ﬂ SCNSors m\py

Article
Voltammetric Electronic Tongue for the Simultaneous
Determination of Three Benzodiazepines

Anna Herrera-Chacon 1, Farzad Torabi 12(0), Farnoush Faridbod 2, Jahan B. Ghasemi 3,

Andreu Gonzalez-Calabuig ! and Manel del Valle *

1 Sensors and Biosensors Group, Department of Chemistry Universitat Autonoma de Barcelona, Edifici Cn,

08193 Bellaterra, Spain; anna.herrerachacon@gmail.com (A.H.-C.); farzad.torabi@ut.ac.ir (F.T.);

andreugc27@gmail.com (A.G.-C.)

Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran 1417466191,

Iran; faridbodf@khayam.ut.ac.ir

3 School of Chemistry, College of Science, University of Tehran, Tehran 1417466191, Iran;
jahan.ghasemi@ut.ac.ir

*  Correspondence: manel.delvalle@uab.es; Tel.: +34-93-581-3235

Received: 16 October 2019; Accepted: 13 November 2019; Published: 16 November 2019 ::‘P:)edc:t?;
Abstract: The presented manuscript reports the simultaneous detection of a ternary mixture of the
benzodiazepines diazepam, lorazepam, and flunitrazepam using an array of voltammetric sensors
and the electronic tongue principle. The electrodes used in the array were selected from a set of
differently modified graphite epoxy composite electrodes; specifically, six electrodes were used
incorporating metallic nanoparticles of Cu and Pt, oxide nanoparticles of CuO and WOj3, plus pristine
electrodes of epoxy-graphite and metallic Pt disk. Cyclic voltammetry was the technique used to
obtain the voltammetric responses. Multivariate examination using Principal Component Analysis
(PCA) justified the choice of sensors in order to get the proper discrimination of the benzodiazepines.
Next, a quantitative model to predict the concentrations of mixtures of the three benzodiazepines
was built employing the set of voltammograms, and was first processed with the Discrete Wavelet
Transform, which fed an artificial neural network response model. The developed model successfully
predicted the concentration of the three compounds with a normalized root mean square error
(NRMSE) of 0.034 and 0.106 for the training and test subsets, respectively, and coefficient of correlation
R > 0.938 in the predicted vs. expected concentrations comparison graph.

Keywords: electronic tongue; nanoparticle modifiers; diazepam; lorazepam; flunitrazepam; artificial
neural networks

1. Introduction

Benzodiazepines (BZs) are a family of drugs massively used worldwide since the 1960s, when they
were first introduced. BZs are frequently prescribed as anxiolytics, anticonvulsants, muscle relaxants,
and as treatment for alcohol and drug abuse [1]. At the same time, they are also used in clinical
anesthesia due to their sedative and relaxant properties in a variety of procedures. The clinical
use of these compounds is accomplished through their effects on the central nervous system (CNS)
and specifically through the modulation of the inhibitory neurotransmitter gamma-aminobutyric
acid (GABA) receptor [2]. BZs enhance GABA receptor affinity producing sedative, tranquilizing,
and sleep-inducing effects. BZs supposedly present low toxicity when administered at clinical doses
but may be potentially dangerous when used at high doses. Even though they are well-known
drugs, they are difficult to identify in the body after their use. Therefore, the identification of BZs
in blood [3], urine [4], hair samples [5], or in post-mortem studies may be interesting in terms of
criminology and forensic studies [6].
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A plethora of analytical methods to determine BZs can be found in the literature such as
spectrophotometry [7], capillary electrophoresis [8], HPLC/MS [9], LC-MS[10], and immunoassays [11,12].
However, these techniques require high-cost instrumentation, are slow, require highly trained personnel,
and cannot be implemented to perform on-line measurements. Among less employed techniques,
electrochemical methods stand out, specifically, voltammetric methods. Voltammetric methods
have several advantages over classical methods, including good sensitivity, low detection limits,
relative simplicity, portability, and low-cost instrumentation compared to other techniques. They also
have enough versatility to be implemented with portable instrumentation. The study of BZs by
electrochemical techniques is centered on the determination and the quantification of a single BZ at a time.
As an example of individual BZ studies we mention determining clonazepam in beverages and serum
samples using screen printed electrodes [13] or using polyaniline/graphene oxide nanocomposites [14];
detecting diazepam by dendritic silver nanostructures supported by graphene [15], studying its redox
behavior in drinks by adsorptive stripping voltammetry [16], or by the use of fullerene-functionalized
carbon nanotubes [17]; determining lorazepam by polypyrrole@sol-gel@gold nanoparticles pencil
graphite electrode [18]; quantifying olanzapine using quantum dots onto modified multiwalled carbon
nanotubes gold electrode [19]; and, lastly, sensing flunitrazepam in screen-printed electrodes [20], or in
alcoholic and soft drinks by screen-printed drop-volume cells [21]. The determination of several BZs
can be found in the recent literature as the determination of diazepam and oxazepam in biological
fluids using modified carbon paste electrodes [22], or with the use of a multiwall carbon nanotube-ionic
liquid paste electrode [23]; using a boron-doped diamond electrode to determine bromazepam and
alprazolam [24]; an attempt to determine olanzapine and risperidone modifying gold electrodes with
carbon nanotubes [25]; and using a modified bentonite sonogel carbon electrode to determine diazepam
chlordiazepoxide determined in urine [26]. Furthermore, the identification or determination of different
BZs by single sensors such as monitoring five BZs using a polymeric interfaces electrode modified in
layer by layer manner [27], applying square-wave voltammetric technique using a hanging mercury
drop electrode [28], using silver nanoparticles-carbon dots ink modified electrodes [29], or employing
a modified silver solid amalgam electrode can be found in the literature [30]. However, none of these
works accomplishes the simultaneous determination of BZs, since they do it individually. Consequently,
the simultaneous voltammetric determination of multiple BZs is still a challenge, mainly due the
high overlapping of redox peaks when multiple BZs are present in the same solution. As the specific
problem concerns finding a sensor-based analytical method that is able to determine and quantify
different BZs simultaneously, the use of a sensor array becomes an interesting option. For this reason,
this work aims to use an electronic tongue approach to solve a ternary mixture of three BZs: diazepam,
flunitrazepam, and lorazepam, three regulated substances with equivalent functional base, and varying
substituents (Figure 1).
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Figure 1. Chemical structures of diazepam, lorazepam, and flunitrazepam.

Electronic tongues (ETs) have been in use since mid-1990s to overcome limitations of single
sensor methodologies, spreading the use of sensor arrays and chemometric tools. An ET consists of a
multisensor system formed by low-selective sensors, and uses advanced mathematical procedures for
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signal processing based on pattern recognition and/or multivariate analysis, among these Artificial
Neural Network (ANNSs) or Principal Component Analysis (PCA) [31]. These mathematical tools are
widely used to correct interference and/or matrix effects in analytical procedures. In recent published
literature, electronic tongues have been used to differentiate and quantify analogue species that,
thanks to the gathering of multiple sensor data, made possible the successful resolution of situations for
which traditional techniques function with difficulty. ETs can be classified or divided depending on the
techniques employed, including potentiometric [32,33], amperometric [34], impedance based [35-37]
and voltammetric [38]. Some examples in recent literature have adopted voltammetric ET principles
to discriminate red wines [39], to asses wine sensory descriptors [40], to detect and quantify nitro
and peroxide explosives [41], and to distinguish aminothiols [42]. An important breakthrough in this
field has been the generic approach employing molecularly imprinted polymers to form (bio)sensor
arrays [43].

In the present paper, an efficient ET approach is suggested for the simultaneous determination
of ternary mixtures of BZs comprising diazepam, flunitrazepam, and lorazepam using chemometric
tools coupled with an electrochemical detection system. Multidimensional voltammetric information
is obtained through the use of an array of different modified electrodes with a carbon base. For this
purpose voltammogram data were compressed using the Discrete Wavelet Transform (DFT), and the
resulting coefficients were used as input for the Artificial Neural Network (ANN) model as a single
vector formed by all the pre-treated signals. The resolution of any signal overlapping and quantification
of the individual species considered is achieved thanks to the extraction of the samples’ fingerprints
along with the capabilities of the ANN predictive model. Satisfactory models for identification and
resolution of their mixtures were thus developed. Figure 2 shows schematically the voltammetric ET
strategy followed. The approach comprises succeeding stages: (A) an experimental design is used to
define the standards needed to build the response model; (B) these are measured using a voltammetric
sensor array; (C) the data obtained is compressed and fingerprints extracted; (D) the model is trained
with the data extracted from the measurements; and (E) the model is validated with an independent
set of samples.
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Figure 2. Scheme depicting the main steps of the ET approach used in the simultaneous determination
of BZs.

2. Materials and Methods.

2.1. Chemicals and Reagents

All chemicals used in this investigation were of analytical reagent grade. Water was purified
by a Milli-Q Ultra Pure Water System (Millipore, Bedford, MA, USA). Diazepam, flunitrazepam,
and lorazepam were purchased from Sigma-Aldrich (Madrid, Spain). All the samples were diluted in
Britton-Robinson Buffer, pH 10 (0.04 M H3BOj3, 0.04 M H3POy, 0.04 M CH3COOH, and 0.1 M NaOH).
Modifiers employed in the preparation of electrodes were purchased from Sigma-Aldrich: platinum
nanopowder, 50 nm particle size (Ref. 6845453); copper (II) oxide, 50 nm particle size (Ref. 544868);
copper nanopowder, 40-60 nm particle size (Ref. 774111); and tungsten (VI) oxide, 100 nm particle size
(Ref. 550086).
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2.2. Preparation of the Modified Electrodes

The main electrodes employed in this work are graphite epoxy composite electrodes modified in
different variants. In order to build the electrodes a copper disk was soldered to an electrical connector.
The connector was then fitted into a 6 mm diameter PVC tube, which provided the main body of
the electrode. Then a conductive paste was prepared using 50-um particle size graphite powder
(BDH laboratory Supplies, Poole, UK) and Epotek H77 resin and hardener (both from Epoxy Technology,
Billerica, MA, USA), which were deposited, filling the cavity in the void body. The electrodes were
cured in the oven for 72 h and then repeatedly polished with sandpaper of decreasing grains prior to
their readiness for measuring (see Figure 3).

Modified electrodes follow the same building process but instead of using a paste of graphite
and epoxy resin, they incorporate a 5% of modifiers acquired from commercial source. In this work,
the modifiers employed were metallic nanoparticles of Cu and Pt, oxide nanoparticles of CuO and
WOQO3, a Pt disk electrode, and a graphite epoxy electrode (GEC) as a bare electrode.

The use of such graphite epoxy electrodes modified with nanotechnological components has
been reported in our laboratory for its use in the detection of Brett character in wine [44], to asses
wine sensory descriptors from a sensory panel [40], to analyze amino acid mixtures [45], to evaluate
the antioxidant capacity of red wines [46], to discriminate beers [47], to analysis cava beverages [48],
and for the comparison of different electronic tongues for pharmaceutical analysis [49].

As mentioned before, noble metal disc electrodes were also employed in the array. These electrodes
were constructed soldering a Pt wire (99.95% purity, diameter 1 mm, supplied by Goodfellow, Cambridge,
UK) to an electrical connector and then encasing the connector in the PVC tube (Servei Estaci6, Barcelona,
Spain). The wire was finally coated in epoxy resin, cured and polished to let exposed only the wire
cross section.

I B B .
(1) (I (- (v

Figure 3. Scheme of the step-by-step construction of graphite-epoxy composite electrodes. (I) Copper
disk soldered to the connector. (II) Assembly into the PVC tube. (III) Incorporation of graphite-epoxy
mixture. (VI) Polishing of the hardened surface.

2.3. Electronic Tongue

The voltammetric ET was formed by an integrated array of six modified graphite epoxy electrodes
as working electrodes, described in the previous section. The electrochemical cell employed in the
measurements was formed by 6 working electrodes, an Ag/AgCl reference electrode, and a platinum
electrode as counter electrode (physical area 0.47 cm?).

Electrochemical measurements were performed at room temperature (25 °C), using a 6-channel
AUTOLAB PGSTAT20 (Metrohm Autolab BV, Utrecht, The Netherlands) controlled with the GPES 4.7
Multichannel software package.

A complete voltammogram was recorded for each sample by cycling the potential between —1.5V and
+1.5 V vs. Ag/AgCl with a step potential of 9 mV and a scan rate of 100 mV-s~!. Acquired voltammogram
for data processing was the fourth (in a series of 4) to improve reproducibility of measurements.
A conditioning potential of +1.2 V was applied during 60 s in a pH 10 solution after each measurement
to electrochemically clean the electrochemical surfaces, thereby preventing fouling and drifting effects.

2.4. Model Design and Sample Preparation

In order to build an acceptable model with good generalization capabilities a considerable
number of data points are usually needed for the training of the model. As stated in the European
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Pharmacopoeia guidelines for multivariate calibrations [50], the size of the dataset needed for building
the calibration is dependent on interfering properties and the number of analytes that the model is
expected to handle. Thus, this leads to two options: increase the size of data set to overcome the
variability of the measurements [51], or employ a statistically defined data set [41].

In this case, the second option was preferred. The model employed was based on a factorial
design [52] with 3 levels and 3 factors (27 samples). The final model was obtained after the factorial
was tilted 45° in each axis for a better final representation. The training subset comprised 75% of the
total samples.

Once the model was trained, an external test subset of 9 samples (25%) was employed to validate
the response model. The concentrations of each sample of the test subset were generated randomly
within the limits of the experimental domain (0-30 ppm) (Figure 4).

30

Diazepam (ppm)

10

Figure 4. Scheme of the modified full factorial design used as train subset (blue) and randomly
generated external test subset (green).

Both sample subsets were prepared in the same way and the samples were prepared in a
Britton—Robinson buffer, pH = 10.0. In order to minimize the degradation of the chemical species
in solution and reduce a possible source of data variability, fresh stock solutions of diazepam,
flunitrazepam, and lorazepam were prepared on the same day the measurements were made.

2.5. Data Processing

Statistical treatment and data analysis were performed using routines written by the authors using
MATLAB R2017a (MathWorks, Natick, MA, USA), together with its Neural Network and Wavelet
toolboxes. Sigmaplot (Systat Software Inc., San Jose, CA, USA) was used to graphically represent and
analyze the results.

3. Results

3.1. Voltammetric Array Response

Electrochemical response of BZs is largely dictated by its common core element, i.e., the 4,5-
azomethine group. The electrochemical behavior has been explained by the 2e~, 2H* reduction of the
4,5-azomethine group at the ring to give the corresponding dihydro species (see Figure 5), plus extra
reduction of additionally present active moieties, e.g., the nitro group in the case of flunitrazepam.
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¢ He
Figure 5. The oxidation of 4,5-azomethine redox mechanism.

In Figure 6 we can see an example of the different voltammograms obtained for 25 ppm of
diazepam, flunitrazepam, and lorazepam in a Britton-Robinson buffer at pH 10.0 (conditions according
to similar works in the literature [22]), for: (A) bare epoxy-graphite composite electrode, (B) CuO
nanoparticles modified graphite electrode, (C) Cu nanoparticles modified graphite electrode, (D) Pt
nanoparticles modified graphite electrode, (E) WO3 nanoparticles modified graphite electrode, and (F)
Pt metal electrode. As can be seen in Figure 6, each sensor provides a singular voltammetric
response. The employed sensors presented different sensitivities towards the different BZs, displaying
a complementary redox profile. This being one of the necessary conditions for obtaining a properly
functioning ET, obtaining differentiated signals for each considered substance with each sensor.
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Figure 6. Voltammograms obtained with the three benzodiazepines used in this study (25 ppm)
using a (A) bare epoxy-graphite composite electrode, and graphite electrodes modified with (B)
CuO nanoparticles, (C) Cu nanoparticles, (D) Pt Nanoparticles, (E) WO3 nanoparticles, and a (F) Pt
metal electrode.

In order to mathematically assess whether the selected sensor array was able to provide the
necessary signal complementarity when the different BZs are measured, a Principal Component
Analysis (PCA) treatment was performed on a series of measurements using the three substances
studied. Specifically, this was treated with separate voltammograms for each electrode and each sample
employed in this study. With this multivariate visualization, each sensor appears differentiated (showing
absence of collinearity) and even the different chemical compounds group together, suggesting the
proper clustering for the intended application (see Figure 7). Moreover, and as can be seen in the score
plot, the sensor’s scores are located in different quadrants of the plot, demonstrating complementarity
of the sensors employed. These appear also away from the 0,0 origin, which suggests they provide
useful information for the discrimination of samples.
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Figure 7. Score plot of the first two principal components obtained after PCA. Five replicates for each
compound (concentration of 25 ppm) were measured with the six sensors in the ET array. Diazepam,
(red circle); flunitrazepam (pink triangle), and lorazepam (blue cross).

3.2. Quantitative Analysis: Artificial Neural Network Modeling

An ANN response model was built from the set of compressed voltammograms in order to predict
the three BZs concentrations in a given sample. For this a training subset of standards (n = 27) was
used as defined by a tilted factorial design. Next, the prediction and generalization capabilities of
the model were tested by employing a subset of unrelated and unknown samples to our model, i.e.,
the test subset (n = 9), defined by random concentration values of the three BZs.

As commented, given the complexity of the electrochemical information obtained from each
sample, it is necessary to perform a pre-processing compression step. This step is necessary in order
to avoid over-fitting of the developed models and to reduce the computation time spent during the
training of the different models [31]. In this particular case, to reduce the data complexity obtained
from the samples, the voltammetric data, the Discrete Wavelet Transform (DWT) was employed to
reduce the 4512 current values obtained per sample (i.e., the six voltammograms) to a set of 144
wavelet coefficients per sample, in this case the approximation coefficients. The mother wavelet used
was Daubechies 3, and the compression level used was 3. Values of compression achieved in the
preprocessing step for the different compression levels assayed were 88.9% for the first, 94.1% for the
second, and 96.7% for the third variant, the latter of which was chosen.

The obtained model was composed of 144 neurons in the input layer (24 per sensor), five neurons
in the hidden layer, and three neurons in the output layer. The transfer functions employed in the
hidden layer and output layer were satlins and tansig, respectively. These configuration details were
chosen after exhaustive evaluation of roughly 200 different possibilities for the ANN, originating in a
test of a number between two and nine neurons in the hidden layers, and the use of the five transfer
functions hardlims, satlins, purelin (linearly shaped), and satlins and tansig (S-shaped) both in the
hidden and output layers. Choice was performed looking for the minimum normalized Root Mean
Squared Error as the measure used to quantify the fitting degree.

Performance of the trained ET is summarized in Figure 8. Comparison graphs of obtained
vs. expected BZs concentrations were built in order to visualize the prediction ability of the ANN
model. Moreover their best linear regression line was calculated (separately for the training and the
testing subsets) for the three different BZs. Ideal values for the comparison lines should be 1.0 for
the slope, 0.0 the intercept, and 1.0 for the correlation coefficient, respectively. The figure shows a
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satisfactory fit for the training data and also the correct trend for the external test subset, with perhaps
a somewhat higher dispersion for the latter. This is the usual result when the proper modelling has
been attained—almost perfect equivalence for the training subset, given the model is built from this
data, and a correct trend for the external test subset, perhaps with less accuracy. However it must be
said these data were not involved in the development of the model. Correlation coefficients indicated
on the graph are practically 1.0 for the training subset and between 0.938-0.961 for the test subset,
values also close to ideality.
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Figure 8. Obtained vs. expected concentrations results plots for the training set (black dots) and the
testing set (white dots) for (A) diazepam, (B) flunitrazepam, and (C) lorazepam.

The detailed results of regression lines for each compound and both train and test sub-sets are
presented in Table 1. Acceptable values close to the ideal values were obtained for all the compounds
with better values for the training set than for the testing set as it is usually obtained. Additionally,
the table also includes NRMSE values as a measure of the goodness of fit with figures close to zero for
both training and testing sets.

Table 1. Results of the fitted regression lines for obtained vs. expected values for the training and
testing subsets of samples and the three considered compounds.

Set Analyte R? Slope Intercept (ppm) NRMSE Combined NRMSE
Training Set Diazepam 0.996 0.932 1.358 0.035
(n= §7) Flunitrazepam  0.996 0.939 1.196 0.034 0.034
Lorazepam 0.997 0.923 1.498 0.034
Testing Set Diazepam 0.961 0.977 0.075 0.105
(n _g9) Flunitrazepam  0.943 0.909 2.714 0.113 0.106
- Lorazepam 0.938 0.884 2.044 0.114

Finally, to give a contrast to the results herein, Table 2 was prepared for the examination and
comparison of the performance of the present work and those of related papers in the literature. As can
be seen from Table 2 linear ranges and limits of detections are similar to those of works in the literature
but the presented work has the clear advantage of simultaneously quantifying three BZs species.
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Table 2. Analytical results of the work presented herein and most relevant references, This table
compares the substances detected, the sensor and employed electrochemical technique, the linear range,
and the limit of detection.

. Lineal Range Limit of
Substances. Electrode Technique o) Detection (M) Reference
Ag nanodendrimers supported by . .
Diazepam graphene nanosheets modified Differential pulse 1.0 x 1077-1.0 x 107° 0.086 [15]
voltammetry
glassy carbon electrode
Diazepam Unmodified SPCE Differential pulse adsorptive 5, 15 1, 193 63 [16]
stripping voltammetry
Fullerene functionalized carbon Differential pulse
Diazepam nanotubes/ionic p 0.3 x1076-7 x 1074 0.0087 [17]
L . voltammetry
liquidnanocomposite GCE
. Multiwall Carbon Nanotube-Ionic iy 6
Diazepam Liquid Modified Paste Electrode Square wave voltammetry 7 x107°-2.5x 10 0.014 [23]
Modified
Lorazepam polypyrr(')le@sol-ge'l@gold' Cyclic voltammetry 0.2x107°-2x 1077 0.0009 [18]
nanoparticles/pencil graphite
electrode
Flunitrazepam  SPGE Cyclic voltammetry 32x1078-6.4 x 1077 0.019 [20]
Diazepam . i Cyclic 3.5x107°-1.1 x 1074 6.0
Flunitrazepam l\igta}i;l:r;ogirtgc;g;):ﬁ:d voltammetry-Electronic 32x1075-9.6 x 107* 5.6 This work
Lorazepam rap poxy y tongue 31x1075-9.3x 1075 4.6

4. Conclusions

The proposed approach reports the use of a voltammetric sensor array that has been developed
and validated as a rapid, reliable, and accurate method for simultaneous determination of ternary
mixtures of BZs products diazepam, flunitrazepam, and lorazepam. A set of standards based on
modified full factorial design was prepared to build the model. After validation with an external test
set the model successfully predicted the concentration of three BZs despite accused overlapping of the
voltammetric signals.

The work presented herein shows a promising tool for simultaneously determining mixtures
of these regulated substances in a fast, cost efficient, and reliable manner with performance close to
that of sophisticate equipment such as HPLC. The ET developed was able to quantify the individual
components of ternary mixtures of diazepam, flunitrazepam, and lorazepam with a NRMSE as low as
0.105 for the independent sample subset.

However, the drawback of the reported procedure might be the need for a specifically defined
buffer and measurement media, i.e., the Britton-Robinson buffer, although the involved effort for a
given sample is minimum. Nevertheless, future works should consider compatibility with different
biologic media, such as urine or blood serum. These conditions need to be further explored in order to
maximize the strong points of the ET approach. The presented work nevertheless opens a promising
forensic/illicit drug analysis as an alternative to traditional methodologies.

Author Contributions: FT. and A H.-C. did the experimental measurements. A.G.-C. performed the calculations
and the ANN modelling. A.H.-C.; M.d.V. and A.G. wrote the manuscript. EF. and J.B.G. supervised work of ET.
M.d.V. planned and supervised the research.

Funding: Financial support for this work was provided by Spanish Ministry, Ministerio de Economia y Competitividad,
through the project CTQ2016-80170-P.

Acknowledgments: Anna Herrera-Chacon thanks Universtitat Autonoma de Barcelona (UAB) for the PIF
fellowship. Manel del Valle is thankful for support from the program ICREA Academia from Generalitat de
Catalunya. The authors want to acknowledge the enlightening discussions with Adria Aguilar-Catalan from
Veterinary Faculty, Universitat Autonoma de Barcelona.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Persona, K.; Madej, K.; Knihnicki, P.; Piekoszewski, W. Analytical methodologies for the determination of
benzodiazepines in biological samples. . Pharm. Biomed. Anal. 2015, 113, 239-264. [CrossRef]


http://dx.doi.org/10.1016/j.jpba.2015.02.017

Sensors 2019, 19, 5002 10 of 12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Lévi, S.; Le Roux, N.; Eugene, E.; Poncer, ].C. Benzodiazepine ligands rapidly influence GABAA receptor
diffusion and clustering at hippocampal inhibitory synapses. Neuropharmacology 2015, 88, 199-208. [CrossRef]
[PubMed]

Ariffin, M.M.; Miller, E.I; Cormack, P.A.G.; Anderson, R.A. Molecularly imprinted solid-phase extraction of
diazepam and its metabolites from hair samples. Anal. Chem. 2007, 79, 256-262. [CrossRef] [PubMed]
Uddin, M.N.; Samanidou, V.F; Papadoyannis, LN. Development and validation of an HPLC method for the
determination of six 1,4-benzodiazepines in pharmaceuticals and human biological fluids. J. Lig. Chromatogr.
Relat. Technol. 2008, 31, 1258-1282. [CrossRef]

Anderson, R.A.; Ariffin, M.M.; Cormack, P.A.G.; Miller, E.I. Comparison of molecularly imprinted solid-phase
extraction (MISPE) with classical solid-phase extraction (SPE) for the detection of benzodiazepines in
post-mortem hair samples. Forensic Sci. Int. 2008, 174, 40-46. [CrossRef] [PubMed]

Dziadosz, M.; Teske, J.; Henning, K.; Klintschar, M.; Nordmeier, F. LC-MS/MS screening strategy for
cannabinoids, opiates, amphetamines, cocaine, benzodiazepines and methadone in human serum, urine and
post-mortem blood as an effective alternative to immunoassay based methods applied in forensic toxicology
for preliminary. Forensic Chem. 2018, 7, 33-37. [CrossRef]

Riahi, S.; Bagherzadeh, K.; Davarkhah, N.; Ganjali, M.R.; Norouzi, P. Spectrophotometric and chemometric
studies on the simultaneous determination of two benzodiazepines in human plasma. Mater. Sci. Eng. C
2011, 31, 992-996. [CrossRef]

Furlanetto, S.; Orlandini, S.; Massolini, G.; Faucci, M.T.; La Porta, E.; Pinzauti, S. Optimisation and validation
of a capillary electrophoresis method for the simultaneous determination of diazepam and otilonium bromide.
Analyst 2001, 126, 1700-1706. [CrossRef]

Piergiovanni, M.; Cappiello, A.; Famiglini, G.; Termopoli, V.; Palma, P. Determination of benzodiazepines in
beverages using green extraction methods and capillary HPLC-UV detection. J. Pharm. Biomed. Anal. 2018,
154, 492-500. [CrossRef]

Pettersson Bergstrand, M.; Helander, A.; Beck, O. Development and application of a multi-component
LC-MS/MS method for determination of designer benzodiazepines in urine. J. Chromatogr. B Anal. Technol.
Biomed. Life Sci. 2016, 1035, 104-110. [CrossRef]

Dickson, S.; Park, A.; Nolan, S.; Kenworthy, S.; Nicholson, C.; Midgley, J.; Pinfold, R.; Hampton, S.
The recovery of illicit drugs from oral fluid sampling devices. Forensic Sci. Int. 2007, 165, 78-84. [CrossRef]
[PubMed]

Bertol, E.; Vaiano, F.; Furlanetto, S.; Mari, F. Cross-reactivities and structure-reactivity relationships of six
benzodiazepines to EMIT® immunoassay. J. Pharm. Biomed. Anal. 2013, 84, 168-172. [CrossRef] [PubMed]
Honeychurch, K.C.; Brooks, J.; Hart, ].P. Development of a voltammetric assay, using screen-printed electrodes,
for clonazepam and its application to beverage and serum samples. Talanta 2016, 147, 510-515. [CrossRef]
[PubMed]

Jain, R.; Sinha, A.; Kumari, N.; Khan, A.L. A polyaniline/graphene oxide nanocomposite as a voltammetric
sensor for electroanalytical detection of clonazepam. Anal. Methods 2016, 8, 3034-3045. [CrossRef]

Majidi, M.R.; Ghaderi, S.; Asadpour-Zeynali, K.; Dastangoo, H. Synthesis of dendritic silver nanostructures
supported by graphene nanosheets and its application for highly sensitive detection of diazepam. Mater. Sci.
Eng. C 2015, 57, 257-264. [CrossRef]

Honeychurch, K.C.; Crew, A.; Northall, H.; Radbourne, S.; Davies, O.; Newman, S.; Hart, ]J.P. The redox
behaviour of diazepam (Valium®) using a disposable screen-printed sensor and its determination in drinks
using a novel adsorptive stripping voltammetric assay. Talanta 2013, 116, 300-307. [CrossRef]
Rahimi-Nasrabadi, M.; Khoshroo, A.; Mazloum-Ardakani, M. Electrochemical determination of diazepam in
real samples based on fullerene-functionalized carbon nanotubes/ionic liquid nanocomposite. Sens. Actuators
B Chem. 2017, 240, 125-131. [CrossRef]

Rezaei, B.; Boroujeni, M.K,; Ensafi, A.A. A novel electrochemical nanocomposite imprinted sensor for the
determination of lorazepam based on modified polypyrrole@sol-gel@gold nanoparticles/pencil graphite
electrode. Electrochim. Acta 2014, 123, 332-339. [CrossRef]

Mohammadi-Behzad, L.; Gholivand, M.B.; Shamsipur, M.; Gholivand, K.; Barati, A.; Gholami, A. Highly
sensitive voltammetric sensor based on immobilization of bisphosphoramidate-derivative and quantum
dots onto multi-walled carbon nanotubes modified gold electrode for the electrocatalytic determination of
olanzapine. Mater. Sci. Eng. C 2016, 60, 67-77. [CrossRef]


http://dx.doi.org/10.1016/j.neuropharm.2014.06.002
http://www.ncbi.nlm.nih.gov/pubmed/24930360
http://dx.doi.org/10.1021/ac061062w
http://www.ncbi.nlm.nih.gov/pubmed/17194149
http://dx.doi.org/10.1080/10826070802019574
http://dx.doi.org/10.1016/j.forsciint.2007.03.002
http://www.ncbi.nlm.nih.gov/pubmed/17467213
http://dx.doi.org/10.1016/j.forc.2017.12.007
http://dx.doi.org/10.1016/j.msec.2011.02.013
http://dx.doi.org/10.1039/b103091b
http://dx.doi.org/10.1016/j.jpba.2018.03.030
http://dx.doi.org/10.1016/j.jchromb.2016.08.047
http://dx.doi.org/10.1016/j.forsciint.2006.03.004
http://www.ncbi.nlm.nih.gov/pubmed/16621382
http://dx.doi.org/10.1016/j.jpba.2013.05.026
http://www.ncbi.nlm.nih.gov/pubmed/23835060
http://dx.doi.org/10.1016/j.talanta.2015.10.032
http://www.ncbi.nlm.nih.gov/pubmed/26592640
http://dx.doi.org/10.1039/C6AY00424E
http://dx.doi.org/10.1016/j.msec.2015.07.037
http://dx.doi.org/10.1016/j.talanta.2013.05.017
http://dx.doi.org/10.1016/j.snb.2016.08.144
http://dx.doi.org/10.1016/j.electacta.2014.01.056
http://dx.doi.org/10.1016/j.msec.2015.10.068

Sensors 2019, 19, 5002 11 of 12

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Garcia-Gutierrez, E.; Lledo-Fernandez, C. Electroanalytical sensing of Flunitrazepam based on screen printed
graphene electrodes. Chemosensors 2013, 1, 68-77. [CrossRef]

Tseliou, F.; Pappas, P; Spyrou, K.; Hrbac, J.; Prodromidis, M.I. Lab-On-A-Screen-Printed electrochemical cell
for drop-volume voltammetric screening of flunitrazepam in untreated, undiluted alcoholic and soft drinks.
Biosens. Bioelectron. 2019, 132, 136-142. [CrossRef] [PubMed]

Lozano-Chaves, M.E.; Palacios-Santander, ].M.; Cubillana-Aguilera, L.M.; Naranjo-Rodriguez, I.;
Hidalgo-Hidalgo-de-Cisneros, J.L. Modified carbon-paste electrodes as sensors for the determination
of 1,4-benzodiazepines: Application to the determination of diazepam and oxazepam in biological fluids.
Sens. Actuators B Chem. 2006, 115, 575-583. [CrossRef]

Zare, M.A; Tehrani, M.S.; Husain, S.W.; Azar, P.A. Multiwall carbon nanotube-ionic liquid modified
paste electrode as an efficient sensor for the determination of diazepam and oxazepam in real samples.
Electroanalysis 2014, 26, 2599-2606. [CrossRef]

Samiec, P,; Svorc, L.; Stankovi¢, D.M.; Vojs, M.; Marton, M.; Navratilova, Z. Mercury-Free and modification-free
electroanalytical approach towards bromazepam and alprazolam sensing: A facile and efficient assay for
their quantification in pharmaceuticals using boron-doped diamond electrodes. Sens. Actuators B Chem.
2017, 245, 963-971. [CrossRef]

Merli, D.; Dondi, D.; Pesavento, M.; Profumo, A. Electrochemistry of olanzapine and risperidone at carbon
nanotubes modified gold electrode through classical and DFT approaches. ]. Electroanal. Chem. 2012, 683,
103-111. [CrossRef]

Naggar, A.H.; Elkaoutit, M.; Naranjo-Rodriguez, I.; El-Sayed, A.E.A.Y.; De Cisneros, ].L.H.H. Use of a
Sonogel-Carbon electrode modified with bentonite for the determination of diazepam and chlordiazepoxide
hydrochloride in tablets and their metabolite oxazepam in urine. Talanta 2012, 89, 448-454. [CrossRef]
Ashrafi, H.; Mobed, A.; Hasanzadeh, M.; Babaie, P; Ansarin, K.; Jouyban, A. Monitoring of five
benzodiazepines using a novel polymeric interface prepared by layer by layer strategy. Microchem. ].
2019, 146, 121-125. [CrossRef]

Dos Santos, M.M.C.; Famila, V.; Gongalves, M.L.S. Square-Wave voltammetric techniques for determination
of psychoactive 1,4-benzodiazepine drugs. Anal. Bioanal. Chem. 2002, 374, 1074-1081. [CrossRef]

Ashrafi, H.; Hassanpour, S.; Saadati, A.; Hasanzadeh, M.; Ansarin, K.; Ozkan, S.A.; Shadjou, N.; Jouyban, A.
Sensitive detection and determination of benzodiazepines using silver nanoparticles-N-GQDs ink modified
electrode: A new platform for modern pharmaceutical analysis. Microchem. J]. 2019, 145, 1050-1057.
[CrossRef]

Samiec, P.; Navratilova, Z.; Fischer, J. Voltammetry of benzodiazepines on meniscus-modified silver solid
amalgam electrode. Mon. Chem. 2016, 147, 127-134. [CrossRef]

Moreno-Barén, L.; Cartas, R.; Merkogi, A.; Alegret, S.; Gutiérrez, ].M.,; Leija, L.; Hernandez, P.R.; Mufoz, R.;
del Valle, M. Data compression for a voltammetric electronic tongue modelled with artificial neural networks.
Anal. Lett. 2005, 38, 2189-2206. [CrossRef]

Dias, L.G.; Fernandes, A.; Veloso, A.C.A.; Machado, A.A.S.C.; Pereira, J.A.; Peres, A.M. Single-cultivar
extra virgin olive oil classification using a potentiometric electronic tongue. Food Chem. 2014, 160, 321-329.
[CrossRef] [PubMed]

Ciosek, P.; Wroblewski, W. Potentiometric electronic tongues for foodstuff and biosample recognition-an
overview. Sensors 2011, 11, 4688-4701. [CrossRef] [PubMed]

Scampicchio, M.; Benedetti, S.; Brunetti, B.; Mannino, S. Amperometric electronic tongue for the evaluation
of the tea astringency. Electroanalysis 2006, 18, 1643-1648. [CrossRef]

Pioggia, G.; Di Francesco, F; Ferro, M.; Sorrentino, F,; Salvo, P.; Ahluwalia, A. Characterization of a carbon
nanotube polymer composite sensor for an impedimetric electronic tongue. Microchim. Acta 2008, 163, 57-62.
[CrossRef]

Cortina-Puig, M.; Mufioz-Berbel, X.; Alonso-Lomillo, M.A.; Mufioz-Pascual, FJ.; del Valle, M. EIS multianalyte
sensing with an automated SIA system—An electronic tongue employing the impedimetric signal. Talanta
2007, 72, 774-779. [CrossRef] [PubMed]

Braga, G.S.; Paterno, L.G.; Fonseca, F]. Performance of an electronic tongue during monitoring
2-methylisoborneol and geosmin in water samples. Sens. Actuators B Chem. 2012, 171, 181-189. [CrossRef]
Arrieta, A.A.; Rodriguez-Méndez, M.L.; de Saja, J.A.; Blanco, C.A.; Nimubona, D. Prediction of bitterness
and alcoholic strength in beer using an electronic tongue. Food Chem. 2010, 123, 642-646. [CrossRef]


http://dx.doi.org/10.3390/chemosensors1030068
http://dx.doi.org/10.1016/j.bios.2019.03.001
http://www.ncbi.nlm.nih.gov/pubmed/30870640
http://dx.doi.org/10.1016/j.snb.2005.10.021
http://dx.doi.org/10.1002/elan.201400305
http://dx.doi.org/10.1016/j.snb.2017.02.023
http://dx.doi.org/10.1016/j.jelechem.2012.08.011
http://dx.doi.org/10.1016/j.talanta.2011.12.061
http://dx.doi.org/10.1016/j.microc.2018.12.064
http://dx.doi.org/10.1007/s00216-002-1535-0
http://dx.doi.org/10.1016/j.microc.2018.12.017
http://dx.doi.org/10.1007/s00706-015-1594-5
http://dx.doi.org/10.1080/00032710500259342
http://dx.doi.org/10.1016/j.foodchem.2014.03.072
http://www.ncbi.nlm.nih.gov/pubmed/24799245
http://dx.doi.org/10.3390/s110504688
http://www.ncbi.nlm.nih.gov/pubmed/22163870
http://dx.doi.org/10.1002/elan.200603586
http://dx.doi.org/10.1007/s00604-008-0952-y
http://dx.doi.org/10.1016/j.talanta.2006.12.016
http://www.ncbi.nlm.nih.gov/pubmed/19071685
http://dx.doi.org/10.1016/j.snb.2012.02.092
http://dx.doi.org/10.1016/j.foodchem.2010.05.006

Sensors 2019, 19, 5002 12 of 12

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Lvova, L.; Yaroshenko, I; Kirsanov, D.; Di Natale, C.; Paolesse, R.; Legin, A. Electronic tongue for brand
uniformity control: A case study of apulian red wines recognition and defects evaluation. Sensors 2018,
18, 2584. [CrossRef]

Ceto, X.; Gonzalez-Calabuig, A.; Crespo, N.; Pérez, S.; Capdevila, ].; Puig-Pujol, A.; del Valle, M. Electronic
tongues to assess wine sensory descriptors. Talanta 2017, 162, 218-224. [CrossRef]

Gonzalez-Calabuig, A.; Cetd, X.; del Valle, M. Electronic tongue for nitro and peroxide explosive sensing.
Talanta 2016, 153, 340-346. [CrossRef] [PubMed]

Pérez-Rafols, C.; Gémez, A.; Serrano, N.; Diaz-Cruz, ].M.; Arifio, C.; Esteban, M. A voltammetric electronic
tongue based on commercial screen-printed electrodes for the analysis of aminothiols by differential pulse
voltammetry. Electroanalysis 2017, 29, 1559-1565. [CrossRef]

Herrera-Chacon, A.; Gonzalez-Calabuig, A.; Campos, I.; del Valle, M. Bioelectronic tongue using MIP sensors
for the resolution of volatile phenolic compounds. Sens. Actuators B Chem. 2018, 258, 665-671. [CrossRef]
Gonzalez-Calabuig, A.; del Valle, M. Voltammetric electronic tongue to identify Brett character in wines:
On-Site quantification of its ethylphenol metabolites. Talanta 2018, 179, 70-74. [CrossRef]

Faura, G.; Gonzalez-Calabuig, A.; del Valle, M. Analysis of amino acid mixtures by voltammetric electronic
tongues and artificial neural networks. Electroanalysis 2016, 28, 1894-1900. [CrossRef]

Ceto, X.; Apetrei, C.; del Valle, M.; Rodriguez-Méndez, M.L. Evaluation of red wines antioxidant capacity
by means of a voltammetric e-tongue with an optimized sensor array. Electrochim. Acta 2014, 120, 180-186.
[CrossRef]

Gutiérrez, ].M.; Haddi, Z.; Amari, A.; Bouchikhi, B.; Mimendia, A.; Cetd, X.; del Valle, M. Hybrid electronic
tongue based on multisensor data fusion for discrimination of beers. Sens. Actuators B Chem. 2013, 177,
989-996. [CrossRef]

Ceto, X.; Gutiérrez, ].M.; Moreno-Barén, L.; Alegret, S.; del Valle, M. Voltammetric electronic tongue in the
analysis of cava wines. Electroanalysis 2011, 23, 72-78. [CrossRef]

Pein, M.; Kirsanov, D.; Ciosek, P.; del Valle, M.; Yaroshenko, I.; Wesoly, M.; Zabadaj, M.; Gonzalez-Calabuig, A.;
Wréblewski, W.; Legin, A. Independent comparison study of six different electronic tongues applied for
pharmaceutical analysis. |. Pharm. Biomed. Anal. 2015, 114, 321-329. [CrossRef]

European Directorate for the Quality of Medicines & Healthcare. Ch. 8.7 Chemometric Methods Applied to
Analytical Data. In European Pharmacopoeia, 9th ed.; Council of Europe: Strasbourg, France, 2016.

Calvo, D.; Duran, A.; del Valle, M. Use of sequential injection analysis to construct an electronic-tongue.
Application to multidetermination employing the transient response of a potentiometric sensor array.
Anal. Chim. Acta 2007, 600, 97-104. [CrossRef]

Ceto, X.; Céspedes, F.; Pividori, M.I,; Gutiérrez, ].M.; del Valle, M. Resolution of phenolic antioxidant mixtures
employing a voltammetric bio-electronic tongue. Analyst 2012, 137, 349-356. [CrossRef] [PubMed]

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.3390/s18082584
http://dx.doi.org/10.1016/j.talanta.2016.09.055
http://dx.doi.org/10.1016/j.talanta.2016.03.009
http://www.ncbi.nlm.nih.gov/pubmed/27130125
http://dx.doi.org/10.1002/elan.201700053
http://dx.doi.org/10.1016/j.snb.2017.11.136
http://dx.doi.org/10.1016/j.talanta.2017.10.041
http://dx.doi.org/10.1002/elan.201600055
http://dx.doi.org/10.1016/j.electacta.2013.12.079
http://dx.doi.org/10.1016/j.snb.2012.11.110
http://dx.doi.org/10.1002/elan.201000439
http://dx.doi.org/10.1016/j.jpba.2015.05.026
http://dx.doi.org/10.1016/j.aca.2006.11.079
http://dx.doi.org/10.1039/C1AN15456G
http://www.ncbi.nlm.nih.gov/pubmed/22102984
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods. 
	Chemicals and Reagents 
	Preparation of the Modified Electrodes 
	Electronic Tongue 
	Model Design and Sample Preparation 
	Data Processing 

	Results 
	Voltammetric Array Response 
	Quantitative Analysis: Artificial Neural Network Modeling 

	Conclusions 
	References

