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ABSTRACT  

Colloidal nanorods with axial silicon (Si) and germanium (Ge) heterojunction segments were 

produced by solution-liquid-solid (SLS) growth using tin (Sn) as a seed metal and trisilane and 

diphenylgermane as Si and Ge reactants.  The low solubility of Si and Ge in Sn helps to generate 

abrupt Si-Ge heterojunction interfaces.  To control the composition of the nanorods, it was also 

necessary to limit an undesired side reaction between the Ge reaction byproduct 

tetraphenylgermane and trisilane.  High resolution transmission electron microscopy (HRTEM) 

reveals that the Si-Ge interfaces are epitaxial, which gives rise to a significant amount of bond 

strain resulting in interfacial misfit dislocations that nucleate stacking faults in the nanorods.   
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INTRODUCTION 

Colloidal nanostructures can be made with a wide variety of shapes and composition.1-4  

Heterostructures represent one interesting class of these materials—that is, those with an abrupt 

change in composition internally.5  Core-shell heterostructures were the first nanocrystals of this 

type to be made,6-8 and since then nanorods and nanowires, as well as branched nanocrystals like 

tetrapods, have been demonstrated with axial heterojunctions.9-11  Various approaches have been 

used to make nanorods and nanowires with axial heterojunctions, including facet-selective 

epitaxial deposition,12 ion exchange13 and metal-seeded growth processes like vapor-liquid-solid 

(VLS)14 and solution-liquid-solid (SLS) methods.10,11  With the ability to tune the electronic band 

structure by modulating composition or doping lengthwise, nanorods and nanowires with axial 

heterojunctions have been explored in a variety of applications, including electronic devices,15-18 

photovoltaics,19-21 photocatalytic systems,22,23 batteries24,25 and photonics.26,27  

VLS and analogous techniques in solvents like SLS and supercritical fluid-liquid-solid 

(SFLS)28 growth provide general routes to making nanorods and nanowires that do not rely on 

intrinsic characteristics of the material to induce uniaxial crystal growth.29,30 For axial 

heterojunctions with abrupt transitions in composition, seed metals with a low solubility for the 

semiconductor are typically required,31-34 although some researchers have found ways to 

carefully control reactant addition to overcome the retention of semiconductor species in the seed 

metal in some instances.35  If the metal seed retains a significant amount of the semiconductor as 

the composition of reactants is switched, the resulting compositional interface in the nanowire 

becomes diffuse.32,33  Significant efforts have been made to identify suitable metals to seed the 

growth of nanowires with axial heterojunctions.31-34 Low melting metals have been found to 

generally work well for SLS growth of semiconductor nanowires, such as Bi,36-39 In40 and Sn41-43 
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and are strong candidates for nanowires with axial heterojunctions.  The commonly used gold 

seeds for example retain significant Si and Ge during growth—with a eutectic composed of 

nearly 20at% Si—makes it less desirable seed metal for heterojunction nanowires.34  Nanowires 

with abrupt axial heterojunctions of Si and Ge have been synthesized using VLS approaches with 

Al,31 Au-Ga alloys,32,33 and Sn34 seeds.  We have been developing solution-based SLS routes to 

make Si and Ge nanorods with thinner diameters than those typically obtained by VLS—closer 

to what is needed for quantum confinement at room temperature.43,44  These methods have used 

Sn nanoparticles as seeds and have yielded Si nanorods that have exhibited high efficiency 

carrier multiplication45 and room temperature photoluminescence.43  

Here, we show that it is possible to use Sn-seeded SLS growth to produce nanorods with 

axial Si-Ge heterojunctions.  We find that Sn works well as a seed metal for producing abrupt 

interfaces, as Geaney, et al.34 showed using their VLS process, but that side reactions can occur 

in solution that can spoil the compositional profile of the nanorods if not controlled.  In the case 

of VLS growth, it is usually unwanted sidewall deposition that can occur as reactants are 

switched.46,47  In the SLS process, sidewall deposition is generally not a major problem, but we 

find that the diphyenlygermane (DPG) reaction byproduct of tetraphenylgermane that 

accumulates in the system over time can react with trisilane and prevent Si supply to the growing 

nanorods.  We discuss to what extent this problem can be overcome by manipulating the growth 

process.  A detailed examination of the structure and composition of the nanorod heterojunctions 

was carried out using transmission electron microscopy (TEM) coupled with electron energy loss 

spectroscopy (EELS).  Because of the difference in lattice constants for Si and Ge, strain is 

expected across the heterojunction, which can affect the electronic and structural properties of 

heterojunctions.48,49 With the help of geometric phase analyses (GPA), the strain at the epitaxial 
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Si-Ge interface, the presence of misfit dislocations and associated stacking faults, were observed 

and examined.     

 

EXPERIMENTAL DETAILS: 

Materials. Bis[bis(trimethylsilyl)amino]tin(II) (Sn(hmds)2, Aldrich), diphenylgermane 

(DPG, Gelest), trisilane (Si3H8, Voltaix), octadecane (99%, Aldrich), monophenylsilane (MPS, 

Gelest), squalane (>95%, Aldrich), poly(vinylpyrrolidinone)-hexadecane (PVP-HDE) copolymer 

(Ganex V-216, ISP Technologies, Inc.) were used without further purification. Solutions of 

squalane and PVP-HDE dissolved in octadecane (33% w/w) were degassed under vacuum at 

80oC for 45 min and stored in a nitrogen-filled glovebox prior to use. 

Nanorod Synthesis. Si-Ge heterojunction nanorods were synthesized using a 

modification of procedures developed for Si and Ge nanorods (the experimental setup is 

illustrated in Figure S6).44 The entire operation is conducted inside a nitrogen-filled glovebox. 

For the growth of short Ge-Si nanorods, 10 mL of squalane was heated to 360oC under N2 flow 

in a flat bottom flask attached to the Schlenk line. Separately, a precursor solution of 1 mL of 

PVP-HDE octadecane solution, 20 μL of Sn(hmds)2, 95 μL of DPG and 45 μL of MPS  was 

prepared in a 3 mL vial, which turned dark brown after mixing, indicating the formation of Sn 

nanoparticles. MPS was added to facilitate the decomposition of DPG.50 The precursor solution 

was then drawn into a syringe equipped with a 6” needle. Prior to injection, the stopcock valve 

was closed. The mixture was quickly injected through the septum into the hot squalane to initiate 

the growth of the Ge segment. During this growth period, a second precursor solution of 200 μL 

of squalane and 42 μL of trisilane was prepared and loaded to another clean syringe. After 5 min 

following the first injection, the second precursor was injected into the flask. After another 5 
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min, the heating mantle was removed to allow the flask cool down to room temperature. The 

stopcock valve was kept closed through the whole reaction to reduce evaporation. (Caution: 

trisilane is relatively volatile, highly flammable and pyrophoric and must be safely handled.)  

Long Ge-Si nanorods were grown by increasing the amount of trisilane to 63 μL in the 

second injection. In the growth of the Ge-Si-Si nanorods, the first and the second injections were 

the same as in the reaction of the short Ge-Si nanorods; in the third injection, the precursor 

solution was made of 200 μL of squalane and 42 μL of trisilane and the growth lasted for 5 min. 

In the growth of the Ge-Si-Ge nanorods, the first and the second injections were the same as in 

the reaction of the long Ge-Si nanorods; in the third injection, the precursor solution was made of 

200 μL of squalane, 95 μL of DPG and 45 μL of MPS. 

The crude reaction product of the nanorod dispersion was diluted with 10 mL of toluene 

and transferred to a centrifuge tube. About 15 mL of ethanol was then added slowly and the 

solution was centrifuged at 10000 rpm for 10 min to isolate the product. The supernatant was 

discarded. The precipitate was redispersed in toluene and washed by repeating the precipitation 

procedure for three times. The final product was dispersed in chloroform. 

Transmission electron microscopy (TEM). Low-resolution TEM images were obtained 

on a FEI Tecnai Spirit Bio Twin operated at 80 kV. High-resolution transmission electron 

microscopy (HRTEM) and annular dark-field scanning transmission electron microscopy (ADF-

STEM) combined with electron energy loss spectroscopy (EELS) analyses were obtained on a 

FEI Tecnai F20 microscope operated at 200 kV. The instrument is equipped with a field 

emission gun, achieving a lateral resolution below 0.14 nm and a Gatan Imaging Filter (GIF) 

Quantum SE 963 fitted with a 2k x 2k CCD camera, suitable for EELS measurements. TEM 
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samples were prepared by drop-casting 5 μL of diluted nanorods dispersion onto a 200 mesh 

copper carbon film TEM grid (Electron Microscopy Science).  

 

RESULTS AND DISCUSSON 

Synthesis of Si-Ge heterostructure nanorods and strain mapping across the 

heterojunction. In previous work,43,44 we showed that Sn nanoparticles are an excellent catalyst 

for the colloidal growth of both Si and Ge nanorods: the low eutectic temperature of Sn-Si 

(231.9oC)49 and Sn-Ge (231.1oC)51 significantly decreases the high crystallization temperatures 

of Si and Ge and enables the solution-based synthesis. Importantly for this work, the very low 

solubility of Si and Ge in Sn also makes it a good choice to seed nanorods with Si-Ge 

heterojunctions.  The eutectic points in the Sn-Si and Sn-Ge phase diagrams are located at the Si 

compositions of only 5×10-5 at.%52 and 2.6×10-1 at.%,51 respectively.  The length of the 

transition region of a heterojunction is proportional to the concentration of the initially-grown 

species in the liquid seed droplet—a higher solubility results in a more diffuse interface and vice 

versa.31,34  Geaney, et al.34 showed that the interface across Si-Ge heterojunctions in Sn-seeded 

VLS-grown nanowires was 1-2 atomic planes thick.  Similar results are achieved in our 

experiments using a sequential reactant injection approach at constant growth temperature.   

Figure 1 shows TEM images of Ge-Si and Ge-Si-Si heterostructure nanorods. The 

naming of the nanorods represents the order of the precursor injection steps. So, Ge-Si-Si 

nanorods were made by three sequential injections of DPG followed by trisilane and then again, 

trisilane.  The nanorods are reasonably uniform in diameter and length.  There are spherical seed 

particles of Sn present on many of the nanorods and the nanorods are generally kinked.  Figure 2 

shows high resolution TEM data for a Ge-Si nanorod.  The Ge and the Si segments are readily 
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distinguished by a strong difference in imaging contrast (Figure 2a).  The transition from Ge to 

Si occurs sharply across a flat interface (Figure 2b-c).  The strain distribution across the Ge-Si 

heterojunction was interrogated using geometric phase analysis (GPA) to map the lattice 

distortion at the interface.53,54 Figure 2d shows the dilatation map obtained by applying the GPA 

algorithm to the Ge (1-11) plane, along the [1-11] axial direction of the nanowire.  The 

difference in the d-spacing of the analyzed {111} planes at both sides of the heterostructure is in 

good agreement with pure Si and Ge relaxed segments.  The theoretical, in bulk, mismatch 

between Si and Ge should be -4.07%, which is what is observed using GPA. The sharpness of 

the heterojunction in terms of lattice strain determined from the strain vs position plot shows that 

the transition region is about 3 nm (Figure 2e).   

 

 

Figure 1. TEM images of a field of nanorods: (a) short Sn seeded Ge-Si nanorods and (b) Sn 

seeded Ge-Si-Si nanorods.  
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Figure 2. TEM examination of a Ge-Si heterostructure nanorod. (a) Low-resolution TEM image 

of a Ge-Si heterostructure nanorod. (b) The indexed FFT shows that both the Ge and the Si 

segments grow epitaxially along <111> direction; on the bottom left, a zoomed-in inset of the 

area in white box resolves two reflections corresponding to Ge (in red circle) and Si (in green 

circle). (c) HRTEM image of the interface region that corresponds to the area indicated by the 

blue box in (a). (d) Dilatation map obtained by applying GPA to the Ge (1-11) growth plane 

shows the Si segment with a mismatch of about -4% compared to the Ge segment, in agreement 

with a completely relaxed system. The false temperature color scale used is normalized between 

±10 % lattice dilatation. (e) The strain profile taken along the arrow defined in (d) corresponds to 

an abrupt interface (~3 nm).  

-10%

10% 

0% 
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The large lattice mismatch between Si and Ge leads to the formation of interfacial misfit 

dislocations to release the strain,55-57 as shown by the GPA analysis and lattice-resolved HRTEM 

image (Figure 3a-d).  A few nanometers away from the Si-Ge interface while the nanorods 

continue to grow in the [1-11] direction, stacking faults on a {111} plane propagating in the [1-

12] direction are observed (Figures 3e, 3f and 4). Those stacking faults were found nucleated 

from the misfit dislocations, and either pinned to the surface (Figures 3e and 3f) or stopped by 

another misfit dislocation (Figure 4).58 Both of misfit dislocations and stacking faults can be 

easily distinguished in the GPA mappings of the local strain, consistent with the previous finding 

that the normal nucleation centers are the positions of highly localized strain.59,60  

 

 

Figure 3. TEM examinations of a Ge-Si heterostructure nanorod. (a) Low-resolution TEM image 

of the Ge-Si heterostructure nanorod. (b) A zoomed-in HRTEM image of the interface region 

that corresponds to the area indicated by the red box in (a). (c) (1-1-1) GPA dilatation map of the 

same region in (b), showing a 4% compression of the {111} plane across the interface (both Si 

and Ge relaxed lattices away from the heterojunction). (d) Filtered image of the (1-1-1) plane at 

the interfacial region indicated by the purple box in (b). White arrows indicate the presence of 

misfit dislocations in (b-d). (e) A zoomed-in HRTEM image and (f) dilatation map of the Si (1-
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11) plane of the region that corresponds to the area indicated by the blue box in (a) show the 

presence of a stacking fault. (g) ADF image and corresponding EELS mapping of the Ge-Si 

heterostructure nanorod. Strain maps range between -10 and +10 % lattice dilatations (same 

color scale bar as in Figure 2d). 

 

 

Figure 4. (a) HRTEM image of a Ge-Si-Si nanorod and (b) corresponding indexed FFT. (c) 

HRTEM image of the stacking fault in the Si region indicated by the purple box in (a). (d,e) GPA 

dilatation and rotation maps, respectively, for the (-11-1) plane. The dilatation map covers ± 10% 

plane deformations and the rotation ±10º. 

 

Suppression of Si growth along the length of the nanorod. We found that as nanorod 

growth proceeded along the length of the Ge-Si nanorod past the heterojunction, the composition 

of the nanorod shifted from Si back to Ge.  For example, Figure 3g shows an electron energy loss 

spectroscopy (EELS) analysis of the elemental composition of a Ge-Si heterostructure nanorod.  

The EELS mappings in Figure 3g show the presence of both a sharp Ge-Si interface as discussed 

-10%

10% 

0% 

-10º

10º 

0º 

Page 10 of 23

ACS Paragon Plus Environment

Chemistry of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



11 
	

above, but also a gradual shift from Si back to Ge composition at about 20 nm away from the 

sharp heterojunction interface.  After this transition region, the Si signal was completely 

diminished and the nanorod turned to pure Ge extending all the way to the Sn seed, even though 

no additional Ge reactant was added to the nanorod growth mixture.   

This gradual change from Si back to Ge could be due to the depletion of Si reactant and a 

reaction of residual Ge in the system; however, this seems not to be the case.  It appears that 

residual tetraphenyl germane—a reaction byproduct from the decomposition of DPG—reacts 

with trisilane to suppress Si growth and promote Ge addition to the nanorods.  To verify this, two 

reactions were carried out: triple injections in the order of DPG-trisilane-trisilane to obtain the 

Ge-Si-Si nanorods, and triple injections in the order of DPG-trisilane-DPG to obtain Ge-Si-Ge 

nanorods.  

Figure 5 shows EELS mappings of a Ge-Si-Si heterostructure nanorod and Figure 6 

shows EELS mappings of a Ge-Si-Ge heterostructure nanorod.  In Figure 5, the Ge-Si-Si 

nanorod exhibits an abrupt Ge-Si junction similar to the Ge-Si nanorod in Figure 3: after trisilane 

was introduced into the reaction, the nanorod composition changes immediately from Ge to Si.  

But at a distance of about 20 nm from the heterojunction, the Si signal begins to decrease and the 

Ge signal rises and eventually dominates the composition until the second injection of trisilane 

again led to a sharp transition from Ge to Si.  The second Ge-Si junction is about 50 nm away 

from the initially formed heterojunction.  And once again, the nanorod turns back gradually to 

Ge away from the second heterojunction.   
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Figure 5. (a, b) Low-res TEM images of Ge-Si-Si heterostructure nanorods. (c) ADF image and 

corresponding EELS mappings of the nanorod. 

 

 

Figure 6. (a) Low-resolution TEM image of a Ge-Si-Ge heterostructure nanorod, with white 

arrows indicating two Si-Ge junctions. (b) GPA Dilatation map of the region that corresponds to 

the area indicated by the red box in (c), calculated using the {111} growth plane. Dilatation 

normalized between ±10%. The 3% compression in the Si-rich segment instead of 4%, points to 
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a content of Ge up to 25% according to Vegard’s law. It is in good agreement with the Ge 

content obtained in EELS mapping in (d). (c) ADF image and (d) corresponding EELS mapping 

of a Ge-Si-Ge heterostructure nanorod at the top interface.  

 

Figure 6 shows the EELS mappings of a Ge-Si-Ge nanorod at the second interface—in 

other words, the Si-Ge heterojunction created by the second injection of DPG.  This particular 

nanorod was grown by increasing the amount of trisilane injected from 42 μL to 63 μL to 

produce a longer Si-rich segment.  Away from the abrupt Ge-Si interface, the Si-rich segment is 

composed of about 75% Si and 25% Ge.  Once the second injection of DPG occurs, the nanorod 

again becomes pure Ge.  Along the length of the Ge segment formed after the second DPG 

injection, some Si signal is still observed on the surface of the nanorod coexisting with O, 

indicating that there is a shell of amorphous SiOx. The introduction of Ge completely quenches 

Si incorporation; whereas, trisilane injection creates an initially pure Si region, but gradually the 

nanorod composition switches back to Ge.  Furthermore, the EELS mappings show that the 

nanorods exhibit a surface oxide and that the Si sections are more heavily oxidized than the Ge 

sections. 

 

Sn-seeded Si-Ge heterojunction nanorod reaction pathway. The use of Sn as a seed 

metal for the SLS growth of the Si-Ge heterojunction nanorods helps create an abrupt Si-Ge 

interface.  The side reactions between the Ge and Si species in solution, however, also influence 

the composition of the nanorods.  Figure 7 provides an illustration of the SLS growth mechanism 

of Ge-Si heterostructure nanorods using Sn seeds, DPG and trisilane reactants. There are two 

primary reactions that occur: (1) the decomposition of DPG via phenyl redistribution to produce 
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Ge atoms that incorporate into the nanorod and tetraphenyl germane (TPG) as an unreactive 

byproduct in solution;61 (2) the decomposition of trisilane that produces Si atoms that incorporate 

into the nanorods and hydrogen gas that is released as a byproduct.62,63  TPG is unreactive at the 

temperatures used to make the nanorods—except in the presence of Si.50  The phenyl groups 

undergo the same redistribution reaction in the presence of Si to leave Ge and bond with Si to 

create the more stable phenylsilane compounds.64,65 We have observed (and utilized) this phenyl 

redistribution between Ge and Si species to increase the yield of Ge nanowires for example by 

adding phenylsilane as a phenyl sink.50  In the synthesis of the Si-Ge heterostructure nanorods, 

the redistribution of phenyl groups from Ge onto Si in solution is not desirable, as it leads to a 

gradual transition in composition of the nanorod back to Ge after the Si initially abrupt Ge-Si 

interface.  This side reaction competes with the reaction (2) and suppresses the production of Si 

atoms. Therefore, as shown in Figures 3 and 5 and illustrated in Figure 7b, Si no longer 

incorporates into the nanorod after the initial transient growth.  This additionally verifies that the 

Sn seeds yield nanorods with composition that mirrors the composition of the reactant species.  

When TPG ends up being depleted in the solution, trisilane eventually can resume decomposition 

and Si can again incorporate into the nanorod (Figures 6 and 7c). In the opposite way, the 

presence of trisilane does not inhibit the growing of Ge but instead can accelerate DPG 

decomposition if anything.  Therefore, Si is not incorporated after DPG injection (Figure 6). 
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Figure 7. Illustration of the growth mechanism of Si-Ge heterostructure nanorods. (a) The 

decomposition of DPG produces Ge atoms and TPG. Ge atoms incorporate into the Sn and 

nucleate into Ge nanorods. (b) Trisilane decomposes into Si atoms that incorporate into the 

nanorod and form an abrupt heterojunction with Ge.  However, TPG remaining in the reaction 

mixture reacts with trisilane to form phenyl silane, which is relatively unreactive and thus traps 

Si and prevents it from contributing to nanorod growth. (c) Si growth resumes after TPG is 

depleted.  

 

CONCLUSIONS  

Sn nanoparticles provide effective SLS seeds for Si-Ge heterostructure nanorods with 

abrupt interfaces. The low solubility of Si and Ge in Sn guarantees the fast reflection of the 

species in the reaction solution on the composition of the nanorod. Composition EELS mappings 

of the entire nanorods however show that the composition of the nanorods away from the 

heterojunctions depends strongly on the reactions occurring between Si and Ge species in the 

solvent.  Residual phenyl germane retards the decomposition of trisilane and leads to Si-Ge 

alloying along the length of the nanorod; whereas, trisilane essentially enhances the 

decomposition of phenyl germane and relatively pure Ge segments in the nanorods are readily 
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obtained. The synthetic approach demonstrated here is convenient in that it does not require 

changes in temperatures and utilizes a straightforward sequential injection of reactants. The 

issues with the synthesis involve the control over the side reactions between Si and Ge species in 

the solution. The kinetic redistribution of phenyl groups between Si and Ge play the dominant 

role in determining the composition of the nanorods. Compositionally abrupt Si-Ge interfaces 

can be obtained in the nanorods, but the overall composition in the nanorods is more complex 

with some sections containing pure Si and Ge and SixGe1-x alloy with changing composition.  

This work shows that the colloidal synthesis of Si and Ge nanomaterials has come a long way in 

the recent past, but it also shows that more improvement is needed in order to achieve the 

rigorous compositional control of Si-Ge heterostructures using gas-phase VLS methods. In this 

case, it appears that the key is to find effective ways to quench each growth step and trap residual 

byproducts so they do not influence the growth of the next segment.   

 

Supporting Information.  Additional TEM images, X-ray diffraction (XRD) and Raman spectra. 

This material is available free of charge via the Internet at http://pubs.acs.org.  
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