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Abstract: This paper relied on the investigation of the properties of the stage-structured model
of coupled larvae and adult mosquito populations’ evolution when parameterized, in general,
by time-varying (or stage-dependent) sequences. In particular, the investigated properties were
the non-negativity of the solution under non-negative initial conditions, the boundedness of the
sequence solutions under any finite non-negative initial conditions, the equilibrium points, and the
convergence conditions to them in the event that the parameterizing sequences converge to finite
limits. Some further properties that were investigated relied on deriving the oscillation conditions
of the solutions under certain conditions of the parameterizations. The use of feedback controls
to decrease the foreseen numbers of alive mosquitoes in future evolution stages is also proposed.
The proposed control actions are exerted on the birth rate and/or the maximum progression rate
sequences. Some illustrative examples are also given.

Keywords: equilibrium points; Beverton–Holt equation; mosquito evolution solution stages;
population controls; asymptotic stability; stability; oscillatory solutions

1. Introduction

It is well-known from the related background literature that mosquitoes undergo complete
metamorphosis following a life cycle of four stages, namely, egg, pupae, larva, and adult. See, for
instance, [1] for an easily comprehensible description of those stages and the duration period of each of
them. Mosquitoes typically stay in an aquatic environment during the first three life stages and in an
aerial environment during their adult stage. Mathematical models are useful to describe the evolution
of the mosquito population. The introduction of sterile mosquitoes in the environment in order to
reduce the fertility of the whole population and control their populations under acceptable levels of
tolerance has been proposed in the background literature. See, for instance, [1–3], and some of the
references therein. Also, the study of releases of sterile mosquitoes has been investigated in [4], with a
Beverton–Holt type model for survivability, as well as in [5]. It is well-known that Beverton–Holt type
models are very popular to study the evolution of species that reproduce by eggs, [4,6–12] such as
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birds, insects, or fish. More general difference equations which generalize those kinds of problems are
studied in detail in [13,14].

The investigation of some evolution models for mosquitoes is directly linked to the evolution
of some transmission diseases of host/vector type. For instance, in [5], a malaria model was studied
with a stage-type evolution type of mosquitoes. See also some references therein and [12]. In [15–21]
several epidemic models, without or with different vaccination and treatment controls of constant
and feedback-type, were discussed and studied in detail. Note that, as far as our current problem at
hand is concerned, it turns out that the use of programmed aerial or aquatic insecticide can also be of
practical interest to control the mosquito populations as a potential alternative to the introduction of
sterile mosquitoes in the habitat of wild mosquitoes. At the same time, it appears to be evident that
some admissibility levels should be imposed on such controls in order to avoid intolerable ecological
damage to the environment.

The paper discusses the properties of the stage-structured model of combined larvae and
adult mosquito populations’ evolution when parameterized by time-varying (or stage-dependent)
sequences. In particular, the investigated properties were the non-negativity of the solution under
non-negative initial conditions, the boundedness of the sequence solutions under finite non-negative
initial conditions, the equilibrium points, and the convergence conditions to them if the parameterizing
sequences converge to limits. Some further studied properties are referred to as the oscillation
conditions of the solutions. The use of control to decrease the foreseen numbers of mosquitoes in
future stages is also proposed. The control actions can be exerted on the birth rate and/or the maximum
progression rate sequences. Physically, such controls can be the use of aquatic or aerial insecticide for
the larvae and adults, respectively, or the introduction of sterile mosquitoes in the natural environment
of wild mosquitoes. Those actions translate into modifying, “ad hoc”, some of the parameterizing
sequences appearing in the model. Some examples are also proposed and discussed in light of the
theoretical modeling developments. Conditions for boundedness and exponentially fast convergence
to the equilibrium point were also investigated. The evolution of both larvae and adult stages through
time was also interpreted in the context of a derived artificial Beverton–Holt equation for each of
the two evolution sequences. Each of those mentioned artificial or Beverton-like equations capture
the necessary information about couplings with the other stage, that is the larvae influence in the
adult sequence evolution and vice versa, which allows us to get additional results on the properties
of the evolution sequences. This translates, in practice, into an additional presence of a one-step
discrete delay in each Beverton-like equation, which is not present in the standard Beverton–Holt
equations involving only one population, which is reflected in the structure of the environment’s
carrying capacity. Illustrative examples are also discussed.

The paper is organized as follows. Section 2 states the proposed model and describes and proves
its main basic properties, namely, is positivity under non-negative initial conditions, as well as its
stability and boundedness and convergence of the solution trajectory sequence. It also gives some
illustrative examples. The section is split into three subsections to facilitate its reading, namely,
the model and its well-posedness according to the positivity of the solution, its boundedness, stability
and convergence, and some worked examples. In particular, it is discussed how the combination of
both stages of larvae and adult can lead to the interpretation of the evolution model by an extended
Beverton–Holt [6,9–11] equation with varying population-dependent carrying capacity. In particular,
the model is equivalently reformulated by absorbing the mutual larvae/adult stage-couplings into the
self-evolution of just one of the stages along two consecutive evolution periods. Section 3 is devoted to
developing control strategies to act eventually on the larvae and adult populations, under eventual
use of feedback, in order to reduce their numbers. The birth rate and/or the maximum progression
rate sequences are controlled with the eventual use of feedback information to reduce the numbers
of those two major stages of the evolution model. A worked illustrative example about controls
implementation is also given. Section 4 presents some simulated examples to check and discuss the
main theoretical results, at the levels of positivity, boundedness, and equilibrium solution, as well as
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the study of existence oscillatory solutions. Furthermore, the influences of some population control
strategies on the solution sequence evolution were tested. Finally, conclusions end the paper. The main
mathematical proofs are allocated in Appendix A to facilitate the reading of the main body sections.

2. The Proposed Model, Its Basic Properties, and Worked Examples

This section describes the basic properties of the evolution sequences of the larvae and adult
subpopulations. In particular, the following topics are focused on: (a) the non-negativity of the
solution sequences under non-negative initial conditions; (b) the boundedness, stability, and possible
convergence to an equilibrium point; (c) the oscillatory behavior; and (d) the separate descriptions of
both evolution population sequences of larvae and adult, by embedding the mutual couplings in each
single stages through an extended Beverton–Holt equation.

2.1. The Model and Its Well-Posedness

Many of the mosquito evolution stages models assume homogeneity without separating the
various metamorphic stages of mosquitoes, especially, those of the larvae and adult population
stages. See, for instance, [22,23] and some of the references therein. One considers the subsequent
stage-structured model of two metamorphic states, namely, larvae xn and adult yn mosquitoes at the
discrete-time generation n. It is assumed that there are no sterile mosquitoes in the studied habitat.

xn+1 =
αnyn

1 + η1nxn
; yn+1 =

γnxn

1 + η2nxn
; ∀n ∈ Z0+ (1)

where Z0+ = Z+ ∪ {0} and αn and γn are the birth rate and the maximum progression rate sequences,
respectively, given by

αn = αn(xn, yn) = fnk1n; γn = γn(xn, yn) = gnk2n (2)

and define the survival probabilities of larvae and adults as s1n = s1(xn , yn) and s2n = s2(xn , yn),
given by:

s1n = s1(xn , yn) =
k1n

1 + η1n
=

αn

fn(1 + η1n)
; s2n = s2(xn , yn) =

k2n

1 + η2n
=

γn

gn(1 + η2n)
(3)

whose respective maxima are given by

k1n = k1n(xn, yn) ; k2n = k2n(xn, yn) (4)

and
fn = f (xn, yn) ; gn = g(xn, yn) (5)

are the number of off-springs produced per adult and the progression rate of larvae or the adult
emergency rate, and

η1n = η1n(xn, yn) ; η2n = η2n(xn, yn) (6)

are density-dependent factors. Note that k1n and k2n are, respectively, merged into αn and γn. Note
from (1) that total extinction of the larvae in finite time occurs in two steps ahead from the extinction of
the adult if the adult extinguish, since xn = 0⇒ yn+1 = 0⇒ xn+2 = 0 . However, xn+1 = αnyn , 0 if
yn , 0. However, the extinction of the adult mosquitoes happens one step ahead of the extinction of
the larvae, as expected, since yn+1 = 0 if xn = 0.

Remark 1. Note from (2) that αn can be reduced by external controls on either fn or k1n, or on both, by reducing,
respectively, the off-springs or the survival probability of the larvae, for instance, by spreading aquatic insecticide
in lagoons and unsuitable static waters, by drying unnecessary or unsuitable artificial or natural water reservoirs,
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or also by introducing in the environment sterile mosquitoes. In the same way, γn can be reduced by external
controls on either gn or k2n, or on both, by reducing, respectively, the survival probability of the adult mosquitoes,
for instance, by spreading aerial insecticide in urban drains and bush water lands or by drying unsuitable
artificial or natural water depots.

It is assumed through the paper that the sequences {αn}
∞

n=0,
{
γn

}∞
n=0,

{
η1n

}∞
n=0, and

{
η2n

}∞
n=0 are

positive and bounded. Note that it is also possible to combine and rearrange the two above equations
under the form of Beverton–Holt evolution population structures of the larvae and adult growing
rules, while defining “ad hoc” carrying capacity-like and intrinsic growth rate-like parameterizations.
The addendum “like” used reflects the feature that the carrying capacity and intrinsic growth rate
are artificially introduced here, while having the purpose of describing the evolution of the species
as it were related to a single stage, that is, a self-evolution description of either the larvae or the
adult population stages. So, with such an equivalent description, the larvae and adult evolution
sequences are self-generated by embedding one population stage in the other one. In this way, the
mutual couplings are deleted at the expense of joining two evolution steps in each evolution equation.
The information of the other species’ evolution stage in each case is contained in a carrying capacity-like
parameter, which depends on two previous stages, as expected. The larvae sequence self-evolution
rule is as follows:

xn+1 =
µKnxn

Kn + (µ− 1)xn
=

αnγn−1xn−1

(1 + η1nxn)(1 + η2,n−1xn−1)
; ∀n ∈ Z+. (7)

Note from the above equation that

(1 + η1nxn)(1 + η2,n−1xn−1)µKnxn − (Kn + (µ− 1)xn)αnγn−1xn−1 = 0

so that,
[(1 + η1nxn)(1 + η2,n−1xn−1)µxn − αnγn−1xn−1]Kn − (µ− 1)αnγn−1xnxn−1 = 0.

Thus, the carrying capacity-like parameter of the larvae evolution is defined as follows for any
intrinsic growth rate-like parameter:

Kn = Kn(µ , xn , xn−1) =
(µ− 1)αnγn−1xnxn−1

(1 + η1nxn)(1 + η2,n−1xn−1)µxn − αnγn−1xn−1
; ∀n(≥ 2) ∈ Z+ (8)

with x−1 = 0, x0 > 0, and x1 = α0x0
1+η10x0

. Note that, as expected, this environment’s carrying capacity-like
parameter for the larvae evolution depends on the current and previous stages adult populations. On
the other hand, one has for the adult sequence a self-evolution rule after combining both equations (1):

yn+1 =
νMnyn

Mn + (ν− 1)yn
=

γnαn−1yn−1

1 + η1,n−1xn−1 + η2nαn−1yn−1
. (9)

Thus, the environment carrying capacity-like parameter of the adult evolution is defined as
follows from (9), and the use of its second identity under the equivalent form xn−1 =

yn
γn−1−η2,n−1 yn

:

Mn = Mn(ν , yn , yn−1) =
(ν−1)γnαn−1 yn yn−1

(1+η1,n−1xn−1+η2nαn−1 yn−1)νyn−γnαn−1 yn−1

=
(ν−1)γnαn−1 yn yn−1(γn−1−η2,n−1 yn)

(γn−1−η2,n−1 yn)[(1+η2nαn−1 yn−1)νyn−γnαn−1 yn−1]+η1,n−1 ynνyn
.

(10)

The following result stands for the non-negativity of the carrying capacity-like parameter of the
larvae sequence, so as to endow it with a physical and biological sense:



Mathematics 2019, 7, 1181 5 of 29

Proposition 1. { Kn}
∞

n=0 Equation (8) is a non-negative real sequence if and only if

xn

xn−1
≥

αnγn−1

(1 + η1nxn)(1 + η2,n−1xn−1)µ
(11)

for all n ∈ Z+. If the intrinsic growth rate-like sequence is redefined in (10) as Kn = Kn(µn , xn , xn−1) via an
intrinsic growth rate-like sequence

{
µn

}∞
n=0 by replacing µ→ µn , then the result still holds if

µn ≥ max
(
1,

αnγn−1xn−1

(1 + η1nxn)(1 + η2,n−1xn−1)xn

)
(12)

for all n ∈ Z+.

The proof of Proposition 1 is given in Appendix A.
The subsequent result stands for the boundedness, non-negativity, and eventual extinction of the

adult mosquitoes and the conditions to get them:

Proposition 2. The following properties hold:

(i) Assume that µ ≥ 1 and x0 ≥ 0 are finite. Then, {xn}
∞

n=0 is bounded with xn+1 ≤ xn; ∀n ∈ Z+

if and only if the sequence { Kn}
∞

n=0 is such that {xn −Kn}
∞

n=0 is non-negative, which is equivalent
to αnγn−1 ≥ (1 + η1nxn)(1 + η2,n−1xn−1)xn/xn−1; ∀n ∈ Z+. A necessary condition for that is that
αnγn−1 ≤ (1 + η1nxn)(1 + η2,n−1xn−1); ∀n ∈ Z+.

In addition, xn+1 < xn ∀n ∈ Z+ if {xn −Kn}
N
n=0 is positive for any N ∈ Z+ and {Kn}

N
n=0 → 0 , implying

that {xn −Kn}
N
n=0 → 0 , which is equivalent to αnγn−1 > (1 + η1nxn)(1 + η2,n−1xn−1)xn/xn−1; ∀n ∈ Z+

and lim
n→∞

(αnγn−1xn−1 − (1 + η1nxn)(1 + η2,n−1xn−1)xn) = 0.

The above results keep valid if µ is stage-dependent with µn ≥ 1 for all n ∈ Z+.

The sequence {xn}
∞

n=0 is strictly decreasing if and only if {xn −Kn}
∞

n=0 is positive, that is, if and
only if αnγn−1 < (1 + η1nxn)(1 + η2,n−1xn−1)xn/xn−1; ∀n ∈ Z+. A necessary condition for that is
αnγn−1 < (1 + η1nxn)(1 + η2,n−1xn−1); ∀n ∈ Z+.

(ii) Assume that µ > 1 and x0 > 0 are finite. Then,

x−1
n+1 − µ

−(n+1)∑n
i=2 µ

i (1+η1ixi)(1+η2,i−1xi−1)µxi−αnγi−1xi−1
αiγi−1xixi−1

= x0µ−(n+1) < x0 < +∞;∀n(≥ 2) ∈ Z+

and

lim
n→∞

x−1
n+1 − µ

−(n+1)
n∑

i=2

µi (1 + η1ixi)(1 + η2,i−1xi−1)µxi − αnγi−1xi−1

αiγi−1xixi−1

 = x0 lim
n→∞

µ−(n+1) = 0.

The proof of Proposition 2 is given in Appendix A.
The idea used in the proof of Proposition 2 (ii) consisted of using the population’s inverses to

build the evolution of the population’s inverse sequence was proposed by Stevic [6] when proving
the so-called Cushing–Henson conjecture with a new short proof. Basically, note that although the
Beverton–Holt equation is nonlinear, its inverse is linear, which facilitates the calculation of the
population evolution. The idea was later on exploited in [7–9] to introduce control theory tools for such
an equation. Basically, the carrying capacity inverse can sometimes be modified by convenience in a
control context by using feedback to improve the expected economic results in fisheries, aquaculture
exploitations, etc. by acting, for instance, on the water temperature or food delivery in a convenient
way. Further results which relate the carrying capacity sequence related to the larvae population
evolution as well as solution boundedness properties are discussed in the next result.
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Proposition 3. Assume that {xn −Kn}
∞

n=0 ⊆ [0 , ∞), for which sufficient conditions have been given in
Proposition 2, and that µ ≥ 2. Then, { Kn}

∞

n=0 is a nonnegative real sequence and { xn}
∞

n=0 is bounded if its
initial value is non-negative and finite. If µ > 2 then { Kn}

∞

n=0 is a positive sequence.

The proof of Proposition 3 is given in Appendix A. Note that Proposition 3 basically establishes
that the larvae numbers at each evaluation are non-less than the carrying capacity-like parameter, as it
can be expected from the parallel results in usual models based on of the Beverton–Holt equation. See,
for instance, [6–11] and some references therein.

2.2. Stability and Convergence of the Solution

The next result proves the obvious expected fact due to the nature of the problem, that the
sequences of populations of larvae and adults jointly extinguish at the same rate in the event that
extinction occurs. First note from (1) that

xn+2

yn+2
=
αn+1(1 + η2,n+1xn+1)

γn+1(1 + η1,n+1xn+1)

yn+1

xn+1
=
αn+1γn(1 + η2,n+1xn+1)(1 + η1n+1xn)

γn+1αn(1 + η1,n+1xn+1)(1 + η2nxn)

xn

yn
(13)

which is being used as an auxiliary equation in the proof of the subsequent result. Such a result
establishes that the populations of larvae and adults are bounded if they converge asymptotically to
zero (extinction). In the event that extinction occurs, it has to jointly happen for both populations of
larvae and adult, as expected by heuristic considerations.

Proposition 4. If
{ x2n

y2n

}∞
n=0
→ 0 then

{ y2n+1
x2n+1

}∞
n=0
→ 0 , or if

{ x2n
y2n

}∞
n=0
→∞ then

{ y2n+1
x2n+1

}∞
n=0
→∞ , it follows

that {xn}
∞

n=0 → 0 and
{
yn

}∞
n=0 → 0 , while they are also bounded as a result.

The proof of Proposition 4 is given in Appendix A.
The subsequent result establishes that, under nonnegative finite initial conditions, the sequences

generated by the two equations of (1) for larvae and adult, respectively, are bounded without invoking
related properties on the alternative description of the carrying capacity-like sequence, as it was done
in Proposition 2.

Proposition 5. Assume that x0 ≥ 0 and y0 ≥ 0 are finite. Then, {xn}
∞

n=0 and
{
yn

}∞
n=0 are non-negative and

bounded. In particular, xn+1 ≤
αnγn−1
η2,n−1

and yn+1 ≤
γn
η2n

; ∀n ∈ Z0+.

The proof of Proposition 5 is given in Appendix A.
The subsequent technical result is supported by some calculations of Appendix A and it is of

interest to obtain further results later on. In particular, the results emphasize both self-evolution
descriptions of the larvae sequence progress and its evolution via couplings to the adult stage evolution.

Proposition 6. The following result stands to rewrite both equation (1) with equivalent expressions depending
only on one of the larvae or the adult populations.

xn =
yn+1

γn − η2nyn+1
for n ≥ 1 (14)

xn+1 =
(γn − η2nyn+1)αnyn

γn + (η1n − η2n)yn+1
for n ≥ 1 (15)

xn+1 =
αnγn−1xn−1

(1 + η1nxn)(1 + η2,n−1xn−1)
for n ≥ 1 (16)
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xn+1 =
(γn−η2n yn+1)αn yn [ γn−1+(η1,n−1−η2,n−1(1+η2nαn−1 yn−1))yn+η2nγn−1αn−1 yn−1]

γn[ γn−1+(η1,n−1−η2,n−1(1+η2nαn−1 yn−1))yn+η2nγn−1αn−1 yn−1]+(η1n−η2n)γn(γn−1−η2,n−1 yn)αn−1 yn−1

for n ≥ 1.
(17)

The proof of Proposition 6 is given in Appendix A.
The subsequent result discusses the existence and stability and the nonexistence of a positive

equilibrium point. See also [1] and [12] for similar equilibrium studies under invariant parameterizations
in this kind of model and [13,14] for studies of convergence of classes of more general discrete sequences
to their equilibrium points.

Proposition 7. Assume that {αn}
∞

n=0 → α ,
{
γn

}∞
n=0 → γ ,

{
η1n

}∞
n=0 → η1 , and

{
η2n

}∞
n=0 → η2 with those

limits being positive. Then, the following properties hold:
There exists a unique globally stable non-negative equilibrium point (xe , ye) of (1), if and only if αγ ≥ 1

implying extinction, that is (xe , ye) = (0 , 0), if and only if αγ = 1. The nonzero equilibrium point is

xe1 =

√
(η1+η2)

2+4η1η2(αγ−1)−(η1+η2)

2η1η2
;

ye =
γ

(√
(η1+η2)

2+4η1η2(αγ−1)−η1−η2

)
2η1η2+η2

(√
(η1+η2)

2+4η1η2(αγ−1)−η1−η2

) .

If the equilibrium point is zero then it is not locally asymptotically stable.
The positive equilibrium point is locally asymptotically stable if and only if 1 <

√
αγ < 1

2

(
1− η2

η1

)
+√

(η1+η2)
2+4η1η2(αγ−1)
2η1

.

A sufficient condition for Property (iii) to hold is 1
2

(
1− η2

η1

)
>
√
αγ−

√
(η1+η2)

2+4η1η2(αγ−1)
2η1

and a necessary
condition for such a condition to hold is

1 >
√
αγ−

√
η1η2

√
αγ− 1

η1
.

The proof of Proposition 7 is given in Appendix A.
Proposition 7 is now revisited under the removal of the assumption {αn}

∞

n=0 → α ,
{
γn

}∞
n=0 → γ ,{

η1n
}∞
n=0 → η1 , and

{
η2n

}∞
n=0 → η2 .

Proposition 8. Assume that

(1) 1
γn
≤ αn <

αn−1γn−2xn−2(1+η1nxn)(1+η2,n−1xn−1)
γn−1xn−1(1+η1,n−1xn−1)(1+η2,n−2xn−2)

≤ 0; ∀n(≥ n0) ∈ Z0+ for some n0 ∈ Z0+,

(2) lim sup
n→∞

(
αn −

αn−1γn−2xn−2(1+η1nxn)(1+η2,n−1xn−1)
γn−1xn−1(1+η1,n−1xn−1)(1+η2,n−2xn−2)

)
≤ 0,

(3) lim inf
n→∞

(
αn − γ−1

n

)
≥ 0.

Then, the populations of larvae and adult mosquitoes converge asymptotically to zero at an exponential rate.
The result folds if condition 2 is replaced with the stronger one:

lim sup
n→∞

(
αn −

αn−1γn−2xn−2(1 + η1nxn)(1 + η2,n−1xn−1)

γn−1xn−1(1 + η1,n−1xn−1)(1 + η2,n−2xn−2)

)
≤ 0.

The proof of Proposition 8 is given in Appendix A.
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Since the sequences {xn}
∞

n=0 and
{
yn

}∞
n=0 are non-negative and bounded, then there exist

non-negative real constants Xm, XM(≥ Xm), Ym, and YM(≥ Ym), such that Xm ≤ xn ≤ XM and
Ym ≤ yn ≤ YM; ∀n ∈ Z0+. Those inequalities exhibit boundedness and stability of the populations of
larvae and adults, and are also compatible with their potential convergence to the equilibrium points
and with eventual presence of bounded oscillations discussed later on. Note also that the constants
Xm, XM, Ym and are related as follows:

Xm ≤ xn+1 =
αnyn

1 + η1nxn
≤

αnYM

1 + η1nXm
⇒ YM ≥

Xm

αn
(1 + η1nXm)

XM ≥ xn+1 =
αnyn

1 + η1nxn
≥

αnYm

1 + η1nXM
⇒ Ym ≤

XM

αn
(1 + η1nXM)

Again note from (1) that

xn+1 =
αnγn−1xn−1

(1 + η1nxn)(1 + η2,n−1xn−1)
≤ min

(
αnYM

1 + η1nXm
,

αnγn−1XM

(1 + η1nXm)(1 + η2,n−1Xm)

)
.

If gn = xn+1/xn, one gets:

gn ≤ g0nM =
αn

Xm(1 + η1nXm)
min

(
YM ,

γn−1XM

1 + η2,n−1Xm

)
.

A refinement of the above bound can be obtained by writing xn = gn−1xn−1 leading to

gn ≤ g1nM =
αn

Xm(1 + η1ngn−1Xm)
min

(
YM ,

γn−1XM

1 + η2,n−1Xm

)
.

The combined use of the two above upper bounds leads to

gn ≤ gnM =
αn

Xm
min

(
YM ,

γn−1XM

1 + η2,n−1Xm

)
min

[
1

1 + η1nXm
,

1
1 + η1ngn−1Xm

]
.

Also, one can get lower bounds as follows:

gn ≥ g0nm = αn
XM(1+η1nXM)

max
(
Ym , γn−1Xm

1+η2,n−1XM

)
gn ≥ g1nm = αn

XM(1+η1n gn−1XM)
max

(
Ym , γn−1Xm

1+η2,n−1XM

)
gn ≥ gnm = αn

XM
max

(
Ym , γn−1Xm

1+η2,n−1XM

)
max

[
1

1+η1nXM
, 1

1+η1n gn−1XM

]
.

Note also that we can use the expression xn =
[∏n−1

i=k gi
]
xk for any k ∈ Z0+. This yields the sets of

upper bounds and lower bounds:

gn ≤ gnM(k, n) = αn
Xm

min
(
YM , γn−1XM

1+η2,n−1[
∏n−2

i=k gi]Xm

)
min

[
1

1+η1nXm
, 1

1+η1n[
∏n−1

i=k gi]Xm

]
; ∀k ∈ Z0+

gn ≥ gnm(k, n) = αn
XM

max
(
Ym , γn−1Xm

1+η2,n−1[
∏n−2

i=k gi]XM

)
max

[
1

1+η1nXM
, 1

1+η1n[
∏n−2

i=k gi]XM

]
; ∀k ∈ Z0+

In the following result, one considers potential constant sequences as the trivial case of nonstrict
oscillatory sequences in the most general case. For other interesting investigations of oscillatory
solutions in discrete sequences, one can refer to [10,12]

Proposition 9. The subsequent properties hold:
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(i) Assume that for each given n ∈ Z0+, there exist finite k1 = k1(n) ∈ Z0+ and k2 = k2(k1(n)) =

k2(n)(> k1) ∈ Z+, such that either
∏n+k1(n)

i=n [gi] ≤ 1 and
∏n+k2(n)

i=n+k1(n)+1
[gi] ≥ 1 or

∏n+k1(n)
i=n [gi] ≥ 1 and∏n+k2(n)

i=n+k1(n)+1
[gi] ≤ 1. Then, the mosquito larvae evolution solution {xn}

∞

n=0 is oscillatory.

The solution {xn}
∞

n=0 is strictly oscillatory if in each of the above double conditions at least one of the
inequalities is strict.

The oscillatory solution {xn}
∞

n=0 is periodic of, in general, a time-varying (or stage-dependent) oscillation
period, if and only if there exists a strictly increasing sequence {kn}

∞

n=0 with kn+1 − kn ≤ ks < +∞, such

that
∏k j+1

i=k j
[gi] = 1; ∀ j ∈ Z0+.

(ii) A sufficient condition for the solution {xn}
∞

n=0 to be oscillatory is that for any fixed non-negative integer
number or any set of non-negative integer numbers (depending on the available computational possibilities)
k(i) ≤ i− 2 for i = n, n + 1, . . . . , n + k2 and each n ∈ Z0+:

either
∏n+k1(n)

i=n [giM(k(i), i)] ≤ 1 and
∏n+k2(n)

i=n+k1(n)+1
[gim(k(i), i)] ≤ 1,

or
∏n+k1(n)

i=n [gim(k(i), i)] ≥ 1 and
∏n+k2(n)

i=n+k1(n)+1
[giM(k(i), i)] ≤ 1.

(iii) Different alternative sufficiency-type conditions for the solution {xn}
∞

n=0 to be oscillatory are obtained with
any of the following replacements in the sufficiency-type conditions of Property (ii):

giM(k(i), i)→ g0iM , g1iM , g2iM or by the alternative use of any of the combination of minima appearing
in their definitions,

gim(k(i), i)→ g0im , g1im , g2im or by the alternative use of any of the combination of maxima appearing
in their definitions.

It turns out that an oscillatory solution of the larvae solution sequence does not necessarily imply
an oscillatory solution of the adult sequence.

2.3. Worked Examples

Example 1. Oscillatory larvae solution of period two. From (1), one can write equivalently:

yn = (1 + η1nxn)
xn+1

αn
; yn+1 =

γnxn

1 + η2nxn

so that yn+1

yn
=

αnγnxn

(1 + η1nxn)(1 + η2nxn)xn+1
=

αnγn

(1 + η1nxn)(1 + η2nxn)gn

then

αnγn

(1 + η1nXM)(1 + η2nXM)
max

(
Xm

XM
,

1
gn

)
≤

yn+1

yn
≤

αnγn

(1 + η1nXm)(1 + η2nXm)
min

(
XM

Xm
,

1
gn

)
so that if xn+1 = gnxn and yn+1 = fnyn then:

(a) If gn ≥ 1 then αnγn
(1+η1nXM)(1+η2nXM)

max
(

Xm
XM

, 1
gn

)
≤ fn ≤

αnγn
(1+η1nXm)(1+η2nXm)gn

.

(b) If gn ≤ 1 then αnγn
(1+η1nXM)(1+η2nXM)gn

≤ fn ≤
αnγn

(1+η1nXm)(1+η2nXm)
min

(XM
Xm

, 1
gn

)
.

Note that an oscillation in the larvae solution sequence does not necessarily imply an oscillation in the
adult solution sequence of the same period.
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Assume for instance that g2n > 1 and g2n+1 < 1 for any n ∈ Z0+. It is possible that

f2n ≤
α2nγ2n

(1 + η1,2nXm)(1 + η2,2nXm)g2n
≤ 1withg2n ≥

α2nγ2n

(1 + η1,2nXm)(1 + η2,2nXm)
> 1; ∀n ∈ Z0+

if α2nγ2n > (1 + η1,2nXm)(1 + η2,2nXm); ∀n ∈ Z0+, and f2n+1 ≤
α2n+1γ2n+1

(1+η1,2n+1Xm)(1+η2,2n+1Xm)g2n+1
≤ 1, with

1 > g2n+1 ≥
α2n+1γ2n+1

(1+η1,2n+1Xm)(1+η2,2n+1Xm)
; ∀n ∈ Z0+.

if α2n+1γ2n+1 ≤ (1 + η1,2n+1Xm)(1 + η2,2n+1Xm)g2n+1 < (1 + η1,2n+1Xm)(1 + η2,2n+1Xm); ∀n ∈ Z0+.
So, in this case, the larvae solution has an oscillatory solution of period two, while the adult solution has no
oscillatory solution of such a period.

Example 2. Limit cycle of two levels of the larvae solution for model time-varying parameterization. Assume that
for some n0 ∈ Z0+ and any n(≥ n0 + 1) ∈ Z+, one has a solution xn+1 = xn−1 = a xn−2 = xn = b for the larvae
evolution then one has from Equation (A2) of Appendix A that αnγn−1

(1+η1nb)(1+η2,n−1a)
=

αn+1γn

(1+η1,n+1a)(1+η2nb)
= 1

and then

αn =
(1 + η1nb)(1 + η2,n−1a)

γn−1
,αn+1 =

(1 + η1,n+1a)(1 + η2nb)
γn

.

Therefore, the birth rate subsequence

{αn}
∞
n0

=

{
(1 + η1nb)(1 + η2,n−1a)

γn−1
,
(1 + η1,n+1a)(1 + η2nb)

γn
,

(1 + η1n+2b)(1 + η2na)
γn+1

, . . .
}

generates a cycle of a period of two stages in the larvae solution sequence on [n0 + 1 , ∞), given by the
subsequence {xn}

∞

n0+1 = {a , b , a , b, a , . . . . . .} ⊂ {xn}
∞

n=0. If a = b then this subsequence of the solution is, in
particular, constant. The above periodic oscillatory sequence for the larvae evolution does not imply that the
solution for the adults’ evolution necessarily also has a periodic solution subsequence. To this end, additional
constraints are needed. Now, assume that for some n01 ∈ Z0+ and any n(≥ n01 + 1) ∈ Z+, one has a solution
yn+1 = yn−1 = c yn−2 = yn = d for the adult mosquito evolution. Then, one can conclude from (A.3) of
Appendix A that

xn+1 =
αnyn

1 + η1nxn
; yn+1 =

γnxn

1 + η2nxn
;

and then
γn =

γn−1+(η1,n−1−η2,n−1(1+η2nαn−1c))d+η2nγn−1αn−1c

αn−1(γn−1−η2,n−1d)
;

γn+1 =
γn+(η1n−η2n(1+η2,n+1αnd))c+η2,n+1γnαnd

αn(γn−η2nc) .

Therefore, the progression rate subsequence

{
γn

}∞
n01

=
{
γn−1+(η1,n−1−η2,n−1(1+η2nαn−1c))d+η2nγn−1αn−1c

αn−1(γn−1−η2,n−1d)
,
γn+(η1n−η2n(1+η2,n+1αnd))c+η2,n+1γnαnd

αn(γn−η2nc)

,
γn+1+(η1,n+1−η2,n+1(1+η2,n+2αnc))d+η2,n+2γnαnc

αn+1(γn+1−η2,n+1d)
, . . .

} (18)

generates a cycle of a period of two stages in the adult solution sequence on [n01 + 1 , ∞) given by the subsequence{
yn

}∞
n01+1 = {c , d , c , d, c , . . . . . .} ⊂ {xn}

∞

n=0. Note that both cycles are achievable in an independent fashion,
each through its respective sequence of gains. If the birth and the progression rates are generated by (17) and
(18), then both solutions are periodic of period two stages on the interval max(n0 , n01) + 1. On the other hand,
if the birth rate (17) does not hold for n ≥ n0, but instead one has:

lim
n→∞

(
α2n+1 −

(1 + η1,2n+1b)(1 + η2,2n−1a)
γ2n

)
= 0, lim

n→∞

(
α2n −

(1 + η1,2na)(1 + η2,2n−1b)
γ2n−1

)
= 0
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then, the solution of the larvae evolution {xn}
∞

n0+1 converges to a limit cycle. A similar conclusion applies for the
solution sequence of the adult mosquitoes if (18) does not hold, while it is replaced with a limit condition for the
progression rate.

Example 3. Limit cycle of two levels of the larvae solution for model constant parameterization. If a
stage-independent parameterization is considered in Example 2 with αn = α, γn = γ, η1n = η1, η2n = η2;
∀n ∈ Z0+, then one can conclude from the two equations of (1) in Example 2 that

a = αd
1+η1b , b = αc

1+η1a

c = γb
1+η2b , d =

γa
1+η2a

(19)

subject to max(c , d) < γ/η2, since a = d
γ−η2d and b = c

γ−η2c , in order to guarantee the non-negativity and
boundedness of the oscillation if it exists. Furthermore, direct calculations with the various equations in (19)
conclude that

a
b = d

c
1+η1a
1+η1b ,

c
d = b

a
1+η2a
1+η2b = c

d
1+η1b
1+η1a

1+η2a
1+η2b ⇒

(1+η1b)(1+η2a)
(1+η1a)(1+η2b) = 1⇒ (a− b)η1 = (a− b)η2.

(20)

Note that:

(a) At the equilibrium point, a = b so that η1 and η2 can be either identical or distinct.
(b) If a cycle of a two-stage period being distinct of an equilibrium point occurs, then a , b so that η = η1 = η2.

In the above second case, Equation (19) becomes:

a = αd
1+ηb , b = αc

1+ηa

c = γb
1+ηb , d =

γa
1+ηa .

(21)

Thus,
c = γb

1+ηb =
γ

1+ηb
αc

1+ηa ⇒
γ

1+ηb
α

1+ηa = 1⇒ 1 + ηb =
αγ

1+ηa ⇒

b = b(a) = αγ−ηa−1
(1+ηa)η

(22)

which implies in addition that for the existence of non-negative cycle values, a has to be small enough to satisfy
the constraint a < αγ−1

η . Also,

c = c(a) =
γ(αγ− ηa− 1)

η(1 + ηa)(1 + ηb)
(23)

d = d(a) =
γa

1 + ηa
. (24)

As a result, any two-stage period cycle, for both non-negative populations of larvae and adult mosquitoes,
that is not coincident with the equilibrium point, has to satisfy η1 = η2, αγ > 1, a < αγ−1

η , and for a given a,
b(a), c(a), and d(a) are given by (22)–(24). The extinction case is obtained as a particular case, implying that
the cycle coincides with the zero equilibrium point under a nonstrict upper bounding constraint of a leading to
0 = a ≤ αγ−1

η , implying αγ = 1 and b = c = d = 0 from (21) and (22).

3. Monitored Control of the Mosquito Populations

It has been verified that the intensity of transmission can be determined through the vectorial
capacity, equivalent to the basic reproduction ratio of a disease. It describes the total number of
potentially infectious bites that would occur from all the mosquitoes in an area biting a single infective
human along a single day. The so-called McDonald model is very sensitive to interventions focused
on adult mosquitoes. In fact, such interventions cause a reduction in both the probability of vector
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survival and the ratio of vector to humans. The following items have to be properly identified and
fixed for the monitored control intervention:

(a) The physical space of intervention;
(b) The intensity and periodicity of the intervention, taking into account general details

and information, such as seasonality influencing temperature, density, and larval food
amounts availability;

(c) The appropriate period of the day of intervention, for instance, at nights, for the case of Anopheles,
where mosquitoes are more active;

(d) The use of large allowed amounts of insecticide compatible with the ecosystem preservation and
limited health influence damage.

Details on potential control strategies and protocols to follow can be found in [24,25] and some
references therein. The proposed controls are performed by manipulation of the progression rates
which depend, in general, on temperature, larval diet and density effects, and, of course, on the type of
mosquito [26,27].

The use of controls, subject to feedback information, for the monitored reductions of larvae and
adult mosquito populations is developed in this section. Its practical implementation has to take into
account the constraints generated by the considerations of the above items a) to c) by the insecticide
company’s planning.

Assume that for some real sequences
{
α̃n

}∞
n=0 ⊆ [0 , 1] and

{
γ̃n

}∞
n=0 ⊆ [0 , 1], αn = (1− α̃n)α;

γn = (1− γ̃n)γ. Then, the interpretation of the necessary and sufficient condition of Proposition 2
guarantees that xn+1 ≤ xn; ∀n ∈ Z+ is if xn−1 , 0

(1− α̃n)(1− γ̃n) = 1 + α̃nγ̃n − (α̃n + γ̃n) ≤ (1 + η1nxn)(1 + η2,n−1xn−1)xn/αγxn−1

= (1 + η1nη2,n−1xnxn−1 + η1nxn + η2,n−1xn−1)/αγxn−1

≤

(
1 + η1nη2,n−1x2

n−1 + 2(η1n + η2,n−1)xn−1
)
/αγxn−1

= (1 + η1nη2,n−1xn−1 + 2(η1n + η2,n−1))/αγ; ∀n ∈ Z+

or

α̃nγ̃n − (α̃n + γ̃n) ≤
1
αγ

(η1nη2,n−1xn−1 + 2(η1n + η2,n−1)) +
1− αγ
αγ

.

Since 0 ≤ αγ ≤ 1 and 0 ≤ α̃nγ̃n ≤ 1, then the above inequality is trivially true, since any nonpositive
real number is less than or equal to some non-negative real number.

The density factors η1n and η2n could decrease as the populations decrease by the action of the
controls, leading to an increase of the survival probabilities. However, this feature is neglected in
the model.

Remark 2. Note from the subsequent equilibrium point equations obtained in Proposition 7:

xe2 = −

√
(η1 + η2)

2 + 4η1η2(αγ− 1) + (η1 + η2)

2η1η2
; ye =

γxe

1 + η2xe
.

that the equilibrium point under the controls has a smaller value related to the control-free situation if α is
replaced with αc < α and γ is replaced with γc < γ, being smaller limits of the corresponding gain sequences,
assumed to be convergent, through the use of insecticide dropping or the introduction or sterile mosquitoes, under
the kept constraint αγ ≥ 1, compared to the control- free case.

Now, Equation (7) becomes modified as follows:

xn+1 =
µKnxn

Kn + (µ− 1)xn
=

αγ(1− α̃n)(1− γ̃n−1)xn−1

(1 + η1nxn)(1 + η2,n−1xn−1)
. (25)
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The decreasing of the larvae population at the (n + 1) stage by the control action related to the
uncontrolled case is xn+1

x0
n+1

= (1− α̃n)(1− γ̃n−1). From the inverses of Equation (1), and provided that

xn , 0 , yn , 0, one obtains the following evolutions of the inverse populations of larvae and adults:

x−1
n+1 =

1 + η1nxn

αnyn
= α−1

n y−1
n (1 + η1nxn); y−1

n+1 =
1 + η2nxn

γnxn
= γ−1

n

(
x−1

n + η2n
)
. (26)

Note that if x0 , 0 and y0 , 0, then xn , 0 , yn , 0; ∀n ∈ Z0+ and the above equations are
well-posed. The use of the inverses sometimes facilitates the calculation for several stages ahead due
to the nonlinear forms of (1), which makes their inverses have a linear evolution, [4,6,9,11]. Note that
the above equations can be written more compactly as follows: x−1

n+1
y−1

n+1

 = [
0 α−1

n (1 + η1nxn)

γ−1
n 0

] [
x−1

n
y−1

n

]
+

[
0

γ−1
n η2n

]
; ∀n ∈ Z0+

so that along two evolution stages, one has:

[
x−1

n+2
y−1

n+2

]
=

 0 α−1
n+1(1 + η1,n+1xn+1)

γ−1
n+1 0

  x−1
n+1

y−1
n+1

+ [
0

γ−1
n+1η2,n+1

]
=

 0 α−1
n+1(1 + η1,n+1xn+1)

γ−1
n+1 0

 ([
0 α−1

n (1 + η1nxn)

γ−1
n 0

] [
x−1

n
y−1

n

]
+

[
0

γ−1
n η2n

])
+

[
0

γ−1
n+1η2,n+1

]
=

 α−1
n+1γ

−1
n (1 + η1,n+1xn+1) 0

0 α−1
n γ−1

n+1(1 + η1nxn)

 [
x−1

n
y−1

n

]
+

 0 α−1
n+1(1 + η1,n+1xn+1)

γ−1
n+1 0

 [
0

γ−1
n η2n

]
+

[
0

γ−1
n+1η2,n+1

]
=

 α−1
n+1γ

−1
n (1 + η1,n+1xn+1) 0

0 α−1
n γ−1

n+1(1 + η1nxn)

 [
x−1

n
y−1

n

]
+

 α−1
n+1γ

−1
n η2n(1 + η1,n+1xn+1)

γ−1
n+1η2,n+1

 ; ∀n ∈ Z0+.

(27)
It turns out that for n even, the matrix of the dynamics of the above inverse system is diagonal

and for n odd it is antidiagonal. In the following, the solution for n even is addressed a follows. Define
the state sequence vector of the inverse system as xI

n =
(
x−1

n , y−1
n

)
T, parameterized by:

An = An(xn , xn+1 , n , n + 1) =

 α−1
n+1γ

−1
n (1 + η1,n+1xn+1) 0

0 α−1
n γ−1

n+1(1 + η1nxn)

 (28)

bn = bn(xn+1 , n , n + 1) =

 α−1
n+1γ

−1
n η2n(1 + η1,n+1xn+1)

γ−1
n+1η2,n+1

. (29)

Then,
xI

2n+2 = A2nxI
2n + b2n ; ∀n ∈ Z0+. (30)

By using recursive computation, one gets:

xI
2n+2 =

n∏
i=0

[A2i] xI
0 +

n∑
i=0

n−i∏
j=0

[
A2 j

]
b2i; ∀n ∈ Z0+. (31)

By replacing the subscript n→ 2n in (27), one gets:

xI
2n+2 =

 α−1
2n+1γ

−1
2n (1 + η1,2n+1x2n+1) 0

0 α−1
2nγ
−1
2n+1(1 + η1,2nx2n)

 xI
2n

+

 α−1
2n+1γ

−1
2nη2,2n(1 + η1,2n+1x2n+1)

γ−1
2n+1η2,2n+1

 ; ∀n ∈ Z0+.
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Assume that for some K2n =

[
K11

2n K12
2n

K21
2n K22

2n

]
, the following constraint holds for some α2n+1 , γ2n+1

b2n =

 α−1
2n+1γ

−1
2nη2,2n(1 + η1,2n+1x2n+1)

γ−1
2n+1η2,2n+1

 =  α−1
2n+1 0
0 γ−1

2n+1

[ K11
2n K12

2n
K21

2n K22
2n

]
xI

2n

=

 α−1
2n+1 0
0 γ−1

2n+1

 [
K11

2nx−1
2n + K12

2ny−1
2n

K21
2nx−1

2n + K22
2ny−1

2n

]
; ∀n ∈ Z0+

or equivalently,[
α2n+1 0

0 γ2n+1

]
b2n =

[
K11

2n K12
2n

K21
2n K22

2n

]
xI

2n=

[
K11

2nx−1
2n + K12

2ny−1
2n

K21
2nx−1

2n + K22
2ny−1

2n

]
; ∀n ∈ Z0+

such that the following identity holds for some prefixed suitable matrix sequence
{
A∗2n

}∞
n=0

:

A2n +

 α−1
2n+1 0
0 γ−1

2n+1

[ K11
2n K12

2n
K21

2n K22
2n

]
= A∗2n; ∀n ∈ Z0+

whose convergence abscissa sequence is
{
ρ2n

}∞
n=0 ∈

(
0 , ρ∗2n

)
subject to the constraint

lim in f
n→∞

∏
∞

n=0

[
ρ∗2n

]
> 0, which avoids the uncontrolled, unbounded growing of the mosquito population,

which is equivalent to the asymptotic convergence to zero of the larvae and adult populations in an
infinite number of evolution stages.

Note that
{
A∗2n

}∞
n=0

defines the suited evolution of the dynamics of the inverse system for the

selection of the maximum progression gains α2n+i , γ2n+i; i ∈ Z+. However, the sequence
{
A∗2n

}∞
n=0

is
not, in practice, of full design freedom. In particular, it is needed to prevent the environment against
untolerated damage due to abusive amounts of insecticide drops. It also has to accommodate for
the temperature (a key factor in the abundance of mosquitoes in a certain environment), larval diet
supply, and density effects. Therefore, the intensity of the intervention has to take into account the
seasonal issues and the control of environment damage under admissible bounds. Note also that if
lim

n→∞

∏
∞

n=0

[
ρ∗2n

]
= 0, then the state sequence of the population’s inverse converges to zero so that the

populations of larvae and adult diverge to infinity, which should be avoided if possible. Now, define
the subsequent subsets of Z0+:

N1 =
{

n ∈ Z0+ : ρ2n > 1
}

; N2 =
{

n ∈ Z0+ : ρ2n < 1
}

; N3 =
{

n ∈ Z0+ : ρ2n = 1
}

and N3 , ∅ if N1 = ∅ and 2 , ∅. Thus, the condition lim in f
N→∞

∏N
n=0

[
ρ∗2n

]
> 0 might be characterized

alternatively as follows which is proven in Appendix A:

Assertion 1. lim in f
n→∞

∏
∞

n=0

[
ρ∗2n

]
> 0 if and only if there is a real constant ε > 0 such that:

∏
n∈N1

[
ρ∗2n

]
− ε/

(∏
n∈N2

[
ρ∗2n

])
≥ 0 i f N1 , ∅

ε ≤
(∏

n∈N2

[
ρ∗2n

])
i f N1 = ∅.

A worked example about population controls follows:
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Example 4. One and two stage ahead monitoring controls. The manipulation of the birth rate and the maximum
progression rate sequences as external controls to govern the population growth can be programmed stage-by-stage
in the life cycles of mosquitoes or several stages ahead. Assume that:

αn ∈

[
α
(1)
n , α(2)n

]
,γn ∈

[
γ
(1)
n , γ(2)n

]
; ∀n ∈ Z0+

with
α
(1)
n =

(
1− α̃(2)n

)
α0

n,α(2)n =
(
1− α̃(1)n

)
α0

n,γ(1)n =
(
1− γ̃(2)n

)
γ0

n,γ(2)n =
(
1− γ̃(1)n

)
γ0

n;

∀n ∈ Z0+

with 1 ≥ α̃(2)n > α̃
(1)
n ≥ 0 and 1 ≥ γ̃(2)n > γ̃

(1)
n ≥ 0; ∀n ∈ Z0+ such that α0

n and γ0
n are the control-free nominal

values, which can be constant α = α0 and γ = γ0 or not. Note that such a kind of maximum saturating
constraints α̃(2)n , γ̃(2)n are needed to avoid unsuitable, intolerable, excessive environment damage (for instance, to
water lands, water reservoirs, nearby bush, agricultural camps, or plantations, wildlife etc.), for instance, due
to distribution or overdoses of insecticide. The lower constraints are due to the lack of possibility of physically
extinguishing the whole population of mosquitoes, except in extremely small isolated environments.

(a) One-stage-ahead minimization population monitoring: One gets from (1) that (26) holds. So, given the
current values of x2n and y2n, one concludes that their minimum values at the next stage (i.e., the respective

maxima of their inverses) for α2n ∈

[
α
(1)
2n , α(2)2n

]
, γ2n ∈

[
γ
(1)
2n , γ(2)2n

]
are the subsequent ones:

min
α2n∈[α

(1)
2n , α(2)2n ]

x2n+1(x2n, y2n) = x2n+1

(
α
(1)
2n

)
=

(
1−α̃(2)2n

)
α0

2n y2n

1+η1,2nx2n

min
γ2n∈[γ

(1)
2n , γ(2)2n ]

y2n+1(x2n, y2n) = y2n+1

(
γ
(1)
2n

)
=

(
1−γ̃(2)2n

)
α0

2nx2n

1+η2,2nx2n

(b) Two-stage ahead minimization population monitoring: One concludes from (30) and (31) that, given x2n,
then

xI
2n+2 =

 α−1
2n+1γ

−1
2n (1 + η1,2n+1x2n+1) 0

0 α−1
2nγ
−1
2n+1(1 + η1,2nx2n)

 xI
2n

+

 α−1
2n+1γ

−1
2nη2,2n(1 + η1,2n+1x2n+1)

γ−1
2n+1η2,2n+1

; ∀n ∈ Z0+

x−1
2n+2 = α−1

2n+1γ
−1
2n (1 + η1,2n+1x2n+1)x−1

2n + α−1
2n+1γ

−1
2nη2,2n(1 + η1,2n+1x2n+1)

and then, for already given x2n and x2n+1, one has

max
α2n∈[α

(1)
2n , α(2)2n ] ,γ2n∈[γ

(1)
2n , γ(2)2n ]

x−1
2n+2(x2n+1, x2n) =

1 + η1,2n+1x2n+1 + η2,2n(1 + η1,2n+1x2n+1)x2n(
1− α̃(2)2n+1

)(
1− γ̃(2)2n

)
x2n

.

However, note that

max
α2n∈[α

(1)
2n , α(2)2n ] ,γ2n∈[γ

(1)
2n , γ(2)2n ] max

α2n∈[α
(1)
2n , α

(2)
2n ]

x2n+1

x−1
2n+2(x2n , y2n)

=
η1,2n+1

(
1−α̃(1)2n

)
α0

2n y2n+(1+η1,2nx2n)(1+η2,2n(1+η1,2n+1x2n+1)x2n)

(1+η1,2nx2n)
(
1−α̃(2)2n+1

)(
1−γ̃(2)2n

)
x2n

.

As a result, it turns out that the minimization of x2n+2 given the larvae and adult populations at the stage
2n is obtained via a maximization of the adult population at the stage 2n + 1, which is not coincident with the
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one-stage-ahead minimization of such a population. One can conclude that the one-stage-ahead minimization
strategy does not lead to a sustained minimization through future stages.

4. Simulation Examples

In this section, three numerical simulation examples illustrating some of the theoretical
developments presented in the previous Sections are considered. The examples discuss the existence
and location of equilibrium points, the existence of oscillatory solutions to the proposed model, and the
use of controls to reduce the populations of larvae and adult mosquitoes.

4.1. Non-Negativeness, Boundedness, and Location of Equilibrium Points

Consider the stage-structured model (1) parameterized by the following sequences:

αn = 5 + sin(2π0.1n), γn = 0.4 + 0.1cos(2π0.1n),
η1n = 0.15

(
1 + e−0.1n

)
, η2n = 0.15

(
1 + e−0.15n

)
with positive initial conditions given by x0 = 0.2 and y0 = 0.1. These sequences are
generation-dependent and their order of magnitude is similar to that considered in [1]. A periodic
behavior has been selected for αn and γn in order to mathematically describe a seasonal behavior of the
birth and maximum progression rates, which is typical in the reproduction cycles of many animals [27].
Thus, these values were selected as a periodic variation around a positive value in order to account for
this biological fact. According to Proposition 5, the sequences {xn}

∞

n=0 and
{
yn

}∞
n=0 remain non-negative

and bounded with an upper-bound given by xn+1 ≤
αnγn−1
η2,n−1

and yn+1 ≤
γn
η2n

, respectively. This fact is
illustrated in Figures 1 and 2, where the evolution of {xn}

∞

n=0 and
{
yn

}∞
n=0 is displayed, respectively.

In these figures it can be observed that the elements of both sequences are positive at all times while
remaining bounded. In addition, the upper bounds for both sequences are also depicted in Figures 1
and 2, showing that the actual value of the populations rest under their threshold. These figures
support, thus, the results stated in Proposition 5. Moreover, from Figures 1 and 2 it can also be deduced
that the calculated upper bounds are somewhat conservative, in the sense that the actual values for the
populations are far from the upper bound. Therefore, the calculation of a tighter upper bound appears
to be a remaining open problem.Mathematics 2019, 7, x 18 of 32 
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Furthermore, Proposition 7 discusses the location of the equilibrium points along with the
conditions under which these exist. In order to numerically check the results claimed in Proposition 7,
we consider the following parameterization for the model sequences:

αn = 5 + e−0.1nsin(2π0.1n), γn = 0.4 + 0.1e−0.3ncos(2π0.1n), η1n = 0.15
(
1 + e−0.1n

)
,

η2n = 0.15
(
1 + e−0.15n

)
.

Now, all the sequences converge to the positive constant values:

{αn}
∞

n=0 → α = 5 ,
{
γn

}∞
n=0 → γ = 0.4 ,

{
η1n

}∞
n=0 → η1 = 0.1 ,

{
η2n

}∞
n=0 → η2 = 0.15.

Notice that under these values, the condition

1 <
√
αγ = 1.4142 <

1
2

(
1−

η2

η1

)
+

√
(η1 + η2)

2 + 4η1η2(αγ− 1)

2η1
= 1.5

holds. Consequently, according to Proposition 7 there exists a positive equilibrium point
with coordinates:

xe1 =

√
(η1+η2)

2+4η1η2(αγ−1)−(η1+η2)

2η1η2
= 10

3
ye =

γxe
1+η2xe

= 8
9

which is locally asymptotically stable. The following Figure 3 depicts the evolution of both populations
with the above considered parameterization.

The final values for both populations obtained from simulation are given by xend = 3.3327 and
yend = 0.889, which are in great accordance with the theoretical values presented in Proposition 7
and calculated above. Furthermore, it can be observed that the populations are positive and remain
bounded as stated in Proposition 5. Moreover, Figures 4 and 5 show the evolution of both populations
for different initial conditions given by: Case 1: x0 = 3 and y0 = 1; Case 2: x0 = 4 and y0 = 3;
and Case 3: x0 = 1 and y0 = 0.2. As it is shown in Figures 4 and 5, all the trajectories converge to the
same equilibrium point, which is locally asymptotically stable, as it is claimed in Proposition 7(iii).
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Finally, we now change the value of
{
γn

}∞
n=0 to γn = 0.2+ 0.1e−0.3ncos(2π0.1n) so that the condition

αγ = 1 holds. The initial conditions are x0 = 3 and y0 = 1. The Figure 6 displays the evolution of both
populations in this case.
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In Figure 6 it is shown that both populations converge to the extinction equilibrium point
corresponding to (xe , ye) = (0 , 0). If we now complete a simulation for a large number of generations
and make a zoom on the last part of it, we obtain Figure 7. In this Figure it is shown that the trajectories
do not asymptotically converge to the extinction point, but they remain close to it since this point is
not locally asymptotically stable as, concluded in Proposition 7(ii). Therefore, this Section illustrates
some of the theoretical results contained in Section 2 regarding the non-negativity, boundedness,
and existence of equilibrium points of the stage-structured model (1).Mathematics 2019, 7, x 21 of 32 

 

 

Figure 7. Zoom on { }∞
=0nnx  and { }∞

=0nny  populations when 1=γα  for a large number of 

generations. 

4.2. Oscillatory Solutions 

In this Section, a numerical example concerning the oscillatory character of the solution of the 
stage-structured model (1) is presented. Thus, consider the sequences given by: 

)n.sin(n 1025 πα +=  )n.cos(..gk nnn 10260512 πγ +== ,  

( )n.
n e. 10

1 1150 −+=η , ( )n.
n e. 150

2 1150 −+=η   
 

with 12 =nk . The Figure 8 shows the shape of sequence { }∞
=0nnγ . 

 

Figure 8. Evolution of the sequence { }∞
=0nnγ . 

From Figure 8 we can observe that there exist intervals where the sequence takes values smaller 
than unity, while on other intervals the values are larger than unity. Thus, it is easy to deduce that 
we can find two constants 21 k,k  such that [ ]( ) 11 ≤∏ +

=
nkn

ni iγ and [ ]( )
( ) 12
1 1 ≥∏ +

++=
nkn

nkni iγ . Consequently, we 

are in the position to apply Proposition 9 and conclude that the solution to the stage-structured 
model (1) with this parameterization will be oscillatory. Figure 9 displays the solution of system (1), 
corroborating the result concluded from Proposition 9. 

2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400

Generation (n)

0

1

2

3

4

5

y n

10-3

xn
yn

0 20 40 60 80 100 120

Generation (n)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

n

Figure 7. Zoom on {xn}
∞

n=0 and
{
yn

}∞
n=0 populations when αγ = 1 for a large number of generations.

4.2. Oscillatory Solutions

In this Section, a numerical example concerning the oscillatory character of the solution of the
stage-structured model (1) is presented. Thus, consider the sequences given by:

αn = 5 + sin(2π0.1n) γn = k2ngn = 1.5 + 0.6cos(2π0.1n),
η1n = 0.15

(
1 + e−0.1n

)
, η2n = 0.15

(
1 + e−0.15n

)
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with k2n = 1. The Figure 8 shows the shape of sequence
{
γn

}∞
n=0.
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Figure 8. Evolution of the sequence
{
γn

}∞
n=0.

From Figure 8 we can observe that there exist intervals where the sequence takes values smaller
than unity, while on other intervals the values are larger than unity. Thus, it is easy to deduce that
we can find two constants k1, k2 such that

∏n+k1(n)
i=n [γi] ≤ 1 and

∏n+k2(n)
i=n+k1(n)+1

[γi] ≥ 1. Consequently,
we are in the position to apply Proposition 9 and conclude that the solution to the stage-structured
model (1) with this parameterization will be oscillatory. Figure 9 displays the solution of system (1),
corroborating the result concluded from Proposition 9.Mathematics 2019, 7, x 22 of 32 
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4.3. Use of Controls to Reduce the Larvae and Adult Mosquito Populations

In this last subsection, a simulation example concerning the use of controls to reduce the larvae
and adult mosquito populations is considered. Thus, consider the sequences given by:

α0
n = 5 + e−0.1nsin(2π0.1n), γ0

n = 0.4 + 0.1e−0.3ncos(2π0.1n),
η1n = 0.15

(
1 + e−0.1n

)
, η2n = 0.15

(
1 + e−0.15n

)
where α0

n and γ0
n are referred to as the nominal control-free values. The evolution of larvae and

adult mosquito populations under this parameterization are displayed in Figure 3. As it is observed
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in Figure 3, both populations converge to finite positive values, which are the equilibrium points.
The objective of using controls is to reduce the values of these populations. To this end we follow

Example 4 guidelines. Thus, we take αn ∈

[
α
(1)
n , α(2)n

]
and γn ∈

[
γ
(1)
n , γ(2)n

]
with α

(1)
n = 0.6α(0)n ,

α
(2)
n = 0.9α(0)n , γ(1)n = 0.6γ(0)n and γ(2)n = 0.9γ(0)n . In particular in this simulation example the constant

values of αn = 0.8α(0)n and γn = 0.8γ(0)n are employed. Figure 10 compares the control-free evolution
of populations with the controlled case.
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As it is observed in Figure 10, the control of the birth and maximum progression rate sequences
allows for reducing the number of larvae and adult mosquitos, since the equilibrium point attained by
the model is given by lower values than with the control-free situation. Furthermore, assume that
the natural dynamics of the system for nominal parameters given by α0

n → α0 and γ0
n → γ0 make the

system converge to the equilibrium point given by

x0
e =

√
(η1 + η2)

2 + 4η1η2(α0γ0 − 1) − (η1 + η2)

2η1η2
y0

e =
γx0

e

1 + η2x0
e

so that the achieved values are not biologically acceptable. We would like to reduce them to the values
xe < x0

e and ye < y0
e . To this end, we would calculate the necessary values of the birth and progression

rates α, γ from the above equations, so as to get the desired new equilibrium point (xe, ye) as:

γ =
ye(1+η2xe)

xe

α = 1
γ

(
(2η1η2xe+(η1+η2))

2
−(η1+η2)

2

4η1η2
+ 1

)
=

xe
ye(1+η2xe)

(
(2η1η2xe+(η1+η2))

2
−(η1+η2)

2

4η1η2
+ 1

)
.

The last step is to calculate the amount of insecticide that must be sprayed in the atmosphere to
achieve these birth and progression rates. The relationship between the amount of insecticide and the
attained values for the rates depends on the spraying method and other environmental characteristics.
Once the amount of insecticide is calculated, the effect of overdose and its environmental impact can
be specifically considered. In this way, the formulation developed in Section 3 allows for designing
feasible values for these sequences. Overall, the presented numerical examples corroborate some of
the theoretical results discussed in the previous Sections 2 and 3.



Mathematics 2019, 7, 1181 22 of 29

5. Conclusions

In this paper, the mathematical formulation of a stage-structured model of larvae and adult
mosquito populations has been presented. The model is described by time-varying parameters in
order to account for their potentially seasonal dependence. This situation is accepted to be of practical
importance due to the typical seasonal behavior of reproduction cycles in many animal populations.
The work also investigated the conditions under which the model remains non-negative, possesses
attainable equilibrium points, and is bounded and/or oscillatory. These conditions are derived in
terms of the sequences parameterizing the system or in the terms of its asymptotic limits, when they
exist. Consequently, the paper provides useful conditions to determine when equilibrium points exist
and where they are located. The value of equilibrium points inform of the steady-state larvae and
mosquito populations. When these values are not acceptable for environmental or human reasons,
the paper proposes the way to change the birth and progression rates in order to perform control on
them. This information is necessary to calculate the amount of insecticide that should be sprayed. It
has also to be taken into account the seasonal temperature, the diet stocks for larvae, and the local
density effects in order to accommodate the saturated values of the maximum progression rates to be
used in the control feedback implementation. Worked illustrative examples have been developed. On
the other hand, further numerical simulation examples corroborate the described theoretical results.

Author Contributions: Conceptualization, M.D.L.S., conceptualization, M.D.L.S.; methodology, M.D.L.S. and A.I.;
software, A.I.; validation, M.D.L.S., A.I. and A.J.G.; formal analysis, M.D.L.S.; investigation, M.D.L.S.; resources,
M.D.L.S., A.I. and A.J.G.; data curation, A.I. and A.J.G.; writing—original draft preparation, M.D.L.S. and A.I.;
writing—review and editing, M.D.L.S. and A.I.; visualization, M.D.L.S., A.I. and A.J.G.; supervision, M.D.L.S.;
project administration, M.D.L.S. and A.J.G.; funding acquisition, M.D.L.S. and A.J.G.

Funding: This research has been cofounded by the Spanish Government and the European Regional Development
Fund for Grant RTI2018-094336-B-I00 (MCIU/AEI/FEDER, UE) and by the Basque Government for Grant IT1207-19.

Acknowledgments: The authors thank the referees for their useful comments and suggestions.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Mathematical Proofs

Proof of Proposition 1. Note that Kn ≥ 0, if and only if (1 + η1nxn)(1 + η2,n−1xn−1)µxn−αnγn−1xn−1 ≥ 0,
that is, if and only if, (1 + η1nxn)xn ≥

αnγn−1xn−1

(1+η2,n−1xn−1)µ
, equivalently if and only if

xn

xn−1
≥

αnγn−1

(1 + η1nxn)(1 + η2,n−1xn−1)µ

which leads to the completeness of the proof of the first part of the proposition. The proof of the second
part of the result is obvious under the change µ→ µn . �

Proof of Proposition 2. Since xn+1 =
µKnxn

Kn+(µ−1)xn
, then xn+1 ≤ xn; ∀n ∈ Z+, if and only if xn ≤ Kn;

∀n ∈ Z+, equivalently, if and only if (µ−1)αnγn−1xn−1

(1+η1nxn)(1+η2,n−1xn−1)µxn−αnγn−1xn−1
≤ 1, that is, if and only if,

(µ− 1)αnγn−1xn−1 ≤ (1 + η1nxn)(1 + η2,n−1xn−1)µxn − αnγn−1xn−1, equivalently if and only if αnγn−1 ≤

(1 + η1nxn)(1 + η2,n−1xn−1)xn/xn−1; ∀n ∈ Z+. Note that {xn}
∞

n=0 is strictly decreasing if and only if the
above inequality is strict. Also, note that

xn−1

xn
≤

(1 + η1nxn)(1 + η2,n−1xn−1)

αnγn−1

and, if αnγn−1 > (1 + η1nxn)(1 + η2,n−1xn−1), then xn−1 < xn. Thus, a necessary condition for xn+1 ≤ xn;
∀n ∈ Z+ is that αnγn−1 ≤ (1 + η1nxn)(1 + η2,n−1xn−1); ∀n ∈ Z+. The rest of the proof of Property (i)
follows under obvious direct variations of the above part, which are omitted. Property (ii) is proven as
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follows. From the Beverton–Holt-like equation (7) under the carrying-like capacity (8) and the given
intrinsic growth rate-like parameter, one concludes that:

x−1
n+1 = µ−1xn +

µ−1
µ K−1

n = µ−(n−1)x2 +
µ−1
µ

∑n
i=2 µ

−n+iK−1
i = µ−nx0 + (µ− 1)

∑n
i=0 µ

−(n−i+1)K−1
i

= µ−(n+1)x0 + (µ− 1)µ−(n+1)∑n
i=2 µ

i (1+η1ixi)(1+η2,i−1xi−1)µxi−αnγi−1xi−1

(µ−1)αiγi−1xixi−1

= µ−(n+1)x0 + µ−(n+1)∑n
i=2 µ

i (1+η1ixi)(1+η2,i−1xi−1)µxi−αnγi−1xi−1
αiγi−1xixi−1

; ∀n(≥ 2) ∈ Z+

with x−1 = 0, x0 > 0 and x1 = α0x0
1+η10x0

. The above equations delete the first stages n = 0, 1 in order to

avoid spurious calculations in the recursive equations, since x−1 = 0 and K−1
0 = +∞. Then, since µ > 1,

one has the claimed result of Property (ii). �

Proof of Proposition 3. From Proposition 1, { Kn}
∞

n=0 ⊂ [0 , ∞) if µ ≥

max
(
1 , sup

n≥1

αnγn−1xn−1

(1+η1nxn)(1+η2,n−1xn−1)xn

)
. Note that by recalculating αnγn−1xn−1 from (8) as dependent on

Kn and from Proposition 2 that

αnγn−1xn−1

(1+η1nxn)(1+η2,n−1xn−1)xn
=

Kn[(1+η1nxn)(1+η2,n−1xn−1)µxn−αnγn−1xn−1]
(µ−1)(1+η1nxn)(1+η2,n−1xn−1)xn

≤
xn[(1+η1nxn)(1+η2,n−1xn−1)µxn−αnγn−1xn−1]

(µ−1)(1+η1nxn)(1+η2,n−1xn−1)xn
≤

µ(1+η1nxn)(1+η2,n−1xn−1)
(µ−1)(1+η1nxn)(1+η2,n−1xn−1)

=
µ
µ−1 .

Thus, the conditions of Proposition 1 for { Kn}
∞

n=0 ⊆ [0 , ∞) hold if µ ≥ max
(
1 , µ

µ−1

)
, which holds

if µ2
− 2µ ≥ 0 with µ ≥ 1, that is, if µ ≥ 2. In addition, from Proposition 2, {xn}

∞

n=0 is bounded. If the
inequality is strict then the carrying capacity is positive for any n ∈ Z+ if x0 is finite and non-negative.
�

Proof of Proposition 4. Since {αn}
∞

n=0,
{
γn

}∞
n=0,

{
η1n

}∞
n=0, and

{
η2n

}∞
n=0 are positive and bounded by

hypothesis and {xn}
∞

n=0 and
{
yn

}∞
n=0 are non-negative if x0 ≥ 0 and y0 ≥ 0, note from elementary

comparison of infinitesimal sequences of the same order that:

1. If
{ x2n

y2n

}∞
n=0
→ 0 , then

{ y2n+1
x2n+1

}∞
n=0
→ 0 , equivalently,

{ x2n+1
y2n+1

}∞
n=0
→∞ and then {x2n}

∞

n=0 → 0 or{
y2n

}∞
n=0 →∞ , and

{
x2n+1

}∞
n=0 →∞ or

{
y2n+1

}∞
n=0 → 0 . Each of those combinations of limits

either leads to a contradiction or both sequences jointly converge to zero as proven as follows:

(1a) {x2n}
∞

n=0 → 0 and
{
x2n+1

}∞
n=0 →∞ imply

{
y2n

}∞
n=0 →∞ (from the first equation of (1))

and {x2n−1}
∞

n=1 does not diverge (from the second equation of (1)) since
{
γn

}∞
n=0;

{
η2n

}∞
n=0 are

positive and bounded. However, this contradicts
{
x2n+1

}∞
n=0 →∞ . Then, {x2n}

∞

n=0 → 0

and
{
x2n+1

}∞
n=0 →∞ is impossible if

{ x2n
y2n

}∞
n=0
→ 0 .

(1b) {x2n}
∞

n=0 → 0 and
{
y2n+1

}∞
n=0 → 0 imply

{
(1 + η1,2nx2n)x2n+1 − α2ny2n

}∞
n=0
→ 0 as n→∞

from the first equation of (1) so that: 1) either
{
x2n+1

}∞
n=0 → 0 and

{
y2n

}∞
n=0 → 0 , and

then {xn}
∞

n=0 → 0 ∧
{
yn

}∞
n=0 → 0 (so, both sequences jointly converge to zero), or 2)

mim
(
lim inf

n→∞
x2n+1 , lim inf

n→∞
y2n

)
> 0, which contradicts

{
x2n+1

}∞
n=0 → 0 and

{
y2n

}∞
n=0 → 0 .

Then, if
{ x2n

y2n

}∞
n=0
→ 0 , then {x2n}

∞

n=0 → 0 and
{
y2n+1

}∞
n=0 → 0 imply that {xn}

∞

n=0 → 0 and{
yn

}∞
n=0 → 0 .

(1c)
{
y2n

}∞
n=0 →∞ and

{
x2n+1

}∞
n=0 →∞ is impossible from the first equation of (1) so that if{

y2n
}∞
n=0 →∞ then {x2n}

∞

n=0 →∞ implying the necessary constraint lim sup
n→∞

x2n+1 < ∞.

On the other hand, if
{
x2n+1

}∞
n=0 →∞ , then lim sup

n→∞
y2n+1 < ∞ from the second equation of

(1) and
{
x2n+2

}∞
n=0 → 0 from the first equation of (1). However, then

{
y2n+1

}∞
n=0 → 0 . Then,

x2n+1
y2n+1

→∞ and y2n+2
x2n+2

→ 0 as n→∞ from (8). Since
{
x2n+2

}∞
n=0 → 0 , then

{
y2n+2

}∞
n=0 → 0 .
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Since
{
y2n+1

}∞
n=0 → 0 and

{
y2n+2

}∞
n=0 → 0 , then

{
yn

}∞
n=0 → 0 and, from the second

equation of (1), {xn}
∞

n=0 → 0 .
(1d)

{
y2n

}∞
n=0 → 0 and

{
y2n+1

}∞
n=0 → 0 implies {x2n}

∞

n=0 → 0 from the second equation of (1)
and

{
x2n+1

}∞
n=0 → 0 as n→∞ from the first equation of (1). As a result, {xn}

∞

n=0 → 0 and{
yn

}∞
n=0 → 0 .

2. If
{ x2n

y2n

}∞
n=0
→∞ , then

{ y2n+1
x2n+1

}∞
n=0
→∞ , equivalently,

{ x2n+1
y2n+1

}∞
n=0
→ 0 and then {x2n}

∞

n=0 →∞ or{
y2n

}∞
n=0 → 0 and

{
x2n+1

}∞
n=0 → 0 or

{
y2n+1

}∞
n=0 →∞ . Each of those combinations either leads

to a contradiction or both sequences jointly diverge to infinity as proven as follows:

(2a) {x2n}
∞

n=0 →∞ and
{
x2n+1

}∞
n=0 → 0 imply

{
y2n+1

}∞
n=0 is bounded (from the second equation

of (1)). Thus, from the first equation of (1) x2n+1(1 + η1,2nx2n) = α2ny2n. Since
{x2n}

∞

n=0 →∞ and
{
x2n+1

}∞
n=0 → 0 implies

{
η1n

}∞
n=0 is positive and bounded, then

{
y2n

}∞
n=0

is bounded and
{
y2n+1

}∞
n=0 is also bounded from the second equation of (1), so that{

yn
}∞
n=0 is bounded. Then,

{
yn

}∞
n=0 bounded and {x2n}

∞

n=0 →∞ imply that
{
x2n+1

}∞
n=0 → 0 ,

while
{
yn

}∞
n=0 bounded and

{
x2n+1

}∞
n=0 → 0 imply that

{
x2n+2

}∞
n=0 is bounded so that

{x2n}
∞

n=0 →∞ is impossible. Thus, the joint conditions {x2n}
∞

n=0 →∞ and
{
x2n+1

}∞
n=0 → 0

are impossible if
{ x2n

y2n

}∞
n=0
→∞ .

(2b) {x2n}
∞

n=0 →∞ and
{
y2n+1

}∞
n=0 →∞ imply

{
y2n+1

}∞
n=0 bounded and, since

x2n+1(1 + η1,2nx2n) = α2ny2n from the first equation of (1), either
{
x2n+1

}∞
n=0 → 0

and
{
y2n

}∞
n=0 is bounded (which together with

{
y2n

}∞
n=0 bounded implies that

{
yn

}∞
n=0

is bounded) or
{
x2n+1

}∞
n=0 does not converge to zero so that

{
y2n

}∞
n=0 is unbounded.

However, this is impossible, even if {x2n−1}
∞

n=1 is unbounded from the second equation
of (13). So, {x2n}

∞

n=0 →∞ and
{
y2n+1

}∞
n=0 →∞ imply that

{
yn

}∞
n=0 is bounded, so that{

y2n+1
}∞
n=0 →∞ is impossible, and

{
x2n+1

}∞
n=0 → 0 (which implies that

{
y2n+2

}∞
n=0 → 0

from the second equation of (1)) and is also bounded. Then, {x2n}
∞

n=0 →∞ and{
y2n+1

}∞
n=0 →∞ are impossible if

{ x2n
y2n

}∞
n=0
→∞ .

(2c)
{
y2n

}∞
n=0 → 0 and

{
x2n+1

}∞
n=0 → 0 are compatible with

{ x2n
y2n

}∞
n=0
→∞ , so with{ y2n+1

x2n+1

}∞
n=0
→ 0 .

(2d)
{
y2n

}∞
n=0 → 0 and

{
y2n+1

}∞
n=0 →∞ imply that

{
x2n+1

}∞
n=0 → 0 and {x2n}

∞

n=0 →∞ .

Also, the second equation of (13) rewritten as y2n+1
(

1
x2n

+ η2,2n
)

= γ2n leads to

lim sup
n→∞

[
γ2n − y2n+1

(
1

x2n
+ η2,2n

)]
= 0, implying lim sup

n→∞
y2n+1 = lim sup

n→∞

γ2n
1/x2n+η2,2n

=

lim sup
n→∞

γ2n
η2,2n

< ∞, a contradiction to
{
y2n+1

}∞
n=0 →∞ . Thus,

{
y2n

}∞
n=0 → 0 and{

y2n+1
}∞
n=0 →∞ are impossible if

{ x2n
y2n

}∞
n=0
→∞ . �

Proof of Proposition 5. Assume that there is a non-negative (for which it suffices x0 ≥ 0, since {αn}
∞

n=0,{
γn

}∞
n=0;

{
η1n

}∞
n=0, and

{
η2n

}∞
n=0 are positive), unbounded real subsequence

{
xnk

}∞
k=0

, which can be chosen
so that it is strictly increasing with its consecutive members xnk and xnk+1 , with nk+1 = nk + m(nk) for

some positive integer m(nk) satisfying
xnk+1

xnk
> 1. Thus,

xnk+1
xnk

> 1 and xnk is arbitrarily large as k is
arbitrarily large, thus lim

k→∞
xnk = ∞. Then, proceed by contradiction arguments leading to:

1 <
xnk+1

xnk+1−2
=

αnk+1−1γnk+1−2(
1 + η1nk+1−1xnk+1−1

)(
1 + η2nk+1−2xnk+1−2

) ≤ αnk+1−1γnk+1−2

1 + η2nk+1−2xnk+1−2
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and, since
(
1 + η1nk+1−1xnk+1−1

)
≥ 1 and lim

k→∞
xnk = ∞, one gets:

1 <
xnk+1

xnk
=

xnk+1
xnk+1−2

xnk+1−2

xnk

=
αnk+1−1γnk+1−2(

1+η1nk+1−1xnk+1−1
)(

1+η2nk+1−2xnk+1−2
) xnk+1−2

xnk+1
≤

αnk+1−1γnk+1−2

1+η2nk+1−2xnk+1−2

xnk+1−2

xnk

and
1 ≤ lim

n→∞
inf

xnk+1

xnk+1−2
≤ lim sup

n→∞

αn−k(n)γn−k(n)−1

1 + η2,n−k(n)−1xn−k(n)−1
= 0

thus, a contradiction. As a result, no subsequence
{
xnk

}∞
k=0

of {xn}
∞

n=0 is either strictly increasing or
unbounded if x0 ≥ 0 and one can then conclude that {xn}

∞

n=0 is bounded if x0 ≥ 0 is finite. From the
second equation of (1), one can also conclude that

{
yn

}∞
n=0 is bounded if, in addition, y0 ≥ 0 is finite

and the proof of the first part of the Proposition is complete. On the other hand, the second equation
of (1) can be rewritten equivalently as xn =

yn+1
γn−η2n yn+1

, which implies that yn+1 ≤ γn/η2n if xn ≥ 0;

∀n ∈ Z0+ and then, from the first equation of (1), xn+1 ≤
αnγn−1

η2,n−1(1+η1nxn)
≤

αnγn−1
η2,n−1

; ∀n ∈ Z0+ and the proof
is complete. �

Outline of Proof of Proposition 6. Calculations of the expressions yn+1 = yn+1(xn), yn+1 =

yn+1(yn, yn−1), xn+1 = xn+1(xn, xn−1), and xn+1 = xn+1(yn, yn−1) from (1) to prove Proposition
6. The second equation of (1) is yn+1 = yn+1(xn) =

γnxn
1+η1nxn

. On the other hand, from the second

equation of (1), one gets xn = xn(yn+1) as xn =
yn+1

γn−η2n yn+1
, which, replaced in the first equation of (1),

yields xn+1 = xn+1(yn+1, yn) as:

xn+1 =
αnyn

1 + η1n
yn+1

γn−η2n yn+1

=
(γn − η2nyn+1)αnyn

γn − η2nyn+1 + η1nyn+1
=

(γn − η2nyn+1)αnyn

γn + (η1n − η2n)yn+1
. (A1)

From the direct replacement of the second equation of (1) into the first one, one gets xn+1 =

xn+1(xn, xn−1) as:

xn+1 =
αn

γn−1xn−1
1+η2,n−1xn−1

1 + η1nxn
=

αnγn−1xn−1

(1 + η1nxn)(1 + η2,n−1xn−1)
. (A2)

The substitution of (A1) into the second equation of (1) yields yn+1 = yn+1(yn, yn−1) as:

yn+1 =
γn
(γn−1−η2,n−1 yn)αn−1 yn−1

γn−1+(η1,n−1−η2,n−1)yn

1+η2n
(γn−1−η2,n−1 yn)αn−1 yn−1

γn−1+(η1,n−1−η2,n−1)yn

=
γn(γn−1−η2,n−1 yn)αn−1 yn−1

γn−1+(η1,n−1−η2,n−1)yn+η2n(γn−1−η2,n−1 yn)αn−1 yn−1

=
γn(γn−1−η2,n−1 yn)αn−1 yn−1

γn−1+(η1,n−1−η2,n−1(1+η2nαn−1 yn−1))yn+η2nγn−1αn−1 yn−1

(A3)

and now we replace (A3) into the denominator of (A1) to yield xn+1 = xn+1(yn, yn−1) as:

xn+1 =
(γn−η2n yn+1)αn yn

γn+(η1n−η2n)
γn(γn−1−η2,n−1 yn)αn−1 yn−1

γn−1+(η1,n−1−η2,n−1(1+η2nαn−1 yn−1))yn+η2nγn−1αn−1 yn−1

=
(γn−η2n yn+1)αn yn [ γn−1+(η1,n−1−η2,n−1(1+η2nαn−1 yn−1))yn+η2nγn−1αn−1 yn−1]

γn[ γn−1+(η1,n−1−η2,n−1(1+η2nαn−1 yn−1))yn+η2nγn−1αn−1 yn−1]+(η1n−η2n)γn(γn−1−η2,n−1 yn)αn−1 yn−1

(A4)

�

Proof of Proposition 7. From Proposition 7, write xn+1 = xn = x in Proposition 6, Equation (16), to get(
1− αγ

1+(η1+η2)x+η1η2x2

)
x = 0, which implies x = 0 or 1 =

αγ

1+(η1+η2)x+η1η2x2 , the second one implying

that αγ = 1 if x = 0. Note that αγ = 1 if and only if x = 0. As a result, either x = 0 and αγ = 1 or



Mathematics 2019, 7, 1181 26 of 29

x , 0 and αγ , 1. If 1 =
αγ

1+(η1+η2)x+η1η2x2 , then equivalently, p(x) ≡ η1η2x2 + (η1 + η2)x + 1− αγ = 0,

whose roots are:

xe1 =

√
(η1 + η2)

2 + 4η1η2(αγ− 1) − (η1 + η2)

2η1η2
; xe2 = −

√
(η1 + η2)

2 + 4η1η2(αγ− 1) + (η1 + η2)

2η1η2

and only one root xe1 of p(x) is real and non-negative provided that αγ ≥ 1, such that xe > 0 if and only
if αγ > 1 and xe = 0 if and only if αγ = 1. Now, from the second equation of (1), one gets if yn+1 = ye

and xn = xe, such that

ye =
γxe

1 + η2xe
=

γ

(√
(η1 + η2)

2 + 4η1η2(αγ− 1) − η1 − η2

)
2η1η2 + η2

(√
(η1 + η2)

2 + 4η1η2(αγ− 1) − η1 − η2

)
which is zero if xe = 0, that is, if and only if αγ = 1, and it is positive if xe > 0, that is, if and only if
αγ > 1. Property (i) has been proven for xe = xe1 = x and the corresponding ye.

Also, note that (xe, ye) is a globally stable (but not necessarily asymptotically stable) equilibrium
point in the sense that all the solution sequences are bounded for any non-negative initial conditions
since, otherwise, Proposition 5 would be contradicted. The equilibrium point is locally asymptotically
stable if the linearized dynamics around it defined by the corresponding Jacobian matrix has its modes
within the complex open unit circle centered at the origin. The Jacobian matrix at the equilibrium point
(xe, ye) is, [2],

J =

 −
η1xe

1+η1xe
α

1+η1xe
γ

(1+η2xe)
2 0

.
Its characteristic polynomial is

p(z) = z
(
z +

η1xe

1 + η1xe

)
−

αγ

(1 + η1xe)(1 + η2xe)
2 =

1
1 + η1xe

(1 + η1xe)z2 + η1xez−
αγ

(1 + η2xe)
2

,
whose zeros are:

z1,2 =

−η1xe ±

√
(η1xe)

2 + 4αγ(1+η1xe)

(1+η2xe)
2

2(1 + η1xe)
.

(a) If xe = ye = 0, then
∣∣∣z1,2

∣∣∣ = 1
1+η2xe

√
αγ

1+η2xe
=
√
αγ < 1, if and only if αγ < 1, but extinction needs

the constraint αγ = 1, so a contradiction exists, and then the zero equilibrium point is not locally
asymptotically stable.

(a) If (xe , ye) , 0 with xe + ye > 0, then −1 < z1 < z2 < 1, if and only if z1 > −1 and z2 < 1 (since
z1 , z2), that is

−η1xe −

√
(η1xe)

2 + 4αγ(1+η1xe)

(1+η2xe)
2

2(1 + η1xe)
> −1 ;

−η1xe +

√
(η1xe)

2 + 4αγ(1+η1xe)

(1+η2xe)
2

2(1 + η1xe)
< 1

or, equivalently, √
(η1xe)

2 + 4αγ(1+η1xe)

(1+η2xe)
2 < 2(1 + η1xe) − η1xe = 2 + η1xe;√

(η1xe)
2 + 4αγ(1+η1xe)

(1+η2xe)
2 < 2(1 + η1xe) + η1xe = 2 + 3η1xe
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and both constraints jointly hold if and only if the, more restrictive, first one holds

(η1xe)
2 + 4

αγ(1 + η1xe)

(1 + η2xe)
2 < 4 + (η1xe)

2 + 4η1xe

equivalently, if and only if,

αγ(1 + η1xe)

(1 + η2xe)
2 < 1 + η1xe ⇔

√
αγ < 1 + η2xe.

Since αγ > 1 for the nonzero equilibrium point xe = xe1 to be non-negative, one gets that the
equilibrium point is positive and locally stable if and only if:

1 <
√
αγ < 1+

√
(η1 + η2)

2 + 4η1η2(αγ− 1) − (η1 + η2)

2η1
=

1
2

(
1−

η2

η1

)
+

√
(η1 + η2)

2 + 4η1η2(αγ− 1)

2η1

and, again, since for the positivity of the equilibrium point it is again needed that αγ > 1, a sufficient
condition from the above constraints to guarantee the local asymptotic stability of the equilibrium
together with its positivity is:

1
2

(
1− η2

η1

)
>
√
αγ−

√
(η1+η2)

2+4η1η2(αγ−1)
2η1

≥
√
αγ−

η1+η2+2
√
η1η2
√
αγ−1

2η1

=
√
αγ− 1

2 −
η2

2η1
−

√
η1η2
√
αγ−1

η1

so that a necessary condition for the above sufficient condition to hold is: 1 >
√
αγ−

√
η1η2
√
αγ−1

η1
, since

αγ > 1. Properties (ii) to (iv) have been proven. �

Proof of Proposition 8. Note that the convergence to the zero equilibrium point of the larvae population
is asymptotic at exponential rate if and only if:

xn+1

xn
=

xn+1

xn−1

xn−1

xn
=

αnγnγn−1xn−1

(1 + η1nxn)(1 + η2,n−1xn−1)

(1 + η1,n−1xn−1)(1 + η2,n−2xn−2)

γnαn−1γn−2xn−2
< 1.

Furthermore, extinction implies that αγ = 1 if those gains are constant, so that we give the
subsequent double constraint for the larvae extinction:

1
γn
≤ αn <

αn−1γn−2xn−2(1+η1nxn)(1+η2,n−1xn−1)
γn−1xn−1(1+η1,n−1xn−1)(1+η2,n−2xn−2)

≤ 0; ∀n(≥ n0) ∈ Z0+, some n0 ∈ Z0+, and

lim sup
n→∞

(
αn −

αn−1γn−2xn−2(1 + η1nxn)(1 + η2,n−1xn−1)

γn−1xn−1(1 + η1,n−1xn−1)(1 + η2,n−2xn−2)

)
≤ 0

together with lim inf
n→∞

(
αn − γ−1

n

)
≥ 0. Since xn−2

xn−1
> 1; ∀n(≥ n0) ∈ Z0+ and {xn}

∞

n=0 → 0 , it suffices for the
first above limiting condition to hold so that the subsequent constraint holds:

lim sup
n→∞

(
αn −

αn−1γn−2xn−2(1 + η1nxn)(1 + η2,n−1xn−1)

γn−1xn−1(1 + η1,n−1xn−1)(1 + η2,n−2xn−2)

)
≤ 0.

It turns out that the asymptotic extinction of the larvae also implies the extinction of the adult
mosquitoes. �
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Proof of Proposition 9. Note that, for any n ∈ Z0+ one has the following conditions:
x(n+k1(n)+1)

x(n) =
∏n+k1(n)

i=n [gi] ≤ 1 and x(n+k2(n)+1)
x(n+k1(n)+1) =

∏n+k2(n)
i=n+k1(n)+1

[gi] ≥ 1 imply that

x(n + k1(n) + 1) ≤ x(n) and x(n + k2(n) + 1) ≥ x(n + k1(n) + 1), and
∏n+k1(n)

i=n [gi] ≥ 1 and∏n+k2(n)
i=n+k1(n)+1

[gi] ≤ 1 imply that x(n + k1(n) + 1) ≥ x(n) and x(n + k2(n)) + 1 ≤ x(n + k1(n) + 1)
and the solution is oscillatory.

The strict oscillatory case and the periodic one follow as appropriate in this particular case.
Property (i) has been fully proven. Properties [(ii)–(iii)] are trivial modifications to guarantee the
existence of an oscillatory solution by using the various obtained upper bounds and lower bounds of
the sequences

{
gn

}∞
n=0. �

Proof of Assertion 1. Note that, if lim in f
N→∞

∏N
n=0

[
ρ∗2n

]
> 0, then

∏
∞

n=0

[
ρ∗2n

]
=

(∏
n∈N1

[
ρ∗2n

])(∏
n∈N2

[
ρ∗2n

])(∏
n∈N3

[
ρ∗2n

])
=

(∏
n∈N1

[
ρ∗2n

])(∏
n∈N2

[
ρ∗2n

])
lim in f

N→∞

∏N
n=0

[
ρ∗2n

]
≥ inf

(∏
n∈N1

[
ρ∗2n

])
inf

(∏
n∈N2

[
ρ∗2n

])
= lim in f

N→∞

(∏N
n=0

[
ρ∗2n × in(N1)

])
lim in f

N→∞

(∏N
n=0

[
ρ∗2n × in(N2)

])
≥ ε.

If N1 ∪N2 , ∅ for some ε > 0, where the following binary indicator sequences have been used:

in(N1) =

{
1 i f n ∈ N1

1/ρ∗2n i f n < N1
; in(N2) =

{
1 i f n ∈ N2

1/ρ∗2n i f n < N2
.

Then,
∏

n∈N1

[
ρ∗2n

]
− ε/

(∏
n∈N2

[
ρ∗2n

])
≥ 0 if N1 , ∅. Note that if N2 = ∅ then N1 , ∅, since

N1 ∪N2 , ∅ and the above inequality holds trivially in the form
∏

n∈N1

[
ρ∗2n

]
≥ ε since

(∏
n∈N2

[
ρ∗2n

])
=

1. Now, if N1 = ∅ then lim in f
N→∞

(∏N
n=0

[
ρ∗2n × in(N1)

])
= 1 and the above inequality becomes

lim in f
N→∞

(∏N
n=0

[
ρ∗2n × in(N2)

])
≥ ε then ε/

(∏
n∈N2

[
ρ∗2n

])
≤ 1 for some ε > 0. The sufficiency part of

the assertion has been proven. The necessity follows directly since lim in f
N→∞

∏N
n=0

[
ρ∗2n

]
= 0 implies

that either card(N1 ∪N3) < card(N2) = χ0 (that is, the infinity cardinal of a denumerable set) or
card(N1) = card(N2) = χ0 with

(∏
n∈N2

[
ρ∗2n

])(∏
n∈N1

[
ρ∗2n

])
= 0, so that

(∏
n∈N2

[
ρ∗2n

])
= 0 if N1 = ∅ or(∏

n∈N1

[
ρ∗2n

]) (∏
n∈N2

[
ρ∗2n

])
≥ ε, if and only if ε = 0 if N1 , ∅. �
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