiple GWAS of

different African populations.

As a major genetics mission is to understand the biological

basis and evolutionary origins of diseases and traits and use

this knowledge to perform biologically-informed drug dis-

covery, human evolution tells us that Africa has a huge role to

play. Progress so far has been slower due to a need for

increased capacity and collaborative engagement with Afri-

can investigators. Several outstanding examples of this

potential already exist, such as the Southern African Human

Genome Programme (SAHGP), one of the first genetic

architecture studies of African participants fully funded

and analyzed by Africans [81�]. International collaborations

have also blazed the trail for meaningful collaborations with

deep investments in building research capacity in human

genomics, such as MalariaGEN, partnerships by the African

Center of Excellence for Genomics of Infectious Diseases

(ACEGID), as well as the Global Initiative for Neuropsy-

chiatric Genetics Education in Research (GINGER) pro-

gram.Calls fromAfricanresearchers for fundingandbuilding

research capacity in genetics [70,82] should be thoughtfully
www.sciencedirect.com 
heeded to ensure that those with the greatest public health

needs are not the last to benefit.
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Kidd JM, Rodrı́guez-Botigué L, Ramachandran S, Hon L, Brisbin A
et al.: Hunter-gatherer genomic diversity suggests a southern
African origin for modern humans. Proc Natl Acad Sci U S A
2011, 108:5154-5162.

39. Altshuler DM, Gibbs RA, Dermitzakis E, Peltonen L, Dermitzakis E,
Bonnen PE, de Bakker PIW, Deloukas P, Gabriel SB, Gwilliam R
et al.: Integrating common and rare genetic variation in diverse
human populations. Nature 2010, 467:52-58.

40. Mathieson I, McVean G: Demography and the age of rare
variants. PLoS Genet 2014, 10e1004528.

41. Mathieson I, McVean G: Differential confounding of rare and
common variants in spatially structured populations. Nat
Genet 2012, 44:243-246.

42. Pe’er I, Yelensky R, Altshuler D, Daly MJ: Estimation of the
multiple testing burden for genomewide association studies
of nearly all common variants. Genet Epidemiol 2008, 32:381-
385.

43. Duncan LE, Ratanatharathorn A, Aiello AE, Almli LM,
Amstadter AB, Ashley-Koch AE, Baker DG, Beckham JC,
Bierut LJ, Bisson J et al.: Largest GWAS of PTSD (N = 20 070)
yields genetic overlap with schizophrenia and sex differences
in heritability. Mol Psychiatry 2017, 23:666-673 http://dx.doi.org/
10.1038/mp.2017.77.

44. Browning SR, Browning BL: Population structure can inflate
SNP-based heritability estimates. Am J Hum Genet 2011,
89:191-193.

45. Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J,
Patterson N, Daly MJ, Price AL, Neale BM: LD Score regression
www.sciencedirect.com

http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0050
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0050
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0050
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0050
http://dx.doi.org/10.1534/g3.113.007161
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0060
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0060
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0060
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0060
http://dx.doi.org/10.1101/105551
http://dx.doi.org/10.1101/105551
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0070
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0070
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0070
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0070
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0075
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0075
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0075
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0075
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0080
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0080
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0080
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0085
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0090
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0090
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0090
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0090
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0095
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0095
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0095
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0100
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0100
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0100
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0105
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0105
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0105
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0105
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0110
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0110
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0110
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0110
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0115
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0115
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0115
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0120
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0120
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0120
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0120
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0120
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0125
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0125
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0130
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0130
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0135
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0135
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0135
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0140
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0140
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0140
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0145
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0145
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0150
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0150
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0150
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0150
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0155
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0155
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0155
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0155
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0160
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0160
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0160
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0160
http://dx.doi.org/10.1126/science.aal0933
http://dx.doi.org/10.1126/science.aal0933
http://dx.doi.org/10.1186/s12910-017-0175-z
http://dx.doi.org/10.1186/s12910-017-0175-z
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0175
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0175
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0175
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0180
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0180
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0185
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0185
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0185
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0190
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0190
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0190
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0190
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0190
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0195
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0195
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0195
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0195
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0200
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0200
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0205
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0205
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0205
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0210
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0210
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0210
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0210
http://dx.doi.org/10.1038/mp.2017.77
http://dx.doi.org/10.1038/mp.2017.77
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0220
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0220
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0220
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0225
http://refhub.elsevier.com/S0959-437X(18)30055-8/sbref0225


Genetic architecture studies in Africa Martin et al. 119
distinguishes confounding from polygenicity in genome-wide
association studies. Nat Genet 2015, 47:291-295.

46. Park DS, Brown B, Eng C, Huntsman S, Hu D, Torgerson DG,
Burchard EG, Zaitlen N: Adapt-Mix: learning local genetic
correlation structure improves summary statistics-based
analyses. Bioinformatics 2015, 31:i181-i189.

47.
�

Lloyd-Jones LR, Robinson MR, Moser G, Zeng J, Beleza S,
Barsh GS, Tang H, Visscher PM: Inference on the genetic basis
of eye and skin color in an admixed population via Bayesian
linear mixed models. Genetics 2017, 206:1113-1126.

Applied Bayesian linear mixed models to an admixed population in Cape
Verde, an island nation of West Africa, to account for population strati-
fication, cryptic relatedness, and increase statistical power. These results
have important implications for GWAS in structured populations.

48. Moser G, Lee SH, Hayes BJ, Goddard ME, Wray NR, Visscher PM:
Simultaneous discovery, estimation and prediction analysis of
complex traits using a Bayesian mixture model. PLoS Genet
2015, 11:e1004969-22.

49. Zhou X, Carbonetto P, Stephens M: Polygenic modeling with
Bayesian sparse linear mixed models. PLoS Genet 2013,
9e1003264.

50. Loh P-R, Tucker G, Bulik-Sullivan BK, Vilhjálmsson BJ,
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