WOODS HOLE OCEANOGRAPHIC INSTITUTION

WOODS HOLE OCEANOGRAPHIC INSTITUTION

Woods Hole. Massachusetts

Reference No. 64 - 29

On the Formulas for Correcting
Reversing Thermometers
by

Freeman K. Keyte

Sponsored by Grant NSF-GP 821 from the
National Science Foundation

1964

APPROVED FOR DISTRIBUTION

ON THE FORMULAS FOR CORRECTING REVERSING THERMOMETERS

Introduction. The case often arises where a thermometer which has been inserted into a medium of temperature T_{w} is actually read in a place where the environment is at temperature $t, \neq T_{W^{\circ}}$ Such a case is the soil thermometer, where the bulb is at T_{W} and the stem in the air at t; and such a case is the oceanographic reversing thermometer, brought up from a depth-of-reversal (T_{W}) to the ship laboratory (t). In each case the different cubical expansion coefficients of mercury and glass mean that the stem mercury capillary is taken from the true reading of T_{W} to a reading of T^{\prime} by the action of environmental change from T_{W} to t. Here we assume that the index calibration corrections are already incorporated into T. .

The correction ΔT, where

$$
\begin{equation*}
\mathrm{T}_{\mathrm{W}}=\mathrm{T}^{\prime}+\Delta \mathrm{T}^{\prime} \tag{1}
\end{equation*}
$$

is known as the "correction due to the emergence of the stem"1, and derivations for it in oceanography go back to 1912^{2}. Yet the subject is not quite exhausted, and a review of the various forms for ΔT has brought several points to light. This Note attempts to discuss these points. They are

1. The derivation of a correction equation for the unprotected thermometer implicit in a paper by sverdrup ${ }^{3}$, corresponding to Hansen ${ }^{\circ}$ s form ${ }^{4}$ for the protected thermometer,
2. An oversight by Sverdrup ${ }^{3}$ in attributing a certain form of a correction equation to Feruglio, ${ }^{2}$
3. An error in one of the correction equations as printed in Sverdrup, Johnson and Fleming, "The Oceans", 5
4. The same error in Defant's "Physical Oceanography". ${ }^{6}$

In order to deal with these points, we must derive ΔT from first principles, following Sverdrup ${ }^{3}$.

Derivation of $\triangle T$. Let:
$\mathrm{T}_{\mathrm{w}}=$ true water temperature at reversal depth,
$T^{\prime}=$ actual laboratory reading of reversing thermometer
$t=$ laboratory temperature, as given by the auxiliary thermometer
$\Delta T=T_{W}-T^{\prime}$
$\mathrm{V}=\mathrm{a}$ general volume of the separated mercury column.
$\mathrm{V}_{\mathrm{O}}=$ volume of mercury from the $0^{\circ} \mathrm{C}$ mark to the small-bulbend of the reversing thermometer
$\mathrm{V}_{\mathrm{W}}=$ volume of separated mercury column in reversed thermometer (from small-bulb-end up) as at T_{W}
$\mathrm{V}_{\mathrm{t}}=$ volume of separated mercury column in reversed thermometer (from small-bulb-end up) as at t
$\gamma_{\mathrm{hg}}=$ coefficient of cubical expansion of mercury
$\gamma \mathrm{g}=$ coefficient of cubical expansion of glass
$K \equiv\left(\gamma_{h g}-\gamma_{g}\right)^{-1}$
$\mathrm{V}_{\mathrm{O}}, \mathrm{V}_{\mathrm{w}}$ and V_{t} are expressed in units of degrees Celsius. Hence, by definition,

$$
\begin{align*}
& \mathrm{V}_{\mathrm{w}} \equiv \mathrm{~V}_{\mathrm{O}}+\mathrm{T}_{\mathrm{w}} \tag{a}\\
& \mathrm{~V}_{\mathrm{t}} \equiv \mathrm{~V}_{\mathrm{O}}+\mathrm{T}^{\prime} \tag{b}
\end{align*}
$$

The γ 's are increases in volume, per unit volume, per degree Celsius.

From the reversal depth to the laboratory, the temperature change from T_{W} to t causes a volume change in the separated mercury column. Consider increments of these changes, $\delta \mathrm{T}$ and $\delta \mathrm{V}$, where $\delta \mathrm{V}$ is so small that the volume V of the column is appreciably constant. Then $\delta \mathrm{V}$ is proportional to both V and $\delta \mathrm{T}$. The proportionality factor, $\gamma_{\mathrm{hg}}-\gamma_{\mathrm{g}} \equiv \mathrm{K}^{-1}$, is characteristic of the materials concerned, and, in the small range T_{W} to t , can be considered absolutely constant. That is,

$$
\delta \mathrm{V}=\frac{\mathrm{V}}{\mathrm{~K}} \delta \mathrm{~T},
$$

or, as the increments both tend to zero,

$$
\begin{equation*}
d v=\frac{V}{K} d T, \tag{3}
\end{equation*}
$$

which may be integrated from T_{W} to t :

$$
\begin{align*}
\int_{T_{W}}^{t} \frac{d V}{V} & =\frac{l}{K} \int_{T_{W}}^{t} d T \\
\log \left(\frac{V_{t}}{V_{W}}\right) & =-\frac{\left(T_{W}-t\right)}{K} \tag{4}
\end{align*}
$$

$$
\left.\begin{array}{ll}
\text { But } & \mathrm{V}_{\mathrm{t}} \equiv \mathrm{~T}^{\prime}+\mathrm{V}_{\mathrm{o}}=\mathrm{T}_{\mathrm{W}}-\Delta \mathrm{T}+\mathrm{V}_{\mathrm{o}} \\
\text { and } & \mathrm{V}_{\mathrm{W}} \equiv \mathrm{~T}_{\mathrm{W}}+\mathrm{V}_{\mathrm{o}}
\end{array}\right\}
$$

so that (4) becomes

$$
\begin{equation*}
\log \left(1-\frac{\Delta T}{T_{W}+V_{O}}\right)=-\frac{\left(T_{W}-t\right)}{K} . \tag{6}
\end{equation*}
$$

Now

$$
\log x=(x-1)-1 / 2(x-1)^{2}+1 / 3(x-1)^{3}-\ldots(0<x \leqslant 2),
$$

hence from (6),

$$
\begin{equation*}
\frac{\Delta T}{T_{W}+V_{O}}+\frac{1 / 2(\Delta T)^{2}}{\left(T_{W}+V_{O}\right)^{2}}+\frac{1 / 3(\Delta T)^{3}}{\left(T_{W}+V_{0}\right)^{3}}+\ldots .=\frac{T_{W}-t}{K}, \ldots . \tag{7}
\end{equation*}
$$

from which an expression for ΔT is to be extracted. (This equation shows what is clear from first principles, viz., that $\triangle T$ is zero if either $T_{W}=t$, or $\gamma_{h g}=\gamma_{g}$, or both).

All $\triangle T$ correction formulas are derivable from (or at least explainable by) equation (7). However, this source is useless as it stands, since it contains $T_{w^{\prime}}$ the very unknown we finally want to find (see eqn (1)). Now for ΔT (protected) it is clear that both ($T_{W}-t$) and $\left(T_{W}+V_{0}\right)$ can be replaced by $\left(T^{\prime}-t\right)$ and $\left(T^{\prime}+V_{0}\right)$ or, for better accuracy, by $\left(T^{\prime}+\Delta T-t\right)$ and $\left(T^{\prime}+\Delta T+V_{0}\right)$, where T^{\prime} is the protected's temperature-as-read. For ΔT (unprotected), we can say that ($T^{\prime}+\mathrm{V}_{\mathrm{O}}$) or $\left(T^{\prime}+\Delta T+V_{0}\right)$ is close to the "instrumental" term ($T_{W}+V_{0}$), where T^{\prime} is now the unprotected's thermometer-as-read. However this T^{\prime} is so far different to the true temperature that no substitution can be
permitted for T_{W} in ($\left.T_{W}-t\right)$. Indeed, for this T_{W} we use the value of the corrected reading of the adjacent protected thermometer.

Thus for ΔT (protected), T_{W} in each term, $\left(T_{W}-t\right)$ and $\left(T_{W}+V_{o}\right)$, is replaced by T^{\prime} or $T^{\prime}+\Delta T$. For ΔT (unprotected) we leave ($\left.T_{W}-t\right)$ untouched and substitute only into ($T_{W}+V_{0}$).

We take forms for ΔT (unprotected) and ΔT (protected) in turn. The general procedure will be to take one term of the series of (7), putting first $T_{W} \simeq T^{\prime}$, then $T_{W}=T^{\prime}+\Delta T$, then returning to take two terms of the series and repeating the substitutions.
I. Unprotected thermometer corrections. Here we leave ($T_{W}-t$) and alter only $\left(T_{W}+V_{0}\right)$.
(a) Using only one term of the series in equation (7), we get:

$$
\begin{equation*}
\Delta T=\frac{\left(T_{W}-t\right)\left(T_{W}+V_{0}\right)}{K} \tag{8}
\end{equation*}
$$

and using $T_{W} \simeq T^{\prime}$ as a first approximation,

$$
\begin{equation*}
\Delta T=\frac{\left(T_{W}-t\right)\left(T^{\prime}+V_{0}\right)}{K}, \tag{9}
\end{equation*}
$$

SCHUMACHER ${ }^{7}$

the usual correction for unprotected thermometers (see,e.g. Lafond 14). Replacing T_{W} by $\left(T^{\prime}+\Delta T\right)$ instead of T^{\prime} alone, (8) becomes

$$
\begin{align*}
\Delta T & =\left(T_{W}-t\right)\left(T^{\prime}+\Delta T+V_{0}\right) K^{-1} \\
& =\frac{\left(T_{W}-t\right)\left(T^{\prime}+V_{0}\right)}{K}+\frac{\Delta T\left(T_{W}-t\right)}{K} \tag{10}
\end{align*}
$$

In effect, Schumacher now takes the $\Delta T f$ rom (9) and substitutes into the right hand $\triangle T$ of (10). Hence

$$
\Delta T=\frac{\left(T_{W}-t\right)\left(T^{\prime}+V_{0}\right)}{K}+\left[\frac{\left(T_{W}-t\right)\left(T^{\prime}+V_{0}\right)}{K}\right] \frac{\left(T_{W}-t\right)}{K}
$$

i. e. $\Delta T=\frac{\left(T_{W}-t\right)\left(T^{/}+V_{0}\right)}{K}\left\{1+\frac{\left(T_{W}-t\right)}{K}\right\}$

This equation is sometimes used for correcting unprotected thermometers (see, e.g., Wüst ${ }^{9}$).

Equation (10) can of course be solved directly for $\triangle T$:

$$
\begin{align*}
& \Delta T\left\{1-\left(T_{W}-t\right) K^{-1}\right\}=\left(T_{W}-t\right)\left(T^{\prime}+V_{O}\right) K^{-1} \\
& \Delta T=\frac{\left(T_{W}-t\right)\left(T^{\prime}+V_{0}\right)}{K-\left(T_{W}-t\right)} \tag{12}\\
& \underline{\text { SVERDRUP }}^{10}
\end{align*}
$$

(b) Using two terms of the series in (7), we might expect to get a slightly more accurate formula for $\triangle T$. Carrying out the algebra,

$$
\begin{aligned}
& \Delta T\left\{1+\frac{1 / 2 \Delta_{T}}{T_{W}+V_{O}}\right\}=\frac{\left(T_{W}-t\right)\left(T_{W}+V_{O}\right)}{K} \\
& \Delta T=\frac{\left(T_{W}-t\right)\left(T_{W}+V_{0}\right)}{K}\left[1+\frac{1 / 2 \Delta T}{T_{W}+V_{0}}\right]^{-1},
\end{aligned}
$$

which becomes, using the binomial expansion,

$$
\begin{gather*}
\simeq \frac{\left(T_{\mathrm{W}}-t\right)\left(T_{\mathrm{W}}+\mathrm{V}_{\mathrm{O}}\right)}{\mathrm{K}}\left[1-\frac{1 / 2 \Delta \mathrm{~T}}{\mathrm{~T}_{\mathrm{W}}+\mathrm{V}_{\mathrm{O}}}\right] \\
=\frac{\left(T_{\mathrm{W}}-t\right)\left(T_{\mathrm{W}}+\mathrm{V}_{\mathrm{O}}\right)}{\mathrm{K}}-\frac{1 / 2 \Delta T\left(T_{\mathrm{W}}-t\right)}{\mathrm{K}}
\end{gather*}
$$

From here we can either solve directly for ΔT, then use $\mathrm{T}_{\mathrm{w}} \simeq \mathrm{T}^{\prime}:$

$$
\begin{gather*}
\Delta T\left[1+\frac{l / 2\left(T_{W}-t\right)}{K}\right]=\frac{\left(T_{W}-t\right)\left(T_{W}+V_{O}\right)}{K} \\
\Delta T=\frac{\left(T_{W}-t\right)\left(T_{W}+V_{O}\right)}{K+1 / 2\left(T_{W}-t\right)} \tag{14}\\
\simeq \frac{\left(T_{W}-t\right)\left(T^{/}+V_{O}\right)}{K+l / 2\left(T_{W}-t\right)}, \tag{15}
\end{gather*}
$$

or we can use $T_{W}=T^{\prime}+\Delta T$ first in (13), to get:

$$
\begin{align*}
\Delta T & =\left(T_{W}-t\right)\left(T^{\prime}+\Delta T+V_{O}\right) K^{-1}-l / 2 \Delta T\left(T_{W}-t\right) K^{-1} \\
& =\frac{\left(T_{W}-t\right)\left(T^{\prime}+V_{0}\right)}{K}+\frac{1 / 2 \Delta T\left(T_{W}-t\right)}{K} \tag{16}
\end{align*}
$$

This itself yields two forms, according to whether we follow the "Schumacher step" of putting (9) into the ΔT on the right side of (16):

$$
\begin{equation*}
\Delta T=\frac{\left(T_{W}-t\right)\left(T^{/}+V_{O}\right)}{K}+1 / 2\left[\frac{\left(T_{W}-t\right)\left(T^{/}+V_{0}\right)}{K}\right] \frac{T_{W}-t}{K} \tag{17}
\end{equation*}
$$

i. e. $\Delta T=\frac{\left(T_{W}-t\right)\left(T^{/}+V_{0}\right)}{K}\left\{1+\frac{1 / 2\left(T_{W}-t\right)}{K}\right\}$,
or whether we solve (16) exactly for ΔT :

$$
\begin{equation*}
\Delta T=\frac{\left(T_{W}-t\right)\left(T^{\prime}+V_{0}\right)}{K-1 / 2\left(T_{W}-t\right)} \tag{18}
\end{equation*}
$$

This equation is the most exact form so far. Though apparently nowhere quoted in the literature, it is easily derivable from Sverdrup's analysis ${ }^{3}$.
II. Protected Thermometer Corrections.

Here we may replace both T_{W} 's, in $\left(T_{W}-t\right)$ and $\left(T_{W}+V_{0}\right)$, by either T^{\prime} or $T^{\prime}+\Delta T$.
(a) Again referring to (7), we take one term of the series, which leads to (8), and use $T_{W} \simeq T_{0}^{\prime}$ Then

$$
\begin{equation*}
\Delta T=\frac{\left(T^{/}-t\right)\left(T^{/}+V_{0}\right)}{K} \tag{19}
\end{equation*}
$$

Sverdrup actually calls equation (8) "Feruglio's formula". which is both incorrect and misleading. The difference is not trivial. Equation (19) is a working form, (8) is not. At any rate, we proceed by putting $T_{W}=T^{\prime}+\Delta T$ now in both $\left(T_{W}-t\right)$ and $\left(T_{W}+V_{o}\right)$ of (8):

$$
\begin{aligned}
\Delta T & =\left(T^{/}+\Delta T-t\right)\left(T^{\prime}+\Delta t+V_{0}\right) K^{-1} \\
& =\left(T^{/ 2}+2 T \Delta T+T^{/} V_{0}+(\Delta T)^{2}+V_{0} \Delta T-t T^{\prime}-t \Delta T-t V_{0}\right) K^{-1}
\end{aligned}
$$

The $(\Delta T)^{2}$ can be safely neglected, so that the above becomes

$$
\begin{equation*}
\Delta T=\frac{\left(T^{/}-t\right)\left(T^{\prime}+V_{0}\right)}{K}+\Delta T\left\{\frac{\left(T^{/}-t\right)+\left(T^{/}+V_{0}\right)}{K}\right\} \ldots \tag{20}
\end{equation*}
$$

The Schumacher step, putting (19) into the right ΔT of (20),

$$
\begin{align*}
& \Delta T=\frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K}+\left[\frac{\left.\left(T^{\prime}-t\right) T^{\prime}+V_{0}\right)}{K}\right] \frac{\left(T^{\prime}-t\right)+\left(T^{\prime}+V_{0}\right)}{K} \\
& \Delta T=\frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K}\left\{1+\frac{\left(T^{\prime}-t\right)+\left(T^{\prime}+V_{0}\right)}{K}\right\} \ldots(2 \tag{21}\\
& \underline{\text { SCHUMACHER }}^{13}
\end{align*}
$$

This is the correction formula most commonly used for protected thermometers (see, e. g., Lafond ${ }^{14}$).

If we imagine that $T^{\prime}=t$, but in the braces only, we get, from (2l)

$$
\begin{equation*}
\Delta T=\frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K}\left\{1+\frac{\left(T^{\prime}+V_{0}\right)}{K}\right\}_{\underline{\text { SHOULEJKIN }}} 15 \cdots \tag{22}
\end{equation*}
$$ SUBOW, BOUJEWICZ

Hidaka's formula can be thought of as coming from (21) in the following way: rewrite it as

$$
\begin{align*}
& \Delta T=\frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K\left[\frac{\left(T^{\prime}-t\right)+\left(T^{\prime}+V_{0}\right)}{K}\right]^{-1}} \\
& \simeq \frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K \cdot\left[1-\frac{\left(T^{\prime}-t\right)+\left(T^{\prime}+V_{0}\right)}{K}\right]} \\
& \simeq \frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K-\left(T^{\prime}-t+V_{0}\right)}, \text { HIDAKA }^{16} \tag{23}
\end{align*}
$$

where we have used the binomial expansion, and dropped one of the T^{\prime} 's in the denominator only.

It is clear that (22) and (23) are being explained, not derived as such.

If (20) is solved exactly for $\triangle T$, then we get:

$$
\begin{align*}
& \Delta T\left[I-\left\{\frac{\left(T^{\prime}-t\right)+\left(T^{\prime}+V_{0}\right)}{K}\right\}\right]=\frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K} \\
& \Delta T=\frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K-\left(T^{\prime}-t\right)-\left(T^{\prime}+V_{0}\right)} \quad \underline{\text { SVERDRUP }}^{17} \tag{24}
\end{align*}
$$

(b) We now return to (7) to take two terms of the series. This leads to (14i). Then, if $\mathrm{T}_{\mathrm{W}} \simeq \mathrm{T}^{\prime}$ everywhere,

$$
\begin{equation*}
\Delta T=\frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K+1 / 2\left(T^{\prime}-t\right)} \tag{25}
\end{equation*}
$$

Another variation is to put $T_{W}=T^{\prime}$ into (18), so that

$$
\begin{equation*}
\Delta T=\frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K-1 / 2\left(T^{\prime}-t\right)} \tag{26}
\end{equation*}
$$

However, for best accuracy try $T_{W}=T^{\prime}+\Delta T$ everywhere in (13):

$$
\Delta T=\left(T^{\prime}+\Delta T-t\right)\left(T^{\prime}+\Delta T+V_{0}\right) K^{-1}-1 / 2 \Delta T\left(T^{\prime}+\Delta T-t\right) K^{-1}
$$

Multiplying out and collecting。

$$
\begin{align*}
\Delta T & =\left(T^{2}+T^{\prime} V_{0}-t T^{\prime}-t V_{0}\right) K^{-1}+\Delta T\left(\frac{3}{2} T^{\prime}-\frac{1}{2} t+V_{0}\right) K^{-1} \\
& =\frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K}+\Delta T\left\{\frac{1 / 2\left(T^{\prime}-t\right)+\left(T^{\prime}+V_{0}\right)}{K}\right\} \tag{27}
\end{align*}
$$

The Schumacher step, (19) into the right side of (27), gives $\Delta T=\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right) K^{-1}+\left[\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right) K^{-1}\right]\left\{1 / 2\left(T^{\prime}-t\right)+\left(T^{\prime}+V_{0}\right)\right\} K^{-1}$ $\Delta T=\frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K}\left\{1+\frac{l / 2\left(T^{\prime}-t\right)+\left(T^{\prime}+V_{0}\right)}{K}\right\}$

Finally, the most accurate form is obtained by solving (27) directly for $\triangle T$:

$$
\begin{align*}
& \Delta T\left[1-\frac{1 / 2\left(T^{\prime}-t\right)+\left(T^{\prime}+V_{0}\right)}{K}\right]=\frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K} \\
& \Delta T=\frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K-1 / 2\left(T^{\prime}-t\right)-\left(T^{\prime}+V_{0}\right)} \text { HANSEN }^{18} \tag{29}
\end{align*}
$$

This is the equation used, for instance, in the text book 19
by Dietrich.

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{UNPROTECTED} \& \multicolumn{2}{|l|}{PROTECTED} \\
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\& \Delta T=\frac{\left(T_{W}-t\right)\left(T^{\prime}+V_{O}\right)}{K} \\
\& \Delta T=\frac{\left(T_{W}-t\right)\left(T^{\prime}+V_{0}\right)}{K}\left\{I+\frac{\left(T_{W}-t\right)}{K}\right\}
\end{aligned}
\] \\
SCHUME CHER
\[
\begin{aligned}
\& \Delta T=\frac{\left(T_{W}-t\right)\left(T^{\prime}+V_{0}\right)}{K-\left(T_{W}-t\right)} \\
\& \Delta T=\frac{\left(T_{W}-t\right)\left(T^{\prime}+V_{0}\right)}{K+1 / 2\left(T_{W}-t\right)}
\end{aligned}
\]
\end{tabular} \& (9)
(11)

(12)

(15) \& \[
$$
\begin{aligned}
& \Delta T=\frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K} \quad \text { FERUGLIO } \\
& \Delta T=\frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K}\left\{1+\frac{\left(T^{\prime}-t\right)+\left(T^{\prime}+V_{0}\right)}{K}\right\} \\
& \Delta T=\frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K}\left\{1+\frac{\left(T^{\prime}+V_{0}\right)}{K}\right\} \\
& \left.\begin{array}{l}
\text { SCHUMACHER } \\
\text { SUBOW, BOUJEWICZ, } \\
\text { SHOULEJKIN }
\end{array}\right\} \\
& \Delta T=\frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K-\left(T^{\prime}-t+V_{0}\right)} \quad \text { HIDAKA } \\
& \Delta T=\frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K-\left(T^{\prime}-t\right)-\left(T^{\prime}+V_{0}\right)} \quad \text { SVERDRUP } \\
& \Delta T=\frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K+1 / 2\left(T^{\prime}-t\right)}
\end{aligned}
$$

\] \& | (19) |
| :--- |
| (21) |
| (22) |
| (23) |
| (24) $\stackrel{\stackrel{i}{4}}{\stackrel{i}{4}}$ |
| (25) |

\hline ¢ $\begin{gathered}\text { R } \\ S \\ S \\ 0 \\ F \\ F \\ S \\ E \\ E \\ R \\ R \\ E\end{gathered}$ \& | $\Delta T=\frac{\left(T_{W}-t\right)\left(T^{\prime}+V_{0}\right)}{K}\left\{1+\frac{1 / 2\left(T_{W}-t\right)}{K}\right\}$ |
| :--- |
| HANSEN $\Delta T=\frac{\left(T_{W}-t\right)\left(T^{\prime}+V_{0}\right)}{K-1 / 2\left(T_{W}-t\right)} \text { SVERDRUP }$ | \& (17)

(18) \& | $\begin{aligned} & \Delta T=\frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K-1 / 2\left(T^{\prime}-t\right)} \\ & \Delta T=\frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K}\left\{1+\frac{1 / 2\left(T^{\prime}-t\right)+\left(T^{\prime}+V_{0}\right)}{K}\right\} \end{aligned}$ $\Delta T=\frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K-1 / 2\left(T^{\prime}-t\right)-\left(T^{\prime}+V_{0}\right)}$ |
| :--- |
| HANSEN | \& (26)

(28)
(29)

\hline
\end{tabular}

It is interesting to see how the numerical values for ΔT vary according to which formula is used. To see.this, we first obtain a figure for K. From the Handbook of Chemistry \& Physics ${ }^{20}, \gamma_{h g}=0.18186 \mathrm{x} 10^{-3}$ at $20^{\circ} \mathrm{C}, \gamma_{\mathrm{g}}($ Jena $)=0.2533 \mathrm{x} 10^{-4}$, hence $\mathrm{K}^{-1}=1.5653 \mathrm{x} 10^{-4}$ and $K=6388$. Depending on the exact type of Jena glass used, K varies somewhat, but let us take 6300 (Jena Glass $16^{\text {III }}$) . The higher it is, the better, of course。 Also let $T\left(5^{\circ} \mathrm{C}, \mathrm{T}=15^{\circ} \mathrm{C}\right.$, $t=20^{\circ} C_{0} V_{0}=100$ in the unprotected case; and $T{ }^{\prime}=5^{\circ} \mathrm{C}, \mathrm{t}=20^{\circ} \mathrm{C}$ and $\mathrm{V}_{0}=100$ in the protected case. Then:

Equation
ΔT, Unprotected
Fraction \quad Decimal
${ }^{\circ} \mathrm{C}$
Relative
Rating for Accuracy
-0. 274
-0.273
(12) Sverdrup

$$
\begin{array}{ll}
-1725 / 6315 & -0.273 \\
-1725 / 6292.5 & -0.274 \tag{15}
\end{array}
$$

5
(17) Hansen

$$
-1725 / 6307.509-0.273
$$

2

$$
-0.273
$$

(29) Hansen

Equation

$-1575 / 6300-0.250$
8
(21) Schumacher
(22) $S-B-S$
$-1575 / 6196.721$
-0.254
3
(23) Hidaka
(24) Sverdrup
$-1575 / 6210 \quad-0.254$
4
$-1575 / 6292.5 \quad-0.250 \quad 7$
$-1575 / 6307.5 \quad-0.250 \quad 9$
$-1575 / 6203.986-0.254 \quad 2$
$-1575 / 6202.5 \quad-0.254 \quad 1$

The relative accuracy rating figure is based on the differences of the respective denominators compared to the "true" values in (18) and (29). There is certainly very little variation among them, except perhaps (26), (19), and (25) from the rest of the protected ΔT^{1} S. However, it is interesting to note that for the unprotected thermometer the denominators show that (11), supposedly refined over (9), actually overcompensates it, though the decimals do not show this. In the protected case Sverdrup ${ }^{\circ}$ s (24) is indeed better than Schumacher ${ }^{1}$ s (21) and Hidaka.'s (23), but not as good as the Russian (22); again better shown by the demoninators.

It must be stressed that no attempt is being made here to justify equations (15), (25) and (26). They are included only for interest. On the other hand, equation (28) is the natural counterpart of Hansen ${ }^{\text { }}$ (17) , and forms a logical step in the sequence of derivations.

Error in Text Books. It may be useful here to point out that in quoting Schumacher's equation for the protected thermometer, viz eqn. (21),

$$
\Delta T=\frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K}\left\{I+\frac{\left(T^{\prime}-t\right)+\left(T^{\prime}+V_{0}\right)}{K}\right\}_{0}
$$

both Sverdrup - Johnson - Fleming"s "The Oceans"5 and Defant ${ }^{5}$ S
"Physical Oceanography", VoI. I^{6}. have printed:

$$
\Delta T=\frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K}\left\{I+\frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K}\right\}
$$

The dropping of the second plus in the braces leads to a considerable error.

For the same values of T^{\prime}, V_{0}, t and K used previously (protected case),

$$
" \Delta T "\left(S-J-F_{0} D_{0}\right)=-1575 / 8400=-0.1875^{\circ} \mathrm{C},
$$

which means a 24% error compared to (29).
Conclusion.
For the most precise work, correction formulas (18) and (29).

$$
\left.\begin{array}{l}
\Delta T(\text { Unprotected })=\frac{\left(T_{W}-t\right)\left(T^{\prime}+V_{0}\right)}{K-l / 2\left(T_{W}-t\right)} \\
\Delta T(\text { protected })=\frac{\left(T^{\prime}-t\right)\left(T^{\prime}+V_{0}\right)}{K-l / 2\left(T^{\prime}-t\right)-\left(T^{\prime}+V_{0}\right)}
\end{array}\right\}
$$

are to be preferred over all others mentioned in the table on p . 11. For this kind of work account must be made of the magnitude of the effect of external hydrostatic pressure on the air bubble in the protected thermometer. ${ }^{21,22}$. Apart from this, however, the above formulas are among the easiest to use on a calculator, and certainly might as well be programmed into a computer rather than the less accurate equations.

ACKNOWLEDGEMENTS

It is a pleasure to thank Professor Dr. W. Hansen of the Universität Hamburg, Professor H. Stommel, of the Massachusetts Institute of Technology, and Messrs A. Miller, D. Bumpus and G. Whitney of the Woods Hole Oceanographic Institution for their encouragement and advice. Mr. W. Forrester, of the Bedford Institute of Oceanography, Nova Scotia, pointed out several places in the original manuscript where the text could be improved.

Finally I wish to thank the National Science Foundation, whose generous support makes this publication possible.

REFERENCES

1. Middleton, W. E. K. . \& A. Spilhaus, 1953. "Meteorological Instruments", Toronto U. Press, p. 70.
2. Feruglio, G. 1912. Il termometro a rovesciamento Richter e tavole per la sua correzione. Memoria VII, (Reale) Comitato Talassografico Italiano, Venizia.
3. Sverdrup, H. U. 1947. Note on the correction of Reversing Thermometers, Journal Marine Research, 6, 2, 136 - 138 .
4. Hansen, W. 1934. Bermerkungen $z u$ den Korrektionsformeln für das Tiefsee-Umkippthermometer. Annalen der Hydrographie und Maritimen Meteorologie, 62. 145 - 147.
5. Sverdrup, H. U., M. W. Johnson \& R. H. Fleming, 1942. "The Oceans; Their Physics, Chemistry and General Biology". Prentice Hall, p. 350
6. Defant, A. 1961. "Physical Oceanography", Vol. I. Pergammon Press, p. 35
7. Schumacher, A. 1923. Neue Hilfstafeln für die Umkippthermometer nach Richter und Beiträ̉ge zur thermometrischen Tiefenmessung。 Annalen der Hydrographie und Maritimen Meteorologie 5l, 273 - 280 . This ref., p. 274, eqn. l(a).
8. Schumacher, A. Op. Cit., p. 275 eqn. 2(a).
9. Wüst, G. 1933. Thermometric Measurement of Depth. (International) Hydrographic Review, 10, 2, 28 - 49, esp. p. 31.
10. Sverdrup, H. Op. Cit. p. 138 eqn 8.
11. Hansen, W. Op. Cit. p. 147, eqn 12. See also: Schumacher, A. 1935, Kippthermometertafeln, neuberechnet auf Grund der Formeln von W. Hansen. Annalen der Hydrographie und Maritimen Meteorologie, 63, 237 - 239, esp. eqn. on p. 239.
12. Feruglio, G. Op. Cit., p. 6.
13. Schumacher, A。, 1923, p. 274, third eqn.
14. Lafond, E. C. 1951. Processing Oceanographic Data. Hydrographic Office Publication 614. Washington, D. C. p. 29 - 39.
15. Subow, No No S. W. Boujewicz, \& W. W. Shoulejkin, 1931. Russian Oceanographic Tables. Quoted in F. M. Soule, 1933. (International) Hydrographic Review, 10, 1, 126 - 130 .

REFERENCES（Cont）

16．Hidaka，K．1932．Ueber eine neue Korrektionsformeln zur Umkippthermometerablesung．Memoirs of the Imperial Marine Observatory，Kobe，Japan．5． 11 － 13.

17．Sverdrup，H．U．Op．Cit．，p．137，eqn．6．
18．Hansen，W．Op．Cit．p．146，eqn 10．See also Schumacher 1935． last eqn．on p． 238.

19．Dietrich。 G．1963．＂General Oceanography，An Introduction＂． Interscience（John Wiley \＆Sons）．p． 127.

20．Handbook of Chemistry \＆Physics，1949．Chemical Rubber Company， Cleveland。 1778 －1779。

21．Folsom，T．R。，F。 D。 Jennings \＆R。A。Schwarzlose。 1959．Effect of pressure upon the＂protected＂oceanographic reversing thermo－ meter．Deep Sea Research，5．306－309．

22．Nordstom，S．G。，\＆T．R．Folsom，1960．Suggestion for eliminating pressure effects on protected reversing thermometers．Deep sea Research 6．169．

