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Abstract. In this paper, we study the relationship between several well known classes
of discrete choice models, i.e., the random utility model (RUM), the representative agent
model (RAM), and the semiparametric choice model (SCM). Using a welfare-based model
as an intermediate, we show that the RAM and the SCM are equivalent. Furthermore,
we show that both models as well as the welfare-based model strictly subsume the RUM
when there are three or more alternatives, while the four are equivalent when there are
only two alternatives. Thus, this paper presents a complete picture of the relationship
between these choice models.
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1. Introduction
In this paper, we study the discrete choice models. Dis-
crete choice models are used to model choices made by
people among a finite set of alternatives. As examples,
this includes examining which product to purchase for
a consumer and which mode of transportation to take
for a passenger. In the past few decades, discrete choice
models have attracted great interest in the economics,
marketing, operations research, and management sci-
ence communities. Specifically, such models have been
viewed as the behavioral foundation in many opera-
tional decision-making problems, such as transporta-
tion planning, assortment optimization, multiproduct
pricing, etc.
In the past few decades, researchers have proposed

a variety of discrete choice models. Among them, the
most popular is the random utility model , in which
a utility is assigned to each alternative. In the random
utility model, the utility is composed of a determin-
istic part and a random part. Each individual then
chooses the alternative with the highest utility, given
the realization of the random part. Different choice
models arise when different distributions for the ran-
dom part are used. Some examples of the random
utility model can be found in McFadden (1974, 1980)
and Daganzo (1980). Another popular choice model is
the representative agent model, in which a represen-
tative agent makes the choice on behalf of the pop-
ulation. In the representative agent model, there is
again a utility associated with each alternative, and
the representative agent maximizes a weighted util-
ity of the choice (which is a vector of proportions for

each alternative) plus a regularization term, which typ-
ically encourages diversification of the choice (Ander-
son et al. 1988). More recently, a class of semipara-
metric choice models has been proposed (Natarajan
et al. 2009). This model is similar to the random utility
model. However, instead of specifying a single distri-
bution for the random utility, a set of distributions is
considered. Then an extreme distribution in that set is
chosen to determine the choice probabilities. There are
other choice models based on the dynamics of choice
decisions or other non-parametric ideas. We provide a
more detailed review of these models in Section 2.

Although these models (the random utility model,
the representative agent model and the semiparamet-
ric choice model) have all provided excellent theoret-
ical and empirical explanations for how people make
choices in practice, a central question remains: What
is the exact relationship between these choice models?
In this paper, we present a complete answer to this
question. To do so, we view from another perspective
of choice models and consider a welfare-based approach.
This approach is based on the observation that many
existing choice models take the form of mapping a util-
ity vector to a probability vector and admit a welfare
function of the utilities whose gradient gives the choice
probability vector. By summarizing properties that are
satisfied by welfare functions of existing choice mod-
els, we define the class of welfare-based choice models.
Using the welfare-based choice model as an inter-

mediate model, we show that the representative agent
model and the semiparametric model are the same.
More precisely, under mild regularity assumptions,
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given either a regularization function (which defines
a representative agent model) or a distribution set
(which defines a semiparametric model), one can con-
struct the other to define exactly the same choice
model. This is somewhat surprising because they seem
to have very different origins. In addition, our proof
of the equivalence of these three models is construc-
tive, therefore, it gives explicit methods to convert one
model to another, potentially alleviating the need to
construct correspondence in a case by case manner as
is done in the literature.
Furthermore, we study the relationship between the

above three models and the random utility model. We
show that when there are only two alternatives, the
random utility model is equivalent to the above three
models. We also demonstrate that this is not true in
general if there are three or more alternatives, in which
case the above three models strictly subsume the ran-
dom utility model. This is an improvement on the cur-
rent known result.
Notations. Throughout the paper, the following nota-
tions will be used. We use notationR to denote the set
of real numbers, and R̄ �R∪ {−∞,+∞} to denote the
set of extended real numbers. We use e to denote a vec-
tor of all ones, ei to denote a vector of zeros except 1 at
the ith entry, and 0 to denote a vector of all zeros (the
dimension of these vectors will be clear from the con-
text). Also, we write x > y to denote a component-wise
relationship and ∆n−1 to denote the (n−1)-dimensional
simplex, i.e., ∆n−1 � {x | eTx � 1, x > 0}. In our discus-
sions, ordinary lowercase letters x , y , . . . denote scalars
and boldfaced lowercase letters x,y, . . . denote vectors.

2. Review of Existing Discrete
Choice Models

In this section, we review several prevailing classes of
discrete choice models that are related to the discus-
sion in this paper.

2.1. Random Utility Model
Perhaps the most popular class of discrete choice
model is the random utility model (RUM), first pro-
posed by Thurstone (1927) and later studied in a vast
literature in economics (see Anderson et al. 1992 for
a comprehensive review). In such a model, a random
utility is assigned to each of the alternatives, and an
individual will pick the alternative with the highest
realized utility. Here, the randomness in utilities could
be due to the lack of information on the alternatives
for a particular individual or to the idiosyncrasies
of preferences among a population. As the output,
the RUM predicts a vector of choice probabilities
among the alternatives, rather than a single determin-
istic choice. Mathematically, suppose there are n alter-
natives denoted by N � {1, 2, . . . , n}, then the RUM

assumes that the utility of alternative i takes the fol-
lowing form:

ui � πi + εi , ∀ i ∈ N, (1)

where π � (π1 , . . . , πn) is the deterministic part of the
utility and ε � (ε1 , . . . , εn) is the random part. In the
RUM, it is assumed that the joint distribution θ of ε �
(ε1 , . . . , εn) is known. Then the probability that alter-
native i will be chosen is (to ensure that the following
equation is well defined, we assume θ is absolutely
continuous, an assumption we make for all the RUMs
we discuss later):

qi(π)� �ε∼θ

(
i � arg max

k∈N
(πk + εk)

)
. (2)

RUMs can be further classified by the distribution
function of the random components. The most widely
used RUM is the multinomial logit (MNL) model,
first proposed by McFadden (1974). The MNL model
is derived by assuming that (ε1 , . . . , εn) follow inde-
pendent and identically distributed Gumbel distribu-
tions with scale parameter η. Given this assumption,
the choice probability in (2) can be further written as
follows:

qmnl
i (π)�

exp(πi/η)∑
k∈N exp(πk/η)

.

The expected utility for individual under the MNL
model is:

wmnl(π)� Ɛε∼θ

[
max

i∈N
πi + εi

]
� η log

(∑
i∈N

exp(πi/η)
)
.

The existence of a closed-form formula for the MNL
model makes it a very popular choice model. See Ben-
Akiva and Lerman (1985), Anderson et al. (1992), and
Train (2009) for more discussions on the properties
of the MNL model. In addition to the MNL, there
are other choices for the random part in (1) that lead
to alternative choice models. Some popular choices
among them are the probit model (in which ε is cho-
sen to be a joint normal distribution, see, e.g., Daganzo
1980), the nested logit model (in which ε is chosen
to be correlated general extreme value distributions,
see, e.g., McFadden 1980), and the exponomial choice
model (in which ε is chosen to be negative exponential
distributions, see Alptekinoğlu and Semple 2016).

2.2. Representative Agent Model
Another popular way to model choices is to use a rep-
resentative agent model (RAM). In such a model, a
representative agent makes a choice among n alterna-
tives on behalf of the entire population. In particular,
this agent may choose any fractional amount of each
alternative, or equivalently, his/her choice is a vector
x � (x1 , . . . , xn) on ∆n−1. To make his/her choice, the
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agent takes into account the expected utility while pre-
ferring some degree of diversification. More precisely,
the representative agent solves an optimization prob-
lem as follows:

max
x∈∆n−1
(πTx−V(x)). (3)

Here π � (π1 , . . . , πn) is the deterministic utility of
each alternative, which is similar to that in the RUM.
V(x):∆n−1 7→R is a regularization term such that−V(x)
rewards diversification. We denote the optimal value
of (3) by wr(π), which is the utility a representative
agent can obtain if the deterministic utility vector is π.
In this paper, without loss of generality, we assume that
V(x) is convex and lower semicontinuous.1 Moreover,
if for any π, there is a unique solution to (3), then we
define

qr(π)� arg max{πTx−V(x) | x ∈ ∆n−1} (4)

to be the choice probability vector given by the RAM.
A recognized close connection exists between the

RUM and the RAM. In Anderson et al. (1988), the
authors show that the choice probabilities from an
MNL model with parameter η can be equally derived
from a RAM with V(x) � η∑n

i�1 xi log xi . Equivalently,
we can write

qmnl(π)� arg max
{
πTx− η

n∑
i�1

xi log xi

���x ∈ ∆n−1

}
.

Hofbauer and Sandholm (2002) further extend the
result to general RUMs. They show that for any RUM
with continuously distributed random utility, there
exists a RAM that gives the same choice probability.
The precise statement of their result is as follows:
Proposition 1. Let q(π):Rn 7→∆n−1 be the choice probabil-
ity function defined in (2) where the random vector ε admits
a strictly positive density on Rn and the function q(π) is
continuously differentiable. Then for all π there exists V( · )
such that:

q(π)� arg max{πTx−V(x) | x ∈ ∆n−1}.

They also show that the reverse statement of Propo-
sition 1 is not true:
Proposition 2 (Proposition 2.2 in Hofbauer and Sand-
holm 2002).When n > 4, there does not exist a RUM that is
equivalent to the RAM with V(x)�−∑n

i�1 log xi .
Based on the two propositions above, we know that

the RAM strictly subsumes the RUM as a special case.

2.3. Semparametric Choice Model
Recently, a new class of choice models, called the
semiparametric choice model (SCM), was proposed by
Natarajan et al. (2009). Unlike the RUM where a cer-
tain distribution of the random utility ε is specified, in
the SCM, one considers a set of distributions Θ for ε.

Given the deterministic utility vector π, one defines the
maximum expected utility function ws(π) as follows:

ws(π)� sup
θ∈Θ

Ɛε∼θ

[
max

i∈N
πi + εi

]
. (5)

Note that in the RUM, the maximum expected util-
ity function can be similarly defined, but only with a
single distribution θ. Thus the SCM can be viewed as
an extension of the RUM. Let θ∗(π) denote the distri-
bution (or a limit of a sequence of distributions) that
attains the optimal value in (5). The choice probability
for alternative i under this model is given by (provided
that it is well defined):

qs
i (π)� �θ∗(π)

(
i � arg max

k∈N
(πk + εk)

)
. (6)

Several special cases of SCMs have been studied
recently. One such model, called the marginal distri-
bution model (MDM), is proposed by Natarajan et al.
(2009). In the MDM, the distribution set Θ contains all
the distributions with certain marginal distributions.
The following proposition proved in Natarajan et al.
(2009) shows that the marginal distribution model can
be equivalently represented by a RAM:
Proposition 3. Suppose Θ � {θ | εi ∼ Fi( · ), ∀ i} where
Fi( · )s are given continuous distributions. Then we have:

ws(π)� max
x

{
πTx+

n∑
i�1

∫ 1

1−xi

F−1
i (t) dt

���x ∈ ∆n−1

}
. (7)

Furthermore, the choice probabilities qs(π) can be obtained
as the optimal solution x∗ in (7).
Another semiparametric model is the marginal

momentmodel (MMM), inwhich only the first and sec-
ond moments of the marginal distributions are known
and Θ comprises all distributions that are consistent
with the marginal moments. Natarajan et al. (2009)
show that the MMM can also be represented as a
RAM (without loss of generality, we assume that the
marginal mean of εi is 0 for all i):
Proposition 4. Suppose the marginal standard deviation
of εi is σi for all i. Then we have

ws(π)� max
x

{
πTx+

n∑
i�1
σi

√
xi(1− xi)

���x ∈ ∆n−1

}
. (8)

Furthermore, the choice probabilities qs(π) can be obtained
as the optimal solution x∗ in (8).
To incorporate covariance information, Mishra et al.

(2012) further propose a complete moment model
(CMM), in which Θ is the set of distributions with
known first and second moments Σ (covariance
matrix). Ahipasaoglu et al. (2016) show that the CMM
model can also be written as a RAM (again without
loss of generality, we assume the first moments are 0):
Proposition 5. Assume Σ � 0. Then we have:

ws(π)�max
x

{
πTx+ trace(Σ1/2S(x)Σ1/2)1/2 | x∈∆n−1

}
, (9)
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where S(x) �Diag(x) − xxT and trace(X) is the trace of the
matrix X. Furthermore, the choice probabilities qs(π) can be
obtained as the optimal solution x∗ in (9).

Thus, all semiparametric models studied so far can
be represented as RAMs. In the next section, we show
that this is generally the case. Moreover, we show that,
in fact, the reverse is also true and thus the set of RAMs
is equivalent to that of semiparametric models.

Before we end this section, note that there are other
types of choice models in the literature in addition
to those mentioned above, such as the Markov chain-
based choice model (see Blanchet et al. 2016), the
two-stage choice model (see Jagabathula and Rus-
mevichientong 2013), the generalized attraction model
(see Gallego et al. 2014) and the non-parametric model
(see Farias et al. 2013). Some of those models are also
more general than the RUM model. However, they are
based on different ideas. In particular, they do not take
the form of mapping a utility vector to a choice proba-
bility vector. Thus we choose not to include a detailed
review of those models in this paper.

3. Relations Between Choice Models
In this section, we study the relations between the vari-
ous choicemodels reviewed in Section 2.We first notice
that although the choice models reviewed in Section 2
are based on different ideas, they are all essentially
functions from a vector of utilities π to a vector of
choice probabilities q(π). Moreover, each of these mod-
els allows a welfare function w(π) that captures the
expected utility an individual can get from the choice
model, and the choice probability vector can be viewed
as the gradient of w(π) with respect to π. Our pro-
posed approach is based on these observations. We
begin with the following definition:

Definition 1 (Choice Welfare Function). Let w(π) be a
mapping from Rn to R̄. We call w(π) a choice welfare
function if w(π) satisfies the following properties:
1. (Monotonicity): For any π1, π2 ∈Rn and π1 > π2,

w(π1) > w(π2);
2. (Translation Invariance): For any π ∈ Rn , t ∈ R,

w(π+ te)� w(π)+ t;
3. (Convexity): For any π1, π2 ∈ Rn and 0 6 λ 6 1,

λw(π1)+ (1− λ)w(π2) > w(λπ1 + (1− λ)π2).
In addition to the three properties, if w(π) is also dif-
ferentiable, then we call w(π) a differentiable choice
welfare function.

Here we make a few comments on the three con-
ditions in Definition 1. The monotonicity condition is
straightforward. It requires that the welfare is higher
if all alternatives have higher deterministic utilities.
The translation invariance property requires that if the
deterministic utilities of all alternatives increase by
a certain amount t, then the choice welfare function

will increase by the same amount. This is reasonable
given that choice is about relative preferences: Increas-
ing the utilities of all alternatives by the same amount
will not change the relative preferences but will only
increase the welfare by the amount of the increment.
Later, we will see that this condition is necessary to
guarantee well-defined choice probabilities. The last
condition of convexity basically states that the average
welfare at two utility vectors is greater than the wel-
fare at the average utility vector. If we view the welfare
as the maximal utility one can get among the alterna-
tives, then this property is equivalent to saying that the
weighted optimal value of twomaximization problems
(of the utilities of the alternatives) is larger than the
optimal value of the weighted one, which is true since
the maximal operator is convex .

Next we show that a choice welfare function has two
equivalent representations, i.e., a convex optimization
representation and a semiparametric representation.
This result will be instrumental for us to derive the
relationships between choice models.

Theorem 1. The following statements are equivalent:
1. w(π) is a choice welfare function;
2. There exists a convex function V(x): ∆n−1 7→ R̄ such

that
w(π)� max{πTx−V(x) | x ∈ ∆n−1}; (10)

3. There exists a distribution set Θ such that

w(π)� sup
θ∈Θ

Ɛε∼θ

[
max

i∈N
πi + εi

]
. (11)

The proof of Theorem 1 uses several results in convex
analysis and optimization. In the following, we estab-
lish its implication to discrete choice models. In this
paper, we refer to discrete choice models as the entire
set of functions q(π): Rn 7→∆n−1, mapping a utility vec-
tor to a choice probability vector. We first propose the
following choice model based on the choice welfare
function:

Definition 2 (Welfare-Based Choice Model). Suppose
w(π) is a differentiable choice welfare function. Then
the welfare-based choice model derived from w(π) is
defined by

q(π)�∇w(π). (12)

Note that when w( · ) is differentiable, we have ∇w(π)
∈ ∆n−1 by the monotonicity and the translation invari-
ance property of w(π). Therefore q(π) defined by (12) is
indeed a valid choice model. Next we show the equiv-
alence of various choice models. We first introduce the
following definitions (see Rockafellar 1974):

Definition 3 (Proper Function). A function f : X 7→ R̄ is
proper if f (x) <∞ for at least one x ∈ X and f (x) > −∞
for all x ∈ X.
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Definition 4 (EssentiallyStrictlyConvexFunction).Apro-
per convex function f on Rn is essentially strictly con-
vex if f is strictly convex on every convex subset of

dom(∂ f )� {x | ∂ f (x),�},
where ∂ f (x) is the set of subgradients of f at x, and �
is the empty set.
Note that any strictly convex function is essentially

strictly convex. Next, we have the following theorem:
Theorem 2. For a choice model q: Rn 7→ ∆n−1, the follow-
ing statements are equivalent:
1. There exists a differentiable choice welfare function

w(π) such that q(π)�∇w(π);
2. There exists an essentially strictly convex function

V(x) such that
q(π)� arg max{πTx−V(x) | x ∈ ∆n−1};

3. There exists a distribution set Θ such that

q(π)�∇π
{

sup
θ∈Θ

Ɛθ

[
max

i∈N
πi + εi

]}
.

In Theorems 1 and 2, with the help of the welfare-
based choice model, we establish the connection
between two existing choice models, the RAM and
the semiparametric model. In particular, we show that
those two classes of choice models are equivalent.
This result explains the prior results that for most
known semiparametric models, there exists an equiv-
alent RAM. In addition, it asserts that the reverse is
also true, which is somewhat surprising. Therefore,
in terms of scope, those three classes of choice mod-
els (the welfare-based choice model, the RAM and the
semiparametric model) are the same. We believe this
result is useful for the theoretical study of discrete
choice models.

In light of the equivalence of the three classes of
choice models, we could have more versatile ways to
construct a choice model. In particular, we can pick any
of the three representations to begin. For the welfare-
based choice model, one needs to choose a choice wel-
fare function w(π)which satisfies the three conditions.
For the RAM, one needs to choose a (strictly) convex
regularization function. For the semiparametric model,
one needs to choose a set of distributions. In different
situations, it might be easier to use one representa-
tion than the others to capture certain properties of the
choice model.
The next theorem studies one desirable property of

choice models and investigates how it can be reflected
to the construction of the three choice models. We start
with the following definition:
Definition 5 (SuperlinearChoiceWelfareFunction).Adif-
ferentiable choice welfare function w(π) is called super-
linear if there exist bi , i � 1, . . . , n, such that for any
π ∈Rn :

w(π) > πi + bi , ∀ i � 1, . . . , n.

This property is desirable in most applications. It
requires that the utility one can get from a set of al-
ternatives is not much less than the utility of each alter-
native. After all, for each alternative i, one can always
choose it and obtain the corresponding utility. We have
the following theorem:
Theorem 3. For a choice model q: Rn 7→ ∆n−1, the follow-
ing statements are equivalent:

1. There exists a superlinear differentiable choice welfare
function w(π) such that q(π)�∇w(π);
2. There exists an essentially strictly convex function

V(x) that is upper bounded on ∆n−1 such that

q(π)� arg max{πTx−V(x) | x ∈ ∆n−1};

3. There exists a distribution set Θ containing only dis-
tributions with finite expectation (i.e., Ɛθ |εi | < ∞ for all i
and θ ∈Θ) such that

q(π)�∇π
{

sup
θ∈Θ

Ɛθ

[
max

i∈N
πi + εi

]}
.

Moreover, if either of the above cases holds, then q(π) can
span the whole simplex, i.e., for all x in the interior of ∆n−1,
there exists π such that q(π)� x.

Theorem 3 further develops the equivalence of
choice models obtained in Theorem 2 by narrowing
the discussion to welfare-based choice models with
the superlinear property. In particular, we find that a
superlinear differentiable choice welfare function has a
semiparametric representation, of which the distribu-
tion set only contains distributions with finite expec-
tation; in practice, this is a desirable property. The last
statement that q(π) spans the whole simplex is related
to the results in Hofbauer and Sandholm (2002), Norets
and Takahashi (2013) and Mishra et al. (2014). These
papers provide conditions under which q(π) defined
from the RUM or the MDM can span the whole sim-
plex. Theorem 3 extends these results to more general
conditions.

Next, we study the relationship between the welfare-
based choice model (thus also the RAM and the SCM)
and the RUM. In particular, we study under what con-
ditions a welfare-based choice model can be equiv-
alently represented by a RUM. This study will help
us understand clearly the relations between various
choice models and the RUM, and thus design new
choice models that do not necessarily have a random
utility representation.

First, we show that when there are only two alter-
natives, the class of RUMs is equivalent to the class of
welfare-based choice models (thus also equivalent to
the RAM and the SCM).
Theorem 4. For any differentiable choice welfare function
w(π1 , π2), there exists a distribution θ of {ε1 , ε2} such that:

w(π1 , π2)� Ɛθ[max{π1 + ε1 , π2 + ε2}]. (13)



Feng et al.: Technical Note–On the Relation Between Several Discrete Choice Models
Operations Research, 2017, vol. 65, no. 6, pp. 1516–1525, ©2017 INFORMS 1521

In addition, if w(π1 , π2) is superlinear, then there exists a
distribution θ with finite expectation (i.e., Ɛθ |ε1 | <∞ and
Ɛθ |ε2 | <∞) that satisfies (13).

Note that the first part of Theorem 4 can be partly
derived fromMcFadden (1980). However, inMcFadden
(1980), the author requires w to be second-order differ-
entiable while we only require w to be differentiable.
In addition, we also derive the relation between w
being superlinear and θ having finite expectation. In
the appendix, we give a direct and complete proof for
this theorem.
By Proposition 2 proved in Hofbauer and Sand-

holm (2002), when n > 4, the RAM strictly subsumes
the RUM (thus by Theorem 1 also the SCM and the
welfare-based choice model). We next show that this
is also true when n � 3. We start with the following
“substitutable” property for the RUM.
Proposition 6. For any RUM q(π), we must have q j(π) 6
q j(π+ hei) for all π ∈Rn , h > 0 and i , j.

Proposition 6 says that in a RUM, if we increase the
deterministic utility of one alternative while holding
all other utilities unchanged, then the choice probabil-
ities for all other alternatives must not increase. In the
following two examples, we provide two choice mod-
els with n � 3 that violate the “substitutable” prop-
erty in Proposition 6, derived from the welfare-based
choice model or the RAM. These examples show that
the welfare-based choice model (thus also the RAM
and the SCM) strictly subsumes the RUM for n � 3.
Example 1. Consider q(π) � arg max{πTx − V(x) | x ∈
∆n−1}, where V(x)� xTAx with

A�


3 2 0
2 3 2
0 2 3

 � 0.

When we fix π2 � π3 � 0 and plot the choice probabil-
ities against π1 in the range of values [−2, 2] as shown
in Figure 1, it is observed that q3 increases in π1 in the
range of [−1.5,−1], i.e., it does not satisfy the property
stated in Proposition 6. Thus, there is no RUM that is
equivalent to this choice model. �

Example 2. Consider a function of three variables:

w(π)� log(eπ1 + eπ2 + eπ3 + e0.5(π1+π2)).

Clearly, w(π) is monotone, translation invariant and
convex, therefore it is a choice welfare function. Also,
it is differentiable with the corresponding choice
probability:

q(π)� 1
eπ1 + eπ2 + eπ3 + e0.5(π1+π2)

·
(
eπ1 +

1
2 e0.5(π1+π2) , eπ2 +

1
2 e0.5(π1+π2) , eπ3

)
.

Figure 1. Choice Probabilities in Example 1 with π2 � π3 � 0
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Furthermore, the second-order derivative of w(π)with
respect to π1 and π2 is

∂2w(π)
∂π1∂π2

�
∂q1(π)
∂π2

�
∂q2(π)
∂π1

�
e0.5(π1+π2)(−eπ1 − eπ2 + eπ3 − 4e0.5(π1+π2))

4(eπ1 + eπ2 + eπ3 + e0.5(π1+π2))2 .

It is non-positive if and only if eπ3 6 4e0.5π1+0.5π2 + eπ1 +

eπ2 . Therefore, when π3 is large while both π1 and π2
are small, this choice model will violate the property
stated in Proposition 6. Thus, there is no RUM that is
equivalent to this choice model. �

4. Conclusion
In this paper, we proposed a welfare-based approach
for studying discrete choice models. We showed that
the welfare-based choice model is equivalent to the
RAM and the semiparametric model, thus establishing
the equivalence between the latter two.We also showed
the relationship between these choice models and the
RUM. In particular, we showed that the welfare-based
choice model (thus also the RAM and the SCM) strictly
subsumes the RUMwhen there are three or more alter-
natives, while they are equivalent when there are only
two alternatives.
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Appendix
Proof of Theorem 1. First we show that the w(π) defined
in (10) and (11) are choice welfare functions. To see this, note
that the monotonicity and translation invariance properties
are immediate from (10) and (11). For the convexity, note that
w(π) defined in (10) is the supremum of linear functions of π
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thus is convex in π. In (11), for each ε, maxi∈N{πi + εi} is a
convex function in π, and so is the expectation. Therefore,
if w(π) is defined by (10) or (11), then it must be a choice
welfare function.

Next we show the other direction. That is, if w(π) is a
choice welfare function, then it can be represented in the
form of (10) and (11). First, if a choice welfare function
w(π)�+∞ for some π, then for any π′, we have w(π′) >
w(π + mini(π′i − πi)e) � w(π) + mini(π′i − πi) � +∞, where
the first inequality uses the monotonicity property and the
first equality uses the translation invariance property. Thus
w(π)�+∞ for all π. In that case, we can choose V(x)�−∞
and Θ � {θ∞} where θ∞ is a singleton distribution taking
value on (∞, . . . ,∞). Therefore, w(π) can be represented
by (10) and (11) in that case. Similarly, if w(π) � −∞ for
some π, then it must be that w(π)�−∞ for all π, and we can
take V(x)�∞ andΘ� {θ−∞}, where θ−∞ is a singleton distri-
bution on (−∞, . . . ,−∞). Therefore, w(π) can be represented
in (10) and (11) in this case too.

In the remainder of the proof, we focus on the case where
w(π) is finite for all π. In this case, by Bertsekas (2003, Propo-
sition 1.4.6), w(π) must be continuous. The remaining proof
is divided into two parts:

1. We show that any choice welfare function w(π) can be
represented by (10). Since w(π) is monotone and translation
invariant, the following holds:

w(π)�min
y

{
w(y)+max

i
{πi − yi}

}
�min

y

{
w(y)+ max

x∈∆n−1
(π−y)Tx

}
.

Here the first equality holds since for any y, w(π) � w(π −
maxi{πi − yi}e)+maxi{πi − yi} by the translation invariance
property. Furthermore, by the monotonicity property, w(π−
maxi{πi − yi}e) 6 w(y) and the equality holds when y� π.

Next we define L(x,y) � w(y) + (π − y)Tx. We have for
fixed x, L(x, ·) is convex in y (by the convexity of w( · )); and
for fixed y, L(·,y) is convex and closed in x. Furthermore,
infy maxx∈∆n−1

L(x,y) � w(π) < ∞ and the function p(u) �
infy maxx∈∆n−1

{L(x,y) −uTx} � w(π−u) is continuous. There-
fore, by Bertsekas (2003, Proposition 2.6.2), the minimax
equality holds, i.e.,

inf
y

max
x∈∆n−1

L(x,y)� max
x∈∆n−1

inf
y

L(x,y).

Therefore, we have:

w(π)� max
x∈∆n−1

{
πTx+ inf

y
{w(y) −yTx}

}
� max

x∈∆n−1
{πTx−V(x)}

where V(x)� supy{yTx−w(y)} is a convex function.
2. Next we show that any choice welfare function can be

represented by (11). Since w(π) is convex, there exists a sub-
gradient for any π. We denote the subgradient vector by
d(π)� (d1(π), . . . , dn(π))T . Here it is possible that the choice of
d(π) is not unique, in which case, the choice can be arbitrary.
Furthermore, by taking the derivative with respect to t in the
translation invariance equation, and by applying the chain
rule (see Bertsekas 2003, Proposition 4.2.5), we have for any
subgradient d(π), it must hold that eTd(π) � 1. Similarly, by
the monotonicity property of w(π), we must have d(π) > 0.

By the definition of subgradient and the convexity of w(π),
we must have:

w(π) > (π− z)Td(z)+ w(z), ∀z ∈Rn ,

where the equality holds when z � π. Define l(z) � w(z) −
zTd(z). By reorganizing terms, we have

w(π)� sup
z
{πTd(z)+ l(z)}. (A.1)

Now we define the distribution set as follows: Let Θ �

{θz | z ∈Rn}, where θz is an n-point distribution with

�θz
(ε � εi

z)� di(z), for i � 1, . . . , n

where

εi
z( j)�

{
l(z) if j � i ,
−∞ if j , i.

That is, εi
z is a vector of all −∞’s except l(z) at the ith entry.

Therefore, for any z, we have

Ɛθz

[
max

i
(πi + εi)

]
�

n∑
i�1

di(z)(πi + l(z))� πTd(z)+ l(z).

Then by (A.1), we have

w(π)� sup
z
{πTd(z)+ l(z)} � sup

z
Ɛθz

[
max

i
(πi + εi)

]
� sup

θ∈Θ
Ɛθ

[
max

i
(πi + εi)

]
.

Therefore, the theorem is proved. �

Proof of Theorem 2. The equivalence between 1 and 3 di-
rectly follows from Theorem 1. Next we show that 1⇒ 2. If
w(π) is a differentiable choicewelfare function, by Theorem 1,
we know that

w(π)� max{πTx−V(x) | x ∈ ∆n−1},

where V(x)� supy{yTx−w(y)}. Therefore, V(x) is the convex
conjugate of w(π). By Rockafellar (1974, Theorem 6.3), we
know that w(π) is essentially differentiable if and only if V(x)
is essentially strictly convex. Also, from the envelope theorem
(see Mas-Colell et al. 1995),

∇w(π)�∇π(πTx−V(x))|x�x∗ � x∗ ,

where x∗ � arg max{πTx−V(x) | x ∈ ∆n−1}. Therefore,

q(π)�∇w(π)� arg max{πTx−V(x) | x ∈ ∆n−1}.

Last, we show that 2⇒ 1. Given an essentially strictly con-
vex V(x), by Theorem 1, we know that

w(π)� max{πTx−V(x) | x ∈ ∆n−1}

is a choice welfare function. Again, by Rockafellar (1974, The-
orem 6.3), we know that w(π) is essentially differentiable.
Moreover, in our case, w(π) is a convex and finite-valued
function inRn , thus essentially differentiability is equivalent
to differentiability. Again, by applying the envelope theorem,
q(π)�∇w(π). Therefore the theorem is proved. �
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Proof of Theorem 3. First, we show the equivalence be-
tween 1 and 2. Based on Theorem 2, it suffices to prove
that w(π) is superlinear if and only if V(x) defined by
maxy{yTx − w(y)} is upper bounded. If w(π) is superlinear,
we have, for any x ∈ ∆n−1,

w(π) >
∑
i∈N

xi(πi + bi)� xTπ+ xTb > xTπ+min
i

bi .

By reorganizing terms, we have

xTπ−w(π) 6 −min
i
{bi} � max

i
{−bi}.

Therefore, V(x)� maxy{yTx−w(y)} 6maxi{−bi}, i.e., V(x) is
upper bounded.

To show the other direction, if V(x) is upper bounded by a
constant u, then we have

w(π) >max{πTx− u | x ∈ ∆n−1} > πi − u , ∀ i ,

i.e., w(π) is superlinear. Therefore, the equivalence between 1
and 2 is proved.

Next we show the equivalence between 1 and 3. We first
show that for any superlinear differentiable choice welfare
function w(π), we can find a distribution set Θ consisting of
only distributions with finite expectation such that w(π) can
be represented as w(π)� supθ∈Θ Ɛθ[maxi∈N πi + εi].

First, since w(π) is convex with q(π)�∇w(π), we have

w(π)� sup
z
{πTq(z)+ l(z)}, (A.2)

where l(z)�w(z)−zTq(z). Nowwe define a distribution setΘ
that is slightly different from that of Theorem 1. Specifically,
letΘ� {θz | z ∈Rn}, where θz is an n-point distribution with
�θz
(ε � εi

z) � qi(z), ∀ i ∈ N (Note that by the monotonicity
and the translation invariance properties, q(z) � ∇w(z) must
satisfy q(z) > 0 and eTq(z)� 1). Here,

εi
z( j)�

{
l(z) if j � i ,
l(z) −M(z) if j , i.

where

M(z)� max
{
1+max

i , j
{zi − z j},

l(z) −mini{bi}
t∗(z)

}
, (A.3)

with
t∗(z)� min{qi(z) | qi(z) > 0}. (A.4)

Since M(z)> zi−z j , for all i , j, we have i � arg max j(z j +ε
i
z( j)).

Therefore,

Ɛθz

[
max

j
z j + ε j

]
�

n∑
i�1

qi(z)(zi + l(z))� zTq(z)+ l(z)� w(z).

Next we show that:

Ɛθz

[
max

i
πi + εi

]
6 w(π), ∀π.

For any given π, define k(i) , arg max j (π j + ε
i
z( j)) (we break

ties arbitrarily). There are two cases:
1. For all i such that qi(z)> 0, k(i)� i. In this case, we have

Ɛθz

[
max

j
π j + ε j

]
�

∑
i∈N

qi(z)(πi + l(z))� πTq(z)+ l(z) 6 w(π),

in which the last inequality is because of the convexity
of w( · ).

2. There exists some i such that qi(z) > 0, but k(i) , i. In
this case, from the construction of θz, we have

Ɛθz

[
max

j
π j + ε j

]
�

∑
i∈N, qi (z)>0

qi(z)(πk(i) + l(z) −M(z)	{k(i),i})

6max
i
{πi}+ l(z) − t∗(z)M(z)

6max
i
{πi}+min

j
{b j}

6max
i
{πi + bi}

6w(π),

where the first inequality follows from the fact that M(z) > 0
and ∑

i∈N qi(z)	{qi (z)>0,k(i),i} > t∗(z), the second inequality is
because of the definition of M(z) and the last inequality fol-
lows from the definition of superlinear function.

Based on the analysis of these two cases, we have

Ɛε∼θz

[
max

i
πi + εi

]
6 w(π), ∀π.

Then by Equation (A.2) we have

w(π)� sup
z
{πTq(z)+ l(z)} � sup

z
Ɛθz

[
max

i
πi + εi

]
� sup

θ∈Θ
Ɛθ

[
max

i
πi + εi

]
.

Therefore, we have proved that statement 1 implies
statement 3.

Finally, we prove that statement 3 implies statement 1. Sup-
pose there exists a distribution θ̂ ∈ Θ such that Ɛθ̂ |εi | < +∞
for ∀ i ∈ N, then for π ∈Rn we have

sup
θ∈Θ

Ɛθ

[
max

i∈N
πi + εi

]
> Ɛθ̂

[
max

i∈N
πi + εi

]
> Ɛθ̂[π j + ε j]� π j + Ɛθ̂[ε j], ∀ j.

Therefore we can conclude that

w(π)� sup
θ∈Θ

Ɛθ

[
max

i∈N
(πi+εi)

]
is superlinear.

It remains to prove the last statement.We show that for any

x ∈ ∆◦n−1 , {x | eTx� 1, xi > 0, ∀ i ∈ N},

there exists πx such that q(πx) � ∇w(πx) � x. Fix x ∈ ∆◦n−1, we
consider

V(x)� max
π
{πTx−w(π)}. (A.5)

Clearly, V(x) > −w(0), since π � 0 is a feasible solution.
Moreover, since w(π) is translation invariant, we can restrict
the feasible region of (A.5) to L , {π|eTπ � 0}. For all π ∈L,
we have π j 6 0 for some j ∈ N. Thus

πTx 6
∑
i, j
πi xi 6

∑
i, j

xi max
k
{πk} 6

(
1−min

i
{xi}

)
max

k
{πk}.

However, by superlinearity of w(π), we have:

w(π) >max
k
{πk + bk} >max

k
{πk}+min

k
{bk}.

Thus, for all π ∈L, we have:

πTx−w(π) 6 −min
i
{xi}max

k
{πk} −min

k
{bk}.



Feng et al.: Technical Note–On the Relation Between Several Discrete Choice Models
1524 Operations Research, 2017, vol. 65, no. 6, pp. 1516–1525, ©2017 INFORMS

Let K � (w(0) −mink{bk})/mini{xi}. For π to be optimal
to (A.5), by the above arguments, we would have πi 6 K for
all i. Thus we can further restrict the feasible set of (A.5) to
{π | eTπ� 0, πi 6 K ∀ i ∈N}, which is a compact set. Since w(π)
is continuous, there exists πx ∈ {π | eTπ� 0, πi 6 K ∀ i ∈N} that
attains maximum in problem (A.5). By the first-order neces-
sary condition, ∇w(πx)� x. This concludes the proof. �

Proof of Theorem 4. Define v(x) , w(x , 0). Since w( · ) is dif-
ferentiable, by the chain rule, we have

v′(x)� ∂w
∂π1
(x , 0).

Since w(π1 , π2) is convex and satisfies the translation invari-
ance property, we have v′(x) ∈ [0, 1] and is increasing. We
define a distribution θ of {ε1 , ε2} as follows:

{ε1 , ε2} � {v0 −max{ξ, 0}, v0 −max{−ξ, 0}},

where v0 � v(0) � w(0, 0) and ξ is a random variable with
c.d.f. Fξ(x)��(ξ 6 x)� v′(x). Note F( · ) is a well-defined c.d.f.
since w( · ) is convex and differentiable, thus v′(x) must be
continuous and increasing (Rockafellar 1974).

Now we compute Ɛθ[max{π1 + ε1 , π2 + ε2}]. We have

Ɛθ[max{π1 + ε1 , π2 + ε2}]
� π1 + v0 + Ɛθ[max{−max{ξ, 0}, π2 − π1 −max{−ξ, 0}}]
� π1 + v0 + Ɛθ[max{0, π2 − π1 + ξ} −max{ξ, 0}],

where the last step can be verified by considering ξ > 0 and
ξ 6 0, respectively.

Now we compute the last term. For x > 0, we have (let 	( · )
be the indicator function):

Ɛθ[max{0, x + ξ} −max{0, ξ}]
� x�(ξ > 0)+ Ɛθ[(x + ξ) · 	(−x < ξ 6 0)]

� x�(ξ > 0)+
∫ 0

−x
(x + ξ) dv′(ξ)

� x(1− v′(0))+ (x + ξ)v′(ξ)
��0
−x −

∫ 0

−x
v′(ξ) dξ

� x − v0 + v(−x).

Similarly, for x 6 0, we have

Ɛθ[max{0, x + ξ} −max{0, ξ}]
� x�(ξ > −x)+ Ɛθ[−ξ · 	(0 < ξ 6 −x)]

� x�(ξ > −x) −
∫ −x

0
ξ dv′(ξ)

� x(1− v′(−x)) − ξv′(ξ)
��−x

0 +

∫ −x

0
v′(ξ) dξ

� x − v0 + v(−x).

Therefore, Ɛθ[max{π1 + ε1 , π2 + ε2}] � π1 + v0 + (π2 − π1) −
v0 + v(π1 − π2)� w(π1 , π2).

To prove the last statement, it suffices to show that
both Ɛθ[max{0, ξ}] and Ɛθ[max{0,−ξ}] are finite if w(π)
is superlinear. If w( · ) is superlinear, then we have v(t) −
t � w(0,−t) is decreasing in t and lower bounded, thus
L1 � limt→+∞(v(t) − t) exists and is finite. Similarly, v(t) �

w(t , 0) is increasing in t and lower bounded, thus L2 �

limt→−∞ v(t) exists and is finite. Therefore, we have:

Ɛθ[max{0, ξ}]�
∫

+∞

0
�θ(ξ > t) dt �

∫
+∞

0
(1− v′(t)) dt

�(t − v(t))|+∞0 � v(0) − L1 ,

and

Ɛθ[max{0,−ξ}]�
∫

+∞

0
�θ(−ξ > t) dt �

∫
+∞

0
v′(−t) dt

�

∫ 0

−∞
v′(t) dt � v(0) − L2.

Thus, the theorem is proved. �
Proof of Proposition 6. In a RUM, the probability of choos-
ing alternative j is q j(µ) � �θ( j � arg maxk∈N(µk + εk)). Since
the choice probability is based on the comparison, it is clear
that q j(π) 6 q j(π+ hei) for all π ∈Rn , h > 0 and i , j. �

Endnote
1 If V(x) is not convex or lower semicontinuous, then we can replace
V(x) by a convex and lower semicontinuous function V ∗∗(x) �
supy{yTx − wr(y)} and the Equation (3) still holds (Borwein and
Lewis 2010). Therefore, it is without loss of generality to assume V(x)
is convex and lower semicontinuous.
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