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DAISY Filter Flow: A Generalized Discrete Approach to Dense Correspondences∗

Hongsheng Yang†, Wen-Yan Lin∗, and Jiangbo Lu∗
∗Advanced Digital Sciences Center, Singapore†University of North Carolina at Chapel Hill, USA

Abstract

Establishing dense correspondences reliably between a
pair of images is an important vision task with many ap-
plications. Though significant advance has been made to-
wards estimating dense stereo and optical flow fields for
two images adjacent in viewpoint or in time, building re-
liable dense correspondence fields for two general images
still remains largely unsolved. For instance, two given im-
ages sharing some content exhibit dramatic photometric
and geometric variations, or they depict different 3D scenes
of similar scene characteristics. Fundamental challenges
to such an image or scene alignment task are often mul-
tifold, which render many existing techniques fall short of
producing dense correspondences robustly and efficiently.
This paper presents a novel approach called DAISY filter
flow (DFF) to address this challenging task. Inspired by
the recent PatchMatch Filter technique, we leverage and
extend a few established methods: 1) DAISY descriptors,
2) filter-based efficient flow inference, and 3) the Patch-
Match fast search. Coupling and optimizing these mod-
ules seamlessly with image segments as the bridge, the pro-
posed DFF approach enables efficiently performing dense
descriptor-based correspondence field estimation in a gen-
eralized high-dimensional label space, which is augmented
by scales and rotations. Experiments on a variety of chal-
lenging scenes show that our DFF approach estimates spa-
tially coherent yet discontinuity-preserving image align-
ment results both robustly and efficiently.

1. Introduction
Estimating a set of dense correspondences for two given

images is an important cornerstone to a number of com-
puter vision and graphics applications. Typically the resul-
tant dense correspondence field is desired to be spatially co-
herent while preserving motion or structural discontinuities.
Impressive advancements have been made in the past years
for matching a pair of adjacent images either in time or in
viewpoint, spawning several state-of-the-art techniquesfor

∗This study is supported by the HSSP research grant at the ADSCfrom
Singapore’s Agency for Science, Technology and Research (A*STAR).
This work was mainly done when Hongsheng was working at ADSC. Cor-
responding author: jiangbo.lu@adsc.com.sg.

Figure 1. Some typical challenges of matching a pair of images.
First two rows: two input images with significant photometric,
geometric and scene content changes (from left to right). Third
to fifth rows: image warping results from the second image to
the first one using the estimated correspondences by NRDC [5],
SIFT Flow [12], and our DFF method. DFF yields dense coherent
matches consistently. NRDC givesnomatch for different scenes.

optical flow [23] and stereo matching [19]. However, op-
posed to this comparatively restrictive setup, matching two
general images that exhibit high variability in appearanceis
far more complicated [5, 12]. A variety of factors make this
task very challenging, including significant photometric dif-
ferences (e.g. exposure and tone variations) and non-rigid
geometric transformation (e.g. scale and rotation changes),
or even different scene contents between the two images.

Noticeable previous attempts at estimating dense cor-
respondences under difficult conditions are, for instance,
NRDC [5] and SIFT Flow [12]. They deal with a pair of
images either sharing some content but exhibiting dramatic
photometric and geometric variation, or depicting different
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scenes of similar appearances, respectively. Albeit impres-
sive matching results and applications are shown in these
works, modeling photometric variations in NRDC [5] is not
robust to more general cases when the appearance differ-
ences cannot be accounted for simply with parametric color
transforms. Further, it also cannot handle matching across
scenes. The SIFT Flow algorithm [12] uses fixed-scale
SIFT descriptors [13] densely for the entire image lattice,
so it cannot match the scenes consisting of non-rigid, spa-
tially varying deformations (e.g. scale and rotation changes)
well. Fig.1 illustrates some typical cases where the existing
methods fail to provide dense coherent matches.

Following the same spirit of the SIFT Flow in using
densely computed descriptors, this paper presents a gener-
alized image matching algorithm calledDAISY Filter Flow
(DFF). The DFF algorithm achieves much more robust
performance in efficiently matching images of challenging
non-rigid photometric and geometric variations, or across
different scenes than the existing techniques [9, 5, 12, 6,
21]. Our approach is built upon a few established tech-
niques but also extends them, which are 1) DAISY descrip-
tors, 2) filter-based efficient flow field inference, and 3) the
PatchMatch fast search. Inspired by the recent PatchMatch
Filter (PMF) work [15], we cast dense correspondence es-
timation in a discrete labeling framework, and tightly inte-
grate and optimize these selected modules with image seg-
ments as the bridge. Motivated by the known difficulty of
pixel correlation-based methods for matching challenging
images [20, 12] (see the PMF result in Fig.8), this paper
generalizes the PMF method [15] in two important ways: i)
DAISY descriptors are employed and extended for general
image matching; ii) to search across scales and rotations be-
yond just translations. As a result, our DFF algorithm, for
the first time, allows performing spatially regularized, dense
descriptor-based correspondence field estimation efficiently
in a high-dimensional space. Being able to do so explains
the key advantages of the DFF method in both matching
robustness (see Fig.1) and computational efficiency.

1.1. Related Work and Key Design Factors
Below we review the related prior work and motivate a

few key design factors for dense correspondence estimation.
Dense descriptors. Several patch-based descriptors

have been developed such as SIFT [13] and SURF [3],
which find many applications due to their robustness to per-
spective and illumination changes. When it comes to dense
pixel-wise matching, computational complexity becomes a
critical design factor, in addition to the transform-invariance
power sought for. Tolaet al. [20] proposed a local region
descriptor called DAISY, which is very efficient to com-
pute densely thanks to the constructional scheme of reusing
shared histograms across pixels. They showed that DAISY
outperforms SIFT in wide-baseline stereo matching, while
running about 60x faster [20]. However, DAISY’s current

design [20] deals only with rigid camera motions and as-
sumes the two given images are calibrated. To tackle more
general image matching tasks, our DFF approach general-
izes the standard DAISY descriptor, avoiding unreliable re-
gion scale and rotation decision for DAISY descriptors de-
terministically from a single image.

Transform invariance. As photometric (e.g. illumina-
tion and tone) and geometric differences (e.g. scales and ro-
tations) often exist between a pair of general images, image
alignment or dense correspondence algorithms need to be
robust against these transformations. As discussed earlier,
NRDC [5] does not work well for complicated appearance
variations and also is not capable of matching across dif-
ferent scenes. SIFT Flow [12] works fine for matching dif-
ferent scenes with sufficiently similar characteristics, but is
not robust to large changes in scale and orientation. Show-
ing that scale selection is difficult and unreliable for the ma-
jority of pixels, Hassneret al. [6] extracted a set of SIFTs
for each pixel at multiple scales, and then used a subspace-
mapped descriptor representation to match scenes/objects
in different scales. However, the improved matching qual-
ity comes at a significant computational price. The Scale-
Invariant Descriptors (SID) [9] is shown in [6] to be less ca-
pable of matching across difference scenes. Based on large
patches (hence sensitive to occlusions) and many convolu-
tion layers, SID requires a considerable amount of mem-
ory even for a small-sized image. Recently, a deformable
spatial pyramid matching (DSP) method [8] is proposed.
Though efficient, DSP is not rotation-invariant and cannot
handle image pairs with challenging object pose or view-
point changes nor complex geometric variations. Its regular
spatial partitioning of the image grid tends to impose im-
proper regularization for differently moving objects, incur-
ring strong4× 4 blocking artifacts in the estimated flows.

The proposed DFF approach shares some similar ideas
with [6, 10] in that we do not fix but rather allow “enu-
merating” a range of admissible scales [6, 10] and rota-
tions [10] to describe features around each pixel. However,
our method is able to achieve excellent computational ef-
ficiency, even when fine-grained enumerations are chosen
adaptively for each pixel in an extended search space.

Efficient inference and label search. As pointed out
in [12], the bottleneck of SIFT Flow lies in the large search
window size, so computational efficiency is considered as
an important direction for improvement. In fact, SIFT fea-
tures by design support varying descriptors in scales and
rotations, but simply enlarging the descriptor representation
space will only cause a huge computational load further to
SIFT feature computation and belief propagation optimiza-
tion in SIFT Flow [12]. As a result, SIFT Flow [12] as well
as the original DAISY-based wide-baseline stereo [20] used
a fixed scale globally for all region descriptors. Recently,
the generalized PatchMatch technique [2] has shown its
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Figure 2. DAISY filter flow algorithm pipeline. The algorithm is comprised of two phases: DAISY precomputation and online matching.

powerful strength in quickly finding a dense nearest neigh-
bor field (NNF) across scales and rotations beyond just
translations. However, the NNF algorithm enforces no spa-
tial smoothness constraint, so the NNF results are largely
incorrect and do not reveal true motion flows. In fact,
a Markov Random Field (MRF)-based inference formula-
tion is good at enforcing spatial regularization, but global
energy minimization methods involved become very slow
for the large label space. Inspired by the recent success
in speeding up the MRF inference with filter-based meth-
ods [18, 22], we explore in this paper a synegetic com-
bination of the filter-based inference with the randomized
PatchMatch search in a high-dimensional label space. The
proposed DFF framework resembles that of the PatchMatch
Filter [15], but generalizes it for efficient, dense descriptor-
based general image matching in a high-dimensional space.

2. DAISY Filter Flow System Overview
Given a pair of imagesI andI′, the goal of dense cor-

respondence estimation is to generate a spatially coher-
ent, discontinuity-preserving motion fieldM = {m(p) =
(u(p), v(p))} for each pixelp = (xp, yp) ∈ I. This
task is also known as image alignment or registration.
The estimated correspondence fieldM can be used e.g.
for photo enhancement through the reconstructed image
Î(I′,M) warped fromI

′ [5], or for transferring the warped
scene labels from a database imageI

′ to parseI [11].
Motivated by the recent major advance in fast dense

nearest neighbor field search [2] and filter-based methods
for efficient inference [18], we take a discrete optimization
approach and cast the dense descriptor-based correspon-
dence estimation in a high-dimensional label space. More
specifically, our DFF algorithm aims to infer a spatially co-
herent labeling fieldL = {l(p) = (u(p), v(p), s(p), θ(p))}
and assign an optimal labell(p) to each pixelp ∈ I. The lo-
cally varying random variables for the scales(p) and orien-
tationθ(p) are newly introduced, which are associated with
each region descriptor centered at pixelp to deal with the
high appearance variability between the two images. This
design counteracts the negative effects of deciding an invari-
ant feature scale and orientation rigidly for the dense image
lattice [12], as such a decision is unreliable for a majority
of inconspicuous pixels in an image [6]. We choose to inte-

grate and extend the DAISY descriptor [20] in the proposed
framework, because of its favorable performance in compu-
tational efficiency and robustness. The DAISY descriptor
is densely computed to describe regions around each pixel,
similar to the dense SIFT feature in SIFT Flow [12].

The pipeline of the proposed DFF algorithm is shown
in Fig. 2. At a high level, the entire system can be parti-
tioned into two phases: i) precomputing the standard up-
right DAISY descriptors forI and theconvolved orienta-
tion maps[20] for I

′ (Sect.3.1), and ii) iterative evalua-
tion of matching costs of hypothetical labels (Sect.3.2) and
filter-based flow inference (Sect.3.3), which are efficiently
performed for a significantly reduced subset of plausible la-
bels generated by a randomized label search and propaga-
tion scheme (Sect.3.4). All these algorithmic modules are
carefully designed and seamlessly integrated together.

3. The DAISY Filter Flow Algorithm
3.1. The DAISY Descriptor and Precomputation

As introduced earlier, dense DAISY descriptors are effi-
cient to compute because histograms computed for one re-
gion can be reused for all neighboring pixels, and also the
DAISY computation pipeline enables a very efficient mem-
ory access pattern [20]. Thanks to this computational ad-
vantage and also our fast inference and label search meth-
ods to be detailed later, we need not adopt a coarse-to-fine
(C2F) matching scheme used in SIFT Flow [12] to reduce
the complexity stress. Instead, we perform DAISY descrip-
tor computation and matching for the full image grid. This
effectively addresses the fundamental limitation of a con-
ventional C2F framework that does not handle motion de-
tails or large displacements of small objects well [23].

Fig. 3(a) shows the standard upright DAISY descriptor
D

R
b (p) centered on pixelp. R denotes the distance from the

center pixelp to the outermost sampling grid points [20].
Given a discretized transformation labell = (u, v, s, θ), the
generalized DAISY descriptor, scaled bys, rotated byθ and
centered on the translated pixelp′ = p + (u, v), is denoted
by D

R
l (p) ≡ D

R
s,θ(p

′) as shown in Fig.3(b). D
R
b (p) is a

special case ofDR
l (p), whenl = (0, 0, 1, 0).

As will be discussed in Sect.3.2, generalized DAISY
descriptors need to be generated for any given hypotheti-
cal labell on the fly for the target imageI′. Therefore, it
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Figure 3. (a) The standard upright DAISY descriptorD
R
b (p) cen-

tered at pixelp [20]. (b) A generalized DAISY descriptorDR
s,θ(p

′)
scaled bys, rotated byθ and centered at a translated locationp′.

is desired if this descriptor generation process can be made
highly efficient. This design concern pinpoints another im-
portant reason for employing DAISY features in our pro-
posed framework: all theconvolved orientation maps[20],
denoted as{G′R

s,o} in Fig. 2, can be precomputed forI′

and reused with a very small overhead to generateD
′R
l (p)

or equivalentlyD′R
s,θ(p

′) during the runtime. Generating
D

′R
s,θ(p

′) from {G′R
s,o} amounts to simply rotating the sam-

pling grid of concentric circles byθ (e.g. orange dots in
Fig. 3(b)), and then shifting circularly the concatenated his-
togram bins. We refer the readers to [20] for specific details
of DAISY descriptors. In this paper, we set the number of
convolved orientation layers to two, namely using two rings
of concentric circles around the center pixelp. This choice
limits the negative effects of occlusion when compared to
larger regions. Our DAISY feature precomputation strategy
for a pair of given imagesI andI′ is summarized as follows.
We precompute and store the standard upright DAISY de-
scriptorsDR

b densely forI. The convolved orientation maps
{G′R

s,o} for I′ are precomputed and stored for a discrete set
of predefined scale coefficientsE with s ∈ E, and also a
set of quantized rotationsΘ = {θo, o ∈ [1, H]} for which
the image gradient norms are computed.

3.2. Generalized Dense DAISY Matching
Unlike the optical flow techniques which typically build

on the brightness constancy assumption between corre-
sponding pixels, the proposed DFF method uses the densely
computed feature descriptor distance to evaluate the match-
ing evidence as SIFT Flow [12]. However, our DFF method
overcomes the limitations of SIFT Flow that uses scale-
fixed upright regions to compute SIFT features, and it can
reliably estimate non-rigid motion with pronounced scale
and rotation changes at local region or pixel levels.

Given a hypothetical labell = (u, v, s, θ), the general-
ized DAISY matching costCl(p) between a pixelp ∈ I and
its correspondence candidatep′(= p+ (u, v)) ∈ I

′ is com-
puted as the truncated L1 distance between two descriptors:

Cl(p) = min
(

∥

∥D
R
b (p)−D

′R
s,θ(p

′)
∥

∥

1
, t
)

. (1)

The truncation thresholdt is used to account for matching
outliers and occlusions. Similarly with the strategies in [2,
5], we compare an upright unscaled patch descriptorD

R
b (p)

for pixel p ∈ I, with a patch descriptorD′R
s,θ(p

′) that is
scaled bys and rotated byθ around pixelp′ ∈ I

′. Thanks
to the precomputed convolved orientation maps{G′R

s,o} for
the imageI′, D′R

s,θ(p
′) can be quickly generated. With two

readily available vectors, i.e.DR
b (p) andD′R

s,θ(p
′), Cl(p)

for a random labell can be efficiently computed recursively.

3.3. Filter-Based Inference for Flow Estimation
Inspired by the recent filter-based methods as a fast al-

ternative to solve multi-labeling problems in computer vi-
sion [18, 22], we take a filtering-based approach here. This
design choice is contrasted with the belief propagation op-
timization method in SIFT Flow [12], which becomes very
slow for the large label space or high image resolutions [18].

As the first attempt at enforcing the spatial smoothness
on the descriptor-based raw label cost, the proposed DFF
method applies an edge-preserving filtering approach for
efficient label inference as follows. First, given the raw
matching costCl(p) evaluated for the pixelp and the la-
bel l in (1), the filtered matching cost̄Cl(p) is computed as:

C̄l(p) =
∑

q∈W r(p)

λq,p(I)Cl(q) , (2)

whereW r(p) is the local aggregation window centered at
pixel p. The filter kernel radius is denoted byr. A va-
riety of fast edge-aware filters [17, 7, 14] can be used to
calculate the contributionλq,p(I) of a support pixelq adap-
tively. They commonly utilize the input imageI to guide
the filtering process and generate a spatially smooth yet
discontinuity-preserving filtered result. Such a result resem-
bles that of applying a global message passing algorithm
to a MRF formulation, but it is obtained much faster and
avoids a C2F scheme. We choose the linear-time CLMF-0
filtering technique [14] here for its favorable filtering qual-
ity and speed trade-off, but other filters can also be adopted.

With the aggregated matching costC̄l(p), the optimal
label lp for each pixelp is progressively updated with a
Winner-Takes-All (WTA) scheme:

lp = arg minl∈LC̄l(p) , (3)

where L denotes the four-dimensional label space of
{(u, v, s, θ)}. Occlusion detection via cross checking [18,
15] and label post-refinement can be optionally applied.

3.4. Randomized Label Search with Regularization
Though filter-based alternatives provide very competi-

tive runtime over global optimization based methods [18],
exhaustively evaluating the raw and aggregated costsCl(p)
andC̄l(p) as in (1,2) for every single labell ∈ L is still pro-
hibitively time-consuming. The reason is that the complex-
ity scales linearly with this high-dimensional label space
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Figure 4. Segment-based collaborative label search and hypotheti-
cal DAISY descriptors built from{G′R

s,o}. See the text for details.

size, i.e.,|L| = Lu ∗ Lv ∗ |E| ∗H, where(Lu, Lv, |E|, H)
denote the discrete search states for each dimension of
(u, v, s, θ), respectively. As motivated earlier, the gener-
alized PatchMatch machinery [2] can perform the nearest
neighbor search across translations, rotations, and scales
highly efficiently with a complexity ofO(log|L|). However,
without enforcing any smoothness constraints, the Patch-
Match algorithm generates very noisy and incorrect motion
for most parts of an image [2, 23]. We therefore are inter-
ested in developing an approach to synegetically combine
and take advantage of the two techniques, i.e., leveraging
the label cost filtering to implicitly but efficiently enforce
the (local) spatial smoothness prior, and the fast random-
ized PatchMatch search in a high-dimensional label space.

To this end, we follow the key idea of PatchMatch Fil-
ter [15] to use segments or superpixels [1] as the bridge to
connect the two techniques developed separately for differ-
ent purposes. The rationale is that segments group similar
pixels into spatially compact atomic regions, so they not
only reduce the image representation complexity, but also
offer good potential to exploit the spatial regularizationand
computational redundancy at the segment level. In line with
this reasoning, the input imageI is first partitioned into a set
of disjoint K segmentsI = {S(k), k = 1, 2, ...,K}, and
an adjacency graphG is built with segments{S(k)} as the
graph nodes. As the key processing routine for the proposed
DFF algorithm, the segment-based label search and match-
ing cost computation for a group of pixels are performed
collaboratively as shown in Fig.4 and explained below.

Given a hypothetical labell = (u, v, s, θ), take example
for two pixelsp, j ∈ S(k), their corresponding candidate
DAISY descriptorsD′R

s,θ(p
′) andD′R

s,θ(j
′) are retrieved and

built from the prestored maps{G′R
s,o} based on the identi-

cal similarity transformation. Next, the raw and aggregated
costsCl(p, j) andC̄l(p, j) are evaluated as (1,2). To allow
for full-kernel filtering for segment boundary pixels∂S(k)
and also more regular data prefetch and storage, we expand
the minimum rectangle enclosingS(k) by r pixels outwards
and denote the slightly enlarged rectangular region asU(k).
The raw cost computation is applied to all pixels inU(k).

Now we present a segment-based PatchMatch algorithm
for an augmented four-dimensional label space, generaliz-

Algorithm 1: DAISY filter flow estimation process
Input : (1) The precomputed standard DAISY descriptors

D
R
b for imageI. (2) The precomputed DAISY

convolved orientation maps
{

G
′R
s,o

}

for imageI′.
Discrete label space: L = [u1, u2]× [v1, v2]× E ×Θ.
Output : The estimated pixel-wise label map

L = {l(p) = (u(p), v(p), s(p), θ(p))}.

/* Initialization */
1: PartitionI into a set of disjointK segments
I = {S(k), k = 1, 2, ...,K} and build adjacency graphG.
2: Assign an initial labell0 = (0, 0, 1, 0) to each segment
S(k). For each pixelp ∈ S(k), setlp = l0.

/* Iterative label search and optimization */
repeat

for k = 1 : K do
3: Propagate a set of labelsLN randomly sampled
from neighboring segments to the segmentS(k).
for l ∈ LN do

4: Evaluate the raw DAISY matching cost
Cl(q) for each pixelq ∈ U(k) with Eq. (1).
5: Compute the aggregated costC̄l(p) for each
pixel p ∈ S(k) with Eq. (2).
if C̄l(p) < C̄lp(p), ∀p ∈ S(k) then

6: lp ←− l.

7: Decide forS(k) a representative labell∗k and
generate a set of random labelsLE aroundl∗k. The
(u, v, s, θ) components of random labels are
generated as [2].
8: Perform random label candidates evaluation and
update by following Step4–6 for l ∈ LE .

until convergence or the maximum iteration number.

ing the recent PatchMatch Filter [15]. The basic workflow
is close to that of the generalized PatchMatch method [2],
i.e., two sets of label candidates from thepropagationand
random searchsteps are evaluated for each graph node
in scan order iteratively. The search process stops when
the maximum iteration number is reached or until conver-
gence. The major difference between the algorithm here
and the generalized PatchMatch method [2] is caused by
the graph structures, as the segment-based adjacency graph
G usually contains a variable number of neighbors for each
node/segmentS(k). The proposed DFF approach is sum-
marized in Algorithm1. Some major algorithmic steps dif-
fering from the generalized PatchMatch algorithm [2] are
explained as follows. In Step3, each of the spatially neigh-
boring nodes/segments adjacent to segmentS(k) selects a
“good” label giving rise to a low DAISY matching distance,
and propagates it toS(k). These labels collectively make
a propagated hypothetical label setLN for S(k). Though
more elaborate schemes to select “good” labels can be de-
signed, we find that it works fine by randomly sampling
a pixel belonging to each neighboring segment, and then



Figure 5. Comparison of NRDC [5], SIFT Flow [12], DSP [8], and
our DFF method (from left to right) on test images [16] featuring
large changes in sharpness, planar scale and rotation, and view-
point. Only correct matches are highlighted with the percentages.

propagating its best label visited so far toS(k). In Step7,
there exists another major difference from [2] in the ran-
dom search phase, because pixels are the basic units in [2]
while here the operations need to be performed for a seg-
ment. This means a “representative” labell∗k for the pix-
els covered in the segmentS(k) shall be decided first, be-
fore applying the random label sampling around the picked
l∗k. Again, more sophisticated methods can be developed to
recommend the “representative” labell∗k, e.g. by evaluat-
ing the consensus level of a label candidate among the pix-
els inS(k), but we simply draw a pixel from the segment
S(k) and assign its current best label tol∗k. Using this sim-
ple scheme also attributes to the homogeneous region de-
lineation power of image segmentation methods. Provided
with l∗k, we follow the random search procedure in [2], and
sample aroundl∗k using windows of exponentially decreas-
ing sizes for four random variables(u, v, s, θ). As [15], we
choose SLIC superpixels [1] for the favorable performance.

4. Experiments
The DFF algorithm was implemented based on the pub-

licly available DAISY code. The DAISY feature related
parameters were typically set as:R = 8 (increased to16
for large images),s ∈ E = {0.5, 1.0, 1.5, 2.0, 2.5}, and
H = 7, namely θ ∈ Θ = {15 ∗ o, o ∈ [−3, 3]} (a
search range similar to [5]). Unlike the conventional op-
tical flow methods [18, 15], the search ranges for motion
vectors(u, v) here were set the same as the image size to
capture possibly large location changes of objects across
images/scenes. The truncation parametert in (1) was em-
pirically set to10. The filtering kernel radiusr was set to
9. The SLIC segment numberK increases sublinearly with
the image size, e.g.,K = 500 for 640× 480 images, which
is not so critical. Our runtime was measured on a 2.9GHz
Intel Core i5 CPU with 8GB memory, using a single core.

We evaluate our method over a range of dense matching
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Figure 6. Quantitative overlap results on the Moseg dataset [4].
Average results are reported for different “n+” cases, i.e., usingall
the test pairs ofn or more frames away from the source imageI.
SIFT Flow and DSP with inferior results are not shown here.

tasks and use the existing datasets and metrics. Like [5, 6,
21], we focus on challenging pair-wise matching cases.

Results on the dataset of Mikolajczyk et al. [16].
We first compare our DFF method with NRDC [5], SIFT
Flow [12] and DSP [8] on the standard dataset [16]. We
adopt the same evaluation method in [12, 5], i.e., the esti-
mated correspondences that fall within 15 pixels from the
ground truth location in the imageI′ are considered cor-
rect. Fig.5 shows the general performance on three kinds
of test cases: sharpness difference, planar scale and rota-
tion changes, and viewpoint difference. Though our method
is designed more for robustly matching images with sig-
nificant non-rigid motions or of different scene contents,
DFF shows its consistent and versatile performance on this
dataset. It outperforms NRDC [5] on the sharpness changes,
and SIFT Flow [12] and DSP [8] on the geometric changes.

Results on the Moseg dataset [4]. Following the recent
segmentation-aware SID (SSID) work [21], we test our ap-
proach on this dataset that contains31 challenging outdoor
image pairs with large-displacement, multi-layered motion.
Based on the evaluation protocol in [21], we use the esti-
mated flow to warp the segmentation mask from the image
I
′ to the source imageI , and measure the overlap with the

ground truth using the Dice coefficient1. Fig. 6 shows the
overlap results obtained by state-of-the-art methods using
SIFT Flow [12] for flow estimation: SID [9], SLS [6] and
SSID [21]. SSID uses soft segmentation over SID to sup-
press the information likely coming from different objects.
As in [21], the postfix “-Rot” indicates the rotation-invariant
capability is turnedoff in the methods, since foreground
objects do not contain many rotations. Both our DFF-Rot
and DFF methods consistently outperform the state-of-the-
art methods, and they perform also better than the closest
competitorSSID-Rot, SoftMaskparticularly for challenging
pairs of large frame displacements. ThoughSSID-Rot, Soft-
Maskclearly outperformsSSID, SoftMaskfor this specific

1As [21], it is computed as2∗|A∩B|/(|A|+ |B|) for two mapsA,B.



Figure 7. Visual results of warping the imageI′ to I on the Moseg pairs [4] of large displacement and scale changes. As [21], we overlay
the ground truth segmentation masks of the imageI onto the warped images in red, facilitating the object-mask alignment inspection.

Figure 8. Image alignment results for the images of similar scene contentbut with significant geometric variations. Each algorithm warps
the imageI′ onto the imageI based on its estimated flow. The first test image pair was also used in [6], and SLS [6] cropped the area of
high confidence matches to show. The last test image pair depicting a wide-baseline stereo case was used in [20]. Unlike [20], the epipolar
geometry between the images is not assumed to be known here for a general image alignment task. (All figures are best viewed in color.)

dataset, we find it gives much worse results for challenging
test images in Fig.8. In addition, reliable unsupervised soft
image segmentation may still remain as a challenge. Visual
results of representative leading methods are given in Fig.7.

Visual comparison on other challenging pairs. Now
we present a visual comparison of our DFF method with
other competing methods on the image pairs with signifi-
cant non-rigid motion or geometric variations (Fig.8), as
well as images of different scenes in different scales or
orientations (Fig.9). Fig. 8 shows that DFF produces
much more accurate dense warping results than PMF [15],
SLS [6], and DSP [8]. Our enlarged label search space al-
lows dense DAISY descriptors to choose the best scale and
orientation parameters at a pixel level for robust matching.
In contrast, SLS (and also DSP) is not rotation-invariant by
design, and fails to do a good job for the last two cases. With
the built-in scale and rotation invariance, SSID [21] and its

base SID [9] achieve quite competitive results. However,
they tend to generate more gross warping artifacts (also seen
in Fig. 7) likely due to the C2F regularization scheme of
SIFT Flow [12]. Fig. 9 shows the warping results for differ-
ent scenes by transferring the pixel colors of the estimated
correspondences inI′ to reconstructI. A good result shall
have the appearance ofI

′ in the scale, pose and scene struc-
ture of the imageI [12, 6]. Both of the test scenes confirm
that our DFF method gives more coherent alignment results
with the image structures ofI much better reconstructed.

Complexity. For all the test cases, our DFF algorithm
based on randomized search has often converged after12–
25 iterations. For320× 240 images, the average runtime of
DFF is 20–38 seconds, compared to state-of-the-art meth-
ods: 235 seconds for SSID (“SoftMask” embedding) [21],
204 seconds for SID [9], and ∼ 60 minutes for SLS [6]
measured on our PC. Further, SID and SSID are memory-



Figure 9. Scene alignment results for the images from different scenes also with drastic appearance differences.

demanding, and require∼6GB memory for320 × 240 im-
ages (our 8GB memory insufficient for640× 480 images).
Though DFF conducts dense search in an enlarged label
space, three reasons make it computationally appealing: 1)
the small DAISY descriptor size of136, compared to3328
for SID and8256 for SLS (528 for its PCA variant) [21], 2)
precomputed DAISY information allowing for fast online
computation (The DAISY related data precomputation con-
sumes only about6% of the overall complexity and70 MB
memory), and 3) efficient filter-based inference integrated
with a generalized PatchMatch label search scheme.

5. Conclusion
We presented a dense DAISY descriptors-based image

and scene matching framework. The proposed DFF method
demonstrated its robustness in establishing dense corre-
spondences between challenging image pairs in presence of
significant variance in geometric and photometric transfor-
mation (e.g. scale, rotation, wide baseline, large and non-
rigid motions, illumination changes, image quality) and also
across different scene contents. Though a considerably en-
larged label space is searched, our DFF method achieves
clear runtime and memory advantages while assuring image
matching quality. We will make our code publicly available.
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