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a b s t r a c t

In this paper, we propose the concepts of substitutability and complementarity in discrete choicemodels.
These concepts concern whether the choice probability of one alternative in a choice model increases
or decreases with the utility of another alternative, and they play important roles in capturing certain
practical choice patterns, such as the halo effect. We study conditions on discrete choice models that will
lead to substitutability and complementarity. We also present ways of constructing choice models that
exhibit complementary property.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we propose and study the concepts of substi-
tutability and complementarity in discrete choicemodels. Discrete
choice models are useful tools to model choices made by individu-
als when facing a finite set of alternatives. For instance, they can
be used to model consumers’ choices among a set of products,
passengers’ choices among a set of transportation modes, and
many other choice scenarios. Because of the adaptability, flexibility
and analytical convenience, discrete choice models have gained a
lot of attention in the economics, marketing, operations research
and management science communities in the last few decades. In
particular, such models have been used as the underlying behav-
ioral model for many operational decision-making problems, such
as transportation planning, assortment optimization, and multi-
product pricing.

A variety of discrete choice models have been proposed in the
literature. In this paper, we focus on those that map a vector
of utilities of each alternative to a vector of choice probabilities.
Many important classes of discrete choicemodels take such a form,
including the random utility models, the representative agent
models, and the recently proposed welfare-based choice models
[12]. We will provide a more detailed review of these models and
their relations in the end of this section.

* Corresponding author.
E-mail addresses: fengx421@umn.edu (G. Feng), lixx3195@umn.edu (X. Li),

zwang@umn.edu (Z. Wang).

In this paper, we define two useful properties in choice models
– substitutability and complementarity – and study how such prop-
erties can be reflected in choice modeling. The two properties con-
cernwhether the choice probability of one alternativewill increase
or decrease when the utility of another alternative increases. We
show that the randomutilitymodels only allow substitutability be-
tween alternatives. However, in certain applications, it is desirable
to allow some alternatives to exhibit complementarity, in order to
explain certain phenomenon observed in practice, such as the halo
effect (or the synergistic effect). For that, we derive conditions un-
der which a choice model exhibits substitutable/complementary
properties. In addition, we show a few examples of choice models
that allow complementarity between alternatives and propose a
few ways to construct choice models with complementary pat-
terns. As far as we know, this is the first formal study of such
properties in choice models. We believe that this study will open
new possibilities in the design of choice models by enlarging its
horizon and capturing more practical choice patterns.

In the remainder of this section, we review several classes
of discrete choice models that are related to the discussions in
our paper, including the random utility model, the representative
agent model and the welfare-based choice model. Before that, we
first introduce the notation. Throughout the paper, the following
notations will be used. We use notation R to denote the set of
real numbers, and R̄ = R ∪ {−∞, +∞} to denote the set of
extended real numbers. We use e to denote a vector of all ones,
ei to denote a vector of zeros except 1 at the ith entry, and 0
to denote a vector of all zeros (the dimension of these vectors
will be clear from the context). Also, we write x ≥ y to denote

https://doi.org/10.1016/j.orl.2017.11.016
0167-6377/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.orl.2017.11.016
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2017.11.016&domain=pdf
mailto:fengx421@umn.edu
mailto:lixx3195@umn.edu
mailto:zwang@umn.edu
https://doi.org/10.1016/j.orl.2017.11.016


142 G. Feng et al. / Operations Research Letters 46 (2018) 141–146

a componentwise relationship and ∆n−1 to denote the (n − 1)-
dimensional simplex, i.e., ∆n−1 = {x|eTx = 1, x ≥ 0}. In
our discussions, ordinary lowercase letters x, y, . . . denote scalars,
boldfaced lowercase letters x, y, . . . denote vectors.

1.1. Random utility model

One most popular class of discrete choice models is the ran-
dom utility model (RUM) (see [2] for a comprehensive review).
In the random utility model, a random utility is assigned to each
alternative, and each individual picks the alternative with the
highest realized utility. Here, the randomness in the utilities could
originate from the lack of information of the alternatives for a
particular individual or the idiosyncrasies of preferences within a
population. As an output, the random utility model predicts a vec-
tor of choice probabilities among the alternatives. Mathematically,
suppose there are n alternatives denoted by N = {1, 2, . . . , n},
then in the random utility model, the utility of alternative i is
ui = πi + ϵi, ∀i ∈ N , where π = (π1, . . . , πn) is the deterministic
part of the utility and ϵ = (ϵ1, . . . , ϵn) is the randompart, following
a joint distribution θ . Then the probability of alternative i being
chosen is (we assume θ is absolutely continuous in our discussion,
which ensures that the choice probabilities are well-defined):

qi(π) = Pϵ∼θ

(
i = argmax

k∈N
(πk + ϵk)

)
. (1)

And the expected utility an individual can get is:

w(π) = Eϵ∼θ

[
max
i∈N

πi + ϵi

]
. (2)

By choosing different distributions for the random components,
one can obtain different random utility models. Among them, the
most widely used one is the multinomial logit (MNL) model, first
proposed in [18]. In theMNLmodel, (ϵ1, . . . , ϵn) follows i.i.d. Gum-
bel distributionswith scale parameter η, and the choice probability
can be written as:

qmnl
i (π) =

exp(πi/η)∑
k∈N exp(πk/η)

.

The existence of a closed-form formula for the MNL model
makes it a very popular choice model. We refer to [2,4,28] for
more discussions about the MNL model. In addition to the MNL
model, there are other random utility models that are studied in
the literature, including the probit model (see, e.g., [9]), the nested
logit model (see, e.g., [20]) and the exponomial choice model (see,
e.g., [1]).

1.2. Representative agent model

Another way to model choices is through a representative
agent model (RAM). In the representative agent model, a repre-
sentative agent makes a choice among n alternatives on behalf
of the entire population. In particular, this agent may choose any
fractional amount of each alternative, or equivalently, a vector
x = (x1, . . . , xn) on the (n − 1)-dimensional simplex ∆n−1. When
making his/her choice, the agent maximizes the expected utility
while preferring somedegree of diversification.More precisely, the
representative agent solves the following optimization problem:

wr (π) = maximizex∈∆n−1 πTx − V (x). (3)

Here π = (π1, . . . , πn) is the deterministic utility of each al-
ternative, which is similar to that in the random utility model.
V (x) : ∆n−1 ↦→ R is a regularization term such that−V (x) rewards
diversification. In this paper, without loss of generality, we assume
V (x) is convex and lower semi-continuous. This assumption is
without loss of generality because if V (x) is not convex or lower

semi-continuous, then we can replace V (x) with a convex and
lower semi-continuous function V ∗∗(x) = supy{yTx − wr (y)}
and Eq. (3) still holds (see, e.g. [8,12]). Moreover, if for any π, there
is a unique solution to (3), then we define

qr (π) = argmax
{
πTx − V (x)

⏐⏐x ∈ ∆n−1
}

(4)

to be the choice probability vector given by the representative
agent model.

In [15], the authors show that for any randomutilitymodelwith
continuously distributed random utility, there exists a representa-
tive agent model that gives the same choice probability (i.e., the
same mapping from π to the choice probability vector q). Further-
more, they show that the reverse statement is not truewhen n ≥ 4.
Thus the representative agentmodel strictly subsumes the random
utility model.

1.3. Welfare-based choice model

Recently, Feng et al. [12] propose awelfare-based choicemodel
after noticing that both the RUM and the RAM allow a welfare
function w(π) that captures the expected utility an individual can
get from the choicemodel, and the choice probability vector can be
viewed as the gradient of w(π) with respect to π. They first define
the choice welfare function as follows:

Definition 1 (ChoiceWelfare Function). Letw(π) be amapping from
Rn to R̄ = R

⋃
{−∞, ∞}. w(π) is called a choice welfare function

if w(π) satisfies the following properties:

1. (Monotonicity): For any π1, π2 ∈ Rn and π1 ≥ π2, w(π1) ≥

w(π2);
2. (Translation Invariance): For any π ∈ Rn, t ∈ R,w(π+ te) =

w(π) + t;
3. (Convexity): For any π1, π2 ∈ Rn and 0 ≤ λ ≤ 1, λw(π1) +

(1 − λ)w(π2) ≥ w(λπ1 + (1 − λ)π2).

For a differentiable choice welfare function w(π), the welfare-
based choice model derived from it is defined by q(π) = ∇w(π).
Note that the monotonicity and translation invariance properties
guarantee that q(π) is a valid probability vector, which follows by
differentiating the identity in the translation invariance property
with respect to t . Feng et al. [12] prove the equivalence between the
welfare-based choice model and the representative agent model
as shown in Proposition 1: (For detailed definition of essentially
strictly convex function, see [23]. Note that any strictly convex
function is essentially strictly convex.)

Proposition 1 (Theorem 2 from [12]). For a choice model q : Rn
↦→

∆n−1, the following statements are equivalent:

1. There exists a differentiable choice welfare function w(π) such
that q(π) = ∇w(π);

2. There exists an essentially strictly convex function V (x) such
that

q(π) = argmax
{
πTx − V (x)

⏐⏐⏐x ∈ ∆n−1

}
.

They further prove that when there are only two alternatives,
the class of random utility models is equivalent to the class of
welfare-based choice models (thus also the representative agent
models). However, when the number of alternatives n ≥ 3, the
welfare-based choice model (thus also the representative agent
model) strictly subsumes the random utility model. In contrast
to [12] which studies the relation between different types of
choice models, in the present paper, we propose the notion of
substitutability and complementarity in choice models and study
the conditions under which these properties would hold. We also
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provide guidelines on how to construct choice models that can
exhibit complementarity property.

Before we end this section, we comment that there are other
types of choice models studied in the literature beyond the afore-
mentioned ones. Some examples include the Markov chain-based
choice model (see [6]), the two-stage choice model (see [16]), the
generalized attraction model (see [13]) and the non-parametric
model (see [11]). However, they do not take the form of mapping
a utility vector to a choice probability vector. Thus they are less
related to this work. For the sake of space, we choose not to include
a detailed review for those choice models in this paper.

2. Substitutability and complementarity in choice models

In this section, we propose two concepts in choice models,
substitutability and complementarity, and discuss their practical
implications. We show that if a choice model is derived from
a random utility model, then the alternatives can only exhibit
substitutability. However, the representative agent model and the
welfare-based choice model allow for more flexible substitutabil-
ity/complementarity patterns. We also show how these proper-
ties can be reflected through the choice welfare function in a
welfare-based choice model or through the regularization term in
a representative agent model. Before we formally define these two
concepts, we first introduce the definition of local monotonicity:

Definition 2 (Local Monotonicity). A function f (x) : R ↦→ R is
locally increasing at x if there exists δ > 0 such that f (x − h) ≤

f (x) ≤ f (x+h), ∀ 0 < h < δ. Similarly, f (x) is locally decreasing at
x if there exists δ > 0 such that f (x − h) ≥ f (x) ≥ f (x + h), ∀ 0 <

h < δ.

Now we introduce the definition of substitutability and com-
plementarity in choice models:

Definition 3. Consider a choice model q(π) : Rn
↦→ ∆n−1. For any

fixed π and i, j ∈ N :

1. (Substitutability) If qj(π) is locally decreasing in πi at π, then
we say alternative i is substitutable to alternative j at π.
Furthermore, if qj(π) is decreasing in πi for all π, then we say
alternative i is substitutable to alternative j;

2. (Complementarity) If qj(π) is locally increasing in πi at π,
then we say alternative i is complementary to alternative j
at π. Furthermore, if qj(π) is increasing in πi for all π, then
we say alternative i is complementary to alternative j.

3. (Substitutable and Non-Substitutable Choice Model) If alter-
native i is substitutable to alternative j for all i ̸= j, then we
say q(π) is a substitutable choice model. Otherwise, we say
q(π) is a non-substitutable choice model.

Remark. Note that for a choicemodel, if not all pairs of alternatives
are substitutable, then the model is called a non-substitutable
choice model. Moreover, it is not possible for an alternative to
be complementary with all other alternatives because the sum of
choice probabilities must be equal to 1. Therefore, even in a non-
substitutable choicemodel, at anyπ, theremust be at least one pair
of alternatives that are substitutable at π.

We note that the complementary property is closely related to
the halo effect, which is first conceptualized in [26] (this effect
is also called the synergistic effect, see [10]). The halo effect is a
cognitive bias in which an observer’s overall impression of a per-
son, company, brand or product influences the observer’s feelings
and thoughts about that entity’s character or properties [21]. For
a comprehensive review and discussion about the halo effect, we
refer the readers to [24]. In the context of consumer theory and

marketing, the halo effect is the phenomenon that the choice prob-
abilities of certain existing products increase after a new product
(usually of the same brand) is introduced. In a choice model that
maps a vector of utilities to a vector of choice probabilities, intro-
ducing a new product can be viewed as increasing the utility of
that product from negative infinity to some finite value. Therefore,
the notion of complementarity defined in Definition 3 provides
an alternative characterization of the halo effect in the context of
choice modeling. We have the following example illustrating this
situation:

Example 1. Suppose a customer is considering to buy a camera
from the following three alternatives: a Canon-A model, a Canon-
B model and a Sony-C model. On a certain website, there are
customer review scores for each model, which we denote by v1, v2
and v3, respectively.We assume that the customer’s choice is solely
based on those review scores (suppose other factors are fixed). That
is, the choice probability q is a function of v = (v1, v2, v3). Suppose
at a certain time, a new review for the Canon-A model comes in,
rating it favorably. How would it change the purchase probability
of the Canon-B model?

The answer to the above question may depend. There might be
two forces. On one hand, due to a new favorable rating given to the
Canon brand, the probability of choosing the Canon-Bmodelmight
increase. On the other hand, the favorable rating for the Canon-A
model might switch some customers from the Canon-B model to
the Canon-A model. Either force might be dominant in practice. If
the former force is stronger, then it is plausible that one additional
favorable rating for the Canon-A model might increase the choice
probability of the Canon-B model (this scenario can be viewed as a
case of the halo effect).

The above example illustrates that sometimes it might be de-
sirable to have a choice model in which a certain pair of alter-
natives exhibit complementarity. One may notice that the above
example may be reminiscent of the nested logit model, in which
the customers first choose a nest (in this case, the brand), and
then choose a particular product. However,we note that the nested
logitmodel with dissimilarity parameterswithin (0, 1] is a random
utility model (see, e.g., [2]). Therefore, it is impossible to capture
complementarity between alternatives through such a nested logit
model (see Proposition 3). In Section 3, we show that complemen-
tarity of alternatives can be captured through a general nested logit
model, in which the dissimilarity parameters are allowed to be
greater than one.Wewill also show other ways to construct choice
models with complementary alternatives in the next section.

In the following, we investigate some basic facts about substi-
tutability and complementarity.

Proposition 2. Consider a choice model q(π) : Rn
↦→ ∆n−1 that is

derived from a differentiable choice welfare function w(π). For any i,
alternative i must be complementary to itself. Furthermore, if w(π)
is second-order continuously differentiable and alternative i is substi-
tutable (complementary, resp.) to alternative j at π, then alternative j
must be substitutable (complementary, resp.) to alternative i at π.

Proof. Sincew(π) is convex and differentiable, for any π ∈ Rn and
any t > 0, we have w(π + tei) − w(π) ≥ teTi ∇w(π) = tqi(π) and
w(π)−w(π+ tei) ≥ −teTi ∇w(π+ tei) = −tqi(π+ tei). From these
two inequalities, we have qi(π + tei) − qi(π) ≥ 0, for all t > 0 and
π. Thus, alternative i is complementary to itself.

Furthermore, if w(π) is second-order continuously differen-
tiable, then we have ∂qi

∂πj
=

∂2w
∂πi∂πj

=
∂2w

∂πj∂πi
=

∂qj
∂πi

. Thus, if
alternative i is substitutable (complementary, resp.) to alternative
j at π, then alternative j is substitutable (complementary, resp.) to
alternative i at π. □
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Proposition 2 implies that when w(π) is second-order continu-
ously differentiable, the substitutability (complementarity, resp.)
property is a reciprocal property. In these cases, we shall say i
and j are substitutable (complementary, resp.) in the following
discussions.

In the following, we investigate substitutability and comple-
mentarity in choice models. First, by the definition of random
utility model and Proposition 6 in [12], random utility models are
all substitutable. We formalize it in the following proposition:

Proposition 3. Any random utility model q(π) is a substitutable
choice model.

According to Proposition 3, in a random utility model, if the
utility of one alternative increases while the utilities of all other
alternatives stay the same, then it must be that the choice proba-
bilities of all other alternatives decrease. This is certainly plausible
in practice, especially if π is interpreted as how much a consumer
values eachproduct. However, as Example 1has shown, sometimes
it might be desirable to allow certain alternatives to exhibit certain
degrees of complementarity. This is especially true if we allow
more versatile meanings of the utility π.

Now we present conditions for a choice model to be sub-
stitutable or non-substitutable. In the following discussion, we
consider choice models q(π) that are derived from differentiable
choice welfare functions w(π) (thus equivalently they can be de-
rived from representative agent models). We provide necessary
(sufficient, resp.) conditions for a choice model to be substitutable,
and consequently also obtain sufficient (necessary, resp.) condi-
tions for a choice model to be non-substitutable. We have the
following theorem:

Theorem 1. Consider a choice model q(π) : Rn
↦→ ∆n−1 that is

derived from a differentiable choice welfare function w(π). Then

1. q(π) is a substitutable choice model if and only if w(π) is
submodular.

2. If q(π) is a substitutable choice model, then there exists an
essentially strictly convex V (·)with V̄i(·) supermodular onRn−1

for all i, such that q(π) = argmax
{
πTx − V (x)

⏐⏐⏐x ∈ ∆n−1

}
,

where

V̄i(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
V

⎛⎝z1, z2, . . . , zi−1, 1 −

n−1∑
j=1

zj, zi, . . . , zn−1

⎞⎠ ,

if eT z ≤ 1 and z ≥ 0,
+∞, otherwise.

(5)

Furthermore, the reverse is true if n = 3.

Proof. In this proof, we use the following lemma from [22].

Lemma 1 (Theorem 8.1 and Proposition 8.2 of [22]). Let f : Rn
↦→

R ∪ {∞} be a function such that there exists at least one π such that
f (π) < ∞. Let g(x) = maxπ{πTx− f (π)} be the convex conjugate of
f . We have

1. If f is submodular, then g is supermodular.
2. If n = 2 and f is supermodular, then g is submodular.

Nowwe use this lemma to prove the theorem. To prove the first
part, by [25], a differentiable function w(π) is submodular in π if
and only if ∂w(π)

∂πi
is decreasing in πj for all i ̸= j. By the definition of

q(π) = ∇w(π), the result holds.
For the second part, letV (x) = maxπ{πTx−w(π)} be the convex

conjugate of w(π). Therefore, V (x) is essentially strictly convex
and q(π) = argmax

{
πTx − V (x)

⏐⏐⏐x ∈ ∆n−1

}
. For any y ∈ Rn−1

and i ∈ N , define fi(y) = w(y1, y2, . . . , yi−1, 0, yi, . . . , yn−1). Also
define π−i = (π1, . . . , πi−1, πi+1, . . . , πn), then we have

V̄i(z) = max
π

{πT
−iz + πi(1 − eT z) − w(π)}

= max
π,πi=0

{πT
−iz + πi(1 − eT z) − w(π)} = max

y
{yT z − fi(y)},

where the second equality is due to the translation invariance
property of w(π). The submodularity of w(π) implies the submod-
ularity of fi(y) for all i ∈ N . Thus V̄i(z), as the convex conjugate of
fi(y), is supermodular by Lemma 1.

For the last statement, since V (·) is an essentially strictly convex
function, q(π) = argmax

{
πTx − V (x)

⏐⏐⏐x ∈ ∆n−1

}
is well-defined.

By Theorem 2 in [12], q(π) = ∇w(π) where w(π) = sup
{
πTx−

V (x)
⏐⏐x ∈ ∆n−1

}
. For any y ∈ Rn−1 and i ∈ N , define fi(y) = w(y1,

y2, . . . , yi−1, 0, yi, . . . , yn−1). Also define x−i = (x1, . . . , xi−1, xi+1,

. . . , xn), then we have

fi(y) = max
x∈∆n−1

{
xT

−iy + 0(1 − eTx−i) − V (x)
}

= max
x∈∆n−1

{
xT

−iy − V̄i(x−i)
}

= max
eTn−1x−i≤1, x−i≥0

{
xT

−iy − V̄i(x−i)
}

= max
z

{
yT z − V̄i(z)

}
,

where the last equality holds since V̄i(z) = +∞ for all z ̸∈ {β ∈

Rn−1
|eTn−1β ≤ 1, β ≥ 0}. From Lemma 1, given that n = 3 and

thus y ∈ R2, fi(y) is submodular. It remains to show that w(π)
is also submodular. According to the definition of submodularity,
it suffices to show that qi(π) is locally decreasing with πj for all
j ̸= i for all π. Fix i, j and let k ̸= i, j. We assume i > j
without loss of generality. We have qi(π − πke) = qi(π) from the
translation invariance property. But qi(π − πke) =

∂ fk(πi−πk,πj−πk)
∂πi

is non-decreasing with πj due to the submodularity of fk. Thus
w(π) is submodular and q(π) = ∇w(π) is a substitutable choice
model. □

Theorem 1 provides some sufficient and necessary conditions
for q(π) to be substitutable. We note that the supermodularity of
V̄i(·) has nothing to do with the supermodularity of V (·). In fact,
since V (x) is only defined on ∆n−1, it can always be extended to
a supermodular function in Rn by defining V (x) = +∞ for all
x ̸∈ ∆n−1. The definition of V̄i(·) reduces a redundant variable in
V (·), making the condition meaningful.

Next we provide an easy-to-check sufficient condition for a
choice model to be substitutable. The following theorem shows
that choice models derived from separable V (·)s are always sub-
stitutable:

Theorem 2. If V (x) =
∑

i∈NVi(xi) on ∆n−1 where Vi(xi) : [0, 1] ↦→

R is a strictly convex function for all i ∈ N , then q(π) defined by
q(π) = argmax

{
πTx − V (x)

⏐⏐x ∈ ∆n−1
}
is a substitutable choice

model.

Proof. We first consider the case where Vi(xi) is differentiable
for all i ∈ N . Let λ(π) be the Lagrangian multiplier of the
constraint

∑
ixi = 1. The KKT conditions (see [5]) for problem

max
{
πTx − V (x)

⏐⏐x ∈ ∆n−1
}
can be written as:

πi − V ′

i (qi(π)) − λ(π) ≤ 0, ∀i ∈ N ;

πi − V ′

i (qi(π)) − λ(π) = 0, ∀i s.t. qi(π) ̸= 0;
qi(π) ≥ 0, ∀i ∈ N ;∑

i∈N

qi(π) = 1.

Now we consider any two points π0 and π0 + tei where ei is a
unit vector along the ith coordinate axis and t > 0. Suppose that
there exists a j ̸= i such that qj(π0+tei) > qj(π0). Since Vj is strictly
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convex, V ′

j (qj(π0 + tei)) > V ′

j (qj(π0)). There are two possible cases
for qj(π0):

• qj(π0) > 0: In this case, we haveπj−V ′

j (qj(π0+tei))−λ(π0+

tei) = 0 and πj − V ′

j (qj(π0)) − λ(π0) = 0, therefore, we have
λ(π0 + tei) < λ(π0).

• qj(π0) = 0: In this case, πj − V ′

j (qj(π0)) − λ(π0) ≤ 0,
which implies that πj − V ′

j (qj(π0 + tei)) − λ(π0) < 0. But
πj −V ′

j (qj(π0 + tei))−λ(π0 + tei) = 0, we have λ(π0 + tei) <

λ(π0).

In both cases, λ(π0 + tei) < λ(π0). This implies that qj(π0 +

tei) ≥ qj(π0) for all j ̸= i. Note that we also have qi(π0 + tei) >

qi(π0) by Proposition 2. Therefore, we have
∑

j∈N qj(π0 + tei) >∑
j∈N qj(π0) = 1, which contradicts with that q(π0 + tei) ∈ ∆n−1.

Thus we have qj(π0 + tei) ≤ qj(π0) for all j ̸= i. Since this is true
for all π0 and t > 0, q is substitutable.

If Vi(xi) is not differentiable, we need to replace the derivative
with the subgradient in the above argument. Since Vi is strictly
convex, g1 > g2 for all g1 ∈ ∂Vi(x1) and g2 ∈ ∂Vi(x2) if x1 > x2,
the above argument is still valid. □

3. Examples and constructions of non-substitutable choice
models

3.1. General nested logit model

The nested logit model, first proposed in [3], is perhaps the
most widely used choice model other than the MNL model. In
this model, it is assumed that the set of alternatives is partitioned
into K subsets (nests) denoted by B1, B2, . . . , BK . The probability of
choosing alternative i, given that i ∈ Bk is

qnli (π) =

exp(πi/λk)
(∑

j∈Bk
exp(πj/λk)

)λk−1

∑K
l=1

(∑
j∈Bl

exp(πj/λl)
)λl

, (6)

where λk is called the dissimilarity parameter for the kth nest.
[27] interpret the dissimilarity parameters as a measure of substi-
tutability among alternatives: if λk ∈ (0, 1), then the substitution
is greater within nests than across nests, while if λk > 1, then the
substitution is greater across nests than within nests. In [19], the
authors show that the nested logit model is consistent with the
RUM for all π ∈ Rn if and only if λk ∈ (0, 1] for all k = 1, . . . , K .

There have been many studies on the case when λk is greater
than one for some k. Most of those studies focus on how to relate
this case with the RUM. For example, [7] shows that qnl(π) is
consistent with the RUM for certain ranges of π. [17] and [14]
provide tests for consistency of the nested logit model with utility
maximization.

When λk > 1 for some k, the nested logit model can possess
some interesting properties. In particular, when a new product is
introduced to a nest k with λk > 1, the probability of choosing
certain existing products in that nest may increase in some cir-
cumstances, thus certain pairs of products may exhibit comple-
mentarity relationship [10]. In fact, as the next proposition shows,
complementarity property exists in any nested logit model with
certain dissimilarity parameter greater than one.

Proposition 4. Consider a nested logit model with at least two nests.
For any nest k with dissimilarity parameter λk > 1 and any two
distinct alternatives i and j in that nest, there always exists π ∈ Rn

such that ∂qnli (π)
∂πj

> 0.

Proof. By simple algebra, we have:

∂qnli (π)
∂πj

= K (π)

⎛⎝−
1
λk

⎛⎝∑
s∈Bk

exp(πs/λk)

⎞⎠λk

+
λk − 1

λk

∑
l̸=k

⎛⎝∑
s∈Bl

exp(πs/λl)

⎞⎠λl
⎞⎠ , (7)

where

K (π) =

exp
(
(πi + πj)/λk

) (∑
s∈Bk

exp(πs/λk)
)λk−2

(∑K
l=1

(∑
s∈Bl

exp(πs/λl)
)λl

)2 > 0.

Clearly, − 1
λk

(∑
s∈Bk

exp(πs/λk)
)λk

< 0 and λk−1
λk

∑
l̸=k

(∑
s∈Bl

exp

(πs/λl))λl > 0. Therefore, when π is chosen such that(∑
s∈Bk

exp(πs/λk)
)λk

≤ (λk − 1)
∑

l̸=k

(∑
s∈Bl

exp(πs/λl)
)λl

,
∂qnli (π)

∂πj
≥ 0. Finally we note that one can always choose π such that

the inequality holds. This is becausewe can chooseπs large enough
for some s ∈ Bl, l ̸= k. □

3.2. Quadratic regularization

Another way to generate non-substitutable choice models is to
start from the representative agent model and to choose V (·) as a
quadratic function. Remember thatV (·) has to be a convex function
in the representative agentmodel. Thus, a quadratic function could
be used as an approximation. We have the following proposition
about the substitutability and complementarity in such models.

Proposition 5. Consider a choice model q(π) = argmax
{
πTx−

V (x)
⏐⏐x ∈ ∆n−1

}
with V (x) = xTAx where A is a positive definite

matrix. If the choice model is substitutable, then Ajk −Aik −Aij +Aii ≥

0 for all distinct i, j, k ∈ N , where Aij is the (i, j) th entry of A.
Furthermore, the reverse is true if n = 3.

Proof. According to Theorem 1, it suffices to prove that

V̄i(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
V

⎛⎝z1, z2, . . . , zi−1, 1 −

n−1∑
j=1

zj, zi, . . . , zn−1

⎞⎠ ,

if eT z ≤ 1 and z ≥ 0,
+∞, otherwise

is supermodular if and only ifAj,k−Ai,k−Ai,j+Ai,i ≥ 0 for all distinct
i, j, k ∈ N . For i ∈ N , V̄i is an n − 1 variate quadratic function. Let
H i denote the Hessian matrix of V̄i(z). For j, k ∈ {1, 2, . . . , n − 1}
and j ̸= k, the off-diagonal element H i

j,k = Aj̃,k̃ − Ai,k̃ − Ai,j̃ + Ai,i,
where

j̃ =

{
j, if j < i,

j + 1, if j ≥ i;
and k̃ =

{
k, if k < i,

k + 1, if k ≥ i.

Thus, V̄i(z) is supermodular if and only if H i
j,k ≥ 0 for all j, k ∈

{1, 2, . . . , n−1} and j ̸= k, which is equivalent to Aj,k −Ai,k −Ai,j +

Ai,i ≥ 0 for all distinct i, j, k ∈ N . □

By Proposition 5, we know that when n = 3 and V (x) =

xTAx with A ≻ 0, the choice model defined by q(π) = argmax{
πTx − V (x)

⏐⏐x ∈ ∆n−1
}
is substitutable if and only if

A12 + A33 ≥ A13 + A23, A13 + A22 ≥ A12 + A23 and
A23 + A11 ≥ A12 + A13.
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Note that the above condition is different from A being positive
semidefinite. Indeed, the following example shows a case where
the choice model is not substitutable even if V (x) is strictly convex
and supermodular (this example was also shown in [12] for show-
ing that the representative model strictly subsumes the random
utility model even when there are only three alternatives):

Example 2. Consider q(π) = argmax
{
πTx − V (x)

⏐⏐x ∈ ∆n−1
}
,

where V (x) = xTAx with A =

[
3 2 0
2 3 2
0 2 3

]
≻ 0. It is easy to see

that V (x) is strictly convex and supermodular. However, it does not
satisfy that A13 +A22 ≥ A12 +A23. By some further calculations, we
obtain that

V̄2(z) = zT
(

2 −1
−1 2

)
z − [−2; −2]T z + 3,

which is not supermodular. Therefore q(π) is not a substitutable
choice model by Theorem 1. □

3.3. Crossing transformation

Crossing transformation is a systematic way to generate non-
substitutable choice models from existing substitutable choice
models by using the welfare-based approach. Let A be an m × n
matrix with Aij ≥ 0 and Aen = em, where eℓ refers to an
ℓ-dimensional column vector of ones. Given an existing choice
welfare function w̄(·) : Rm

↦→ R̄ and its choice probabilities q̄(·),
we can easily verify that w(π) = w̄(Aπ) is still a choice welfare
function that maps Rn to R̄ and the corresponding welfare-based
choice model is q(π) = ∇πw(π) = AT

∇w̄(Aπ) = AT q̄(Aπ). By
some calculation, we have ∇

2w(π) = AT
∇

2w̄(Aπ)A.
Even if w̄(π) is submodular, i.e., the off-diagonal entries of

∇
2w̄(π) are all negative, it is still possible to construct matrix A

such that AT
∇

2w̄(Aπ)A has positive off-diagonal entries. There-
fore, by choosing some proper matrix A, we can construct non-
substitutable choice model w(π) from substitutable choice model
w̄(π). We call this method the crossing transformation and the cor-
responding matrix A the crossing matrix. Particularly, it is possible
that the original choice model q̄(·) is a substitutable choice model,
while q(·) is no longer substitutable.

In the following, we give an example of constructing a non-
substitutable choicemodel from theMNLmodel using the crossing
transformation. Note that this example was also in Feng et al. [12]
as an example to show that thewelfare-based choicemodel strictly
subsumes the randomutilitymodel evenwhen there are only three
alternatives.

Example 3. Let w̄(x) = log (ex1 + ex2 + ex3 + ex4) be the choice
welfare function for anMNLmodel for 4 alternatives. Let the cross-

ing matrix A =

⎡⎢⎣ 1 0 0
0 1 0
0 0 1
0.5 0.5 0

⎤⎥⎦. Then the new welfare-based choice

model becomes w(π) = log
(
eπ1 + eπ2 + eπ3 + e0.5(π1+π2)

)
with

choice probabilityq(π) =
1

eπ1+eπ2+eπ3+e0.5(π1+π2)

(
eπ1 +

1
2 e

0.5(π1+π2),

eπ2 +
1
2 e

0.5(π1+π2), eπ3
)
. It is easy to check that ∂q1(π)

∂π2
=

∂q2(π)
∂π1

is
positive if and only if eπ3 ≥ 4e0.5π1+0.5π2 + eπ1 + eπ2 . Therefore,
under this choice model, when both π1 and π2 are small enough
(compared to π3), alternatives 1 and 2 are complementary. Other-
wise, they are substitutable.

4. Concluding remarks

In this paper, we propose and study the concepts of substi-
tutability and complementarity in choice models. Such concepts
are fundamental for choicemodels and are very useful in capturing
practical choice patterns. We show how substitutability and com-
plementarity can be reflected in the construction of choice models
and thus how to construct choice models with complementarity
property. We believe our work is useful for future studies of choice
models.

An important future research direction is the estimation prob-
lem of the choice model using real data, especially choice models
with complementarity property. We expect the common estima-
tion methods would still work, but will leave the details for future
study.
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