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Chapter 1

Introduction

In the present thesis we investigate theoretical and computational aspects of

piecewise polynomial collocation methods for the numerical solution of fractional

differential and integro-differential equations containing Caputo type fractional

(non-integer) order derivatives of the unknown function.

The concept of a fractional derivative can be traced back [20, 77] to the end

of the seventeenth century, the time when Newton and Leibniz developed the

foundations of differential and integral calculus. In particular, Leibniz introduced

the symbol
dn

dtn
f(t)

to denote the n-th order derivative of a function f = f(t). When he reported

this in a letter to de L’Hospital (apparently with the implicit assumption that

n is a non-negative integer), de L’Hospital replied: “What does dn

dtn f(t) mean if

n = 1/2?”. To this question Leibniz had no satisfactory answer. In his reply,

dated September 30, 1695, Leibniz wrote to de L’Hospital that “... this is an

apparent paradox from which, one day, useful consequences will be drawn...”

[45]. The letter from de L’Hospital is nowadays commonly accepted as the first

occurrence of what we today call a fractional derivative, and the fact that de

L’Hospital specifically asked for n = 1/2, which is a fraction (a rational number),

gave rise to the name “ fractional derivative”. This name has remained in use,

even if n is an arbitrary positive rational or irrational number, that is, n ∈ R :=

(−∞,∞), n > 0. As a matter of fact, even complex numbers may be allowed

[45], but this is beyond the scope of this thesis.
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The question raised by de L’Hospital motivated many scientists to search for

a possibility to generalize the concept of integer order derivatives to fractional

order derivatives. However, for a long time (nearly three centuries), considera-

tions regarding fractional derivatives were purely theoretical treatments for which

there were no serious practical applications. Therefore the theory of fractional

derivatives developed mainly as a pure theoretical field of mathematics useful

only for mathematicians. In contrast to this, during the last decades the atti-

tude has cardinally changed. It turns out that fractional derivatives provide an

excellent instrument for the description of memory and hereditary properties of

various materials and processes. As a matter of fact, there has been a spectacu-

lar increase of studies regarding fractional derivatives and differential equations

with such derivatives, mainly because of new applications of fractional derivatives

in physics, chemistry, mechanics, electricity, biology, economics, control theory,

signal and image processing, biophysics, blood flow phenomena, aerodynamics,

etc.

In particular, some early examples are given in the works [61] (diffusion pro-

cesses), [14, 15, 87] (modelling of the mechanical properties of materials), [57]

(signal processing), [26, 27, 37] (modelling the behaviour of viscoelastic materi-

als), [36, 55] (bioengineering), [40] (description of mechanical systems subject to

damping), [41, 58] (kinetics of polymers). Some more recent results are described

in the works [4, 80] (modelling the behaviour of humans), [31] (fractional pro-

cesses in financial economics), [85] (atomic wall dynamics), [98] (viscoelastic laws

for arterial wall mechanics), [48] (models of supercapacitor energy storage), [42]

(transition of flow in fluid dynamics). A reader interested in additional appli-

cations and studies on fractional derivatives and fractional differential equations

may consult the monographs [8, 19, 20, 45, 56, 59, 76, 79] and review papers

[54, 78, 84].

Currently we know (see, for example, [20, 45, 91]) that there are many possible

different generalizations of the concept of dn

dtn f(t) to the case n 6∈ N := {1, 2, . . . }.
That is, there are many definitions for fractional derivatives, which are not always

equivalent to each other. The two most frequently used fractional derivatives of

order n = α > 0 are defined by Riemann-Liouville and Caputo fractional differ-

ential operators Dα
RL and Dα

Cap, respectively (see Chapter 2 for their precise def-

initions). The former concept is historically the first (developed by Riemann and

Liouville in the middle of 19th century) and for which the mathematical theory
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has been by now established quite well (see [20, 45, 76, 79]). However, as pointed

out in [20], Riemann-Liouville derivatives have certain disadvantages when try-

ing to model some “real-world” phenomena. For example, when a real-world

situation is modelled by an initial value problem involving Riemann-Liouville

fractional derivatives, then one has to specify the values of certain Riemann-

Liouville fractional derivatives at the initial point. In practical applications these

values are frequently not available and their physical meaning might not be clear

[21, 23, 26]. Moreover, rather non-natural is also the fact that the Riemann-

Liouville derivative Dα
RLc (α 6∈ N) of a non-zero constant c does not vanish (see

Section 2.5 below). The Caputo fractional derivative (introduced by Caputo in

[14]), despite being closely related to the Riemann-Liouville derivative, does not

exhibit the above-mentioned difficulties [20]. In the present thesis we will follow

Caputo’s approach.

When working with problems stemming from real-world applications, it is

only rarely possible to find the solution of a given fractional differential equation

in closed form, and even if such an analytic solution is available, it is typically too

complicated to be used in practice [8]. Therefore, in general, numerical methods

are required for solving fractional differential equations. As a consequence, the

last decades have witnessed a steadily increasing development and analysis of

numerical methods for fractional differential equations, of which a good deal are

concerned with the numerical solution of initial and boundary value problems

with one fractional derivative in the equation, see, for example, the works [10,

23, 24, 33, 38, 39, 52, 62, 66, 97] for initial value problems and [16, 32, 34, 35,

49, 67, 83] for boundary value problems. Considerations regarding the existence

and uniqueness results for such problems can be found, for example, in [1, 2, 20,

21, 45]. A comprehensive survey of the most important methods for fractional

initial value problems, along with a detailed introduction to the subject and a

brief summary about the convergence behaviour of the methods is given in the

monograph [8], see also [17, 20, 25]. Less attention has been paid to numerical

methods for solving equations with multiple fractional derivatives (the so-called

multi-term equations) [22, 28, 46, 47, 51, 53, 64, 65] and fractional differential

equations with non-local boundary conditions [3, 5, 93, 94, 96], although the latter

has been widely considered for integer order differential equations (see the survey

paper [86]). A classical example of a multi-term problem is the Bagley-Torvik
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equation [20, 76]

y′′(t) + d1D
3
2
Cap(t) + d0y(t) = f(t),

where d0 and d1 are known constants and f is a given function. This equation

arises, for example, in the modelling of the motion of a rigid plate immersed in a

Newtonian fluid [87]. Finally, we note that very little has been written on solving

fractional integro-differential equations with weakly singular kernels [70, 99].

One of the main objects of study in the present thesis are non-local boundary

value problems for linear multi-term fractional differential equations and weakly

singular integro-differential equations in the following form:

(D
αp
Capy)(t) +

p−1∑
i=0

di(t)(D
αi
Capy)(t) +

∫ t

0
(t− s)−κK(t, s)y(s)ds = f(t) , 0 ≤ t ≤ b,

(1.0.1)

n0∑
j=0

βij0 y
(j)(0) +

l∑
k=1

n1∑
j=0

βijk y
(j)(bk) + βi

∫ b̄i

0
y(s)ds = γi , i = 0, . . . , n− 1,

(1.0.2)

where βij0, βijk, βi, γi ∈ R,

0 ≤ κ < 1, 0 ≤ α0 < α1 < · · · < αp ≤ n, n := dαpe, p ∈ N,

n0 < n, n1 < n, n0, n1 ∈ N0, 0 < b1 < · · · < bl ≤ b, 0 < b̄i ≤ b, l ∈ N,

di : [0, b] → R (i = 0, . . . , p − 1), f : [0, b] → R, K : ∆ → R are some given

continuous functions, ∆ := {(s, t) : 0 ≤ s ≤ t ≤ b}, N0 := N ∪ {0}, dαe denotes

the smallest integer greater or equal to a real number α and Dαi
Capy (i = 0, . . . , p)

are Caputo derivatives of order αi of an unknown function y.

Note that for certain values of coefficients βij0, βijk and βi the problem (1.0.1)–

(1.0.2) takes the form of an initial value problem or a terminal value problem or

a multi-point boundary value problem.

We also consider a non-linear fractional differential equation

(Dα
Capy)(t) = f(t, y), 0 ≤ t ≤ b, α > 0, (1.0.3)

subject to the conditions

n0∑
j=0

βij0 y
(j)(0) +

l∑
k=1

n1∑
j=0

βijk y
(j)(bk) = γi , i = 0, . . . , n− 1 , n := dαe, (1.0.4)
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where βij0, βijk, γi ∈ R,

0 < b1 < · · · < bl ≤ b, l ∈ N, n0, n1 ∈ N0, n0 < n, n1 < n, n− 1 < α < n,

f : [0, b] × R → R is a given continuous function and Dα
Capy is the Caputo

derivative of order α of an unknown function y = y(t).

The main purpose of this thesis is to construct high order numerical meth-

ods for solving problems (1.0.1)–(1.0.2) and (1.0.3)–(1.0.4). To this end, first

of all we need some information about the regularity of the exact solutions of

(1.0.1)–(1.0.2) and (1.0.3)–(1.0.4). This becomes even more significant since we

aim to study the optimal order of convergence of the proposed algorithms. How-

ever, fractional differential equations pose an extra challenge compared to in-

teger order differential equations. For example, it is well known that, in the

case of integer order differential equations, the smoothness properties of a solu-

tion are determined by certain assumptions on the given data (mainly on the

given function on the right hand side of the equation). A typical result is the

following (see, for example, [18]): if k ∈ N, b > 0 and f ∈ Ck−1(G), that is,

the function f = f(t, y) is k − 1 times continuously differentiable on the region

G = {(t, y) : t ∈ [0, b], |y − y0| ≤ η}, y0 ∈ R, η > 0, then the solution y = y(t)

of the initial value problem
{
dy
dt = f(t, y), y(0) = y0

}
is k times continuously

differentiable on an interval [0, h] for some h ∈ (0, b], that is, y ∈ Ck[0, h].

A simple example shows that, in general, we can not expect this result to

be true for fractional differential equations: if y = y(t) is a solution of an initial

value problem

(Dα
Capy)(t) = f(t, y), y(0) = y0, 0 < α < 1,

then it may happen that even for f ∈ C∞(G) we have y 6∈ C1[0, h].

Indeed, it follows from Chapter 2 below (see (2.5.8) and (2.5.11)), that the

non-differentiable at t = 0 function y(t) = t0.5 + y0 is the unique solution of

the initial value problem
{

(D0.5
Capy)(t) =

√
π

2 , y(0) = y0

}
, whose given function

f =
√
π

2 (the right-hand side of the differential equation) is analytic.

In fact, below we see that the non-smooth behaviour of solutions to problems

(1.0.1)–(1.0.2) and (1.0.3)–(1.0.4) is typical (see Theorems 4.2.1 and 5.2.2, respec-

tively). Thus, when constructing high order numerical methods for fractional

differential equations, one should take into account, in some way, the possible

non-smooth behaviour of an exact solution. Numerical methods which assume
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smooth solutions for fractional differential equations are valid only for a tiny

subclass of problems, as is made clear in [81, 82].

In this thesis, using integral equation reformulations of the boundary value

problems (1.0.1)–(1.0.2) and (1.0.3)–(1.0.4), we first study the regularity of their

exact solutions. Based on the obtained regularity properties and piecewise poly-

nomial collocation techniques, the numerical solution of the obtained weakly

singular integral equations is discussed. In general, a collocation method is a

projection method, in which we first choose a finite dimensional space of basis

functions and a number of points in the domain (the so-called collocation points).

The collocation solution to an equation is determined by the requirement that

the equation must be satisfied at the collocation points. This leads to a system

of algebraic equations for finding the collocation solution.

In collocation methods the possible non-smooth behaviour of the exact so-

lution of the underlying problem near the boundary of the domain where the

problem is posed can be taken into account by using special non-uniform grids

reflecting the singular behaviour of the exact solution. In the numerical solution

of integral and integro-differential equations with singularities this approach has

been analyzed by many authors. We refer to the monographs [6, 11, 13, 90, 92],

see also [7, 43, 44, 74, 95]. However, as pointed out in [13, 30], using strongly

non-uniform grids may create significant round-off errors in the calculations and

lead to implementation difficulties. Therefore, it is our aim in this thesis to con-

struct and analyze high order numerical methods for solving (1.0.1)–(1.0.2) and

(1.0.3)–(1.0.4) which do not need strongly non-uniform grids. Our approach is

based on the idea of killing the singularities of the derivatives of the exact so-

lution to the underlying problem by a suitable smoothing transformation. Note

that in the case of integral and integro-differential equations similar ideas have

been successfully used in [9, 29, 60, 63, 75, 88].

The thesis consists of seven chapters. Chapters 1 and 2 have an introductory

character. In Chapter 2 we introduce notation, basic definitions and preliminary

results. In particular, in Section 2.5 we give the definitions for Riemann-Liouville

integral operators, Riemann-Liouville fractional differential operators, Caputo

fractional differential operators and present some of their properties which we

will use later.

Chapters 3, 4 and 6 are devoted to the numerical solution of linear problems,

while Chapter 5 is concerned with non-linear problems. Our approach is based on

12



an idea often used in the numerical solution of integer-order differential equations,

where the original equation is converted to an equivalent integral equation.

The purpose of Chapter 3 is to give an introductory overview of the approach

used in the Chapters 4 and 5 of this thesis. To this end we consider a simplified

form of problem (1.0.1)–(1.0.2). In particular, in Chapter 3 we restrict ourselves

to the case where in equation (1.0.1) there are at most two fractional deriva-

tives Dα2
Capy and Dα1

Capy of the unknown function y. Furthermore, we assume

that α1, α2 ∈ (0, 1), the case which is relevant to the majority of the classical

applications [8].

In Chapter 4 we consider the full problem (1.0.1)–(1.0.2). Using an integral

equation reformulation of this problem with respect to the Caputo derivative

z := D
αp
Capy of y, the exact solution to (1.0.1)–(1.0.2), we first study the existence,

uniqueness and regularity of y and its Caputo derivative z. We observe that

(usual) derivatives of y and z may be unbounded near the left endpoint of the

interval [0, b], even if d0, . . . , dp−1, f ∈ C∞[0, b] and K ∈ C∞(∆) (see Theorem

4.2.1). We then solve the reformulated problem with respect to z by a piecewise

polynomial collocation method. Due to the lack of regularity of z, piecewise

polynomial collocation methods on uniform grids for solving this type of integral

equations will show poor convergence behaviour. A better convergence can be

established by using special non-uniform grids with the grid points

tj = b

(
j

N

)r
, j = 0, 1, . . . , N , (1.0.5)

where N + 1 is the number of grid points and r ∈ [1,∞) is the so called grading

exponent. The parameter r describes the non-uniformity of the grid: if r = 1,

then the grid points (1.0.5) are distributed uniformly on [0, b]; for r > 1 they

are more densely located near the left endpoint of the interval [0, b]. High order

methods use larger values of r (see Theorems 3.3.1 and 3.3.2), which may lead to

unstable behaviour of numerical results. In order to avoid strongly graded grids,

we modify our approach as follows: before applying a collocation method to the

obtained integral equation with respect to z = z(t), we introduce in the integral

equation a change of variables

t = b1−ρτρ, τ ∈ [0, b],

depending on the parameter ρ ∈ [1,∞). This transformation of variables pos-

sesses a smoothing property for z (see Lemma 2.8.1). We then apply a piecewise

13



polynomial collocation method to the transformed integral equation on a uniform

(or midly graded) grid and get an approximation zρ,N to zρ, the exact solution

of the transformed integral equation. After that we find an approximation yN

for y, the solution of (1.0.1)–(1.0.2) by the formula (4.3.14). The main results of

Chapter 4 are given by Theorems 4.2.1, 4.4.1 and 4.4.2.

In Chapter 5 similar ideas have been used for the numerical solution of non-

linear fractional boundary value problems (1.0.3)–(1.0.4). The main results of

this chapter are given by Theorems 5.2.2, 5.4.1 and 5.4.2.

In Chapter 6 an alternative approach for the numerical solution of linear frac-

tional boundary value problems has been considered. We apply the Riemann-

Liouville integral operator to the fractional differential equation and instead of z

we derive an equivalent weakly singular integral equation for y, the exact solution

of the underlying differential equation. After that, with the help of a suitable

smoothing transformation and collocation techniques, we construct a numerical

method for solving the boundary value problem under consideration. The attain-

able order the proposed algorithms is studied and the corresponding results are

given by Theorem 6.2.1.

In Chapter 7 we introduce some test problems and compare the computa-

tional results of the numerical experiments with the theoretical ones obtained

in Chapters 3, 4, 5 and 6. The numerical experiments completely support the

theoretical analysis.

Most of the results given in Chapters 3 to 7 of this thesis are published in

[68–73, 93], the thesis also contains new results that have not been published yet.
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Chapter 2

Preliminary results

In this chapter we introduce basic notations and formulate some results which

we will need later.

2.1 Notations

Throughout this work c, c0, c1 . . . denote positive constants that may have various

values in different occurrences. By N we denote the set of all positive integers

{1, 2, . . . }, by N0 the set of all non-negative integers {0, 1, 2, . . . }, by Z the set of

all integers {. . . ,−1, 0, 1, . . . } and by R the set of all real numbers (−∞,∞). By

dαe we denote the smallest integer greater or equal to a real number α. By I we

denote the identity mapping.

By L1(a, b) we denote the Banach space of measurable functions u : [a, b]→ R
such that

‖u‖L1(a,b) =

∫ b

a
|u(t)|dt <∞.

By L∞(a, b) we denote the Banach space of measurable functions u : [a, b]→ R
such that

inf
Ω⊂[a,b];µ(Ω)=0

sup
t∈[a,b]\Ω

|u(t)| <∞,

where µ(Ω) is the Lebesgue measure of set Ω. The norm of this space is defined

as

‖u‖L∞(a,b) = ‖u‖∞ = inf
Ω⊂[a,b];µ(Ω)=0

sup
t∈[a,b]\Ω

|u(t)|.
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By C[a, b] we denote the Banach space of continuous functions u : [a, b]→ R
with the norm

‖u‖C[a,b] = ‖u‖∞ = max
a≤t≤b

|u(t)|.

By Cm[a, b] we denote the Banach space of m times (m ∈ N0, for m = 0 we

set C0[a, b] = C[a, b]) continuously differentiable functions u : [a, b]→ R with the

norm

‖u‖Cm[a,b] =
m∑
i=0

‖u(i)‖∞.

2.2 Linear operators and operator equations

In this section we introduce some well-known results from the theory of linear

operators (see, for example, [6, 50]).

Let E and F be normed vector spaces. A linear operator A : E → F is called

bounded if there exists a constant M ≥ 0 such that

‖Ax‖F ≤M ‖x‖E , ∀x ∈ E.

The smallest such M is called the operator norm ‖A‖ of A. An operator A : E →
F is said to be continuous if

‖xn − x‖E → 0, n→∞

implies

‖Axn −Ax‖F → 0, n→∞.

A linear operator A : E → F is continuous if and only if it is bounded.

One says that a linear operator A : E → F has the inverse A−1 : F → E if

A−1A = IE and AA−1 = IF , where IE and IF are the identity mappings in E

and F , respectively.

Let E and F be Banach spaces. By L(E,F ) we denote the Banach space of

linear bounded operators A : E → F with the norm

‖A‖L(E,F ) = sup{‖Ax‖F : x ∈ E, ‖x‖E ≤ 1}.
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Theorem 2.2.1. Let E and F be Banach spaces. If the operators A,B ∈ L(E,F )

are such that A−1 ∈ L(F,E) and ‖B‖L(E,F )‖A−1‖L(F,E) < 1, then A + B is

invertible and the estimate

‖(A+B)−1‖L(F,E) ≤
‖A−1‖L(F,E)

1− ‖B‖L(E,F )‖A−1‖L(F,E)

holds.

Let E and F be normed spaces. A linear operator A : E → F is called

compact if for every bounded sequence (xn)n≥1 ⊂ E the sequence (Axn)n≥1 ⊂ F
has a convergent subsequence in F . Note that every compact operator is bounded

and thus continuous.

Theorem 2.2.2. Let E,F and G be normed spaces and let A : E → F and

B : F → G be bounded linear operators. Then the product BA : E → G is

compact if one of the two operators A or B is compact.

Theorem 2.2.3. (Fredholm alternative theorem). Let E be a Banach sapce, and

let A ∈ L(E,E) be a compact operator. Then the equation x = Ax + f, f ∈ E
has a unique solution x ∈ E if and only if the homogeneous equation z = Az has

only the trivial solution z = 0. In this case the operator I − A has a bounded

inverse (I −A)−1 ∈ L(E,E).

2.3 Non-linear operator equations

Let E be a Banach space with a norm ‖x‖, x ∈ E. A sequence {An}n∈N of

operators An ∈ L(E,E) is called compactly converging to A ∈ L(E,E) (we write

An → A compactly) if Anx→ Ax as n→∞ for every x ∈ E and for any bounded

sequence {xn}n∈N, xn ∈ E, it follows that the sequence {Anxn}n∈N is relatively

compact in E (i.e. every subsequence {Anxn}n∈N′⊂N contains a subsequence

{Anxn}n∈N′′⊂N′ converging in E).

Let us consider the nonlinear equations

x = Sx (2.3.1)

and

x = Snx, n ∈ N, (2.3.2)
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where S : B → E and Sn : B → E are nonlinear operators defined on an open

set B ⊂ E.

We recall that S : B → E is called Fréchet differentiable at x0 ∈ B if there

exists a linear operator S′(x0) ∈ L(E,E) such that

‖Sx− Sx0 − S′(x0)(x− x0)‖/‖x− x0‖ → 0 as ‖x− x0‖ → 0;

in this case S′(x0) is the (unique) Fréchet derivative of S at x0.

We shall later need the following result adapted from the approximation the-

ory by Vainikko (see Theorem 4.3 in [89] or Theorem 2 in [90]).

Theorem 2.3.1. Let the following conditions be fulfilled:

10 equation (2.3.1) has a solution x∗ ∈ B, and the operator S is Fréchet differ-

entiable at x∗;

20 there is a positive number δ such that the operators Sn (n ∈ N) are Fréchet

differentiable in the ball ‖x − x∗‖ ≤ δ, which is assumed to be contained in B,

and for any ε > 0 there is a δε ∈ (0, δ] such that for every n ∈ N

‖S′n(x)− S′n(x∗)‖L(E,E) ≤ ε whenever ‖x− x∗‖ ≤ δε;

30 ‖Snx∗ − Sx∗‖ → 0 as n→∞;

40 S′n(x∗)→ S′(x∗) compactly, whereby S′n(x∗) ∈ L(E,E) (n ∈ N) are compact

and the homogeneous equation x = S′(x∗)x has in E only the trivial solution

x = 0.

Then there exist n0 ∈ N and δ0 ∈ (0, δ] such that equation (2.3.2) has for

n ≥ n0 a unique solution xn in the ball ‖x − x∗‖ ≤ δ0. Thereby xn → x∗ as

n→∞ and the following error estimate holds:

‖xn − x∗‖ ≤ c ‖Snx∗ − Sx∗‖, n ≥ n0. (2.3.3)

Here c is a positive constant not depending on n.

2.4 Gamma, beta and Mittag-Leffler functions

In this section we recall the definitions and some properties of the gamma, beta

and Mittag-Leffler functions (more details can be found, for example, in [20, 76]).
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The gamma function Γ = Γ(x) is defined by the formula

Γ(x) :=

∫ ∞
0

sx−1e−sds, x ∈ (0,∞);

elementary considerations from the theory of improper integrals reveal that the

integral
∫∞

0 sx−1e−sds exists for all x > 0. An important property of the gamma

function is the recurrence relation

Γ(x+ 1) = xΓ(x), x > 0. (2.4.1)

It is easy to see that Γ(1) = Γ(2) = 1 and

Γ(n+ 1) = n!, n ∈ N.

An interesting property of Γ(x) is given by the equality

Γ(x)Γ(1− x) =
π

sinπx
, 0 < x < 1.

In particular, if x = 1
2 , then we have (Γ(0.5))2 = π and thus

Γ(0.5) =
√
π. (2.4.2)

The beta function B = B(x, y) is defined by the formula

B(x, y) :=

∫ 1

0
sx−1(1− s)y−1ds, x, y ∈ (0,∞).

Functions Γ and B are related by the equality

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
, x, y > 0. (2.4.3)

The function Eα,β defined by

Eα,β(x) :=
∞∑
j=0

xj

Γ(j α+ β)
, x ∈ R, (2.4.4)

is called the two-parameter Mittag-Leffler function with parameters α > 0 and

β > 0. Note that power series defining Eα,β(x) in (2.4.4) is convergent for all

x ∈ R. It follows from (2.4.4) that E1,1(x) = ex, x ∈ R.
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2.5 Fractional differential operators

In this section we present the definitions and some properties of Riemann-Liouville

integrals and Riemann-Liouville and Caputo fractional differential operators, see

[20, 45]. Let b ∈ R, b > 0.

For given δ ∈ (0,∞) by Jδ we denote the Riemann–Liouville integral operator

of order δ, defined as

(Jδy)(t) :=
1

Γ(δ)

∫ t

0
(t− s)δ−1 y(s) ds, t ∈ [0, b], y ∈ L1(0, b). (2.5.1)

For δ = 0 we set J0 := I. If δ > 0, then the integral (Jδy)(t) exists for almost all

t ∈ [0, b] and the function Jδy is also an element of L1(0, b). Moreover, we have

for any y ∈ L∞(0, b) that

(Jδy)(k) ∈ C[0, b], (Jδy)(k)(0) = 0, δ > 0, k = 0, . . . , dδe − 1, (2.5.2)

JαJβy = JβJαy = Jα+βy, α > 0, β > 0. (2.5.3)

Note that for Jδy ∈ C[0, b] we have y ∈ Cn−1[0, b], where n− 1 < δ ≤ n, n ∈ N.

Note also that the operator Jδ (δ > 0) is linear, bounded and compact as an

operator from L∞(0, b) into C[0, b] (see, e.g. [12]).

By Dδ
RL we denote the Riemann–Liouville fractional differentiation operator

of order δ > 0, defined as

(Dδ
RLy)(t) :=

dn

dtn
(Jn−δy)(t), t ∈ [0, b], n = dδe. (2.5.4)

Often it is assumed that Jn−δy ∈ Cn[0, b]. Note that for δ ∈ N we have

(Dδ
RLy)(t) = y(δ)(t), t ∈ [0, b].

Let m ∈ N. By Qm−1[y] we denote the Taylor polynomial of degree m− 1 for

the function y ∈ Cm−1[0, b] at the point 0:

(Qm−1[y])(s) :=

m−1∑
i=0

y(i)(0)

i!
si.

By Dδ
Cap we denote the Caputo fractional differential operator of order δ > 0,

defined by the formula

(Dδ
Capy)(t) := (Dδ

RL(y − Qn−1[y]))(t), t ∈ [0, b], n := dδe. (2.5.5)
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In the definition (2.5.5) we assume that y ∈ Cn−1[0, b]. If δ ∈ N and y ∈ Cδ[0, b]
then we have (Dδ

Capy)(t) = y(δ)(t), t ∈ [0, b].

A sufficient condition for the existence of Dδ
Capy ∈ C[0, b] is y ∈ Cdδe[0, b].

However, this is not a necessary condition. In [91], Vainikko gives a comprehensive

description of the range JδC[0, b] (δ > 0) of Jδ as an operator from C[0, b] into

C[0, b]. In particular, he has derived necessary and sufficient conditions for the

existence of Dδ
Capy ∈ C[0, b] for a function y ∈ Cdδe−1[0, b], δ > 0. As an example,

if 0 < δ < 1 and y ∈ C[0, b], then the following conditions (i) and (ii) are

equivalent:

(i) the fractional derivative Dδ
Capy ∈ C[0, b] exists;

(ii) a limit limt→0 t
−δ[y(t)− y(0)] exists, is finite and the Riemann improper

integrals ∫ t

0
(t− s)−δ−1(y(t)− y(s))ds (0 < t ≤ b)

equiconverge in the sense that

lim
θ→1

0<θ<1

sup
0<t≤b

∣∣∣∣∫ t

0
(t− s)−δ−1(y(t)− y(s))ds−

∫ θt

0
(t− s)−δ−1(y(t)− y(s))ds

∣∣∣∣ = 0.

For any y ∈ L∞(0, b) we have

Dβ
RLJ

αy = Dβ
CapJ

αy = Jα−βy, 0 < β ≤ α. (2.5.6)

Note that a function ydδe−1 ∈ C[0, b] such that Dδ
Capy ∈ C[0, b] (δ > 0) has

the form (cf. [20])

y(t) = (Jδz)(t) +
n−1∑
λ=0

cλ t
λ, t ∈ [0, b], n = dδe ∈ N, (2.5.7)

where z := Dδ
Capy and cλ ∈ R (λ = 0, . . . , n− 1) are some constants.

Finally, we give some examples of fractional derivatives. From the definition

(2.5.4) it follows that for a constant c ∈ R we have (δ > 0, n = dδe)

(Dδ
RLc)(t) =

c

Γ(n− δ)
dn

dtn

∫ t

0
(t− s)n−δ−1ds =

c

Γ(n− δ)
dn

dtn

(
tn−δ

n− δ

)
=

c

Γ(1 + n− δ)
(n− δ) (n− δ − 1) · · · (1− δ) t−δ, t > 0.

We see that the Riemann-Liouville fractional derivative of a constant function

does not necessarily vanish (it only vanishes if c = 0 or δ ∈ N). In contrast
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to this, it follows from (2.5.5) that the Caputo fractional derivative Dδ
Capc of a

constant c ∈ R vanishes:

(Dδ
Capc)(t) =

1

Γ(n− δ)
dn

dtn

∫ t

0
(t−s)n−δ−1(c−c)ds = 0, δ > 0, n = dδe, t > 0.

(2.5.8)

Further, let β ∈ R and denote

vβ(t) = tβ, t > 0.

If δ > 0, n = dδe, β > n− 1, β ∈ R, then

(Dδ
Capvβ)(t) =

Γ(1 + β)

Γ(β + 1− δ)
tβ−δ, t > 0; (2.5.9)

if β ∈ N0, then

(Dδ
Capvβ)(t) =

{
0 if β = 0, . . . , n− 1,

β!
Γ(β+1−δ) t

β−δ if β ≥ n. (2.5.10)

Indeed, let first β > n− 1, β ∈ R, where n = dδe, δ > 0. Then Qn−1[vβ] = 0

and (2.5.9) follows from the definition (2.5.5) and (2.4.1), (2.4.3):

(Dδ
Capvβ)(t) =

1

Γ(n− δ)
dn

dtn

∫ t

0
(t− s)n−δ−1sβds

=
1

Γ(n− δ)

∫ 1

0
(1− τ)n−δ−1τβdτ

dn

dtn
tβ+n−δ

=
Γ(1 + β)

Γ(1 + β + n− δ)
(β + n− δ) (β + n− 1− δ) · · · (β + 1− δ) tβ−δ

=
Γ(1 + β)

Γ(β + 1− δ)
tβ−δ, t > 0.

For (2.5.10) it now suffices to consider only the case β ≤ n− 1, β ∈ N0, for which

we have (Qn−1vβ)(s) = sβ (s ≥ 0) and hence

(Dδ
Capvβ)(t) =

1

Γ(n− δ)
dn

dtn

∫ t

0
(t− s)n−δ−1(sβ − sβ)ds = 0.

In particular, we see that (2.5.9) together with (2.4.1) and (2.4.2) yields

D0.5
Capt

0.5 = Γ(0.5 + 1) = 0.5Γ(0.5) =

√
π

2
, t > 0. (2.5.11)
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2.6 Weighted spaces of functions

In order to characterize the behaviour of a solution of a fractional differential

equation, we introduce a weighted space Cm,ν(0, b] of smooth functions on (0, b]

(cf. [12, 90]).

For given b ∈ R, b > 0, m ∈ N and ν ∈ R, ν < 1, by Cm,ν(0, b] we denote

the set of continuous functions u : [0, b] → R which are m times continuously

differentiable in (0, b] and such that for all t ∈ (0, b] the following estimates hold:

∣∣u(i)(t)
∣∣ ≤ c


1 if i < 1− ν
1 + | log t| if i = 1− ν
t1−ν−i if i > 1− ν

 , i = 1, . . . ,m.

In other words, u ∈ Cm,ν(0, b] if u ∈ C[0, b] ∩ Cm(0, b] and

|u|m,ν :=
m∑
i=1

sup
0<t≤b

ωi−1+ν(t)
∣∣∣u(i)(t)

∣∣∣ <∞,
where, for t > 0,

ωρ(t) :=


1 if ρ < 0,

1
1+| log t| if ρ = 0,

tρ if ρ > 0.

Equipped with the norm

‖u‖Cm,ν(0,b] := ‖u‖∞ + |u|m,ν , u ∈ Cm,ν(0, b],

the set Cm,ν(0, b] becomes a Banach space.

Note that Cm[0, b] (m ∈ N) belongs to Cm,ν(0, b] for arbitrary ν < 1. Some

other examples are given by y1(t) = t
7
2 , y2(t) = t

3
4 and y3(t) = t log t with

y3(0) = 0. Clearly, y1 ∈ Cm,−
5
2 (0, b], y2 ∈ Cm,

1
4 (0, b] and y3 ∈ Cm,0(0, b].

Moreover, a function of the form

y(t) = g1(t) tδ + g2(t) (δ > 0)

belongs to Cm,ν(0, b] for all ν ∈ [1− δ, 1) and g1, g2 ∈ Cm[0, b], m ∈ N. Note also

Cq[0, b] ⊂ Cq,ν(0, b] ⊂ Cm,µ(0, b] ⊂ C[0, b], q ≥ m ≥ 1, ν ≤ µ < 1. (2.6.1)

Observe that as ν increases so does the singular behaviour of the derivatives of

the functions in Cq,ν(0, b].

Next we formulate two lemmas which we will need later. Their proofs can be

found in [12].
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Lemma 2.6.1. If y1, y2 ∈ Cq,ν(0, b], q ∈ N, ν < 1, then y1y2 ∈ Cq,ν(0, b], and

‖y1y2‖Cq,ν(0,b] ≤ c‖y1‖Cq,ν(0,b]‖y2‖Cq,ν(0,b],

with a constant c which is independent of y1 and y2.

Lemma 2.6.2. Let η ∈ R, η < 1 and let K ∈ C(∆), ∆ := {(s, t) : 0 ≤ s ≤ t ≤ b}.
Then operator S defined by

(Sy)(t) :=

∫ t

0
(t− s)−ηK(t, s)y(s)ds, t ∈ [0, b], (2.6.2)

is compact as an operator from L∞(0, b) into C[0, b]. If, in addition, K ∈
Cq(∆), q ∈ N, then S is compact as an operator from Cq,ν(0, b] into Cq,ν(0, b],

where η ≤ ν < 1.

2.7 Graded grids and interpolation operators

For N ∈ N and 1 ≤ r <∞ , let ΠN := {t0, . . . , tN} be a partition (a graded grid)

of the interval [0, b] with the grid points

tj = b

(
j

N

)r
, j = 0, 1, . . . , N , (2.7.1)

where r ∈ [1,∞) is the so called grading parameter. If r = 1, then the grid

points (2.7.1) are distributed uniformly; for r > 1 the grid points (2.7.1) are

more densely clustered near the left endpoint of the interval [0, b].

For a given integer m ∈ N by S−1
m−1(ΠN ) we denote the standard space of

piecewise polynomial functions:

S
(−1)
m−1(ΠN ) :=

{
v : v

∣∣
[tj−1,tj ]

∈ πm−1, j = 1, . . . , N
}
. (2.7.2)

Here v
∣∣
[tj−1,tj ]

(j = 1, . . . , N) is the restriction of v : [0, b]→ R onto the subinterval

[tj−1, tj ] ⊂ [0, b] and πm−1 denotes the set of polynomials of degree not exceeding

m − 1. Note that the elements of S
(−1)
m−1(ΠN ) may have jump discontinuities at

the interior points t1, . . . , tN−1 of the grid ΠN .

In every interval [tj−1, tj ] (j = 1, . . . , N), we define m ∈ N interpolation

(collocation) points tj1, . . . , tjm by formula

tjk = tj−1 + ηk(tj − tj−1) , k = 1, . . . ,m, j = 1, . . . , N, (2.7.3)
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where η1 . . . , ηm are some fixed (collocation) parameters which do not depend on

j and N and satisfy

0 ≤ η1 < η2 < . . . < ηm ≤ 1 . (2.7.4)

For given N,m ∈ N let PN = PN,m : C[0, b]→ S
(−1)
m−1(ΠN ) be an interpolation

operator such that

PNv ∈ S(−1)
m−1(ΠN ), (PNv)(tjk) = v(tjk), k = 1, . . . ,m, j = 1, . . . , N, (2.7.5)

for any continuous function v ∈ C[0, b]. If η1 = 0, then by (PNv)(tj1) we denote

the right limit limt→tj−1,t>tj−1(PNv)(t). If ηm = 1, then by (PNv)(tjm) we denote

the left limit limt→tj ,t<tj (PNv)(t).

The proof of the following three lemmas can be found in [12, 90].

Lemma 2.7.1. Let PN : C[0, b] → S
(−1)
m−1(ΠN ) (N ∈ N) be defined by (2.7.5).

Then PN ∈ L(C[0, b], L∞(0, b)) and the norms of PN are uniformly bounded:

‖PN‖L(C[0,b],L∞(0,b)) ≤ c, N ∈ N,

with a positive constant c which is independent of N . Moreover, for every z ∈
C[0, b] we have

‖z − PNz‖L∞(0,b) → 0 as N→∞.

Lemma 2.7.2. Let S : L∞(0, b) → C[0, b] be a linear compact operator. Let

PN : C[0, b]→ S
(−1)
m−1(ΠN ) (N ∈ N) be defined by (2.7.5). Then

‖S − PNS‖L(L∞(0,b),L∞(0,b)) → 0 as N→∞.

Lemma 2.7.3. Let z ∈ Cm,ν(0, b], m ∈ N, ν ∈ (−∞, 1). Let PN : C[0, b] →
S

(−1)
m−1(ΠN ) (N ∈ N) be defined by (2.7.5). Then

‖z − PNz‖∞ ≤ c



N−m for m < 1− ν, r ≥ 1 ,

N−m(1 + logN) for m = 1− ν, r = 1 ,

N−m for m = 1− ν, r > 1 ,

N−r(1−ν) for m > 1− ν, 1 ≤ r < m
1−ν ,

N−m for m > 1− ν, r ≥ m
1−ν .

where r ∈ [1,∞) is the grading exponent in (2.7.1) and c is a positive constant

not depending on N .
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2.8 Smoothing transformation

In this section we introduce a mapping

t = b1−ρτρ, τ ∈ [0, b], (2.8.1)

depending on a parameter ρ ∈ [1,∞). From the definition (2.8.1) we get that

τ = b(ρ−1)/ρt1/ρ ∈ [0, b] for t ∈ [0, b]. In the case ρ = 1 it follows from (2.8.1)

that t = τ . We are interested in transformations (2.8.1) with ρ > 1, since this

transformation then possesses a smoothing property for z ∈ Cq,ν(0, b]. From [75]

we obtain the following result.

Lemma 2.8.1. Let z ∈ Cq,ν(0, b] (q ∈ N, −∞ < ν < 1) and let zρ(τ) :=

z(b1−ρτρ), τ ∈ [0, b], where ρ ∈ [1,∞) if ν ∈ (0, 1) and ρ ∈ N if ν ≤ 0. Then

zρ ∈ Cq,νρ(0, b], where νρ := 1− ρ(1− ν).

Remark 2.8.1. Instead of (2.8.1) other transformations can also be used (see,

e.g. [75]). For simplicity of presentation we restricts ourselves only to the trans-

formation (2.8.1).

Introducing in the definition of the Riemann-Liouville integral operator Jα (α >

0) (see (2.5.1)) the change of variables

t = b1−ρτρ, s = b1−ρσρ, τ, σ ∈ [0, b], ρ ∈ [1,∞), (2.8.2)

we obtain for x ∈ L∞(0, b) that

(Jαx)(t) = (Jαρ xρ)(τ), t = b1−ρτρ, τ ∈ [0, b], α > 0, (2.8.3)

where

xρ(τ) := x(b1−ρτρ)

and

(Jαρ xρ)(τ) :=
ρb(1−ρ)α

Γ(α)

∫ τ

0
(τρ − σρ)α−1σρ−1xρ(σ) dσ, τ ∈ [0, b], α > 0. (2.8.4)

The following lemma presents some properties of Jαρ which follow from the

corresponding properties of the Riemann-Liouville integral operator Jα.
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Lemma 2.8.2. Let α > 0 and ρ ≥ 1 be some given real numbers. Then Jαρ
defined by (2.8.4) is linear, bounded and compact as an operator from L∞(0, b)

into C[0, b]. Moreover, we have for any z ∈ L∞(0, b) that

Jαρ J
β
ρ z = Jα+β

ρ z, α > 0, β > 0, ρ ≥ 1.

Finally, we have the following result (see [47]).

Lemma 2.8.3. Let z ∈ Cm+1,ν(0, b], m ∈ N, ν ∈ (−∞, 1). Let N ∈ N, α ∈
(0, 1], r ∈ [1,∞), ρ ∈ [1,∞) if ν ∈ (0, 1) and ρ ∈ N if ν ≤ 0, zρ(τ) =

z(b1−ρτρ), τ ∈ [0, b]. Let Jαρ (α > 0) and PN (N ∈ N) be defined by (2.8.4) and

(2.7.5), respectively. Assume that the collocation points (2.7.3) with grid points

(2.7.1) and parameters η1, . . . , ηm satisfying (2.7.4) are used. Moreover, assume

that η1, . . . , ηm are such that a quadrature approximation

∫ 1

0
F (x)dx ≈

m∑
k=1

wkF (ηk), 0 ≤ η1 < η2 < . . . < ηm ≤ 1, (2.8.5)

with appropriate weights {wk} is exact for all polynomials F of degree m.

Then the following estimate holds:

‖Jαρ (PNzρ − zρ)‖∞ ≤ c

{
EN (m,α, ν, ρ, r) if 0 < α < 1

E∗N (m, ν, ρ, r) if α = 1

}
. (2.8.6)

Here c is a constant not depending on N ,

EN (m,α, ν, ρ, r) :=



N−m−α for m < ρ(1 + α− ν), r ≥ 1 ,

N−m−α(1 + logN) for m = ρ(1 + α− ν), r = 1 ,

N−m−α for m = ρ(1 + α− ν), r > 1 ,

N−ρr(1+α−ν) for m > ρ(1 + α− ν) and

1 ≤ r < m+α
ρ(1+α−ν) ,

N−m−α for m > ρ(1 + α− ν) and

r ≥ m+α
ρ(1+α−ν)

(2.8.7)
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and

E∗N (m, ν, ρ, r) :=



N−m−1 for m < ρ(2− ν), r ≥ 1 ,

N−m−1(1 + logN)2 for m = ρ(2− ν), r = 1 ,

N−m−1(1 + logN) for m = ρ(2− ν), r > 1 ,

N−ρr(2−ν) for m > ρ(2− ν) and

1 ≤ r < m+1
ρ(2−ν) ,

N−m−1 for m > ρ(2− ν), and

r ≥ m+1
ρ(2−ν) .

(2.8.8)
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Chapter 3

Linear fractional

integro-differential equations

with two fractional derivatives

In this chapter we discuss a possibility to construct high order numerical methods

for solving initial and boundary value problems for linear weakly singular frac-

tional integro-differential equations. In order to give an outline of the method

that can be applied to a wide class of equations, we first restrict ourselves to

equations involving only up to two fractional derivatives, both of order less than

one. Later, in Chapter 4, we extend our study to general multi-term problems.

More precisely, we will consider an equation in the form

(Dα2
Capy)(t) + (Dα1

Capy)(t)d1(t) + y(t)d0(t) +

∫ t

0
(t− s)−κK(t, s)y(s)ds = f(t),

(3.0.1)

subject to the condition

β0y(0) +
l∑

k=1

βky(bk) + β

∫ b̄

0
y(s)ds = γ, (3.0.2)

where 0 ≤ t ≤ b, b > 0, l ∈ N, 0 < b1 < · · · < bl ≤ b, b̄ ∈ (0, b], γ, β, βk ∈ R (k =

0, . . . , l) and Dα1
Cap and Dα2

Cap are Caputo differential operators of order α1 and

α2, respectively. We assume that

0 < α1 < α2 < 1, 0 ≤ κ < 1,
l∑

k=0

βk + β b̄ 6= 0 (3.0.3)
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and d0, d1, f ∈ C[0, b], K ∈ C(∆), where

∆ := {(t, s) : 0 ≤ s ≤ t ≤ b}. (3.0.4)

Clearly, (3.0.1)–(3.0.2) is a special form of (1.0.1)–(1.0.2). In particular, the case

where (3.0.1)–(3.0.2) is an initial value problem (β0 6= 0, β1 = ... = βl = β = 0)

or a terminal value problem (β0 = · · · = βl−1 = β = 0, βl = b, cf. [20, 32, 34]) is

under consideration.

Using an integral equation reformulation of problem (3.0.1)–(3.0.2), we first

present some results about the existence, uniqueness and regularity of its exact

solution (Sections 3.1 and 3.2). On the basis of this information we then con-

struct a class of numerical methods to solve such problems. After that we give an

overview of the convergence and superconvergence results of the proposed algo-

rithms (Sections 3.3 and 3.4). These results follow from the more general results

proven in Chapter 4. Numerical experiments verifying the theoretical results are

presented in Chapter 7.

3.1 Integral equation reformulation

First, let y ∈ C[0, b] be an arbitrary function such that Dα2
Capy ∈ C[0, b] and let

us denote z := Dα2
Capy. Then

y(t) = (Jα2z)(t) + c, (3.1.1)

where Jα2 is the Riemann-Liouville integral operator of order α2 defined by (2.5.1)

and c is a constant. By using properties (2.5.2) and (2.5.6) we see that a function

in the form (3.1.1) satisfies the condition (3.0.2) if and only if

β0 c+
l∑

k=1

βk c+ β b̄ c = γ −
l∑

k=1

βk(J
α2z)(bk)− β

∫ b̄

0
(Jα2z)(s)ds. (3.1.2)

Due to the definition of Jα2 we can write∫ b̄

0
(Jα2z)(s)ds =

1

Γ(α2)

∫ b̄

0

∫ s

0
(s− τ)α2−1z(τ)dτds.

We simplify this double integral as follows. By changing the order of integration

we find that

1

Γ(α2)

∫ b̄

0

∫ s

0
(s− τ)α2−1z(τ)dτds =

1

Γ(α2)

∫ b̄

0
z(τ)

∫ b̄

τ
(s− τ)α2−1dsdτ.
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It is easy to see that ∫ b̄

τ
(s− τ)α2−1ds =

(b̄− τ)α2

α2

and, by using the recurrence relation α2Γ(α2) = Γ(α2 +1) (see (2.4.1)), we obtain∫ b̄

0
(Jα2z)(s)ds = (Jα2+1z)(b̄).

By denoting

β∗ =
l∑

k=0

βk, (3.1.3)

we get from (3.1.2) that

c =
γ −

∑l
k=1 βk(J

α2z)(bk)− β (Jα2+1z)(b̄)

β∗ + β b̄
.

We see that an arbitrary continuous function y ∈ C[0, b] with z = Dα2
Capy ∈ C[0, b]

satisfies the condition (3.0.2) if and only if it is in the form

y(t) = (Jα2z)(t) + (β∗ + β b̄)−1

[
γ −

l∑
k=1

βk(J
α2z)(bk)− β (Jα2+1z)(b̄)

]
,

(3.1.4)

where 0 ≤ t ≤ b.
Let now y ∈ C[0, b] be a solution to problem (3.0.1)-(3.0.2) so that z =

Dα2
Capy ∈ C[0, b]. Keeping in mind that (Dα2

Capy)(t) = z(t), by substituting (3.1.4)

into (3.0.1) and using properties (2.5.6) and (2.5.8), we obtain

z(t) + (Jα2−α1z)(t)d1(t)

+

(
(Jα2z)(t) + (β∗ + β b̄)−1

[
γ −

l∑
k=1

βk(J
α2z)(bk)− β (Jα2+1z)(b̄)

])
d0(t)

+

∫ t

0
(t− s)−κK(t, s)(Jα2z)(s)ds

+ (β∗ + β b̄)−1

[
γ −

l∑
k=1

βk(J
α2z)(bk)− β (Jα2+1z)(b̄)

]∫ t

0
(t− s)−κK(t, s)ds = f(t),

where 0 ≤ t ≤ b. Note that∫ t

0
(t− s)−κK(t, s)(Jα2z)(s)ds =

1

Γ(α2)

∫ t

0
(t− s)−κK(t, s)

∫ s

0
(s− τ)α2−1z(τ)dτds

=
1

Γ(α2)

∫ t

0
z(s)

∫ t

s
(t− s)−κ(τ − s)α2−1K(t, τ)dτds.
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Next, by using a change of variables τ = (t− s)σ + s we get∫ t

s
(t−s)−κ(τ−s)α2−1K(t, τ)dτ = (t−s)α2−κ

∫ 1

0
σα2−1(1−σ)−κK(t, (t−s)σ+s)dσ.

Thus, we have∫ t

0
(t− s)−κK(t, s)(Jα2z)(s)ds =

1

Γ(α2)

∫ t

0
(t− s)α2−κL(t, s)z(s)ds, 0 ≤ t ≤ b,

(3.1.5)

where

L(t, s) :=

∫ 1

0
σα2−1(1− σ)−κK(t, (t− s)σ + s)dσ (3.1.6)

is a continuous function for (t, s) ∈ ∆ since K ∈ C(∆), α2 ∈ (0, 1] and κ ∈ [0, 1).

Remark 3.1.1. Let α2 ∈ (0, 1], κ ∈ [0, 1), K ∈ Cq(∆) , q ∈ N. Let L be defined

by (3.1.6). Then L ∈ Cq(∆).

We see that we have obtained an integral equation with respect to z, which

we write in the operator form

z = Tz + g, (3.1.7)

where

(Tz)(t) = −(Jα2−α1z)(t)d1(t)− (Jα2z)(t)d0(t)− 1

Γ(α2)

∫ t

0
(t− s)α2−κL(t, s)z(s)ds

+ (β∗ + β b̄)−1

[
l∑

k=1

βk(J
α2z)(bk) + β (Jα2+1z)(b̄)

]

×
(
d0(t) +

∫ t

0
(t− s)−κK(t, s)ds

)
(0 ≤ t ≤ b) (3.1.8)

and

g(t) = f(t)− γ

β∗ + β b̄

(
d0(t) +

∫ t

0
(t− s)−κK(t, s)ds

)
, 0 ≤ t ≤ b. (3.1.9)

In other words, we have shown that if a continuous function y ∈ C[0, b] with

Dα2
Capy ∈ C[0, b] is a solution to problem (3.0.1)-(3.0.2), then z = Dα2

Capy is a

solution to integral equation (3.1.7).

It turns out that the converse is also true. Indeed, suppose that z ∈ C[0, b] is

a solution to integral equation (3.1.7). If we now define y by (3.1.4), we see that

y ∈ C[0, b], z = Dα2
Capy and that y satisfies the condition (3.0.2). We see that

y determined by (3.1.4) is a solution to (3.0.1)-(3.0.2). Thus equation (3.1.7) is

equivalent to the problem (3.0.1)-(3.0.2).
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3.2 Existence, uniqueness and smoothness of the so-

lution

The existence, uniqueness and regularity of the solution to (3.0.1)-(3.0.2) can be

characterized by the following theorem.

Theorem 3.2.1. (i) Assume that 0 < α1 < α2 < 1, 0 ≤ κ < 1, d0, d1, f ∈ C[0, b],

K ∈ C(∆). Moreover, let
∑l

k=0 βk+β b̄ 6= 0 and assume that the problem (3.0.1)-

(3.0.2) with f = 0 and γ = 0 has in C[0, b] only the trivial solution y = 0.

Then problem (3.0.1)-(3.0.2) has a unique solution y ∈ C[0, b]. Moreover, we

have Dα2
Capy ∈ C[0, b].

(ii) Assume that (i) holds and let K ∈ Cq(∆), d0, d1, f ∈ Cq,µ(0, b], q ∈ N,

µ ∈ R, µ < 1.

Then problem (3.0.1)-(3.0.2) possesses a unique solution y such that y ∈
Cq,ν(0, b] and Dα2

Capy ∈ Cq,ν(0, b], where

ν := max{1− (α2 − α1), µ, κ}. (3.2.1)

Proof. This theorem is a consequence of the more general Theorem 4.2.1 which

we will prove in Chapter 4.

Remark 3.2.1. If K = 0, then we may in Theorem 3.2.1 set ν = max{1 −
(α2 − α1), µ}. If d0, d1, f ∈ Cq[0, b] (q ∈ N), then we may in Theorem 3.2.1 set

ν = max{1− (α2 − α1), κ}, and if also K = 0, then ν = 1− (α2 − α1).

Theorem 3.2.1 states that the regularity properties of y, the solution of prob-

lem (3.0.1)-(3.0.2), depend on the smoothness of functions d0, d1, f and K.

However, as noted in Remark 3.2.1, even when we have d0, d1, f ∈ Cq[0, b] and

K ∈ Cq(∆) (for some q ∈ N), we cannot claim that y ∈ Cq[0, b] – we may

only say that y ∈ Cq,max{1−(α2−α1),κ}(0, b]. That is, the solution of the problem

(3.0.1)–(3.0.2) can, in general, exhibit singular behaviour even when the data of

the problem is smooth. This complicates the construction of high order methods

for solving such equations numerically.

3.3 Numerical methods based on graded grids

In order to take into account the potential non-smoothness of the exact solution

y = y(t) of (3.0.1)-(3.0.2) at the origin t = 0, we introduce on the interval [0, b] a
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graded grid ΠN (N ∈ N) with the grid points (2.7.1) and look for an approximate

solution yN to (3.0.1)-(3.0.2) in the form (cf. (3.1.4))

yN (t) = (Jα2zN )(t) + (β∗ + β b̄)−1

[
γ −

l∑
k=1

βk(J
α2zN )(bk)− β (Jα2+1zN )(b̄)

]
,

(3.3.1)

where 0 ≤ t ≤ b and zN ∈ S(−1)
m−1(ΠN ) (m ∈ N) is determined by the following

collocation conditions:

zN (tjk) = (TzN )(tjk) + g(tjk), k = 1, . . . ,m, j = 1, . . . , N. (3.3.2)

Here T, g and {tjk} are defined by (3.1.8), (3.1.9) and (2.7.3), respectively. If

η1 = 0, then by zN (tj1) we denote the right limit limt→tj−1,t>tj−1 zN (t). If ηm = 1,

then zN (tjm) denotes the left limit limt→tj ,t<tj zN (t). Conditions (3.3.2) have an

operator equation representation

zN = PNTzN + PNg (3.3.3)

with an operator PN = PN,m : C[0, T ]→ S
(−1)
m−1(ΠN ) defined by (2.7.5).

The collocation conditions (3.3.2) form a system of equations whose exact

form is determined by the choice of a basis in S
(−1)
m−1(ΠN ). In particular, if η1 > 0

or ηm < 1, then we can use the Lagrange fundamental polynomial representation:

zN (t) =
N∑
λ=1

m∑
µ=1

cλµϕλµ(t) , t ∈ [0, b] , (3.3.4)

where, for µ = 1, . . . ,m, λ = 1, . . . , N ,

ϕλµ(t) :=


0 for t 6∈ [tλ−1, tλ],
m∏

i=1,i 6=µ

t−tλi
tλµ−tλi for t ∈ [tλ−1, tλ]. (3.3.5)

Then zN ∈ S(−1)
m−1(ΠN ) and zN (tjk) = cjk, k = 1, . . . ,m, j = 1, . . . , N . Search-

ing for the solution of (3.3.2) in the form (3.3.4), we obtain a system of linear

algebraic equations with respect to the coefficients cjk = zN (tjk):

cjk =

N∑
λ=1

m∑
µ=1

(Tϕλµ)(tjk)cλµ + g(tjk), k = 1, . . . ,m, j = 1, . . . , N. (3.3.6)

Note that for the computation of (Tϕλµ)(tjk) we need the weakly singular inte-

grals
(
Jδϕλµ

)
(tjk) (δ > 0) (see (3.1.8)), which can be found exactly.
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After solving the linear system (3.3.6) for the unknown coefficients {cjk}, by

using (3.3.1) and (3.3.4) we get the following expression for the approximate

solution yN of y, the exact solution of (3.0.1)-(3.0.2):

yN (t) =
N∑
λ=1

m∑
µ=1

cλµ(Jα2ϕλµ)(t) + (β∗ + β b̄)−1

×

γ − l∑
k=1

βk

N∑
λ=1

m∑
µ=1

cλµ(Jα2ϕλµ)(bk)− β
N∑
λ=1

m∑
µ=1

cλµ(Jα2+1ϕλµ)(b̄)

 .
(3.3.7)

Note that this algorithm can also be used in the case if in (2.7.4) η1 = 0 and

ηm = 1. In this case we have tjm = tj+1,1 = tj , cjm = cj+1,1 = zN (tj) (j =

1, . . . , N − 1), and hence in the system (3.3.6) there are (m− 1)N + 1 equations

and unknowns.

For method (3.3.1)–(3.3.2) we can formulate Theorems 3.3.1 and 3.3.2 below.

Their proofs are given in Chapter 4. More precisely, Theorems 3.3.1 and 3.3.2

follow from (for ρ = 1) the more general Theorems 4.4.1 and 4.4.2, respectively.

Theorem 3.3.1. (i) Let N,m ∈ N and assume that the grid points (2.7.1) with

collocation points (2.7.3) and arbitrary parameters η1, . . . , ηm satisfying (2.7.4)

are used. Assume that conditions (3.0.3) are satisfied, d0, d1 ∈ C[0, b], f ∈ C[0, b]

and K ∈ C(∆). Moreover, assume that the problem (3.0.1)-(3.0.2) with f = 0

and γ = 0 has in C[0, b] only the trivial solution y = 0.

Then (3.0.1)-(3.0.2) has a unique solution y ∈ C[0, b] such that Dα2
Capy ∈

C[0, b]. Moreover, there exists an integer N0 such that for all N ≥ N0 equation

(3.3.3) possesses a unique solution zN ∈ S(−1)
m−1(ΠN ) and

‖y − yN‖∞ → 0 as N →∞ (3.3.8)

where yN is defined by (3.3.1).

(ii) If, in addition, d0, d1, f ∈ Cq,µ(0, b], K ∈ Cq(∆), where q := m and with

µ ∈ R, µ < 1, then for all N ≥ N0 and r ≥ 1 (given by (2.7.1)) the following

error estimate holds:

‖y − yN‖∞ ≤ c

{
N−r(1−ν) for 1 ≤ r < m

1−ν ,

N−m for r ≥ m
1−ν .

(3.3.9)

Here ν is given by formula (3.2.1) and c is a constant which does not depend on

N .

35



Theorem 3.3.2. Let N,m ∈ N and let the following conditions be fulfilled:

(i) the assumptions (i)-(ii) of Theorem 3.3.1 hold with q := m+ 1;

(ii) the quadrature approximation∫ 1

0
F (x) dx ≈

m∑
k=1

wk F (ηk),

with the knots {ηk} satisfying (2.7.4) and appropriate weights {wk} is exact for

all polynomials F of degree m.

Then (3.0.1)-(3.0.2) has a unique solution y ∈ C[0, b] such that Dα2
Capy ∈

Cq,ν(0, b]. There exists an integer N0 such that, for all N ≥ N0, equation (3.3.3)

possesses a unique solution zN ∈ S
(−1)
m−1(ΠN ), determining by (3.3.1) a unique

approximation yN to y, the solution of (3.0.1)-(3.0.2), and the following error

estimate holds:

‖y − yN‖∞ ≤ c

{
N−r(1+α2−α1−ν) for 1 ≤ r < m+α2−α1

1+α2−α1−ν ,

N−m−(α2−α1) for r ≥ m+α2−α1
1+α2−α1−ν .

(3.3.10)

Here r ∈ [1,∞) is the grading exponent of the grid (see (2.7.1)), ν is given by

formula (3.2.1) and c is a positive constant not depending on N .

Remark 3.3.1. To satisfy condition (ii) in Theorem 3.3.2 for all polynomials

of degree m it is sufficient to have the collocation parameters η1, . . . , ηm be the

points of an m-point Gaussian quadrature rule applied on the interval [0, 1], which

is exact for all polynomials of degree 2m−1. As an example, for m = 2 and m = 3

we can use collocation parameters

η1 =
3−
√

3

6
, η2 = 1− η1

and

η1 =
5−
√

15

10
, η2 =

1

2
, η3 = 1− η1,

respectively, see [13].
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3.4 Numerical methods based on smoothing transfor-

mations and graded grids

The theorems in the previous section show that with sufficiently large values of

the grading exponent r in (2.7.1), it is possible to obtain an optimal convergence

rate for given m. However, as previously noted, using large values of r can lead

to computational difficulties. In order to avoid strongly graded grids, we modify

our approach as follows: before applying a collocation method to the obtained

integral equation with respect to z = z(t), we introduce in the integral equation

a change of variables

t = b1−ρτρ, τ ∈ [0, b],

depending on the parameter ρ ∈ [1,∞). We then apply a piecewise polynomial

collocation method to the transformed integral equation on a uniform (or midly

graded) grid.

More precisely, we choose a smoothing parameter ρ ∈ [1,∞) and consider for

equation (3.1.7) a change of variables introduced in Section 2.8 by (2.8.2):

t = b1−ρτρ, s = b1−ρσρ, τ, σ ∈ [0, b].

Using in (3.1.7) this change of variables we get for zρ(τ) = z(b1−ρτρ) an

integral equation in the form

zρ = Tρzρ + gρ, (3.4.1)

where, for 0 ≤ τ ≤ b, we have

(Tρzρ)(τ) = −(Jα2−α1
ρ zρ)(τ)d1,ρ(τ)− (Jα2

ρ zρ)(τ)d0,ρ(τ)

− ρb(1−ρ)(1+α−κ)

Γ(α2)

∫ τ

0
(τρ − σρ)α2−κσρ−1Lρ(τ, σ)zρ(σ)dσ

+ (β∗ + β b̄)−1

[
l∑

k=1

βk(J
α2
ρ zρ)(bk,ρ) + β (Jα2+1

ρ zρ)(b̄ρ)

]

×
(
d0,ρ(τ) + b(1−ρ)(1−κ)ρ

∫ τ

0
(τρ − σρ)−κσρ−1Kρ(τ, σ)dσ

)
(3.4.2)

and

gρ(τ) = fρ(τ)− γ

β∗ + β b̄

(
d0,ρ(τ) + b(1−ρ)(1−κ)ρ

∫ τ

0
(τρ − σρ)−κσρ−1Kρ(τ, σ)dσ

)
.

(3.4.3)
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Here

fρ(τ) := f(b1−ρτρ), d0,ρ(τ) := d0(b1−ρτρ), d1,ρ(τ) := d1(b1−ρτρ),

Kρ(τ, σ) := K(b1−ρτρ, b1−ρσρ), Lρ(τ, σ) := L(b1−ρτρ, b1−ρσρ),

bi,ρ := b(ρ−1)/ρb
1/ρ
i ∈ (0, b], i = 1, . . . , l, b̄ρ := b(ρ−1)/ρb̄1/ρ ∈ (0, b]

and Jδρ (δ > 0) is defined by the formula (2.8.4).

Let y(t) be the solution of problem (3.0.1)–(3.0.2). Using in (3.1.4) the change

of variables (2.8.2) we see that yρ(τ) := y(b1−ρτρ) can be expressed in the form

yρ(τ) = (Jα2
ρ zρ)(τ) + (β∗ + β b̄)−1

[
γ −

l∑
k=1

βk(J
α2
ρ zρ)(bk,ρ)− β (Jα2+1

ρ zρ)(b̄ρ)

]
,

(3.4.4)

where 0 ≤ τ ≤ b.
Approximations zρ,N ∈ S

(−1)
m−1(ΠN ) (m,N ∈ N) to the exact solution zρ of

equation (3.4.1) we find by collocation conditions

zρ,N (tjk) = (Tρzρ,N )(tjk) + gρ(tjk), k = 1, . . . ,m, j = 1, . . . , N. (3.4.5)

Here Tρ, gρ and tjk are defined by (3.4.2), (3.4.3) and (2.7.3), respectively. Con-

ditions (3.4.5) have an operator equation representation

zρ,N = PNTρzρ,N + PNgρ, (3.4.6)

with an interpolation operator PN = PN,m : C[0, T ] → S
(−1)
m−1(ΠN ) defined by

(2.7.5).

As in Section 3.3, the collocation conditions (3.4.5) form a system of equa-

tions whose exact form is determined by the choice of a basis in S
(−1)
m−1(ΠN ). If

η1 > 0 or ηm < 1 then we can again use the Lagrange fundamental polynomial

representation:

zρ,N (τ) =
N∑
λ=1

m∑
µ=1

cλµϕλµ(τ) , τ ∈ [0, b] , (3.4.7)

where ϕλµ (λ = 1, . . . , N, µ = 1, . . . ,m) are defined by (3.3.5). In this case

zρ,N ∈ S(−1)
m−1(ΠN ) and zρ,N (tjk) = cjk, k = 1, . . . ,m, j = 1, . . . , N . Searching for

the solution of (3.4.5) in the form (3.4.7), we obtain a system of linear algebraic

equations with respect to the coefficients {cjk}:

cjk =
N∑
λ=1

m∑
µ=1

(Tρϕλµ)(tjk)cλµ + gρ(tjk), k = 1, . . . ,m, j = 1, . . . , N. (3.4.8)
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Approximation yρ,N to yρ we find by the formula

yρ,N (τ) = (Jα2
ρ zρ,N )(τ) + (β∗ + β b̄)−1

×

[
γ −

l∑
k=1

βk(J
α2
ρ zρ,N )(bk,ρ)− β (Jα2+1

ρ zρ,N )(b̄ρ)

]
, (3.4.9)

where 0 ≤ τ ≤ b and zρ,N ∈ S(−1)
m−1(ΠN ) is determined by (3.4.5). After solving

the linear system (3.4.8) for the unknown coefficients {cjk}, by using (3.4.7) and

(3.4.9) we get the following formula for the approximate solution yρ,N :

yρ,N (τ) =
N∑
λ=1

m∑
µ=1

cλµ(Jα2
ρ ϕλµ)(τ) + (β∗ + β b̄)−1

×

γ − l∑
k=1

βk

N∑
λ=1

m∑
µ=1

cλµ(Jα2
ρ ϕλµ)(bk,ρ)− β

N∑
λ=1

m∑
µ=1

cλµ(Jα2+1
ρ ϕλµ)(b̄ρ)

 .
(3.4.10)

Approximations yN (t) to the solution y(t) of problem (3.0.1)–(3.0.2) we find

by setting

yN (t) := yρ,N (b(ρ−1)/ρt1/ρ), t ∈ [0, b]. (3.4.11)

For method (3.4.5),(3.4.9) we can formulate the following Theorems 3.4.1 and

3.4.2 below. These theorems follow from the more general Theorems 4.4.1 and

4.4.2, respectively.

Theorem 3.4.1. (i) Let N,m ∈ N, ρ ≥ 1, r ≥ 1 and assume that the grid

points (2.7.1) with collocation points (2.7.3) and arbitrary parameters η1, . . . , ηm

satisfying (2.7.4) are used. Assume that conditions (3.0.3) are satisfied, d0, d1 ∈
C[0, b], f ∈ C[0, b] and K ∈ C(∆). Moreover, assume that the problem (3.0.1)-

(3.0.2) with f = 0 and γ = 0 has in C[0, b] only the trivial solution y = 0.

Then problem (3.0.1)-(3.0.2) has a unique solution y ∈ C[0, b] such that

Dα2
Capy ∈ C[0, b]. There exists an integer N0 such that for all N ≥ N0 equation

(3.4.6) possesses a unique solution zρ,N ∈ S(−1)
m−1(ΠN ), determining by (3.4.9) and

(3.4.11) a unique approximation yN to y, the solution of (3.0.1)-(3.0.2), and

‖y − yN‖∞ → 0 as N →∞. (3.4.12)
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(ii) If, in addition, h, f ∈ Cq,µ(0, b], K ∈ Cq(∆), where q := m and with

µ ∈ R, µ < 1, then for all N ≥ N0 the following error estimate holds:

‖y − yN‖∞ ≤ c



N−m for m < ρ(1− ν), r ≥ 1 ,

N−m(1 + logN) for m = ρ(1− ν), r = 1 ,

N−m for m = ρ(1− ν), r > 1 ,

N−ρr(1−ν) for m > ρ(1− ν), 1 ≤ r < m
ρ(1−ν) ,

N−m for m > ρ(1− ν), r ≥ m
ρ(1−ν) .

(3.4.13)

Here ν is determined by (3.2.1) (see Theorem 3.2.1), r is the grid parameter in

(2.7.1), ρ is the smoothing parameter in (2.8.2) and c is a positive constant which

does not depend on N .

Theorem 3.4.2. Let m ∈ N, ρ ≥ 1 and let the following conditions be fulfilled:

(i) the assumptions (i)-(ii) of Theorem 3.4.1 hold with q := m+ 1;

(ii) the quadrature approximation∫ 1

0
F (x) dx ≈

m∑
k=1

wk F (ηk),

with the knots {ηk} satisfying (2.7.4) and appropriate weights {wk} is exact for

all polynomials F of degree m.

Then problem (3.0.1)-(3.0.2) has a unique solution y ∈ C[0, b] such that

Dα2
Capy ∈ Cq,ν(0, b]. There exists an integer N0 such that, for N ≥ N0, equation

(3.4.6) possesses a unique solution zρ,N ∈ S(−1)
m−1(ΠN ), determining by (3.4.9) and

(3.4.11) a unique approximation yN to y, the solution of (3.0.1)-(3.0.2), and the

following error estimate holds:

‖y − yN‖∞ ≤ c



N−m−(α2−α1) for m < ρ(1 + α2 − α1 − ν)

and r ≥ 1,

N−m−(α2−α1)(1 + logN) for m = ρ(1 + α2 − α1 − ν)

and r = 1,

N−m−(α2−α1) for m = ρ(1 + α2 − α1 − ν)

and r > 1,

N−ρr(1+α2−α1−ν) for m > ρ(1 + α2 − α1 − ν)

and 1 ≤ r < m+α2−α1
ρ(1+α2−α1−ν) ,

N−m−(α2−α1) for m > ρ(1 + α2 − α1 − ν)

and r ≥ m+α2−α1
ρ(1+α2−α1−ν) .

(3.4.14)
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Here ν is determined by (3.2.1) (see Theorem 3.2.1), r is the grid parameter in

(2.7.1), ρ is the smoothing parameter in (2.8.2) and c is a positive constant which

does not depend on N .
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Chapter 4

General multi-term fractional

linear integro-differential

equations

In the previous chapter we introduced a way how to construct effective numerical

methods for solving fractional linear differential and integro-differential equations

with one or two fractional differential operators. Our goal now is to extend

this approach to solve a much wider class of problems. More precisely, in the

present chapter we consider fractional linear multi-term weakly singular integro-

differential equations of the form

(D
αp
Capy)(t) +

p−1∑
i=0

di(t)(D
αi
Capy)(t) +

∫ t

0
(t− s)−κK(t, s)y(s)ds = f(t) , 0 ≤ t ≤ b,

(4.0.1)

with non-local boundary conditions

n0∑
j=0

βij0 y
(j)(0) +

l∑
k=1

n1∑
j=0

βijk y
(j)(bk) + βi

∫ b̄i

0
y(s)ds = γi , i = 0, . . . , n− 1.

(4.0.2)

Here βij0, βijk, βi, γi ∈ R, p ∈ N, n0, n1 ∈ N0,

0 ≤ α0 < α1 < · · · < αp ≤ n, n := dαpe, 0 ≤ κ < 1,

0 < b1 < · · · < bl ≤ b, 0 < b̄i ≤ b, i = 0, . . . , n− 1, n0 < n, n1 < n, (4.0.3)
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di : [0, b] → R (i = 0, . . . , p − 1), f : [0, b] → R, K : ∆ → R are some given

continuous functions, ∆ := {(s, t) : 0 ≤ s ≤ t ≤ b}, and Dαi
Capy (i = 0, . . . , p) are

Caputo derivatives of an unknown function y.

Following the ideas of [68–70, 73], we construct in this chapter a class of high-

order methods for the numerical solution of (4.0.1)–(4.0.2). Similarly to Chapter

3, we first introduce an integral equation reformulation of the underlying problem

and prove some results about the existence, uniqueness and regularity of the exact

solution of (4.0.1)–(4.0.2). Using this information we regularize the solution by a

suitable smoothing transformation. After that we solve the transformed equation

by a piecewise polynomial collocation method on a mildly graded or uniform

grid. Optimal global convergence estimates are derived and a superconvergence

result for a special choice of collocation parameters is established. Numerical

illustrations confirming the convergence estimates are given in Chapter 7.

4.1 Integral equation reformulation

Let n = dαpe ∈ N and let y ∈ Cn−1[0, b] be an arbitrary function such that

D
αp
Capy ∈ C[0, b]. We denote z := D

αp
Capy. Then (see Section 2.5)

y(t) = (Jαpz)(t) +
n−1∑
λ=0

cλ t
λ, t ∈ [0, b], (4.1.1)

where cλ ∈ R (λ = 0, . . . , n− 1) are some constants. From properties (2.5.2) and

(2.5.6) we see that for y in the form (4.1.1) we can write

y(j)(0) = j!cj , y(j)(c) = (Jαp−jz)(c) +

n−1∑
λ=j

λ! cλ
(λ− j)!

cλ−j , c ∈ [0, b],

where j = 0, . . . , n− 1, and, using (2.5.3), we have that

∫ a

0
y(s)ds = (Jαp+1z)(a) +

n−1∑
λ=0

cλ
λ+ 1

aλ+1, a ∈ [0, b].
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Thus, a function y in the form (4.1.1) satisfies the conditions (4.0.2) if and only

if

n0∑
j=0

βij0 j! cj +

l∑
k=1

n1∑
j=0

βijk

[
(Jαp−jz)(bk) +

n−1∑
λ=j

λ!

(λ− j)!
bλ−jk cλ

]

+ βi

[
(Jαp+1z)(b̄i) +

n−1∑
λ=0

cλ
λ+ 1

b̄λ+1
i

]
= γi, (4.1.2)

where i = 0, . . . , n− 1. By setting βij0 = 0 for j = n0 + 1, . . . , n− 1 and βijk = 0

for j = n1 + 1, . . . , n− 1 (k = 1, . . . , l), we can write

n0∑
j=0

βij0 j! cj =
n−1∑
j=0

βij0 j! cj (i = 0, . . . , n− 1)

and

n1∑
j=0

βijk

[
(Jαp−jz)(bk) +

n−1∑
λ=j

λ!

(λ− j)!
bλ−jk cλ

]

=

n1∑
j=0

βijk(J
αp−jz)(bk) +

n−1∑
j=0

j∑
λ=0

βiλk
j!

(j − λ)!
bj−λk cj ,

for k = 1, . . . , l, i = 0 . . . , n− 1. The conditions (4.1.2) can thus be rewritten in

the form

n−1∑
j=0

[
j!βij0 +

l∑
k=1

j∑
λ=0

βiλk
j!

(j − λ)!
bj−λk +

βi
j + 1

b̄j+1
i

]
cj

= γi −
l∑

k=1

n1∑
j=0

βijk(J
αp−jz)(bk)− βi(Jαp+1z)(b̄i), i = 0, . . . , n− 1, (4.1.3)

giving us an algebraic linear system of n equations with respect to c0, . . . , cn−1.

Let

M :=

(
j!βij0 +

l∑
k=1

j∑
λ=0

βiλk
j!

(j − λ)!
bj−λk +

βi
j + 1

b̄j+1
i

)n−1

i,j=0

be the matrix of the system (4.1.3).

In the sequel we assume that the matrix M is regular. Observe that the

matrix M is regular if and only if from all polynomials y of degree n − 1 only
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y = 0 satisfies the homogeneous conditions

n0∑
j=0

βij0y
(j)(0) +

l∑
k=1

n1∑
j=0

βijky
(j)(bk) + βi

∫ b̄i

0
y(s)ds = 0 , i = 0, . . . , n− 1 ,

(4.1.4)

corresponding to the conditions (4.0.2) by γi = 0, i = 0, . . . , n− 1.

Indeed, substituting (4.1.1) with z = 0 into (4.1.4) we obtain a homoge-

neous system of algebraic equations with respect to c0, c1, . . . , cn−1. This sys-

tem coincides with (4.1.3) by γi = 0 (i = 0, . . . , n − 1) and z = 0. Therefore,

the homogeneous system corresponding to (4.1.3) has only the trivial solution

c0 = c1 = · · · = cn−1 = 0 (and thus M is regular) if and only if from all polyno-

mials y of degree n− 1 only y = 0 satisfies (4.1.4).

Let M−1 = (pij)
n−1
i,j=0 be the inverse of M . Using M−1, the solution of the

system (4.1.3) can be written in the form

cλ = δλ −
l∑

k=1

n1∑
j=0

κλjk(J
αp−jz)(bk)− ωλ(Jαp+1z)(b̄λ) , λ = 0, . . . , n− 1,

where

δλ :=
n−1∑
µ=0

pλµ γµ , κλjk :=
n−1∑
µ=0

pλµ βµjk, ωλ :=
n−1∑
µ=0

pλµβλ. (4.1.5)

Therefore a function y in the form (4.1.1) satisfies the conditions (4.0.2) if and

only if it can be expressed by the formula

y = Gz +Q, (4.1.6)

where (for t ∈ [0, b])

(Gz)(t) := (Jαpz)(t)−
n−1∑
λ=0

tλ

 l∑
k=1

n1∑
j=0

κλjk(J
αp−jz)(bk) + ωλ(Jαp+1z)(b̄λ)

 ,
(4.1.7)

Q(t) :=
n−1∑
λ=0

δλ t
λ. (4.1.8)

Suppose now that y ∈ Cn−1[0, b] is a solution of the boundary value problem

(4.0.1)–(4.0.2) such that D
αp
Capy ∈ C[0, b]. Then it follows from the observations
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above that y has the form (4.1.6) where z = D
αp
Capy ∈ C[0, b] and G and Q are

defined by the formulas (4.1.7) and (4.1.8), respectively. Inserting (4.1.6) into

(4.0.1) we see that

z(t) +

p−1∑
i=0

di(t)(D
αi
Cap[Gz+Q])(t) +

∫ t

0
(t− s)−κK(t, s)[(Gz)(s) +Q(s)]ds = f(t).

Therefore z = D
αp
Capy satisfies the equation

z = Tz + g (4.1.9)

with

(Tz)(t) := −
p−1∑
i=0

di(t)(D
αi
CapGz)(t)−

∫ t

0
(t− s)−κK(t, s)(Gz)(s)ds, (4.1.10)

g(t) := f(t)−
p−1∑
i=0

di(t)(D
αi
CapQ)(t)−

∫ t

0
(t− s)−κK(t, s)Q(s)ds, (4.1.11)

where 0 ≤ t ≤ b. Conversely, it turns out that if z ∈ C[0, b] is a solution of

equation (4.1.9) then y defined by (4.1.6) belongs to Cn−1[0, b] and is a solution

to (4.0.1)–(4.0.2). In this sense equation (4.1.9) is equivalent to the boundary

value problem (4.0.1)–(4.0.2).

From (2.5.6), (2.5.10) and (4.1.7) it follows that for i = 0, . . . , n− 1

(Dαi
CapGz)(t) = (Jαp−αiz)(t)

−
n−1∑

λ=dαie
αi≤n−1

λ!

Γ(λ+ 1− αi)
tλ−αi

 l∑
k=1

n1∑
j=0

κλjk(J
αp−jz)(bk) + ωλ(Jαp+1z)(b̄λ)

 ;

∫ t

0
(t− s)−κK(t, s)(Gz)(s)ds =

∫ t

0
(t− s)−κK(t, s)(Jαpz)(t)ds

−
n−1∑
λ=0

 l∑
k=1

n1∑
j=0

κλjk(J
αp−jz)(bk) + ωλ(Jαp+1z)(b̄λ)

∫ t

0
(t− s)−κK(t, s)sλds

=
1

Γ(αp)

∫ t

0
(t− s)αp−κL(t, s)z(s)ds

−
n−1∑
λ=0

t1+λ−κ
( l∑
k=1

n1∑
j=0

κλjk(J
αp−jz)(bk) + ωλ(Jαp+1z)(b̄λ)

)
Kλ(t);
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from (2.5.6), (2.5.10) and (4.1.8) it follows that for i = 0, . . . , n− 1

(Dαi
CapQ)(t) =

p−1∑
i=0

di(t)
n−1∑

λ=dαie
αi≤n−1

λ!

Γ(λ+ 1− αi)
δλ t

λ−αi ;

∫ t

0
(t− s)−κK(t, s)Q(s)ds =

n−1∑
λ=0

δλKλ(t) t1+λ−κ.

Here t ∈ [0, b], κλjk, δλ, ωλ are given by (4.1.5) and

L(t, s) :=

∫ 1

0
ταp−1(1− τ)−κK(t, (t− s)τ + s)dτ, 0 ≤ s ≤ t ≤ b, (4.1.12)

Kλ(t) :=

∫ 1

0
(1− s)−κsλK(t, ts)ds, 0 ≤ t ≤ b, λ ≥ 0. (4.1.13)

Thus, from (4.1.10) and (4.1.11) we have for t ∈ [0, b] that

(Tz)(t) = −
p−1∑
i=0

di(t)

[
(Jαp−αiz)(t)

−
n−1∑

λ=dαie
αi≤n−1

λ!

Γ(λ+ 1− αi)
tλ−αi

( l∑
k=1

n1∑
j=0

κλjk(J
αp−jz)(bk) + ωλ(Jαp+1z)(b̄λ)

)]

− 1

Γ(αp)

∫ t

0
(t− s)αp−κL(t, s)z(s)ds

+
n−1∑
λ=0

t1+λ−κ
( l∑
k=1

n1∑
j=0

κλjk(J
αp−jz)(bk) + ωλ(Jαp+1z)(b̄λ)

)
Kλ(t) (4.1.14)

and

g(t) = f(t)−
p−1∑
i=0

di(t)

n−1∑
λ=dαie
αi≤n−1

λ!

Γ(λ+ 1− αi)
δλ t

λ−αi −
n−1∑
λ=0

δλKλ(t) t1+λ−κ.

(4.1.15)

Remark 4.1.1. Note that if K ∈ Cq(∆), q ∈ N0, then L ∈ Cq(∆) and Kλ ∈
Cq[0, b], λ ≥ 0.

Remark 4.1.2. A special case of problem (4.0.1)–(4.0.2) is the initial value prob-

lem:

(D
αp
Capy)(t) +

p−1∑
i=0

di(t)(D
αi
Capy)(t) +

∫ t

0
(t− s)−κK(t, s)y(s)ds = f(t) , 0 ≤ t ≤ b,

y(i)(0) = γi, i = 0, . . . , n− 1, n = dαpe, 0 ≤ κ < 1, (4.1.16)
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where di (i = 1, . . . , p−1), K and f are given continuous functions on [0, b]. The

solution of (4.1.16) can be expressed by the formula (see (4.1.6))

y = Gz +Q,

where

z = D
αp
Capy, G = Jαp , Q(t) =

n−1∑
i=0

γi
i!
ti.

The integral equation z = Tz + g (see (4.1.9)) corresponding to the initial value

problem (4.1.16) is given by

(Tz)(t) = −
p−1∑
i=0

di(t)(J
αp−αiz)(t)− 1

Γ(αp)

∫ t

0
(t− s)αp−κL(t, s)z(s)ds

and

g(t) = f(t)−
p−1∑
i=0

di(t)
n−1∑

λ=dαie
αi≤n−1

γλ
Γ(λ+ 1− αi)

tλ−αi −
n−1∑
λ=0

γλ
λ!
Kλ(t) t1+λ−κ,

where L and Kλ (λ = 0, . . . , n − 1) are defined by (4.1.12) and (4.1.13), respec-

tively.

4.2 Existence, uniqueness and smoothness of the so-

lution

The following theorem characterizes the existence, uniqueness and regularity

properties of the solution of (4.0.1)-(4.0.2).

Theorem 4.2.1. (i) Assume that 0 ≤ α0 < α1 < · · · < αp ≤ n, 0 ≤ κ < 1,

di ∈ C[0, b] (i = 0, . . . , p − 1), f ∈ C[0, b], K ∈ C(∆) and n0 < n, n1 < n,

where n := dαpe. Moreover, assume that problem (4.0.1)–(4.0.2) with f = 0 and

γi = 0 (i = 0, . . . , n − 1) has in C[0, b] only the trivial solution y = 0, and from

all polynomials y of degree n− 1 only y = 0 satisfies the conditions (4.1.4).

Then problem (4.0.1)-(4.0.2) has a unique solution y ∈ Cn−1[0, b]. Moreover,

we have D
αp
Capy ∈ C[0, b].

(ii) Assume that (i) holds and let di ∈ Cq,µ(0, b] (i = 0, . . . , p − 1), f ∈
Cq,µ(0, b], K ∈ Cq(∆), where q ∈ N, µ ∈ R, µ < 1.
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Then problem (4.0.1)–(4.0.2) possesses a unique solution y ∈ Cn−1[0, b] such

that y ∈ Cq,ν(0, b] and D
αp
Capy ∈ Cq,ν(0, b], where

ν := max{µ, ν1, ν2, κ} (4.2.1)

with

ν1 := max{1− (αp − αi) : αp − αi 6∈ N, i = 0, . . . , p− 1},

ν2 := max{1− (dαie − αi) : αi < n− 1, αi 6∈ N0, i = 0, . . . , p− 1}.

If for all indices i = 0, . . . , p − 1 we have αp − αi ∈ N, then we may set ν =

{µ, ν2, κ}. Analogously, if we have αi ∈ N0 for all indices i = 0, . . . , p − 1 such

that αi < n− 1, then we may set ν = {µ, ν1, κ}.

Proof. (i) First, we observe that the forcing function g of equation z = Tz+g (see

(4.1.9) and (4.1.15)) belongs to C[0, b]. This follows from f ∈ C[0, b], di ∈ C[0, b],

λ = dαie ≥ αi (i = 0, . . . , p− 1) and from Remark 4.1.1 with q = 0.

Next, due to (4.1.14), operator T can be rewritten in the form

T = −
p−1∑
i=0

Di

[
Jαp−αi−

n−1∑
λ=dαie
αi≤n−1

λ!

Γ(λ+ 1− αi)
Aλ−αiMλ

]
−BL+

n−1∑
λ=0

A1+λ−κMλKλ,

(4.2.2)

with Di, Aσ,Mλ, BL and Kλ defined by

(Dix)(t) := di(t)x(t), i = 0, . . . , p− 1, (Aσx)(t) := tσx(t), σ ∈ R, σ ≥ 0,

(Mλx)(t) :=

l∑
k=1

n1∑
j=0

κλjk(J
αp−jx)(bk) + ωλ(Jαp+1x)(b̄λ), λ = 0, . . . , n− 1,

(BLx)(t) :=
1

Γ(αp)

∫ t

0
(t− s)αp−κL(t, s)x(s)ds,

(Kλx)(t) := Kλ(t)x(t), λ = 0, . . . , n− 1,

where t ∈ [0, b] and x ∈ C[0, b]. Here (see Remark 4.1.1) L ∈ C(∆) and Kλ ∈
C[0, b] are given by (4.1.12) and (4.1.13), respectively. Using Lemma 2.6.2 we

obtain that Jδ (δ > 0), Mλ (λ = 0, . . . , n− 1) and BL are compact as operators

from C[0, b] into C[0, b]. Clearly Di (i = 0, . . . , p − 1), Kλ (λ = 0, . . . , n − 1)

and Aσ (σ ∈ R, σ ≥ 0) are bounded as operators from C[0, b] into C[0, b]. This
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together with Theorem 2.2.2 yields that T , given by (4.2.2), is compact as an

operator from C[0, b] into C[0, b].

Note that if f = 0 and γi = 0 (i = 0, . . . , n−1), then δλ = 0 (λ = 0, . . . , n−1)

(see (4.1.5)) and thus g = 0 (see (4.1.15)). From this we obtain that if the ho-

mogeneous equation corresponding to problem (4.0.1)–(4.0.2) has only the trivial

solution y = 0, then z = Tz has in C[0, b] only the trivial solution z = 0. Since

g ∈ C[0, b], we obtain by Theorem 2.2.3 that equation z = Tz + g possesses

a unique solution z ∈ C[0, b]. This together with (4.1.6) yields that problem

(4.0.1)-(4.0.2) has a unique solution y ∈ Cn−1[0, b] such that D
αp
Capy = z ∈ C[0, b]

(see Section 2.5).

(ii) Let us prove that z = D
αp
Capy belongs to Cq,ν(0, b] (with q ∈ N and ν

given by (4.2.1)) for K ∈ Cq(∆), di (i = 0, . . . , p− 1) ∈ Cq,µ(0, b], f ∈ Cq,µ(0, b],

µ ∈ R, µ < 1. To this end we first establish that g, the forcing function of

equation z = Tz + g, belongs to Cq,ν(0, b]. Indeed, it follows from (4.1.15) that

g = g1 + g2 + g3,

g1(t) := f(t), g2(t) := −
p−1∑
i=0

di(t)

n−1∑
λ=dαie
αi≤n−1

λ!

Γ(λ+ 1− αi)
δλ t

λ−αi ,

g3(t) := −
n−1∑
λ=0

δλKλ(t) t1+λ−κ,

where t ∈ [0, b]. Clearly g1 = f ∈ Cq,µ(0, b] ⊂ Cq,ν(0, b]. Note that, if δ ∈ N0,

then for all λ ≥ dδe, λ ∈ N0 we have tλ−δ ∈ Cq[0, b] ⊂ Cq,ν(0, b] for arbitrary q ∈ N
and ν < 1. If δ 6∈ N0, then for all λ ≥ dδe, λ ∈ N0 we have tλ−δ ∈ Cq,1−dδe+δ(0, b]
(see Section 2.6). Thus, since di ∈ Cq,µ(0, b] (i = 0, . . . , p − 1), by using Lemma

2.6.1 we can write g2 ∈ Cq,ν(0, b] with ν defined by (4.2.1). Finally, since for all

λ ∈ N0 it holds that t1+λ−κ ∈ Cq,κ(0, b] ⊂ Cq,ν(0, b] and Kλ ∈ Cq[0, b], we have

g3 ∈ Cq,ν(0, b] and hence g = g1 + g2 + g3 ∈ Cq,ν(0, b].

If there exists i ∈ {0, . . . , p − 1} such that αi 6∈ N0, then it follows from the

definition of ν that 1 − (αp − αi) ≤ ν and therefore from Lemma 2.6.2 we have

that Jαp−αi is compact as an operator from Cq,ν(0, b] into Cq,ν(0, b]. If αp ∈
N, αi ∈ N0, then Jαp−αi is compact as an operator from Cq,ν(0, b] into Cq,ν(0, b].

Clearly Di (i = 0, . . . , p − 1) and Aλ−αi (λ = dαie, . . . , n − 1, αi ≤ n − 1, i =

0, . . . , p − 1) are linear and bounded as operators from Cq,ν(0, b] into Cq,ν(0, b].

Linear operators (functionals) Mλ : Cq,ν(0, b]→ R (λ = 0, . . . , n−1) are bounded
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and consequently compact in Cq,ν(0, b]. Thus, as the composition of a compact

and bounded operator is compact, we see that DiJ
αp−αi (i = 0, . . . , p − 1) and

DiAλ−αiMλ (λ = dαie, . . . , n − 1, αi ≤ n − 1, i = 0, . . . , p − 1) are linear and

compact as operators from Cq,ν(0, b] into Cq,ν(0, b].

Similarly, we see that operators Kλ, A1+λ−κ (λ = 0, . . . , n − 1) are lin-

ear and bounded as operators from Cq,ν(0, b] into Cq,ν(0, b], thus the opera-

tors A1+λ−κMλKλ (λ = 0, . . . , n − 1) are linear and compact as operators from

Cq,ν(0, b] into Cq,ν(0, b]. Finally, since κ − αp < κ ≤ ν, it follows from Lemma

2.6.2 that BL is compact as an operator from Cq,ν(0, b] into Cq,ν(0, b]. Thus, T de-

fined by (4.2.2) is linear and compact as an operator from Cq,ν(0, b] into Cq,ν(0, b].

Since the homogeneous equation z = Tz has in Cq,ν(0, b] ⊂ C[0, b] only the trivial

solution z = 0, it follows from Theorem 2.2.3 that equation z = Tz + g has a

unique solution z ∈ Cq,ν(0, b].

Note that the inclusion z ∈ Cq,ν(0, b] together with (4.1.6) and Lemma 2.6.2

yields that problem (4.0.1)-(4.0.2) possesses a unique solution y ∈ Cq,ν(0, b] such

that D
αp
Capy = z ∈ Cq,ν(0, b].

4.3 Smoothing transformation and approximate solu-

tions

Similarly to Section 3.4 (see also Section 2.8), let us consider for equation (4.1.9)

a change of variables (see (2.8.2))

t = b1−ρτρ, s = b1−ρσρ, τ, σ ∈ [0, b],

where ρ ∈ [1,∞). Using in (4.1.9) this change of variables, we get for

zρ(τ) := z(b1−ρτρ)

an integral equation in the form

zρ = Tρzρ + gρ. (4.3.1)

52



Here Tρ is an integral operator defined by the formula (cf. (4.1.14))

(Tρzρ)(τ) := −
p−1∑
i=0

di,ρ(τ)

[
(J

αp−αi
ρ zρ)(τ)−

n−1∑
λ=dαie
αi≤n−1

λ!b(1−ρ)(λ−αi)

Γ(λ+ 1− αi)
τρ(λ−αi)

×
( l∑
k=1

n1∑
j=0

κλjk(J
αp−j
ρ zρ)(bk,ρ) + ωλ(J

αp+1
ρ zρ)(b̄λ,ρ)

)]

− ρ b(1−ρ)(1+αp−κ)

Γ(αp)

∫ τ

0
(τρ − σρ)αp−κσρ−1Lρ(τ, σ)zρ(σ)dσ

+

n−1∑
λ=0

b(1−ρ)(1+λ−κ)τρ(1+λ−κ)Kλ,ρ(τ)

×
( l∑
k=1

n1∑
j=0

κλjk(J
αp−j
ρ zρ)(bk,ρ) + ωλ(J

αp+1
ρ zρ)(b̄λ,ρ)

)
, (4.3.2)

gρ(τ) := g(b1−ρτρ) is given by (cf. (4.1.15))

gρ(τ) =fρ(τ)−
p−1∑
i=0

di,ρ(τ)
n−1∑

λ=dαie
αi≤n−1

λ! b(1−ρ)(λ−αi)

Γ(λ+ 1− αi)
δλ τ

ρ(λ−αi)

−
n−1∑
λ=0

δλ b
(1−ρ)(1+λ−κ)Kλ,ρ(τ) τρ(1+λ−κ), (4.3.3)

with τ ∈ [0, b],

Kλ,ρ(τ) := Kλ(b1−ρτρ), λ = 0, . . . , n− 1, Lρ(τ, σ) := L(b1−ρτρ, b1−ρσρ),

fρ(τ) := f(b1−ρτρ), di,ρ(τ) := di(b
1−ρτρ), i = 0, . . . , p− 1,

bk,ρ := b(ρ−1)/ρb
1/ρ
k ∈ (0, b], k = 1, . . . , l,

b̄λ,ρ := b(ρ−1)/ρb̄
1/ρ
λ ∈ (0, b], λ = 0, . . . , n− 1

and Jαρ (α > 0) is given by (2.8.4). Here L and Kλ (λ = 0, . . . , n−1) are defined

by (4.1.12) and (4.1.13), respectively.

Remark 4.3.1. On the basis of Remark 4.1.2 we see that for initial value problem

(4.1.16) the operator Tρ and the forcing function gρ can be written in the forms

(Tρzρ)(τ) = −
p−1∑
i=0

di,ρ(τ)(J
αp−αi
ρ zρ)(τ)

− ρ b(1−ρ)(1+αp−κ)

Γ(αp)

∫ τ

0
(τρ − σρ)αp−κσρ−1Lρ(τ, σ)zρ(σ)dσ
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and

gρ(τ) = fρ(τ)−
p−1∑
i=0

di,ρ(τ)

n−1∑
λ=dαie
αi≤n−1

λ!b(1−ρ)(λ−αi)

Γ(λ+ 1− αi)
γλ τ

ρ(λ−αi)

−
n−1∑
λ=0

b(1−ρ)(λ−αi)

λ!
γλKλ,ρ(τ) τρ(1+λ−κ),

respectively.

Let y(t) be the solution of problem (4.0.1)–(4.0.2). Using in (4.1.6) the change

of variables (2.8.2), we see that

yρ(τ) := y(b1−ρτρ), τ ∈ [0, b] (4.3.4)

can be expressed in the form

yρ = Gρzρ +Qρ, (4.3.5)

where (cf. (4.1.7))

(Gρzρ)(τ) := (J
αp
ρ zρ)(τ)

−
n−1∑
λ=0

b(1−ρ)λτρλ

 l∑
k=1

n1∑
j=0

κλjk(J
αp−j
ρ zρ)(bk,ρ) + ωλ(J

αp+1
ρ zρ)(b̄λ,ρ)

 ,
(4.3.6)

and (cf. (4.1.8))

Qρ(τ) :=

n−1∑
λ=0

bλ(1−ρ)δλ τ
ρλ, (4.3.7)

with τ ∈ [0, b].

Approximations zρ,N ∈ S(−1)
m−1(ΠN ) (m,N ∈ N) to the solution zρ of (4.3.1)

we find by collocation conditions

zρ,N (tjk) = (Tρzρ,N )(tjk) + gρ(tjk), k = 1, . . . ,m, j = 1, . . . , N, (4.3.8)

where Tρ, gρ and tjk are defined by (4.3.2), (4.3.3) and (2.7.3), respectively. Note

that conditions (4.3.8) for finding zρ,N ∈ S(−1)
m−1(ΠN ) have an operator equation

representation

zρ,N = PNTρzρ,N + PNgρ, (4.3.9)
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where PN is defined by (2.7.5).

The collocation conditions (4.3.8) form a system of equations whose exact

form is determined by the choice of a basis in the space S
(−1)
m−1(ΠN ). If η1 > 0 or

ηm < 1 then we can use the Lagrange fundamental polynomial representation:

zρ,N (τ) =
N∑
λ=1

m∑
µ=1

cλµϕλµ(τ) , τ ∈ [0, b] , (4.3.10)

where ϕλµ (λ = 1, . . . , N, µ = 1, . . . ,m) are defined by (3.3.5). Then zρ,N ∈
S

(−1)
m−1(ΠN ) and zρ,N (tjk) = cjk, k = 1, . . . ,m, j = 1, . . . , N . Substituting zρ,N (τ)

in the form (4.3.10) to (4.3.8), we obtain a system of linear algebraic equations

with respect to the coefficients {cjk}:

cjk =

N∑
λ=1

m∑
µ=1

(Tρϕλµ)(tjk)cλµ + gρ(tjk), k = 1, . . . ,m, j = 1, . . . , N. (4.3.11)

Solving this system of equations we obtain the coefficients {cjk} and thus have

found the approximation zρ,N in the form (4.3.10).

Approximation yρ,N to yρ we find by the formula

yρ,N = Gρzρ,N +Qρ (4.3.12)

and by substituting zρ,N in the form (4.3.10) into (4.3.12), we get that

yρ,N =

N∑
λ=1

m∑
µ=1

cλµGρϕλµ +Qρ. (4.3.13)

Finally, approximation yN to the solution y of problem (4.0.1)–(4.0.2) we find by

setting

yN (t) = yρ,N (b(ρ−1)/ρt1/ρ), t ∈ [0, b]. (4.3.14)

4.4 Convergence analysis

The following two theorems characterize the convergence rate of the proposed

method.

Theorem 4.4.1. (i) Let m,N ∈ N, r ≥ 1 and assume that the grid points

(2.7.1) with collocation points (2.7.3) and arbitrary parameters η1, . . . , ηm satisfy-

ing (2.7.4) are used. Assume that conditions (4.0.3) are satisfied, di ∈ C[0, b] (i =
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0 . . . , p− 1), f ∈ C[0, b] and K ∈ C(∆). Moreover, assume that problem (4.0.1)–

(4.0.2) with f = 0 and γi = 0 (i = 0, . . . , n−1) has only the trivial solution y = 0

and from all polynomials y of degree n − 1 only y = 0 satisfies the conditions

(4.1.4).

Then problem (4.0.1)–(4.0.2) has a unique solution y ∈ Cn−1[0, b] such that

D
αp
Capy ∈ C[0, b]. There exists an integer N0 such that for all N ≥ N0 equation

(4.3.9) possesses a unique solution zρ,N ∈ S
(−1)
m−1(ΠN ), determining by (4.3.12)

and (4.3.14) a unique approximation yN to y, the solution of (4.0.1)–(4.0.2), and

‖yN − y‖∞ → 0 as N →∞. (4.4.1)

(ii) If, in addition, di ∈ Cq,µ(0, b] (i = 0 . . . , p−1), f ∈ Cq,µ(0, b], K ∈ Cq(∆),

where q := m and with µ ∈ R, µ < 1, then for all N ≥ N0 the following error

estimate holds:

‖y − yN‖∞ ≤ c



N−m for m < ρ(1− ν), r ≥ 1 ,

N−m(1 + logN) for m = ρ(1− ν), r = 1 ,

N−m for m = ρ(1− ν), r > 1 ,

N−ρr(1−ν) for m > ρ(1− ν), 1 ≤ r < m
ρ(1−ν) ,

N−m for m > ρ(1− ν), r ≥ m
ρ(1−ν) ,

(4.4.2)

where ν is determined by the formula (4.2.1), r ≥ 1 is the grading parameter in

(2.7.1), ρ ∈ [1,∞) if ν ∈ (0, 1) and ρ ∈ N if ν ≤ 0, and c is a constant not

depending on N .

Proof. (i) First we prove the convergence (4.4.1). To this end, we need to show

that equation zρ = Tρzρ + gρ (see (4.3.1)), with Tρ and gρ given by (4.3.2) and

(4.3.3), is uniquely solvable in L∞(0, b). We observe that Tρ is compact as an

operator from L∞(0, b) to C[0, b], thus also from L∞(0, b) to L∞(0, b). Further,

gρ ∈ C[0, b] ⊂ L∞(0, b) and the homogeneous equation zρ = Tρzρ has in C[0, b]

only the trivial solution zρ = 0. This together with Tρ ∈ L(L∞(0, b), C[0, b])

yields that zρ = Tρzρ possesses also in L∞(0, b) only the trivial solution zρ = 0.

Consequently, by Theorem 2.2.3, equation zρ = Tρzρ + gρ with gρ ∈ L∞(0, b)

possesses a unique solution zρ ∈ L∞(0, b). In other words, operator I − Tρ

is invertible in L∞(0, b) and its inverse (I − Tρ)
−1 is bounded: (I − Tρ)

−1 ∈
L(L∞(0, b), L∞(0, b)). From Lemma 2.7.2 and from the boundedness of (I−Tρ)−1
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in L∞(0, b) we obtain that I − PNTρ is invertible in L∞(0, b) for all sufficiently

large N , say N ≥ N0, and

‖(I − PNTρ)
−1‖L(L∞(0,b),L∞(0,b)) ≤ c, N ≥ N0, (4.4.3)

where c is a constant not depending on N . Thus, for N ≥ N0, equation (4.3.9)

provides a unique solution zρ,N ∈ S−1
m−1(ΠN ). Note that, for zρ, the solution of

equation zρ = Tρzρ + gρ, it holds PNzρ = PNTρzρ + PNgρ. We have for it and

zρ,N that

(I−PNTρ)(zρ− zρ,N ) = zρ− zρ,N −PNTρzρ +PNTρzρ,N = zρ−PNzρ, N ≥ N0.

Therefore, by (4.4.3),

‖zρ − zρ,N‖∞ ≤ c ‖zρ − PNzρ‖∞ , N ≥ N0, (4.4.4)

where c is a positive constant not depending on N . Using (4.3.5) and (4.3.13) we

obtain that

y(t)− yN (t) = yρ(τ)− yρ,N (τ) = (Gρ(zρ − zρ,N )) (τ), t = b1−ρτρ, N ≥ N0.

(4.4.5)

From this, (4.4.4) and Lemma 2.8.2 it follows that

‖y − yN‖∞ ≤ c‖zρ − zρ,N‖∞ ≤ c1 ‖zρ − PNzρ‖∞ , N ≥ N0, (4.4.6)

where c and c1 are some positive constants not depending on N . This together

with zρ ∈ C[0, b] and Lemma 2.7.1 yields the convergence (4.4.1).

(ii) If K ∈ Cm(∆), h, f ∈ Cm,µ(0, b], m ∈ N, µ ∈ R, µ < 1, then it follows

from the part (ii) of Theorem 4.2.1 for q = m that z ∈ Cm,ν(0, b], with ν given by

(4.2.1). By Lemma 2.8.1 we get that zρ ∈ Cm,νρ(0, b], where νρ = 1 − ρ(1 − ν).

This together with (4.4.6) and Lemma 2.7.3 yields the estimate (4.4.2).

It follows from Theorem 4.4.1 that in the case of sufficiently smooth f , di (i =

0, . . . , p− 1) and K, using sufficiently large values of ρ and r, by every choice of

collocation parameters 0 ≤ η1 < · · · < ηm ≤ 1 a convergence of order O(N−m)

can be expected. From Theorem 4.4.2 below we see that by a careful choice of

parameters η1, . . . , ηm and by a slightly more restrictive smoothness requirement

on f, di (i = 0, . . . , p− 1) and K it is possible to establish a faster convergence.
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Theorem 4.4.2. Let m ∈ N and let the following conditions be fulfilled:

(i) the assumptions (i)-(ii) of Theorem 4.4.1 hold with q := m+ 1;

(ii) the quadrature approximation

∫ 1

0
F (x) dx ≈

m∑
k=1

wk F (ηk),

with the knots {ηk} satisfying (2.7.4) and appropriate weights {wk} is exact for

all polynomials F of degree m.

Then problem (4.0.1)-(4.0.2) has a unique solution y ∈ Cn−1[0, b] such that

y ∈ Cq,ν(0, b] and D
αp
Capy ∈ Cq,ν(0, b]. There exists an integer N0 such that, for all

integers N ≥ N0, equation (4.3.9) possesses a unique solution zρ,N ∈ S(−1)
m−1(ΠN ),

determining by (4.3.12) and (4.3.14) a unique approximation yN to y, the solution

of (4.0.1)-(4.0.2), and the following error estimates hold:

‖y − yN‖∞ ≤ c



N−m−α
∗

for m < ρ(1 + α∗ − ν), r ≥ 1 ,

N−m−α
∗
(1 + logN) for m = ρ(1 + α∗ − ν), r = 1 ,

N−m−α
∗

for m = ρ(1 + α∗ − ν), r > 1 ,

N−ρr(1+α∗−ν) for m > ρ(1 + α∗ − ν) and

1 ≤ r < m+α∗

ρ(1+α∗−ν) ,

N−m−α
∗

for m > ρ(1 + α∗ − ν) and

r ≥ m+α∗

ρ(1+α∗−ν) ,

(4.4.7)

for α∗ := min{αp − αp−1, αp − n1} < 1 and

‖y − yN‖∞ ≤ c1



N−m−1 for m < ρ(2− ν), r ≥ 1 ,

N−m−1(1 + logN)2 for m = ρ(2− ν), r = 1 ,

N−m−1(1 + logN) for m = ρ(2− ν), r > 1 ,

N−ρr(2−ν) for m > ρ(2− ν) and

1 ≤ r < m+1
ρ(2−ν) ,

N−m−1 for m > ρ(2− ν) and

r ≥ m+1
ρ(2−ν) ,

(4.4.8)

for α∗ ≥ 1. Here ν is determined by (4.2.1) (see Theorem 4.2.1), ρ ∈ [1,∞) if

ν ∈ (0, 1) and ρ ∈ N if ν ≤ 0, r is the grid parameter in (2.7.1), and c, c1 are

positive constants which do not depend on N .
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Proof. From Theorem 4.4.1 we know that problem (4.0.1)–(4.0.2) has a unique

solution y ∈ Cn−1[0, b] such that z = D
αp
Capy ∈ C[0, b] and that for any ρ ∈ [1,∞)

there exists an integer N0 such that for all N ≥ N0 equation (4.3.9) has a unique

solution zρ,N for which (4.4.4) with zρ(τ) = z(b1−ρτρ) (τ ∈ [0, b]) is valid. Denote

ẑρ,N := Tρzρ,N + gρ, N ≥ N0, (4.4.9)

where Tρ and gρ are defined by (4.3.2) and (4.3.3), respectively. From (4.3.9) we

see that zρ,N = PN ẑρ,N . Substituting this expression of zρ,N into (4.4.9) we get

that

ẑρ,N = TρPN ẑρ,N + gρ, N ≥ N0. (4.4.10)

From (4.3.1) and (4.4.10) follows the identity

(I − TρPN )(ẑρ,N − zρ) = Tρ(PNzρ − zρ), N ≥ N0.

Since

(I − TρPN )−1 = I + Tρ(I − PNTρ)
−1PN , N ≥ N0 ,

we get with the help of (4.4.3) that

‖ẑρ,N − zρ‖∞ ≤ c ‖Tρ(PNzρ − zρ)‖∞ , N ≥ N0.

This together with (4.3.2) yields, for N ≥ N0,

‖ẑρ,N − zρ‖∞ ≤ c
p−1∑
i=0

‖Jαp−αiρ (PNzρ − zρ)‖∞ + c1 ‖Tρ,L(PNzρ − zρ)‖∞

+ c2

l∑
k=1

n1∑
j=0

|Jαp−jρ (PNzρ − zρ)(bkρ)|+ c3

p−1∑
i=0

|Jαp+1
ρ (PNzρ − zρ)(b̄i,ρ)|,

(4.4.11)

where bk,ρ = b(ρ−1)/ρb
1/ρ
k ∈ (0, b] (k = 1, . . . , l), b̄i,ρ = b(ρ−1)/ρb̄1/ρ ∈ (0, b] (i =

0, . . . , n− 1) and

(Tρ,Lx)(τ) :=

∫ τ

0
(τρ − σρ)αp−κσρ−1Lρ(τ, σ)x(b1−ρσρ)dσ, x ∈ L∞(0, b),

with Lρ(τ, σ) := L(b1−ρτρ, b1−ρσρ) and L defined by (4.1.12). Here and below

c, c1, c2 and c3 are generic positive constants which are independent of N . With
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the help of Lemma 2.8.2 we obtain for N ≥ N0 the following estimates:

‖Jαp−αiρ (PNzρ − zρ)‖∞ ≤ c ‖J
αp−αp−1
ρ (PNzρ − zρ)‖∞ , i = 0 . . . , p− 1,

(4.4.12)

‖Tρ,L(PNzρ − zρ)‖∞ ≤ c1‖J
αp+1−κ
ρ (PNzρ − zρ)‖∞

≤ c2‖J
αp−αp−1
ρ (PNzρ − zρ)‖∞, (4.4.13)

|Jαp−jρ (PNzρ − zρ)(bkρ)| ≤ ‖J
αp−j
ρ (PNzρ − zρ)‖∞

≤ c ‖Jαp−n1
ρ (PNzρ − zρ)‖∞ , j = 0, . . . , n1, (4.4.14)

|Jαp+1
ρ (PNzρ − zρ)(b̄i,ρ)| ≤ ‖J

αp+1
ρ (PNzρ − zρ)‖∞

≤ c ‖Jαp−n1
ρ (PNzρ − zρ)‖∞, i = 0, . . . , n− 1.

(4.4.15)

It follows from (4.4.11)–(4.4.15) and Lemma 2.8.2 that

‖ẑρ,N − zρ‖∞ ≤ c ‖Jα
∗

ρ (PNzρ − zρ)‖∞, N ≥ N0, (4.4.16)

where α∗ = min{αp−αp−1, αp−n1}. Since zρ,N = PN ẑρ,N , we get with the help

of (4.3.5) that

‖yN − y‖∞ = ‖yρ,N − yρ‖∞ = ‖Gρ(zρ,N − zρ)‖∞
≤ ‖GρPN (ẑρ,N − zρ)‖∞ + ‖Gρ(PNzρ − zρ)‖∞, N ≥ N0. (4.4.17)

Using (4.3.6) and (4.4.14)–(4.4.15) we obtain

‖Gρ(PNzρ − zρ)‖∞ ≤ ‖Jαpρ (PNzρ − zρ)‖∞ + c ‖Jαp−n1
ρ (PNzρ − zρ)‖∞

≤ c1 ‖Jα
∗

ρ (PNzρ − zρ)‖∞, N ≥ N0.

This together with (4.4.16) and (4.4.17) yields

‖yN − y‖∞ ≤ c ‖Jα
∗

ρ (PNzρ − zρ)‖∞, N ≥ N0. (4.4.18)

Because of Theorem 4.2.1 we have z ∈ Cm+1,ν(0, b] and due to Lemma 2.8.2

‖Jα∗ρ (PNzρ − zρ)‖∞ ≤ c ‖J1
ρ (PNzρ − zρ)‖∞, N ≥ N0,

for α∗ ≥ 1. Therefore it follows from (4.4.18) and Lemma 2.8.3 that the estimates

(4.4.7) and (4.4.8) are true.
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Chapter 5

Nonlinear fractional

differential equations

Let us consider the boundary value problem for non-linear fractional differential

equations of the form

(Dα
Capy)(t) = f(t, y(t)), 0 ≤ t ≤ b, (5.0.1)

with

n0∑
j=0

βij0 y
(j)(0) +

l∑
k=1

n1∑
j=0

βijk y
(j)(bk) = γi , i = 0, . . . , n− 1 , (5.0.2)

where

n := dαe ∈ N, n− 1 < α < n , 0 < b1 < · · · < bl ≤ b, l ∈ N,
βij0, βijk, γi ∈ R, n0, n1 ∈ N0, n0 < n, n1 < n,

(5.0.3)

f : [0, b] × R → R is a given continuous function, and Dα
Capy is the Caputo

derivative of order α > 0 of an unknown function y.

Following the ideas of [71, 72], we construct a class of high-order methods

for the numerical solution of (5.0.1)–(5.0.2). Using an integral equation refor-

mulation (see Chapter 4) of the boundary value problem, we first regularize the

solution by a suitable smoothing transformation. After that we find a numeri-

cal solution to the problem (5.0.1)–(5.0.2) by a piecewise polynomial collocation

method on a mildly graded or uniform grid. Finally, we give global convergence

estimates and a global superconvergence result for suitably chosen collocation

parameters. Numerical examples supporting the theoretical results are given in

Chapter 7.
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5.1 Integral equation reformulation

We first find an integral equation reformulation of the problem (5.0.1)–(5.0.2), by

using similar ideas as those presented in Sections 3.1 and 4.1. Let n = dαe ∈ N
and let y ∈ Cn−1[0, b] be such that Dα

Capy ∈ C[0, b]. Introduce a new unknown

function z := Dα
Capy. Then (see (2.5.7))

y(t) = (Jαz)(t) +

n−1∑
λ=0

cλ t
λ, t ∈ [0, b], (5.1.1)

where cλ ∈ R (λ = 0, . . . , n−1) are some constants. In analogy to Section 4.1, we

see that a function y in the form (5.1.1) satisfies the boundary conditions (5.0.2)

if and only if

n−1∑
j=0

[
j!βij0 +

l∑
k=1

j∑
λ=0

βiλk
j!

(j − λ)!
bj−λk

]
cj = γi −

l∑
k=1

n1∑
j=0

βijk(J
α−jz)(bk),

i = 0, . . . , n− 1, (5.1.2)

by setting βij0 = 0 for j > n0 and βijk = 0 for j > n1 k = 1, . . . , l. Clearly,

(5.1.2) is a linear system of n equations with respect to c0, . . . , cn−1. Let

M :=

(
j!βij0 +

l∑
k=1

j∑
λ=0

βiλk
j!

(j − λ)!
bj−λk

)n−1

i,j=0

be the matrix of the system (5.1.2). In the sequel we assume that the matrix

M is regular. Observe that M is regular if and only if from all polynomials y of

degree n− 1 only y = 0 satisfies the homogeneous boundary conditions

n0∑
j=0

βij0y
(j)(0) +

l∑
k=1

n1∑
j=0

βijky
(j)(bk) = 0 , i = 0, . . . , n− 1 , (5.1.3)

corresponding to the conditions (5.0.2) with γi = 0, i = 0, . . . , n− 1.

Let M−1 = (pλµ)n−1
λ,µ=0 be the inverse of M . Using M−1, the solution of the

system (5.1.2) can be written in the form

cλ = δλ −
l∑

k=1

n1∑
j=0

κλjk(J
α−jz)(bk) , λ = 0, . . . , n− 1,
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where

δλ :=

n−1∑
µ=0

pλµ γµ , κλjk :=

n−1∑
µ=0

pλµ βµjk . (5.1.4)

Therefore a function y in the form (5.1.1) satisfies the conditions (5.0.2) if and

only if it can be expressed by the formula

y = Gz +Q, (5.1.5)

where

(Gz)(t) := (Jαz)(t) −
n−1∑
λ=0

tλ
l∑

k=1

n1∑
j=0

κλjk(J
α−jz)(bk), t ∈ [0, b] ,(5.1.6)

Q(t) :=
n−1∑
λ=0

δλ t
λ, t ∈ [0, b] . (5.1.7)

Remark 5.1.1. For the case of an initial value problem

(Dα
Capy)(t) = f(t, y(t)), 0 ≤ t ≤ b,

y(i)(0) = γi , i = 0, . . . , n− 1, n = dαe,

we have

G = Jα, Q(t) =

n−1∑
λ=0

γλ
λ!
tλ.

Suppose now that y∗ ∈ C[0, b] is a solution of the boundary value problem

(5.0.1)–(5.0.2) such that z∗ := Dα
Capy

∗ ∈ C[0, b]. Then it follows from the ob-

servations above that y∗ has the form (see (5.1.5)) y∗ = Gz∗ + Q, where G and

Q are defined by the formulas (5.1.6) and (5.1.7), respectively. Inserting (5.1.5)

into (5.0.1), we see that z∗ = Dα
Capy

∗ satisfies the equation

z = Tz, (5.1.8)

where

(Tz)(t) := f(t, (Gz)(t) +Q(t)), t ∈ [0, b]. (5.1.9)

Conversely, if z∗ ∈ C[0, b] is a solution of equation (5.1.8), then y∗ = Gz∗ + Q

is a solution to (5.0.1)–(5.0.2). In this sense equation (5.1.8) is equivalent to

the boundary value problem (5.0.1)–(5.0.2). Observe that (5.1.8) is a nonlinear

integral equation with respect to z.
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5.2 Smoothness of the solution

The regularity of a solution to (5.0.1)–(5.0.2) can be characterized by Theorem

5.2.2 below, for the proof of which we first formulate the following lemma from

[66].

Lemma 5.2.1. Assume that the following conditions for equation (5.0.1) are

fulfilled:

(i) α > 0, α 6∈ N and f : Ω̄→ R is a continuous function which is q times (q ∈ N)

continuously differentiable in Ω where

Ω := {(t, y) : t ∈ (0, b], y ∈ R}, Ω̄ := {(t, y) : t ∈ [0, b], y ∈ R}; (5.2.1)

(ii) there exist a monotonic increasing function ψ : [0,∞)→ R and a real number

ν ∈ [1−α, 1) such that for all nonnegative integers i and j with i+ j ≤ q and for

all (t, y) ∈ Ω

∣∣∣∣ ∂i+j∂ti∂yj
f(t, y)

∣∣∣∣ ≤ ψ(|y|)


1 if i < 1− ν
1 + | log t| if i = 1− ν
t1−ν−i if i > 1− ν

 ; (5.2.2)

if α ∈ (0, 1), then we assume in addition to (5.2.2) that for all nonnegative

integers i and j with i+ j ≤ q and for all (t, y1), (t, y2) ∈ Ω it holds∣∣∣∣ ∂i+j∂ti∂yj
[f(t, y1)− f(t, y2)]

∣∣∣∣ ≤ ψ(max{|y1|, |y2|})|y1 − y2|

{
1 if i = 0

t1−ν−i if i > 0

}
;

(5.2.3)

(iii) for arbitrary given constants θi ∈ R (i = 0, . . . , n − 1) equation (5.0.1)

possesses a solution y∗∗ ∈ Cn−1[0, b] such that Dα
Capy

∗∗ ∈ C[0, b] and

(y∗∗)(i)(0) = θi, i = 0, . . . , n− 1, n = dαe.

Then y∗∗ ∈ Cq,ν(0, b] and Dα
Capy

∗∗ ∈ Cq,ν(0, b].

Theorem 5.2.2. Let the conditions (i) and (ii) of Lemma 5.2.1 be fulfilled. More-

over, assume that (5.0.3) is true and from all polynomials y of degree dαe − 1

only y = 0 satisfies the conditions (5.1.3). Finally, suppose that the boundary

value problem (5.0.1)–(5.0.2) possesses a solution y∗ ∈ Cdαe−1[0, b] such that

Dα
Capy

∗ ∈ C[0, b].

Then y∗ ∈ Cq,ν(0, b] and Dα
Capy

∗ ∈ Cq,ν(0, b].
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Proof. Let y∗ ∈ Cn−1[0, b] be a solution to (5.0.1)–(5.0.2) such that Dα
Capy

∗ ∈
C[0, b]. Denote z∗ := Dα

Capy
∗ and

c∗λ := δλ −
l∑

k=1

n−1∑
j=0

κλjk(J
α−jz∗)(bk), λ = 0, . . . , n− 1, n = dαe,

where δλ and κλjk are defined by (5.1.4). Then (see (5.1.1)),

y∗(t) = (Jαz∗)(t) +

n−1∑
λ=0

c∗λt
λ, t ∈ [0, b].

Consequently, y∗ is a solution to equation (5.0.1) which satisfies the following

initial conditions (see (2.5.2) and (2.5.6)):

(y∗)(i)(0) = i! c∗i , i = 0, . . . , n− 1.

This together with Lemma 5.2.1 yields the assertions of Theorem 5.2.2.

5.3 Smoothing transformation and numerical solutions

For the numerical solution of the boundary value problem (5.0.1)–(5.0.2) we use

the following method. Let us consider for equation (5.1.8) a change of variables

(see (2.8.2))

t = b1−ρτρ, s = b1−ρσρ, τ, σ ∈ [0, b],

where ρ ∈ [1,∞).

Using in (5.1.8) this change of variables, we get for

zρ(τ) := z(b1−ρτρ)

an integral equation of the form

zρ = Tρzρ, (5.3.1)

where

(Tρzρ)(τ) := f(b1−ρτρ, (Gρzρ)(τ) +Qρ(τ)) , (5.3.2)

(Gρzρ)(τ) := (Jαρ zρ)(τ)−
n−1∑
λ=0

b(1−ρ)λτρλ
l∑

k=1

n1∑
j=0

κλjk(J
α−j
ρ zρ)(bkρ),(5.3.3)

Qρ(τ) := Q(b1−ρτρ), bkρ := b(ρ−1)/ρb
1/ρ
k ∈ (0, b], τ ∈ [0, b],
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with κλjk, Q and Jαρ given by (5.1.4), (5.1.7) and (2.8.4), respectively.

Let y∗(t) (t ∈ [0, b]) be a solution of problem (5.0.1)–(5.0.2). Using in (5.1.5)

the change of variables (2.8.2) we see that

y∗ρ(τ) := y∗(b1−ρτρ)

can be expressed in the form

y∗ρ = Gρz
∗
ρ +Qρ, (5.3.4)

where Gρ is defined by (5.3.3) and Qρ(τ) = Q(b1−ρτρ), τ ∈ [0, b].

Approximations zρ,N ∈ S(−1)
m−1(ΠN ) (m,N ∈ N) to the solution z∗ρ of equation

(5.3.1) we find by collocation method from the conditions

zρ,N (tjk) = (Tρzρ,N )(tjk), k = 1, . . . ,m, j = 1, . . . , N, (5.3.5)

with {tjk}, defined by (2.7.3). If η1 = 0, then by zρ,N (tj1) we denote the right

limit limt→tj−1,t>tj−1 zρ,N (t). If ηm = 1, then zρ,N (tjm) denotes the left limit

limt→tj ,t<tj zρ,N (t).

Note that the conditions (5.3.5) for finding zρ,N ∈ S(−1)
m−1(ΠN ) have an operator

equation representation

zρ,N = PNTρzρ,N , (5.3.6)

where PN and Tρ are defined by (2.7.5) and (5.3.2), respectively.

The collocation conditions (5.3.5) form a system of equations whose exact

form is determined by the choice of a basis in the space S
(−1)
m−1(ΠN ). If η1 > 0 or

ηm < 1, then we can use the Lagrange fundamental polynomial representation:

zρ,N (τ) =

N∑
λ=1

m∑
µ=1

cλµϕλµ(τ) , τ ∈ [0, b] , (5.3.7)

where ϕλµ (λ = 1, . . . , N, µ = 1, . . . ,m) are defined by (3.3.5). Then zρ,N ∈
S

(−1)
m−1(ΠN ) and zρ,N (tjk) = cjk, k = 1, . . . ,m, j = 1, . . . , N . Searching the

solution to (5.3.5) in the form (5.3.7), we obtain a system of nonlinear algebraic

equations with respect to the coefficients {cjk}:

cjk = f

(
b1−ρtρjk,

N∑
λ=1

m∑
µ=1

(Gρϕλµ)(tjk)cλµ+Qρ(tjk)

)
, k = 1, . . . ,m, j = 1, . . . , N.

(5.3.8)
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Remark 5.3.1. In the case of an initial value problem we have Gρ = Jαρ (see

Remark 5.1.1). Since (Jαρ ϕλµ)(tjk) = 0 if λ > j, the coefficients cj1, . . . , cjm can

be found for every j = 1, . . . , N from the systems

cjk = f

(
b1−ρtρjk,

j∑
λ=1

m∑
µ=1

(Jαρ ϕλµ)(tjk)cλµ +Qρ(tjk)

)
, k = 1, . . . ,m, (5.3.9)

with m unknowns cjk, k = 1, . . . ,m. That is, we can find the coefficients

{cjk} (k = 1, . . . ,m, j = 1, . . . , N) step-by-step by solving N systems of non-

linear algebraic equations with m unknowns.

Approximations yρ,N to y∗ρ we find by the formula

yρ,N = Gρzρ,N +Qρ, (5.3.10)

where zρ,N ∈ S
(−1)
m−1(ΠN ) is determined by (5.3.5). Having {cjk} in hand, with

the help of (5.3.7) we can rewrite (5.3.10) as

yρ,N (τ) =

N∑
λ=1

m∑
µ=1

cλµ(Gρϕλµ)(τ) +Qρ(τ), τ ∈ [0, b]. (5.3.11)

Finally, approximations yN (t) to the solution y∗(t) of problem (5.0.1)–(5.0.2)

we find by setting

yN (t) := yρ,N (b(ρ−1)/ρt1/ρ), t ∈ [0, b]. (5.3.12)

5.4 Convergence analysis

The convergence behaviour of the proposed algorithms can be expressed by The-

orems 5.4.1 and 5.4.2.

Theorem 5.4.1. Suppose (5.0.3) and let problem (5.0.1)–(5.0.2) have a solution

y∗ ∈ C[0, b] such that z∗ := Dα
Capy

∗ ∈ C[0, b]. Let f : Ω̄ → R be a continuous

function such that ∂
∂yf(t, y) is continuous for (t, y) ∈ Ω̄, ∂2

∂y2
f(t, y) is continuous

for (t, y) ∈ Ω and∣∣∣∣ ∂j∂yj f(t, y)

∣∣∣∣ ≤ ψ(|y|), (t, y) ∈ Ω, j = 0, 1, 2.

Here Ω and Ω̄ are defined by (5.2.1) and ψ : [0,∞) → R is a monotonically

increasing function. Moreover, assume that from all polynomials y of degree n−
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1 (n = dαe) only y = 0 satisfies the homogeneous boundary conditions (5.1.3) and

from all solutions y ∈ C[0, b] of the linear homogeneous (fractional) differential

equation

(Dα
Capy)(t) =

∂

∂y
f
(
t, y∗(t)

)
y(t), t ∈ [0, b], (5.4.1)

only y = 0 satisfies the conditions (5.1.3). Finally, let m ∈ N and assume that

the collocation points (2.7.3) with grid points (2.7.1) and arbitrary parameters

η1, . . . , ηm satisfying (2.7.4) are used.

Then there exist N0 ∈ N and δ0 > 0 such that, for all N ≥ N0, equation

(5.3.6) possesses a unique solution zρ,N ∈ S(−1)
m−1(ΠN ) in the ball ‖x− z∗ρ‖∞ ≤ δ0,

where z∗ρ(τ) = z∗(b1−ρτ), τ ∈ [0, b], z∗ = Dα
Capy

∗ and ρ ≥ 1. Moreover,

‖yN − y∗‖∞ → 0 as N →∞ , (5.4.2)

where yN (t) = yρ,N (b(ρ−1)/ρt1/ρ), t ∈ [0, b], and yρ,N is defined with the help of

zρ,N by (5.3.10).

If, in addition, the assumptions of Theorem 5.2.2 are fulfilled with q = m and

some ν ∈ [1− α, 1), then for all N ≥ N0 and r ≥ 1 the following error estimate

holds:

‖yN − y∗‖∞ ≤ c



N−m for m < 1− ν, r ≥ 1 ,

N−m(1 + logN) for m = 1− ν, r = 1 ,

N−m for m = 1− ν, r > 1 ,

N−r(1−ν) for m > 1− ν, 1 ≤ r < m
1−ν ,

N−m for m > 1− ν, r ≥ m
1−ν .

(5.4.3)

Here c is a constant not depending on N , ρ ∈ [1,∞) if ν ∈ (0, 1) and ρ ∈ N if

ν ≤ 0.

Proof. To apply Theorem 2.3.1 we consider (5.3.1) and (5.3.6) as operator equa-

tions (2.3.1) and (2.3.2) in the space E := L∞(0, b), where S := Tρ and SN :=

PNTρ with Tρ and PN , defined by (5.3.2) and (2.7.5), respectively.

First we find the Fréchet derivative T
′
ρ(x

0) for Tρ at x0 ∈ L∞(0, b). If x and

x0 belong to L∞(0, b), then, due to Taylor formula,

(Tρx)(τ)− (Tρx
0)(τ) =

∂

∂y
f
(
t, (Gρx

0)(τ) +Qρ(τ)
) (
Gρ(x− x0)

)
(τ)

+
1

2

∂2

∂y2
f
(
t, (Gρx

0)(τ) + ξ(τ)(Gρ(x− x0))(τ) +Qρ(τ)
)[(

Gρ(x− x0)
)
(τ)
]2
,

(5.4.4)
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where ξ(τ) ∈ [0, 1] and t = b1−ρτ ∈ (0, b]. From this it follows that

(
T ′ρ(x

0)x
)
(τ) =

[
∂

∂y
f(b1−ρτ, y)

∣∣∣∣
y=(Gρx0)(τ)+Qρ(τ)

]
(Gρx)(τ) , (5.4.5)

where τ ∈ [0, b] and x0, x ∈ L∞(0, b). Observe that T ′ρ(x
0) ∈ L(L∞(0, b), C[0, b])

if x0 ∈ L∞(0, b). From (5.4.4) we see that

S′N (x0)x = (PNTρ)
′(x0)z = PN

(
T ′ρ(x

0)x
)
, x0, x ∈ L∞(0, b),

with T ′ρ(x
0)x defined by (5.4.5).

It follows from Lemma 2.8.2 that Gρ (defined by (5.3.3)) is linear, bounded

and compact as an operator from L∞(0, b) into C[0, b]. Since from all solutions

y of equation (5.4.1) only y = 0 satisfies (5.1.3), equation x = T ′ρ(z
∗
ρ)x has in

L∞(0, b) only the trivial solution x = 0. Using these observations and Lemma

2.8.2 we can check that the operators S = Tρ and SN = PNTρ satisfy the con-

ditions 10 − 40 of Lemma 2.3.1. Thus there exist N0 ∈ N and δ0 > 0 such that,

for all N ≥ N0, equation (5.3.6) possesses a unique solution zρ,N in the ball

‖x− z∗ρ‖∞ ≤ δ0, and

‖zρ,N − z∗ρ‖∞ ≤ c ‖PNz∗ρ − z∗ρ‖∞,

with a positive constant c which is independent of N . Since y∗ρ = Gρz
∗
ρ +Qρ and

yρ,N = Gρzρ,N +Qρ (see (5.3.4) and (5.3.10), respectively), we obtain that

‖yN − y∗‖∞ ≤ c ‖zρ,N − z∗ρ‖∞ ≤ c1 ‖PNz∗ρ − z∗ρ‖∞, (5.4.6)

with some positive constants c and c1 which are independent of N . This together

with z∗ρ ∈ C[0, b] and Lemma 2.7.1 yields the convergence (5.4.2).

If the assumptions of Theorem 5.2.2 are fulfilled with q = m and ν ∈ [1−α, 1),

then z∗ ∈ Cm,ν(0, b], and we get by Lemma 2.8.1 that z∗ρ ∈ Cm,νρ(0, b], νρ =

1 − ρ(1 − ν). This together with (5.4.6) and Lemma 2.7.3 yields the estimate

(5.4.3).

Theorem 5.4.2. Assume that the following conditions are fulfilled:

(i) problem (5.0.1)–(5.0.2) has a solution y∗ ∈ C[0, b] and (5.0.3) holds;

(ii) m ∈ N and problem (5.0.1)–(5.0.2) satisfies the conditions of Theorem 5.2.2

with q = m+ 1 and ν ∈ [1− α, 1);

(iii) from all solutions y ∈ C[0, b] to equation (5.4.1) only y = 0 satisfies the
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boundary conditions (5.1.3);

(iv) ρ is a smoothing parameter (see (2.8.2)) such that ρ ∈ [1,∞) if ν ∈ (0, 1)

and ρ ∈ N if ν ≤ 0;

(v) PN is defined by (2.7.5), where the collocation points (2.7.3) are generated

by grid points (2.7.1) and by parameters 0 ≤ η1 < η2 < · · · < ηm ≤ 1, so that a

quadrature approximation (2.8.5) is exact for all polynomials of degree m.

Then there exist N0 ∈ N and δ0 > 0 such that for all N ≥ N0 equation

(5.3.6) possesses a unique solution zρ,N in the ball ‖x− z∗ρ‖ ≤ δ0, where z∗ρ(τ) =

z∗(b1−ρτ), τ ∈ [0, b], z∗ = Dα
Capy

∗. Moreover, for N ≥ N0 the following error

estimates hold:

‖yN − y∗‖∞ ≤ c



N−m−α
∗

for m < ρ(1 + α∗ − ν), r ≥ 1 ,

N−m−α
∗
(1 + logN) for m = ρ(1 + α∗ − ν), r = 1 ,

N−m−α
∗

for m = ρ(1 + α∗ − ν), r > 1 ,

N−ρr(1+α∗−ν) for m > ρ(1 + α∗ − ν) and

1 ≤ r < m+α∗

ρ(1+α∗−ν) ,

N−m−α
∗

for m > ρ(1 + α∗ − ν) and

r ≥ m+α∗

ρ(1+α∗−ν) ,

(5.4.7)

for α∗ := α− n1 < 1 and

‖yN − y∗‖∞ ≤ c



N−m−1 for m < ρ(2− ν), r ≥ 1 ,

N−m−1(1 + logN)2 for m = ρ(2− ν), r = 1 ,

N−m−1(1 + logN) for m = ρ(2− ν), r > 1 ,

N−ρr(2−ν) for m > ρ(2− ν) and

1 ≤ r < m+1
ρ(2−ν) ,

N−m−1 for m > ρ(2− ν) and

r ≥ m+1
ρ(2−ν) ,

(5.4.8)

for α∗ ≥ 1. Here yN is given by equation (5.3.12), r ∈ [1,∞) is given by (2.7.1)

and c is a positive constant not depending on N .

Proof. Since q = m+1 ≥ 2, it follows from Theorem 5.4.1 that there exist N̂0 ∈ N
and δ̂0 > 0 such that for N ≥ N̂0 equation (5.3.6) has a unique solution zρ,N in

the ball ‖x− z∗ρ‖∞ ≤ δ̂0. Denote

ẑρ,N := Tρzρ,N , N ≥ N̂0, (5.4.9)
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with Tρ defined by the formula (5.3.2). Taking into account (5.3.6), we obtain

that PN ẑρ,N = zρ,N . Substituting zρ,N = Pρ,N ẑρ,N into (5.4.9) we see that ẑρ,N

is a solution of the equation

ẑρ,N = TρPN ẑρ,N , N ≥ N̂0. (5.4.10)

Consider the equations (5.3.1) and (5.4.10) as operator equations (2.3.1) and

(2.3.2) in the space E := C[0, b], where S := Tρ and SN := TρPN . In a similar

way as we obtained the formula (5.4.5), we get for the Fréchet derivative of

SN = TρPN at x0 ∈ C[0, b] the following formula:

(
S′N (x0)x

)
(τ) =

[
∂

∂y
f(b1−ρτ, y)

∣∣∣∣
y=(GρPNx0)(τ)+Qρ(τ)

]
(GρPNx)(τ), τ ∈ [0, b],

where x ∈ C[0, b]. Moreover, we can check that the operators S = Tρ and

SN = TρPN satisfy the conditions 10 − 40 of Lemma 2.3.1. From this Lemma it

follows that there exist N0 ≥ N̂0 and δ0 > 0 such that, for N ≥ N0, equation

(5.4.10) possesses a unique solution ẑρ,N in the ball ‖x− z∗ρ‖∞ ≤ δ0, whereby

‖ẑρ,N − z∗ρ‖∞ ≤ c ‖TρPNz∗ρ − Tρz∗ρ‖∞, N ≥ N0. (5.4.11)

Here and below by c and also c1 we denote positive constants which are indepen-

dent of N . Since

(TρPNz
∗
ρ)(τ) − (Tρz

∗
ρ)(τ) = f

(
b1−ρτ, (GρPNz

∗
ρ)(τ) +Qρ(τ)

)
− f

(
b1−ρτ, (Gρz

∗
ρ)(τ) +Qρ(τ)

)
, τ ∈ [0, b],

then with the help of Lagrange formula we obtain that

‖TρPNz∗ρ − Tρz∗ρ‖∞ ≤ c ‖Gρ(PNz∗ρ − z∗ρ)‖∞. (5.4.12)

Using (5.3.3) and Lemma 2.8.2 we get

‖Gρ(PNz∗ρ − z∗ρ)‖∞ ≤ ‖Jαρ (PNz
∗
ρ − z∗ρ)‖∞

+c
l∑

k=1

n1∑
j=0

∣∣(Jα−jρ (PNz
∗
ρ − z∗ρ)

)
(bkρ)

∣∣ ≤ c1 ‖Jα−n1
ρ (PNz

∗
ρ − z∗ρ)‖∞, (5.4.13)

where bkρ = b(ρ−1)/ρb
1/ρ
k ∈ [0, b]. From (5.4.11)–(5.4.13) it follows that

‖ẑρ,N − z∗ρ‖∞ ≤ c ‖Jα−n1
ρ (PNz

∗
ρ − z∗ρ)‖∞, N ≥ N0. (5.4.14)
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Further, as yρ,N = Gρzρ,N +Qρ, y
∗
ρ = Gρz

∗
ρ +Qρ and zρ,N = PN ẑρ,N , then

‖yN − y∗‖∞ = ‖yρ,N − y∗ρ‖∞ = ‖Gρ(zρ,N − z∗ρ)‖∞
≤ ‖GρPN (ẑρ,N − z∗ρ)‖∞ + ‖Gρ(PNz∗ρ − z∗ρ)‖∞, N ≥ N0.

This together with (5.4.13) and (5.4.14) yields

‖yN − y∗‖∞ ≤ c ‖Jα−n1
ρ (PNz

∗
ρ − z∗ρ)‖∞, N ≥ N0. (5.4.15)

Because of Theorem 5.2.2 we have z∗ ∈ Cm+1,ν(0, b] and, due to Lemma 2.8.2,

‖Jα−n1
ρ (PNz

∗
ρ − z∗ρ)‖∞ ≤ c ‖J1

ρ (PNz
∗
ρ − z∗ρ)‖∞, α− n1 ≥ 1, N ≥ N0.

This together with (5.4.15) and Lemma 2.8.3 yields the estimates (5.4.7) and

(5.4.8).
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Chapter 6

An alternative method to

linear fractional differential

equations

In Chapters 3, 4 and 5 we introduced numerical methods which are based on a re-

formulation of the underlying problem with respect to the highest order fractional

derivative z of the exact solution y. An alternative idea is to apply Riemann-

Liouville integral operator to the fractional initial or boundary value problem

and construct an equivalent weakly singular integral equation with respect to y.

Based on [93] we use this approach to find numerical solutions to linear single-

term differential equations of order 0 < α < 1. More precisely, for the sake of

simplicity, we restrict ourselves to the following boundary value problem:

(Dα
Capy)(t) + d0(t)y(t) = f(t), 0 ≤ t ≤ b, (6.0.1)

β0y(0) +

l∑
k=1

βky(bk) + β

∫ b̄

0
y(s)ds = γ, (6.0.2)

where b > 0, 0 < b1 < · · · < bl ≤ b, l ∈ N, b̄ ∈ (0, b], γ, β, βk (k = 0, . . . , l) ∈ R
and Dα

Capy is the Caputo fractional derivative of order α of the unknown function

y. We assume that d0, f ∈ C[0, b] and

0 < α < 1,

l∑
k=0

βk + β b̄ 6= 0. (6.0.3)
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The rest of the chapter is organized as follows. We first introduce the alterna-

tive integral equation reformulation for the exact solution y. We then formulate

Theorem 6.1.1, which characterizes the existence, uniqueness and smoothness

properties of the exact solution y, based on the more general results obtained

in Theorem 3.2.1. After that, by suitably transforming the integral equation of

the exact solution y, we construct numerical methods for finding an approximate

solution to y with the help of graded grids and piecewise polynomial collocation

techniques. The attainable order of convergence of the proposed algorithms is

given by Theorem 6.2.1. We note that there is no superconvergence result com-

parable to the methods introduced in Chapters 3, 4 and 5 and the numerical

experiments conducted in Chapter 7 confirm that the method is, in general, not

superconvergent on the interval [0, b].

6.1 Integral equation reformulation

First, let y ∈ C[0, b] be an arbitrary function such that Dα
Capy ∈ C[0, b] and let

us denote z := Dα
Capy. Then we can write

y(t) = (Jαz)(t) + c, (6.1.1)

where c is some constant. It then follows (see Section 3.1) that a function in the

form (6.1.1) satisfies the boundary condition (6.0.2) if and only if

y(t) = (Jαz)(t)+(β∗+β b̄)
−1

[
γ −

l∑
k=1

βk(J
αz)(bk)− β (Jα+1z)(b̄)

]
, 0 ≤ t ≤ b,

(6.1.2)

where β∗ :=
∑l

k=0 βk.

Let now y ∈ C[0, b] be a solution to problem (6.0.1)-(6.0.2) such that z =

Dα
Capy ∈ C[0, b]. From (6.0.1) it follows that

z(t) = f(t)− d0(t)y(t) (6.1.3)

and by substituting (6.1.3) into (6.1.2) we obtain

y(t) = (Jα[f − d0y])(t)

+
1

β∗ + β b̄

[
γ −

l∑
k=1

βk(J
α[f − d0y])(bk)− β(Jα+1[f − d0y])(b̄)

]
,
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where t ∈ [0, b]. Thus y is also a solution of an integral equation in the form

y = Ty + g, (6.1.4)

where

(Ty)(t) = −(Jα(d0y))(t) +
1

β∗ + β b̄

[
l∑

k=1

βk(J
α(d0y))(bk) + β(Jα+1(d0y))(b̄)

]
(6.1.5)

and

g(t) = (Jαρ f)(t) +
1

β∗ + β b̄

[
γ −

l∑
k=1

βk(J
αf)(bk)− β(Jα+1f)(b̄)

]
, (6.1.6)

with t ∈ [0, b].

We have shown that if a continuous function y ∈ C[0, b] satisfying Dα
Capy ∈

C[0, b] is a solution to problem (6.0.1)-(6.0.2), then it is also a solution to integral

equation (6.1.4). Let us now show that the converse is also true. Indeed, suppose

that y ∈ C[0, b] satisfying Dα
Capy ∈ C[0, b] is a solution to integral equation

(6.1.4). Then we can write

z(t) := (Dα
Capy)(t) = (Dα

Cap[Ty + g])(t).

With the help of (2.5.8) we see from (6.1.5) and (6.1.6) that

(Dα
Cap(Ty))(t) = −(Dα

CapJ
α(d0y))(t)

and

(Dα
Capg)(t) = (Dα

CapJ
αf)(t).

From property (2.5.6) we see that Dα
CapJ

α = I, and thus

(Dα
Capy)(t) = −d0(t)y(t) + f(t),

which is the fractional differential equation (6.0.1). This shows that y satisfies the

boundary condition (6.0.2), as (6.1.4) is a reordering of (6.1.2) with z substituted

by f − d0y. Thus y determined by the integral equation (6.1.4) is also a solution

to (6.0.1)-(6.0.2). In this sense the integral equation (6.1.4) is equivalent to the

problem (6.0.1)-(6.0.2).

The existence, uniqueness and regularity of the solution to (6.0.1)-(6.0.2) can

be characterized by the following theorem, which follows from Theorem 3.2.1.
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Theorem 6.1.1. (i) Assume that 0 < α < 1, d0, f ∈ C[0, b]. Moreover, let∑l
k=0 βk + β b̄ 6= 0 and assume that the problem (6.0.1)-(6.0.2) with f = 0 and

γ = 0 has in C[0, b] only the trivial solution y = 0.

Then problem (6.0.1)-(6.0.2) has a unique solution y ∈ C[0, b]. Moreover, we

have Dα
Capy ∈ C[0, b].

(ii) Assume that (i) holds and let d0, f ∈ Cq,µ(0, b], q ∈ N, µ ∈ R, µ < 1.

Then problem (6.0.1)-(6.0.2) possesses a unique solution y such that y ∈
Cq,ν(0, b] and Dα

Capy ∈ Cq,ν(0, b], where

ν := max{1− α, µ}. (6.1.7)

Remark 6.1.1. If d0, f ∈ Cq[0, b] (q ∈ N), then we may in Theorem 6.1.1 set

ν = 1− α.

6.2 Numerical method

For the numerical solution of problem (6.0.1)-(6.0.2) we first transform the equiv-

alent integral equation (6.1.4) by a suitable change of variables and then use a

collocation method for the numerical solution of the transformed integral equa-

tion. More precisely, we choose a smoothing parameter ρ ∈ [1,∞) and consider

for equation (6.1.4) a change of variables introduced in Section 2.8 by (2.8.2):

t = b1−ρτρ, s = b1−ρσρ, τ, σ ∈ [0, b].

Using in (6.1.4) this change of variables we get for yρ(τ) = y(b1−ρτρ) an integral

equation in the form

yρ = Tρyρ + gρ, (6.2.1)

where

(Tρyρ)(τ) = −(Jαρ (d0,ρyρ))(τ) + (β∗ + β b̄)−1

×

[
l∑

k=1

βk(J
α
ρ (d0,ρyρ))(bk,ρ) + β(Jα+1

ρ (d0,ρyρ))(b̄ρ)

]
(6.2.2)

and

gρ(τ) = (Jαfρ)(τ) + (β∗ + β b̄)−1

[
γ −

l∑
k=1

βk(J
α
ρ fρ)(bk,ρ)− β(Jα+1

ρ fρ)(b̄ρ)

]
,

(6.2.3)
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with τ ∈ [0, b]. Here

d0,ρ(τ) := d0(b1−ρτρ), fρ(τ) := f(b1−ρτρ), τ ∈ [0, b],

bi,ρ := b(ρ−1)/ρb
1/ρ
i ∈ (0, b], i = 1, . . . , l, b̄ρ := b(ρ−1)/ρb̄1/ρ ∈ (0, b].

We look for an approximate solution yρ,N ∈ S(−1)
m−1(ΠN ) to the exact solution yρ

of integral equation (6.2.1), where yρ,N is determined by the following collocation

conditions:

yρ,N (tjk) = (Tρyρ,N )(tjk) + gρ(tjk), k = 1, . . . ,m, j = 1, . . . , N. (6.2.4)

Here Tρ, gρ and tjk are defined by (6.2.2), (6.2.3) and (2.7.3), respectively. Con-

ditions (6.2.4) have an operator equation representation

yρ,N = PNTρyρ,N + PNgρ, (6.2.5)

with an interpolation operator PN = PN,m : C[0, T ] → S
(−1)
m−1(ΠN ) defined by

(2.7.5).

The collocation conditions (6.2.4) form a system of equations whose exact

form is determined by the choice of a basis in S
(−1)
m−1(ΠN ). If η1 > 0 or ηm < 1

then we can use the Lagrange fundamental polynomial representation:

yρ,N (τ) =

N∑
λ=1

m∑
µ=1

cλµϕλµ(τ) , τ ∈ [0, b] , (6.2.6)

where ϕλµ (λ = 1, . . . , N, µ = 1, . . . ,m) are defined by (3.3.5). Then yρ,N ∈
S

(−1)
m−1(ΠN ) and yρ,N (tjk) = cjk, k = 1, . . . ,m, j = 1, . . . , N . Searching for the

solution of (6.2.4) in the form (6.2.6), we obtain a system of linear algebraic

equations with respect to the coefficients cjk = yρ,N (tjk):

cjk =
N∑
λ=1

m∑
µ=1

(Tρϕλµ)(tjk)cλµ + gρ(tjk), k = 1, . . . ,m, j = 1, . . . , N. (6.2.7)

After solving the system (6.2.7), we find the approximation yρ,N with the help of

the coefficients cjk and (6.2.6). Finally, the approximation yN (t) to the solution

y(t) of problem (6.0.1)-(6.0.2) we find by setting

yN (t) = yρ,N (b(ρ−1)/ρt1/ρ), t ∈ [0, b]. (6.2.8)

The convergence of the proposed method is characterized by the following

theorem.
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Theorem 6.2.1. (i) Let N,m ∈ N, r ≥ 1 and assume that the grid points

(2.7.1) with collocation points (2.7.3) and arbitrary parameters η1, . . . , ηm sat-

isfying (2.7.4) are used. Assume that conditions (6.0.3) are satisfied and that

d0 ∈ C[0, b], f ∈ C[0, b]. Moreover, assume that the problem (6.0.1)-(6.0.2) with

f = 0 and γ = 0 has in C[0, b] only the trivial solution y = 0.

Then problem (6.0.1)-(6.0.2) has a unique solution y ∈ C[0, b] such that

Dα
Capy ∈ C[0, b]. There exists an integer N0 such that for all N ≥ N0 equation

(6.2.5) possesses a unique solution yρ,N ∈ S(−1)
m−1(ΠN ), determining by (6.2.6) and

(6.2.8) a unique approximation yN to y, the solution of (6.0.1)-(6.0.2), and

‖y − yN‖∞ → 0 as N →∞. (6.2.9)

(ii) If, in addition, d0, f ∈ Cq,µ(0, b], where q := m and with µ ∈ R, µ < 1,

then for all N ≥ N0 the following error estimate holds:

‖y − yN‖∞ ≤ c



N−m for m < ρ(1− ν), r ≥ 1 ,

N−m(1 + logN) for m = ρ(1− ν), r = 1 ,

N−m for m = ρ(1− ν), r > 1 ,

N−ρr(1−ν) for m > ρ(1− ν), 1 ≤ r < m
ρ(1−ν) ,

N−m for m > ρ(1− ν), r ≥ m
ρ(1−ν) .

(6.2.10)

Here ν is determined by (6.1.7) (see Theorem 6.1.1), r is the grid parameter in

(2.7.1), ρ ∈ [1,∞) if ν ∈ (0, 1) and ρ ∈ N if ν ≤ 0, and c is a positive constant

which does not depend on N .

Proof. (i) Let us first prove the convergence (6.2.9). Consider equation yρ =

Tρyρ + gρ (see (6.2.1)), with Tρ and gρ given by (6.2.2) and (6.2.3), respectively.

Observe that Tρ is compact as an operator from L∞(0, b) to C[0, b], thus also

from L∞(0, b) to L∞(0, b). The problem (6.0.1)-(6.0.2) with f = 0 and γ = 0

has in C[0, b] only the trivial solution y = 0, implying that the homogeneous

equation yρ = Tρyρ has in L∞(0, b) only the solution yρ = 0. Consequently, by

Theorem 2.2.3, equation yρ = Tρyρ + gρ with gρ ∈ L∞(0, b) possesses a unique

solution yρ ∈ L∞(0, b). In other words, operator I − Tρ is invertible in L∞(0, b)

and its inverse (I − Tρ)−1 is bounded: (I − Tρ)−1 ∈ L(L∞(0, b), L∞(0, b)). This

together with Lemma 2.7.2 and Theorem 2.2.1 yields that I −PNTρ is invertible

in L∞(0, b) for all sufficiently large N , say N ≥ N0, and

‖(I − PNTρ)
−1‖L(L∞(0,b),L∞(0,b)) ≤ c, N ≥ N0, (6.2.11)
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where c is a constant not depending on N . Thus, for N ≥ N0, equation (6.2.5)

provides a unique solution yρ,N ∈ S−1
m−1(ΠN ). We have for it and yρ, the solution

of equation yρ = Tρyρ + gρ, that

(I − PNTρ)(yρ − yρ,N ) = yρ − PNyρ, N ≥ N0.

Therefore, by (6.2.11),

‖yρ − yρ,N‖∞ ≤ c ‖yρ − PNyρ‖∞ , N ≥ N0, (6.2.12)

where c is a positive constant not depending on N . Finally, from yρ ∈ C[0, b],

Lemma 2.7.3, yρ(τ) = y(b1−ρτρ) (τ ∈ [0, b]) and (6.2.8) we get the convergence

(6.2.9).

(ii) If d0, f ∈ Cm,µ(0, b], m ∈ N, µ ∈ R, µ < 1, then it follows from part (ii)

of Theorem 6.1.1 that y ∈ Cm,ν(0, b], with ν given by (6.1.7). Thus from Lemma

2.8.1 we see that yρ ∈ Cm,νρ(0, b], where νρ = 1 − ρ(1 − ν). This together with

(6.2.12) and Lemma 2.7.3 yields the estimate (6.2.10).
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Chapter 7

Numerical experiments

When introducing a numerical method it is always prudent, whenever possible,

to test its validity by numerical experiments. Thus, in this chapter we give a

detailed overview of our numerical experiments based on the methods introduced

in Chapters 3, 4, 5 and 6. We are particularly interested in verifying the error

estimates derived in Chapters 3–6 by Theorems 3.4.1, 3.4.2, 4.4.1, 4.4.2, 5.4.1,

5.4.2 and 6.2.1, respectively. To this end we first give a general overview of the

testing methodology used.

7.1 Introduction

All the numerical results in this chapter are calculated using Fortran program-

ming language in 16-digit double precision. For the solution of linear system of

equations we use the package LAPACK, which is a standard library for numeri-

cal linear algebra. For finding a solution to a non-linear system of equations we

rely on Newton’s iterative method. Where the numerical calculation of integrals

is required we use the package QUADPACK, which introduces general-purpose

adaptive and non-adaptive integration routines, including the handling of weak

singularities. More precisely, we rely on QAGS, a globally adaptive quadrature

based on 21-point Gauss–Kronrod quadrature within each subinterval.

For some theorems, namely Theorem 3.3.2, 3.4.2, 4.4.2 and 5.4.2, it is neces-

sary to choose collocation parameters 0 ≤ η1 < · · · < ηm ≤ 1 (m ∈ N) such that

the quadrature approximation (2.8.5) with appropriate weights {wk} is exact for

all polynomials of degree m. For this it suffices that the collocation parameters
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η1, . . . , ηm be the node points of the m-point Gauss-Legendre quadrature rule

applied on the interval [0, 1] (see Remark 3.3.1). We are mostly interested in the

case m = 2 and m = 3, for which we use collocation parameters

η1 =
3−
√

3

6
, η2 = 1− η1 (m = 2) (7.1.1)

and

η1 =
5−
√

15

10
, η2 =

1

2
, η3 = 1− η1 (m = 3), (7.1.2)

respectively. If in some special cases we use different collocation parameters, we

will explicitly state this.

For the numerical experiments we approximate the norm ‖u − v‖∞ (u, v ∈
C[0, b]) with the quantities εN as follows:

εN := max
j=1,...,N

max
k=0,...,10

|u(sjk)− v(sjk)|. (7.1.3)

Here sjk := tj−1+k(tj−tj−1)/10 (k = 0, . . . , 10, j = 1, . . . , N), tj = b
(
j
N

)r
(j =

1, . . . , N) are the grid points introduced in (2.7.1) with grading parameter r ≥ 1,

and N ∈ N is the parameter specifying the size of the partition ΠN := {t0, . . . , tN}
of the interval [0, b]. We also compute the ratios

ΘN :=
εN/2

εN
, (7.1.4)

which we use to characterize the observed numerical convergence rate.

7.2 Numerical results for Chapter 3

In this section we look at some fractional differential equations of the type (3.0.1)–

(3.0.2). That is, we look at linear fractional differential equations with at most

two Caputo fractional derivatives Dα1
Capy and Dα2

Capy, where 0 < α1 < α2 ≤ 1.

We thus have only one boundary condition, which can be local, non-local or

both. To solve such problems by method (3.4.5),(3.4.9) we set z := Dα2
Capy. Using

the change of variables introduced in (2.8.3), we have for zρ(τ) := z(τρ) the

integral equation (3.4.1) with Tρ and gρ given by (3.4.2) and (3.4.3), respectively.

Approximations zρ,N ∈ S
(−1)
m−1(ΠN ) (N,m ∈ N) to the solution zρ of equation

(3.4.1) on the interval [0, b] are found by (3.4.5) using (2.7.3) with (7.1.1) or

(7.1.2), the knots of the Gaussian quadrature formula (2.8.5) for m = 2 or m = 3.
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We determine cjk (k = 1, . . . ,m, j = 1, . . . , N) and zρ,N (t) (t ∈ [0, b]) by (3.4.8)

and (3.4.7), respectively. After that we find the approximate solution yN by using

formula (3.4.10) and the relation (3.4.11).

Example 1. Consider the boundary value problem

(D
1
2
Capy)(t) + d0(t)y(t) = f(t), 0 ≤ t ≤ 1, (7.2.1)

y(0) + y(1) +

∫ 1
2

0
y(s)ds = 2 +

2
1
4

7
+

2−
1
4

9
, (7.2.2)

with

d0(t) = t
1
2

and

f(t) =
3 Γ(3

4)

Γ(1
4)

t
1
4 +

5 Γ(1
4)

12 Γ(3
4)
t
3
4 + t

5
4 + t

7
4 ,

where 0 ≤ t ≤ 1. We see that (7.2.1)–(7.2.2) is a special problem of (3.0.1)–(3.0.2)

with d1 = K = 0,

α2 =
1

2
, b = 1, b1 = 1, b̄ =

1

2
, β0 = β1 = β = 1, γ = 2 +

2
1
4

7
+

2−
1
4

9
,

and

y(t) = t
3
4 + t

5
4 (t ∈ [0, 1])

is its exact solution. We have that d0, d1, f ∈ Cq,µ(0, 1], K ∈ Cq(∆) with µ = 3
4

and arbitrary q ∈ N. Therefore, by (3.2.1),

ν = max{1− α2, µ} =
3

4
.

In Table 7.1 (m = 2) and Table 7.2 (m = 3) some results of numerical

experiments for different values of the parameters N , ρ and r are presented,

using the collocation parameters (7.1.1) and (7.1.2), respectively. In the case

m = 2 it follows from (3.4.14) in Theorem 3.4.2 with α2 = 1
2 and ν = 3

4 that, for

sufficiently large N ,

εN ≤ c0

{
N−0.75 ρr if 1 ≤ ρr < 10

3 = 3.33(3),
N−2.5 if ρr ≥ 10

3 ,
(7.2.3)
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Table 7.1: Numerical results for problem (7.2.1)–(7.2.2) with m = 2, η1 =
3−
√
3

6 , η2 = 1− η1.

r = 1, ρ = 1 r = 2, ρ = 1 r = 1, ρ = 2 r = 2, ρ = 2

N εN ΘN εN ΘN εN ΘN εN ΘN

4 1.76 · 10−2 5.04 · 10−3 1.34 · 10−3 3.02 · 10−3

8 1.02 · 10−2 1.72 1.85 · 10−3 2.72 5.08 · 10−4 2.64 6.21 · 10−4 4.86

16 5.94 · 10−3 1.73 6.68 · 10−4 2.77 2.21 · 10−4 2.30 1.18 · 10−4 5.26

32 3.45 · 10−3 1.72 2.39 · 10−4 2.80 8.56 · 10−5 2.58 2.12 · 10−5 5.56

64 2.02 · 10−3 1.71 8.47 · 10−5 2.82 3.16 · 10−5 2.71 3.77 · 10−6 5.63

128 1.18 · 10−3 1.70 3.00 · 10−5 2.82 1.14 · 10−5 2.77 6.65 · 10−7 5.67

256 6.97 · 10−4 1.70 1.06 · 10−5 2.83 4.06 · 10−6 2.80 1.17 · 10−7 5.68

1.68 2.83 2.83 5.66

Table 7.2: Numerical results for problem (7.2.1)–(7.2.2) with m = 3, η1 =
5−
√
15

10 , η2 = 1
2 , η3 = 1− η1.

r = 1, ρ = 1 r = 2, ρ = 1 r = 2, ρ = 2 r = 3, ρ = 2

N εN ΘN εN ΘN εN ΘN εN ΘN

4 6.52 · 10−3 2.30 · 10−3 7.93 · 10−5 1.11 · 10−4

8 3.84 · 10−3 1.70 7.86 · 10−4 2.93 1.20 · 10−5 6.59 1.08 · 10−5 10.28

16 2.25 · 10−3 1.70 2.73 · 10−4 2.87 1.56 · 10−6 7.71 1.07 · 10−6 10.01

32 1.33 · 10−3 1.70 9.60 · 10−5 2.85 1.95 · 10−7 7.99 9.94 · 10−8 10.81

64 7.82 · 10−4 1.70 3.38 · 10−5 2.84 2.43 · 10−8 8.04 8.96 · 10−9 11.09

128 4.62 · 10−4 1.69 1.19 · 10−5 2.83 3.02 · 10−9 8.03 7.98 · 10−10 11.23

256 2.73 · 10−4 1.69 4.21 · 10−6 2.83 3.75 · 10−10 8.06 7.11 · 10−11 11.23

1.68 2.83 8.00 11.31

where c0 is a positive constant not depending on N . Due to (7.2.3), the ratios

ΘN for {ρ = 1, r = 1}, {ρ = 1, r = 2}, {ρ = 2, r = 1} and {ρ = 2, r = 2} ought

to be approximatively 20.75 ≈ 1.68, 21.5 ≈ 2.83, 21.5 ≈ 2.83 and 22.5 ≈ 5.66,

respectively. These values are given in the last row of Table 7.1.

In the case m = 3 it follows from (3.4.14) in Theorem 3.4.2 with α = 1
2 and
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ν = 3
4 that, for sufficiently large N ,

εN ≤ c1

{
N−0.75 ρr if 1 ≤ ρr < 14

3 = 4.66(6),
N−3.5 if ρr ≥ 14

3 ,
(7.2.4)

where c1 is a positive constant not depending on N . Due to (7.2.4), the ratios

ΘN for {ρ = 1, r = 1}, {ρ = 1, r = 2}, {ρ = 2, r = 2} and {ρ = 2, r = 3}
ought to be approximatively 20.75 ≈ 1.68, 21.5 ≈ 2.83, 23 = 8.00 and 23.5 ≈ 11.31,

respectively. These values are given in the last row of Table 7.2.

As we can see from Tables 7.1 and 7.2 the numerical results are in good

agreement with theoretical estimates.

Example 2. Consider the following boundary value problem:

(D
1
2
Capy)(t) + d0(t)y(t) = f(t), 0 ≤ t ≤ 1, (7.2.5)

y(0) + y(1) +

∫ 1
2

0
y(s)ds = 1 + e+ e

1
2 , (7.2.6)

where

d0(t) = 1, f(t) = t
1
2E1, 3

2
(t) + et, 0 ≤ t ≤ 1.

Here E1, 3
2
(t) is the Mittag-Leffler function defined in (2.4.4). We see that (7.2.5)-

(7.2.6) is a special problem of (3.0.1)-(3.0.2) with d1 = 0, K = 0,

α2 =
1

2
, b = 1, b1 = 1, b̄ =

1

2
, β0 = β1 = β = 1, γ = e+ e

1
2 ,

and

y(t) = et (t ∈ [0, 1])

is its exact solution. Clearly K ∈ Cq(∆), d0, d1, f ∈ Cq,µ(0, 1] for µ = 1
2 and

arbitrary q ∈ N. Therefore, by (3.2.1) and Remark 3.2.1,

ν = max{1− α2, µ} =
1

2
.

In Tables 7.3–7.4 some results of numerical experiments with m = 2 and with

different values of the parameters N , ρ and r are presented. The numerical results

in Table 7.3 have been obtained with collocation points (7.1.1). Thus, in the case
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1 ≤ ρ < 2 it follows from (3.4.14) with α2 = 1
2 and ν = 1

2 that, for sufficiently

large N ,

εN ≤ c0

{
N− ρr if 1 ≤ ρr < 2.5,
N−2.5 if ρr ≥ 2.5,

(7.2.7)

where c0 is a positive constant not depending on N . Due to (7.2.7), the ratios ΘN

for {ρ = 1, r = 1}, {ρ = 1, r = 1.5}, {ρ = 1.5, r = 1} and {ρ = 1.5, r = 2} ought

to be approximatively 2, 21.5 ≈ 2.83, 21.5 ≈ 2.83 and 22.5 ≈ 5.66, respectively.

These values are given in the last row of Table 7.3. As we can see from Table 7.3

the numerical results are in good accord with theoretical estimates.

Table 7.3: Numerical results for problem (7.2.5)-(7.2.6) with m = 2, η1 =
3−
√
3

6 , η2 = 1− η1.

r = 1, ρ = 1 r = 1.5, ρ = 1 r = 1, ρ = 1.5 r = 2, ρ = 1.5

N εN ΘN εN ΘN εN ΘN εN ΘN

4 8.55 · 10−3 6.36 · 10−3 5.81 · 10−3 2.01 · 10−2

8 4.52 · 10−3 1.89 2.09 · 10−3 3.04 1.14 · 10−3 5.11 5.05 · 10−3 3.98

16 2.36 · 10−3 1.92 6.98 · 10−4 3.00 2.71 · 10−4 4.20 1.06 · 10−3 4.77

32 1.22 · 10−3 1.94 2.38 · 10−4 2.93 7.72 · 10−5 3.50 2.03 · 10−4 5.22

64 6.22 · 10−4 1.96 8.28 · 10−5 2.88 2.40 · 10−5 3.22 3.71 · 10−5 5.47

128 3.16 · 10−4 1.97 2.91 · 10−5 2.85 7.91 · 10−6 3.04 6.64 · 10−6 5.58

256 1.60 · 10−4 1.98 1.02 · 10−5 2.84 2.70 · 10−6 2.93 1.18 · 10−6 5.62

2.00 2.83 2.83 5.66

For the data in in Table 7.4 we have used collocation parameters

η1 = 0.1, η2 = 0.9,

which do not satisfy the conditions imposed on collocation parameters by Theo-

rem 3.4.2. While the numerical convergence rate for {ρ = 1, r = 1}, {ρ = 1, r =

1.5} and {ρ = 1.5, r = 1} is still in good accord with the theoretical estimates

of Theorem 3.4.2, the proposed method does not obtain the global supercon-

vergence rate 22.5 ≈ 5.66 with {ρ = 1.5, r = 2}. Instead, the highest attained

convergence rate is slightly above 22 = 4.00, which is the maximal convergence

rate predicted by Theorem 3.4.1. This shows that, in general, the conditions im-

posed by Theorem 3.4.2 are necessary for the superconvergence of the proposed

method.
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Table 7.4: Numerical results for problem (7.2.5)-(7.2.6) with m = 2, η1 = 0.1,

η2 = 0.9.

r = 1, ρ = 1 r = 1.5, ρ = 1 r = 1, ρ = 1.5 r = 2, ρ = 1.5

N εN ΘN εN ΘN εN ΘN εN ΘN

4 9.52 · 10−3 7.12 · 10−3 1.09 · 10−2 3.28 · 10−2

8 5.61 · 10−3 1.70 2.43 · 10−3 2.93 2.56 · 10−3 4.26 9.36 · 10−3 3.51

16 3.01 · 10−3 1.86 8.83 · 10−4 2.75 6.54 · 10−4 3.91 2.31 · 10−3 4.06

32 1.56 · 10−3 1.92 3.13 · 10−4 2.82 2.28 · 10−4 2.87 5.36 · 10−4 4.30

64 8.01 · 10−4 1.95 1.10 · 10−4 2.85 7.77 · 10−5 2.93 1.23 · 10−4 4.37

128 4.07 · 10−4 1.97 3.85 · 10−5 2.85 2.64 · 10−5 2.94 2.83 · 10−5 4.34

256 2.06 · 10−4 1.98 1.35 · 10−5 2.85 9.01 · 10−6 2.93 6.59 · 10−6 4.29

2.00 2.83 2.83 5.66

Example 3. Consider the boundary value problem

(D
2
5
Capy)(t) + (D

1
5
Capy)(t) +

∫ t

0
(t− s)−

3
5 y(s)ds = f(t), 0 ≤ t ≤ 1, (7.2.8)

∫ 1

0
y(s)ds =

13

8
, (7.2.9)

with

f(t) =
3 Γ(3

5)

Γ(1
5)

t
1
5 +

3 Γ(3
5)

2 Γ(2
5)
t
2
5 +

3Γ
(

2
5

)
Γ
(

3
5

)
5

t+
5

2
t
2
5 ,

where 0 ≤ t ≤ 1. We see that (7.2.8)–(7.2.9) is a special problem of (3.0.1)–(3.0.2)

with d0 = 0, d1 = 1, K = 1,

α2 =
2

5
, α1 =

1

5
, b = 1, κ =

3

5
, b̄ = 1, β0 = β1 = 0, β = 1, γ =

13

8
,

and

y(t) = t
3
5 + 1 (t ∈ [0, 1])

is its exact solution. We have that d0, d1, f ∈ Cq,µ(0, 1], K ∈ Cq(∆) with µ = 4
5

and arbitrary q ∈ N. Therefore, by (3.2.1),

ν = max{1− (α2 − α1), µ, κ} =
4

5
.
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Table 7.5: Numerical results for problem (7.2.8)–(7.2.9) with m = 2, η1 =
3−
√
3

6 , η2 = 1− η1.

r = 1, ρ = 1 r = 2, ρ = 1 r = 3, ρ = 1 r = 4, ρ = 1

N εN ΘN εN ΘN εN ΘN εN ΘN

4 1.51 · 10−2 7.41 · 10−3 3.83 · 10−3 4.85 · 10−3

8 1.06 · 10−2 1.42 3.40 · 10−3 2.18 1.19 · 10−3 3.22 1.02 · 10−3 4.77

16 7.36 · 10−3 1.45 1.52 · 10−3 2.23 3.53 · 10−4 3.37 1.92 · 10−4 5.28

32 5.02 · 10−3 1.47 6.74 · 10−4 2.26 1.03 · 10−4 3.42 3.55 · 10−5 5.42

64 3.39 · 10−3 1.48 2.97 · 10−4 2.27 3.00 · 10−5 3.44 6.54 · 10−6 5.43

128 2.28 · 10−3 1.49 1.30 · 10−4 2.28 8.69 · 10−6 3.45 1.22 · 10−6 5.36

256 1.52 · 10−3 1.50 5.72 · 10−5 2.28 2.51 · 10−6 3.46 2.33 · 10−7 5.24

1.32 1.74 2.30 3.03

Table 7.6: Numerical results for problem (7.2.8)–(7.2.9) with m = 2, η1 =
3−
√
3

6 , η2 = 1− η1.

r = 1, ρ = 2 r = 1, ρ = 3 r = 1, ρ = 4 r = 1, ρ = 11
2

N εN ΘN εN ΘN εN ΘN εN ΘN

4 4.57 · 10−3 1.94 · 10−3 5.53 · 10−4 3.54 · 10−4

8 1.81 · 10−3 2.53 5.31 · 10−4 3.65 1.04 · 10−4 5.33 6.15 · 10−5 5.74

16 7.44 · 10−4 2.43 1.48 · 10−4 3.59 1.93 · 10−5 5.36 1.06 · 10−5 5.79

32 3.12 · 10−4 2.38 4.16 · 10−5 3.55 3.62 · 10−6 5.34 1.86 · 10−6 5.70

64 1.33 · 10−4 2.36 1.18 · 10−5 3.53 6.81 · 10−7 5.32 3.33 · 10−7 5.60

128 5.66 · 10−5 2.34 3.35 · 10−6 3.52 1.29 · 10−7 5.30 6.05 · 10−8 5.51

256 2.46 · 10−5 2.31 9.56 · 10−7 3.51 2.45 · 10−8 5.24 1.10 · 10−8 5.47

1.74 2.30 3.03 4.60

In Tables 7.5 and 7.6 some results of numerical experiments for different values

of the parameters N , ρ and r are presented, using m = 2 and the collocation

parameters (7.1.1). It follows from (3.4.14) in Theorem 3.4.2 with α2 = 2
5 , α1 = 1

5

and ν = 4
5 that, for sufficiently large N ,

εN ≤ c0

{
N−0.4 ρr if 1 ≤ ρr < 11

2 = 5.5,
N−2.2 if ρr ≥ 11

2 ,
(7.2.10)
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where c0 is a positive constant not depending on N . Due to (7.2.10), the ratios

ΘN for {ρ = 1, r = 1}, {{ρ = 1, r = 2}, {ρ = 2, r = 1}}, {{ρ = 1, r = 3}, {ρ =

3, r = 1}}, {{ρ = 1, r = 4}, {ρ = 4, r = 1}} and {ρ = 5.5, r = 1} ought to be

approximatively 20.4 ≈ 1.32, 20.8 ≈ 1.74, 21.2 ≈ 2.30, 21.6 ≈ 3.03 and 22.2 ≈ 4.60,

respectively. These values are given in the last row of Tables 7.5 and 7.6. We

can see that the numerical method converges somewhat faster than the estimate

(3.4.14) predicts.

7.3 Numerical results for Chapter 4

As the boundary value problem (3.0.1)–(3.0.2) studied in Chapter 3 is a special

case of the more general problem (4.0.1)–(4.0.2) analyzed in Chapter 4, all the

examples in the previous section remain valid for Theorems 4.4.1 and 4.4.2. Thus

in this section we concentrate on a linear fractional differential equations of type

(4.0.1)–(4.0.2) where αp ≥ 1. More specifically, we look at the following fractional

linear boundary value problem:

y′′(t) + (D
3
2
Capy)(t) + y(t) = f(t), (7.3.1)

y(0) = 2,

y′(0) + y′(1) =
9

2
, (7.3.2)

with

f(t) =
15

4
t
1
2 +

15 Γ(1
2)

8
t+ t

5
2 + 2.

Equation (7.3.1) is also known as the Bagley-Torvik equation [87]. Actually, this

is a special problem of (4.0.1)–(4.0.2) with d0 = d1 = 1, K = 0, n0 = 1, n1 = 1,

p = 2 and

α2 = 2, α1 =
3

2
, b = 1, b̄0 = b̄1 = 0, γ0 = 2, γ1 =

9

2
,

β000 = β100 = β111 = 1, β0 = β1 = 0.

The exact solution to problem (7.3.1)–(7.3.2) is

y(t) = t
5
2 + 2, t ∈ [0, 1].
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Clearly f ∈ Cq,µ(0, b] for arbitrary q ∈ N and µ = 0.5. Therefore, by (4.2.1), we

have that ν = 0.5.

Denote z := y′′. Then the solution y of (7.3.1)–(7.3.2) can be presented in

the form y = Gz +Q, where

(Gz)(t) :=
(
J2z

)
(t)− 0.5t

(
J0.5z

)
(1), Q(t) := 2 + 2.25 t, t ∈ [0, 1],

and z is a solution of the integral equation

z(t) = Tz + g, t ∈ [0, 1],

where

(Tz)(t) = −
(
J2z

)
(t)−

(
J0.5z

)
(t) + 0.5t

(
J0.5z

)
(1), t ∈ [0, 1]

and g(t) = f(t)− 2.25 t, t ∈ [0, 1].

Using the change of variables t = τρ, τ ∈ [0, 1], ρ ≥ 1, and notations

yρ(τ) := y(τρ), zρ(τ) := z(τρ), fρ(τ) = f(τρ), τ ∈ [0, 1], ρ ≥ 1,

we get that yρ = (Gρzρ) +Qρ, where

(Gρzρ)(τ) :=
(
J2
ρzρ
)

(τ)− 0.5τρ
(
J0.5
ρ zρ

)
(1), Qρ(τ) := 2 + 2.25 τρ, τ ∈ [0, 1],

and zρ(τ) = z(τρ) is the solution of the integral equation

zρ(τ) = Tρzρ + gρ, (7.3.3)

with

(Tρzρ)(τ) = −
(
J2
ρzρ
)

(τ)−
(
J0.5
ρ zρ

)
(τ) + 0.5τρ

(
J0.5
ρ zρ

)
(1), τ ∈ [0, 1],

(gρ)(τ) = fρ(τ)− 2.25τρ, τ ∈ [0, 1].

Since τ = t
1
ρ , we have y(t) = yρ(t

1
ρ ).

For the numerical solution of (7.3.1)–(7.3.2) we determine approximations

zρ,N to the solution zρ of (7.3.3) in the form (4.3.10), finding the coefficients

{cjk} from collocation conditions (4.3.11):

cjk =
N∑
λ=1

m∑
µ=1

(Tρϕλµ)(tjk)cλµ + gρ(tjk), k = 1, . . . ,m, j = 1, . . . , N. (7.3.4)
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with grid points (2.7.1) and collocation points (2.7.3). After finding the coeffi-

cients {cjk}, we find the approximations yN to the solution y of problem (7.3.1)–

(7.3.2) with the help of formula (cf. (4.3.13))

yρ,N (τ) =
N∑
λ=1

m∑
µ=1

cλµ(J2
ρϕλµ)(τ)− 0.5τρ(J0.5

ρ ϕλµ)(1) + 2 + 2.25 τρ, τ ∈ [0, 1]

and formula (4.3.14).

In Table 7.7 some results of numerical experiments for different values of the

parameters N , ρ and r are presented, using m = 2 and the collocation parameters

(7.1.1). It follows from (4.4.7) in Theorem 4.4.2 with α2 = 2, α1 = 1.5, α0 = 0,

ν = 0.5, n1 = 1 and α∗ = 0.5 < 1 that, for sufficiently large N ,

εN ≤ c
{
N−ρr if 1 ≤ ρr < 2.5,
N−2.5 if ρr ≥ 2.5,

(7.3.5)

where c is a positive constant not depending on N .

Table 7.7: Numerical results for problem (7.2.8)–(7.2.9) with m = 2, η1 =
3−
√
3

6 , η2 = 1− η1.

r = 1, ρ = 1 r = 2, ρ = 1 r = 2.5, ρ = 1 r = 1, ρ = 2.5

N εN ΘN εN ΘN εN ΘN εN ΘN

4 1.12 · 10−3 2.26 · 10−4 2.57 · 10−4 1.21 · 10−4

8 4.04 · 10−4 2.78 2.37 · 10−5 9.54 1.48 · 10−5 17.34 9.55 · 10−6 12.66

16 1.44 · 10−4 2.80 2.77 · 10−6 8.56 1.29 · 10−6 11.48 7.97 · 10−7 11.98

32 5.16 · 10−5 2.80 3.44 · 10−7 8.03 1.67 · 10−7 7.73 7.12 · 10−8 11.19

64 1.84 · 10−5 2.80 4.38 · 10−8 7.86 2.17 · 10−8 7.70 6.98 · 10−9 10.20

128 6.56 · 10−6 2.81 5.64 · 10−9 7.77 2.94 · 10−9 7.38 7.70 · 10−10 9.07

256 2.33 · 10−6 2.81 7.37 · 10−10 7.65 4.34 · 10−10 6.78 9.69 · 10−11 7.94

2.00 4.00 5.66 5.66

Due to (7.4.6), the ratios ΘN for {ρ = 1, r = 1}, {{ρ = 1, r = 2}, {ρ =

2, r = 1}} and {{ρ = 1, r = 2.5}, {ρ = 2.5, r = 1}} ought to be approximatively

21 = 2.00, 22 = 4 and 22.5 ≈ 5.66, respectively. These values are given in the last

row of Table 7.7. As we can see, the the actual convergence rate is somewhat

faster than the theoretical results predict.
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7.4 Numerical results for Chapter 5

In this section we give two examples of a non-linear fractional differential equa-

tions of type (5.0.1)–(5.0.2), where the highest order α of the Caputo fractional

derivatives satisfies 0 < α < 1 and 1 < α < 2, respectively.

Example 1. Consider the following non-linear initial value problem:

(D
1
3
Capy)(t) = f(t, y(t)), 0 ≤ t ≤ 1, (7.4.1)

y(0) = 1, (7.4.2)

where

f(t, y) =
ty3

10
− t(t

2
3 + 1)3

10
+

Γ(5
3)

Γ(4
3)
t
1
3 .

This is a special problem of (5.0.1)–(5.0.2) with n = 1, n0 = n1 = 0, l = 1,

α =
1

3
, b = 1, β000 = 1, β001 = 0, γ0 = 1.

The function f(t, y) satisfies the conditions of Theorem 5.2.2 with ν = 1
3 and

arbitrary q ∈ N. An exact solution to (7.4.1)–(7.4.2) is

y(t) = t
2
3 + 1, 0 ≤ t ≤ 1.

To solve (7.4.1)–(7.4.2) with method (5.3.6),(5.3.10) we set z := D
1
3
Capy. Then

a solution of (7.4.1)–(7.4.2) can be presented in the form y∗(t) = (J
1
3 z∗)(t) + 1,

where z∗ is a solution of the integral equation

z(t) = f
(
t, (J

1
3 z)(t) + 1

)
, t ∈ [0, 1].

Using a change of variables t = τρ, τ ∈ [0, 1], ρ ≥ 1, and notations

yρ(τ) := y(τρ), zρ(τ) := z(τρ), τ ∈ [0, 1], ρ ≥ 1, (7.4.3)

we get that

y∗ρ(τ) = (J
1
3
ρ z
∗
ρ)(τ) + 1, τ ∈ [0, 1],

where z∗ρ = z∗(τρ) is a solution of the integral equation

zρ(τ) = f
(
τρ, (J

1
3
ρ zρ)(τ) + 1

)
, τ ∈ [0, 1]. (7.4.4)
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Since τ = t
1
ρ , we have y∗(t) = y∗ρ(t

1
ρ ), t ∈ [0, 1].

For the numerical solution of problem (7.4.1)–(7.4.2) we first determine ap-

proximations zρ,N to the solution z∗ρ of (7.4.4) in the form (5.3.7), finding the

coefficients {cjk} from collocation conditions (5.3.8):

cjk = f

(
tρjk,

j∑
β=1

m∑
γ=1

(J1/3
ρ ϕβγ)(tjk)cβγ + 1

)
, k = 1, . . . ,m, j = 1, . . . , N.

(7.4.5)

with grid points (2.7.1) and collocation points (2.7.3). Note that we can find the

coefficients {cjk} (k = 1, . . . ,m, j = 1, . . . , N) by solving N systems of non-linear

algebraic equations with m unknowns. For this we have used Newton’s iterative

method. After finding the coefficients {cjk}, we find the approximations yN to a

solution y∗ of problem (7.4.1)–(7.4.2) with the help of formula (cf. (5.3.11))

yρ,N (τ) =
N∑
β=1

m∑
γ=1

cβγ(J
1
3
ρ ϕβγ)(τ) + 1, τ ∈ [0, 1]

and formula (5.3.12).

Table 7.8: Numerical results for problem (7.4.1)–(7.4.2) with m = 2, η1 =
3−
√
3

6 , η2 = 1− η1.

r = 1, ρ = 1 r = 1, ρ = 2 r = 1, ρ = 3.5 r = 1, ρ = 4

N εN ΘN εN ΘN εN ΘN εN ΘN

4 2.27 · 10−2 2.80 · 10−3 6.10 · 10−4 9.17 · 10−4

8 1.42 · 10−2 1.59 1.12 · 10−3 2.51 1.21 · 10−4 5.04 1.93 · 10−4 4.75

16 8.95 · 10−3 1.59 4.43 · 10−4 2.52 2.40 · 10−5 5.04 3.98 · 10−5 4.84

32 5.64 · 10−3 1.59 1.76 · 10−4 2.52 4.77 · 10−6 5.04 7.95 · 10−6 5.01

64 3.55 · 10−3 1.59 6.98 · 10−5 2.52 9.46 · 10−7 5.04 1.57 · 10−6 5.07

128 2.24 · 10−3 1.59 2.77 · 10−5 2.52 1.88 · 10−7 5.04 3.08 · 10−7 5.09

256 1.41 · 10−3 1.59 1.10 · 10−5 2.52 3.73 · 10−8 5.04 6.03 · 10−8 5.10

1.59 2.52 5.04 5.04

In Tables 7.8 and 7.9 some results of numerical experiments for different values

of the parameters N , ρ and r are presented, using m = 2 and the collocation

parameters (7.1.1). It follows from (5.4.7) in Theorem 5.4.2 with α = 1
3 , ν = 2

3
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Table 7.9: Numerical results for problem (7.4.1)–(7.4.2) with m = 2, η1 =
3−
√
3

6 , η2 = 1− η1.

r = 2, ρ = 1 r = 3, ρ = 1 r = 3.5, ρ = 1 r = 2, ρ = 2

N εN ΘN εN ΘN εN ΘN εN ΘN

4 8.95 · 10−3 5.41 · 10−3 6.40 · 10−3 1.76 · 10−3

8 3.55 · 10−3 2.52 1.35 · 10−3 4.01 1.28 · 10−3 5.01 3.91 · 10−4 4.50

16 1.41 · 10−3 2.52 3.37 · 10−4 4.00 2.49 · 10−4 5.13 8.05 · 10−5 4.86

32 5.59 · 10−4 2.52 8.43 · 10−5 4.00 4.81 · 10−5 5.17 1.60 · 10−5 5.03

64 2.22 · 10−4 2.52 2.11 · 10−5 4.00 9.33 · 10−6 5.16 3.15 · 10−6 5.09

128 8.81 · 10−5 2.52 5.27 · 10−6 4.00 1.82 · 10−6 5.14 6.16 · 10−7 5.10

256 3.50 · 10−5 2.52 1.32 · 10−6 4.00 3.55 · 10−7 5.12 1.21 · 10−7 5.10

2.52 4.00 5.04 5.04

and α∗ = α < 1 that, for sufficiently large N ,

εN ≤ c

{
N−

2
3
ρr if 1 ≤ ρr < 3.5,

N−
7
3 if ρr ≥ 3.5,

(7.4.6)

where c is a positive constant not depending on N .

Due to (7.4.6), the ratios ΘN for {ρ = 1, r = 1}, {{ρ = 1, r = 2}, {ρ =

2, r = 1}}, {ρ = 1, r = 3} and {{ρ = 1, r = 3.5}, {ρ = 3.5, r = 1}, {ρ = 4, r =

1}, {ρ = 2, r = 2}} ought to be approximatively 2
2
3 ≈ 1.59, 2

4
3 ≈ 2.52, 22 = 4

and 2
7
3 ≈ 5.04, respectively. These values are given in the last row of Tables

7.8 and 7.9. As we can see, the numerical data is in very good agreement with

theoretical results.

Example 2. Consider the following non-linear boundary value problem:

(D1.5
Capy)(t) = f(t, y(t)), 0 ≤ t ≤ 1, (7.4.7)

y(0) = −1, y′(1) = 1.9, (7.4.8)

where

f(t, y) =
1

2
y2 − 1

2
(t1.9 − 1)2 +

Γ(2.9)

Γ(1.4)
t0.4.
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This is a special problem of (5.0.1)–(5.0.2) with n = 2, n0 = 0, n1 = 1, l = 1,

α = 1.5, b = 1, b1 = 1, γ0 = −1, γ1 = 1.9,

β000 = 1, β100 = 0, β001 = 0, β011 = 0, β101 = 0, β111 = 1,

and

y(t) = t1.9 − 1, t ∈ [0, 1],

is its exact solution. The function f(t, y) satisfies the conditions of Theorem 5.2.2

with ν = 3
5 and arbitrary q ∈ N.

Denote z :=
(
D1.5
Capy

)
. Then a solution y∗ of (7.4.7)–(7.4.8) can be presented

in the form y∗ = Gz∗ +Q, where

(Gz)(t) :=
(
J1.5z

)
(t)− t

(
J0.5z

)
(1), Q(t) := −1 + 1.9 t, t ∈ [0, 1],

and z∗ is a solution of the integral equation

z(t) = f (t, (Gz) (t) +Q(t)) , t ∈ [0, 1].

Using the change of variables t = τρ, τ ∈ [0, 1], ρ ≥ 1, and notations

yρ(τ) := y(τρ), zρ(τ) := z(τρ), τ ∈ [0, 1], ρ ≥ 1,

we get that y∗ρ =
(
Gρz

∗
ρ

)
+Qρ, where

(Gρzρ)(τ) :=
(
J1.5
ρ zρ

)
(τ)− τρ

(
J0.5
ρ zρ

)
(1), Qρ(τ) := −1 + 1.9 τρ, τ ∈ [0, 1],

and z∗ρ(τ) = z∗(τρ) is a solution of the integral equation

zρ(τ) = f
(
τρ,
(
Gρz

∗
ρ

)
(τ) +Qρ(τ)

)
, τ ∈ [0, 1]. (7.4.9)

Approximations zρ,N to the solution z∗ρ of (7.4.9) we find in the form (5.3.7),

where the coefficients {cjk} are found from the non-linear system (5.3.6) by New-

ton method, using grid points (2.7.1) and collocation points (2.7.3). After that

we find the approximations yN to the solution y∗ of problem (7.4.7)–(7.4.8) by

the formulas (5.3.11) and (5.3.12).

In Table 7.10 some results of numerical experiments for different values of the

parameters N, ρ and r are shown, using m = 2 and the collocation parameters

(7.1.1).
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Table 7.10: Numerical results for problem (7.4.7)–(7.4.8) with m = 2, η1 =
3−
√
3

6 , η2 = 1− η1.

r = 1, ρ = 1 r = 1, ρ = 2 r = 1, ρ = 3 r = 1, ρ = 4

N εN ΘN εN ΘN εN ΘN εN ΘN

4 1.44 · 10−3 3.84 · 10−4 6.47 · 10−4 3.05 · 10−3

8 5.39 · 10−4 2.68 6.07 · 10−5 6.33 1.03 · 10−4 6.28 4.79 · 10−4 6.38

16 2.10 · 10−4 2.56 1.01 · 10−5 5.99 1.74 · 10−5 5.91 8.06 · 10−5 5.94

32 8.07 · 10−5 2.60 1.73 · 10−6 5.84 3.02 · 10−6 5.77 1.39 · 10−5 5.78

64 3.08 · 10−5 2.62 3.00 · 10−7 5.77 5.28 · 10−7 5.72 2.44 · 10−6 5.72

128 1.17 · 10−5 2.63 5.23 · 10−8 5.74 9.27 · 10−8 5.69 4.28 · 10−7 5.70

256 4.43 · 10−6 2.64 9.15 · 10−9 5.72 1.63 · 10−8 5.69 7.52 · 10−8 5.69

1.87 3.48 5.66 5.66

It follows from (5.4.7) in Theorem 5.4.2 with α = 3
2 , ν = 3

5 and α∗ = α−n1 =
1
2 < 1 that, for sufficiently large N ,

εN ≤ c

{
N−

9
10
ρr if 1 ≤ ρr < 25

9 ≈ 2.78,

N−
5
2 if ρr ≥ 25

9 ,
(7.4.10)

where c is a positive constant not depending on N .

Due to (7.4.10), the ratios ΘN for {ρ = 1, r = 1}, {ρ = 2, r = 1} and

{{ρ = 3, r = 1}, {ρ = 4, r = 1}} ought to be approximatively 2
9
10 ≈ 1.87,

2
9
5 ≈ 3.48 and 2

25
9 ≈ 5.66, respectively. These values are given in the last row of

Table 7.10. As we can see, for smaller values of r and ρ the convergence is faster

than predicted by the estimate (5.4.7).

7.5 Numerical results for Chapter 6

In this section we show that the numerical method introduced in Chapter 6 for

a boundary value problem of type (6.0.1)–(6.0.2) does not attain superconver-

gence. For this we look at the boundary value problem (7.2.5)–(7.2.6) examined

in Example 1 of Section 7.2. That is, we consider the following problem:

(D
1
2
Capy)(t) + d0(t)y(t) = f(t), 0 ≤ t ≤ 1, (7.5.1)
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y(0) + y(1) +

∫ 1
2

0
y(s)ds = 2 +

2
1
4

7
+

2−
1
4

9
, (7.5.2)

where

d0(t) = t
1
2 , f(t) =

3 Γ(3
4)

Γ(1
4)

t
1
4 +

5 Γ(1
4)

12 Γ(3
4)
t
3
4 + t

5
4 + t

7
4 , 0 ≤ t ≤ 1.

We see that (7.2.1)–(7.2.2) is a special problem of (6.0.1)–(6.0.2) with

α =
1

2
, b = 1, b1 = 1, b̄ =

1

2
, β0 = β1 = β = 1, γ = 2 +

2
1
4

7
+

2−
1
4

9
,

and

y(t) = t
3
4 + t

5
4 (t ∈ [0, 1])

is its exact solution. Clearly d0, f ∈ Cq,µ(0, 1] for µ = 1
2 and arbitrary q ∈ N.

Therefore, by Theorem 6.1.1,

ν = max{1− α, µ} =
1

2
.

Table 7.11: Numerical results for problem (7.5.1)–(7.5.2) with m = 2, η1 =
3−
√
3

6 , η2 = 1− η1.

r = 1, ρ = 1 r = 2, ρ = 1 r = 1, ρ = 2 r = 2, ρ = 2

N εN ΘN εN ΘN εN ΘN εN ΘN

4 2.87 · 10−2 1.25 · 10−2 2.21 · 10−2 6.45 · 10−2

8 1.94 · 10−2 1.48 4.86 · 10−3 2.58 6.43 · 10−3 3.44 1.95 · 10−2 3.31

16 1.25 · 10−2 1.55 1.79 · 10−3 2.71 2.10 · 10−3 3.06 5.35 · 10−3 3.65

32 7.87 · 10−3 1.59 6.47 · 10−4 2.77 7.13 · 10−4 2.95 1.40 · 10−3 3.82

64 4.86 · 10−3 1.62 2.31 · 10−4 2.80 2.47 · 10−4 2.89 3.58 · 10−4 3.91

128 2.96 · 10−3 1.64 8.21 · 10−5 2.81 8.63 · 10−5 2.86 9.05 · 10−5 3.95

256 1.79 · 10−3 1.65 2.91 · 10−5 2.82 3.04 · 10−5 2.84 2.28 · 10−5 3.98

1.41 2.00 2.00 4.00

In Tables 7.11 and 7.12 some results of numerical experiments for different

values of the parameters N , ρ and r are presented, using for m = 2 and m = 3
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Table 7.12: Numerical results for problem (7.5.1)–(7.5.2) with m = 3, η1 =
5−
√
15

10 , η2 = 1
2 , η3 = 1− η1.

r = 1, ρ = 1 r = 2, ρ = 1 r = 3, ρ = 2 r = 3, ρ = 3

N εN ΘN εN ΘN εN ΘN εN ΘN

4 1.84 · 10−2 7.19 · 10−3 1.05 · 10−2 2.23 · 10−2

8 1.16 · 10−2 1.58 2.66 · 10−3 2.70 1.80 · 10−3 5.84 4.80 · 10−3 4.65

16 7.19 · 10−3 1.62 9.63 · 10−4 2.77 2.63 · 10−4 6.87 7.86 · 10−4 6.10

32 4.39 · 10−3 1.64 3.44 · 10−4 2.80 3.54 · 10−5 7.42 1.13 · 10−4 6.99

64 2.66 · 10−3 1.65 1.22 · 10−4 2.81 4.59 · 10−6 7.71 1.50 · 10−5 7.48

128 1.60 · 10−3 1.66 4.34 · 10−5 2.82 5.85 · 10−7 7.85 1.95 · 10−6 7.74

256 9.63 · 10−4 1.67 1.54 · 10−5 2.82 7.38 · 10−8 7.93 2.47 · 10−7 7.87

1.41 2.00 8.00 8.00

the collocation parameters (7.1.1) and (7.1.2), respectively. For m = 2 it follows

from (6.2.10) in Theorem 6.2.1 with ν = 1
2 that, for sufficiently large N ,

εN ≤ c0

{
N− 0.5ρr if 1 ≤ ρr < 4,
N−2 if ρr ≥ 4,

(7.5.3)

where c0 is a positive constant not depending on N . Due to (7.5.3), the ratios

ΘN for {ρ = 1, r = 1}, {{ρ = 1, r = 2}, {ρ = 2, r = 1}} and {ρ = 2, r = 2}
ought to be approximatively 20.5 ≈ 1.41, 21 = 2 and 22 = 4, respectively. These

values are given in the last row of Table 7.11.

In the case m = 3 it follows from (6.2.10) in Theorem 6.2.1 with ν = 1
2 that,

for sufficiently large N ,

εN ≤ c1

{
N− 0.5ρr if 1 ≤ ρr < 6,
N−3 if ρr ≥ 6,

(7.5.4)

Here c1 is a constant which is independent of N . Due to (7.5.4), the ratios ΘN

for {ρ = 1, r = 1}, {ρ = 1, r = 2} and {{ρ = 2, r = 3}, {ρ = 3, r = 3}} ought to

be approximatively 20.5 ≈ 1.41, 21 = 2 and 23 = 8, respectively.

As we can see from Tables 7.11 and 7.12, for small values of r and ρ the

actual convergence rate is faster than predicted by Theorem 6.2.1. However, the

maximal numerical convergence rate agrees with the estimate (6.2.10) and thus

the method is not superconvergent on the interval [0, 1].
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7.6 Concluding remarks

In this thesis we have introduced and analyzed high order numerical methods for

solving boundary value problems for linear and nonlinear fractional differential

equations with Caputo fractional derivatives. For this we have studied the regu-

larity of their exact solutions and have shown that, despite the lack of regularity,

it is possible to recover the optimal convergence order of the proposed algorithms,

by using special graded grids and by introducing a smoothing variable transfor-

mation which allows a new equation with a smoother solution. Moreover, by a

judicious choice of smoothing, grid and collocation parameters it is possible to

obtain global superconvergence results for methods based on the integral equa-

tion reformulation with respect to the highest order fractional derivative. The

obtained theoretical results have been verified by extensive numerical examples.
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zum Heinz-Billing-Preis 1998, pages 57–71. Gesellschaft für wissenschaftliche

Datenverarbeitung, Göttingen, 1999.

[27] K. Diethelm and A. D. Freed. On the solution of nonlinear fractional differen-

tial equations used in the modeling of viscoplasticity. In F. Keil, W. Voß H.

Mackens, and J. Werther, editors, Scientific Computing in Chemical En-

gineering II: Computational Fluid Dynamics, Reaction Engineering, and

Molecular Properties, pages 217–224. Springer, Heidelberg, 1999.

[28] K. Diethelm and Y. Luchko. Numerical solution of linear multi-term initial

value problems of fractional order. J. Comput. Anal. Appl., 6, 07 2004.

[29] T. Diogo, P.M. Lima, A. Pedas, and G. Vainikko. Smoothing transforma-

tion and spline collocation for weakly singular Volterra integro-differential

equations. Appl. Num. Math., 114:63–76, 2017.

[30] T. Diogo, S. McKee, and T. Tang. Collocation methods for second-kind

Volterra integral equations with weakly singular kernels. Proc. Royal Soc.

Edinburgh, 124:199–210, 1994.

103



[31] H. Fallahgoul, S. Focardi, and F. Fabozzi. Fractional Calculus and Fractional

Processes with Applications to Financial Economics: Theory and Applica-

tion. Academic Press, 2016.

[32] N. J. Ford and M. L. Morgado. Fractional boundary value problems: Anal-

ysis and numerical methods. Fract. Calc. Appl. Anal., 14:554–567, 2011.

[33] N. J. Ford, M. L. Morgado, and M. Rebelo. Nonpolynomial collocation

approximation of solutions to fractional differential equations. Frac. Calc.

Appl. Anal., 16:874–891, 2013.

[34] N. J. Ford, M. L. Morgado, and M. Rebelo. High order numerical methods for

fractional terminal value problems. Comput. Methods Appl. Math., 14:55–70,

2014.

[35] N. J. Ford, M. L. Morgado, and M. Rebelo. A nonpolynomial colloca-

tion method for fractional terminal value problems. Comput. Appl. Math.,

275:392–402, 2015.

[36] A. D. Freed and K. Diethelm. Fractional calculus in biomechanics: a 3D

viscoelastic model using regularized fractional-derivative kernels with ap-

plication to the human calcaneal fat pad. Biomech. Model. Mechanobiol.,

5:203–215, 2006.

[37] A. D. Freed, K. Diethelm, and Y. Luchko. Fractional-order viscoelasticity

(FOV): constitutive development using the fractional calculus. Technical

Report 2002-211914, NASA Glenn Research Center, Cleveland, 2002.

[38] R. Garrappa. Trapezoidal methods for fractional differential equations: The-

oretical and computational aspects. Math. Comput. Simul., 110:96–112,

2015.

[39] R. Garrappa and M. Popolizio. On accurate product integration rules for

linear fractional differential equations. J Comput. Appl. Math., 235:1085–

1097, 2011.

[40] L. Gaul, P. Klein, and S. Kempfle. Damping description involving fractional

operators. Mech. Syst. Signal Process., 5:81–88, 1991.

104
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Sisukokkuvõte

Murruliste tuletistega diferentsiaalvõrrandite ligikaud-

ne lahendamine

Murrulised tuletised (s.t. tuletised, mille järk ei ole täisarv) on pakkunud hu-

vi juba alates ajast, millal I. Newton ja G. W. Leibniz rajasid matemaatilise

analüüsi aluseks oleva diferentsiaal- ja integraalarvutuse. Kaua aega käsitleti

murruliste tuletistega seotud küsimusi vaid teoreetilisest vaatepunktist, sest ei

olnud näha, millised võiksid olla murruliste tuletiste rakendusvõimalused. Vii-

mastel aastakümnetel on aga leitud, et murrulisi tuletisi sisaldavad diferent-

siaalvõrrandid kirjeldavad mitmesuguste materjalide ja protsesside käitumist pa-

remini kui täisarvulist järku tuletistega diferentsiaalvõrrandid. See on kaasa too-

nud suure huvi murruliste tuletiste ja nende rakendamise võimalikkuse kohta.

Murruliste tuletistega diferentsiaalvõrrandite täpse lahendi leidmine ei ole

enamasti võimalik ja seega peame nende lahendeid leidma ligikaudselt. See nõuab

aga spetsiaalsete meetodite väljatöötamist, kuna murruliste tuletistega diferent-

siaalvõrrandite korral ei ole reeglina rakendatavad täisarvuliste tuletistega dife-

rentsiaalvõrrandite vallast tuntud tulemused.

Käesoleva töö põhieesmärk on välja töötada efektiivsed lahendusalgoritmid

murruliste tuletistega diferentsiaalvõrrandite ligikaudseks lahendamiseks võima-

likult laia ülesannete klassi korral. Selle saavutamiseks formuleeritakse esialgne

ülesanne ümber teatava integraalvõrrandina ja uuritakse kõigepealt selle (seega ka

lähteülesande) lahendi siledust ning võimalikku singulaarset käitumist. Lahendi

sileduse informatsiooni põhjal rakendatakse saadud integraalvõrrandi ligikaud-

seks lahendamiseks tükiti polünomiaalset kollokatsioonimeetodit. Lähislahendite

kiire koonduvuse saavutamiseks kasutatakse spetsiaalselt gradueeritud ebaühtlaseid

võrke, milles võrgu sõlmed paiknevad tihedamalt integreerimislõigu alguspunkti
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läheduses, kus ülesande lahendi tavatuletised võivad tõkestamatult kasvada. Tu-

gevalt ebaühtlaste võrkude kasutamine võib soodustada ümardamisvigade kuhju-

mist ning praktiliste arvutuste läbiviimisel põhjustada teatavat numbrilist ebasta-

biilsust, kui võrgupunktide arv on küllalt suur. Seetõttu on töös sisse toodud sobiv

siluv muutujavahetus, mille abil teisendatakse aluseks olevat integraalvõrrandit

nii, et uue integraalvõrrandi lahendi tavatuletiste singulaarsused on nõrgemad

või koguni puuduvad. Seejärel leitakse uue integraalvõrrandi ligikaudne lahend

ühtlasel või nõrgalt gradueeritud võrgul tükiti polünomiaalse kollokatsioonimee-

todi abil.

Töös vaadeldakse kahte varianti lähteülesande ümberformuleerimiseks temaga

samaväärse integraalvõrrandina. Peamiselt käsitletakse situatsiooni, kus saadava

integraalvõrrandi otsitava suuruse osas ei ole mitte lähteülesande täpne lahend,

vaid lähte-ülesandes esinev otsitava funktsiooni kõrgeimat järku murruline tule-

tis. Töös näidatakse, et sellise lähenemise korral on võimalik teatavate siluva-

te teisenduste ja sobivate võrkude abil saavutada lähislahendite ülikiire koon-

dumine. Vaadeldakse ka alternatiivset meetodit, kus lähteülesande lahendamine

on taandatud sellise integraalvõrrandi lahendamisele, milles otsitavaks funktsioo-

niks on lähteülesande täpne lahend. Sel korral on esitatud analüüs, mis ei näita

lähislahendite ülikiiret koonduvust. Toodud numbrilised eksperimendid kinnita-

vad, et antud meetodi korral lähislahendite ülikiiret koonduvust tõepoolest ei

saavutata.

Käesolev doktoritöö koosneb seitsmest peatükist. Esimeses peatükis antakse

lühike kirjeldus murruliste tuletiste ajaloost ning murruliste tuletistega diferent-

siaalvõrrandite numbrilise lahendamisega seotud probleemidest. Teises peatükis

esitatakse rida töös vajalikke tähistusi, mõisteid ja tulemusi. Järgnevad kolm

peatükki on pühendatud meetodile, mis kasutab esialgse ülesande taandamist in-

tegraalvõrrandile, kus otsitavaks suuruseks on esialgses ülesandes esinev kõrgeimat

järku murruline tuletis. Kolmanda peatüki eesmärk on anda sissejuhatav ülevaade

neljandas ja viiendas peatükis kasutatavast lähenemisest.

Neljandas peatükis vaadeldakse võimalikult laia murruliste tuletistega lineaar-

sete ülesannete klassi kujul (4.0.1)–(4.0.2):

(D
αp
Capy)(t) +

p−1∑
i=0

di(t)(D
αi
Capy)(t) +

∫ t

0
(t− s)−κK(t, s)y(s)ds = f(t) , 0 ≤ t ≤ b,
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n0∑
j=0

βij0 y
(j)(0) +

l∑
k=1

n1∑
j=0

βijk y
(j)(bk) + βi

∫ b̄i

0
y(s)ds = γi , i = 0, . . . , n− 1,

kus βij0, βijk, βi, γi ∈ R, p ∈ N, n0, n1 ∈ N0,

0 ≤ α0 < α1 < · · · < αp ≤ n, n := dαpe, 0 ≤ κ < 1,

0 < b1 < · · · < bl ≤ b, 0 < b̄i ≤ b, i = 0, . . . , n− 1, n0 < n, n1 < n,

di : [0, b]→ R (i = 0, . . . , p−1), f : [0, b]→ R, K : {(s, t) : 0 ≤ s ≤ t ≤ b} → R on

etteantud pidevad funktsioonid ja Dαi
Capy (i = 0, . . . , p) on vastavate järkudega

Caputo murrulised tuletised otsitavast funktsioonist y. Peatüki põhitulemused on

antud teoreemidega 4.2.1, 4.4.1 ja 4.4.2. Teoreemiga 4.2.1 on antud vaadeldava

ülesande täpse lahendi y olemasolu, ühesus ja regulaarsuse omadused. Teoreemi-

des 4.4.1 ja 4.4.2 on esitatud tulemused välja töötatud numbriliste meetodite abil

leitud lähislahendite koondumis ja veahinnangute kohta. Diferentsiaalvõrrandis

olevate kordajate d0(t), . . . , dp−1(t) ja vabaliikme f(t) sileduse kohta tehakse tea-

tud eeldused, mis on rahuldatud kõigi lõigus [0, b] pidevate ja m korda (m ≥ 1)

pidevalt diferentseeruvate funktsioonide korral ning võimaldavad käsitleda ka sel-

liseid funktsioone, mille tuletised alates mingist järgust võivad olla tõkestamata

integreerimislõigu alguspunkti ümbruses.

Viiendas peatükis uuritakse mittelineaarse murrulise tuletisega rajaülesande

(5.0.1)–(5.0.2) ligikaudset lahendamist peatükkides kolm ja neli vaadeldud mee-

todite abil. Vaadeldava ülesande lahendi siledus on antud teoreemiga 5.2.2 ja

lähislahendite koonduvus ja koonduvuskiirust iseloomustavad teoreemid 5.4.1 ja

5.4.2.

Kuuendas peatükis on esitatud alternatiivne meetod murrulise tuletisega dife-

rentsiaalvõrrandi rajaülesande ligikaudseks lahendamiseks. Saadud lähislahendite

koonduvuskiiruse hinnangud on antud teoreemiga 6.2.1. Me näeme, et erine-

valt varem vaadeldud meetodist tulemus lähislahendite ülikiire koonduvuse kohta

puudub, mida kinnitavad ka järgmises peatükis läbi viidud numbrilised eksperi-

mendid.

Viimases peatükis on töös saadud teoreetilisi tulemusi testitud numbriliste

eksperimentide abil. Testülesannete lahendamisel saadud arvulistest tulemustest

järeldub, et töös saadud veahinnangud on järgu poolest mitteparandatavad.

Enamus käesoleva töö tulemustest sisalduvad autori poolt avaldatud pub-

likatsioonides [68–73, 93]. Seejuures osa avaldatud tulemusi on käesolevas töös
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laiendatud üldisemale juhule. Saadud tulemusi on tutvustatud üheksal rahvusva-

helisel teaduskonverentsil.
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