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ABSTRACT
Research and design competitions aim to promote innovation or

creative production, which are often best achieved through collabo-

ration. The nature of a competition, however, typically necessitates

sorting by individual performance. This presents tradeoffs for the

competition designer, between incentivizing global performance

and distinguishing individual capability. We model this situation

in terms of an abstract collaboration game, where individual effort

also benefits neighboring agents. We propose a scoring mechanism

called LSWM that rewards agents based on localized social wel-

fare. We show that LSWM promotes global performance, in that

social optima are equilibria of the mechanism. Moreover, we es-

tablish conditions under which the mechanism leads to increased

collaboration, and under which it ensures a formally defined dis-

tinguishability property. Through experiments, we evaluate the

degree of distinguishability achieved whether or not the theoretical

conditions identified hold.
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1 INTRODUCTION
Research and design competitions [4, 15, 17, 29] have an underlying

goal of generating novel solutions or advancing the state-of-the-art

in the concerned domain. Collaboration among the competitors

can often help in achieving these goals. For example, the best solu-

tion in the 2009 Netflix competition was an ensemble of prediction

techniques produced by many teams, and the teams negotiated

a prize-sharing agreement [28]. Offline negotiation is always an

option, but may be difficult especially when competitors are un-

known to each other or interact in an ad hoc manner. This raises a

natural question: How can beneficial collaboration be internalized

in the competition itself, without relying on participant negotiation

initiative and ability?

Let us posit that each participant in the competition has some

inherent capabilities, and outcomes of the joint effort are described

in terms of individual performance for these agents. The designers

of the competition have a social objective to optimize the combined

performance of the agents. Maximizing the social objective may

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
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require collaboration, but effort devoted to collaboration comes at

a cost to the individual agents. The competition takes the form of a

contest or championship, where participants are assigned scores

and these scores are ultimately used to declare winners and allocate

prizes. The task of the competition designer is to find a way to score
the competition, such that the participants are incentivized to exert

appropriate collaboration effort, within the general structure of a

competition mechanism. Maximizing global welfare is a standard

objective of mechanism design. In our context, this involves pro-

moting collaboration, which may also be considered desirable for

its own sake. Another especially important objective for compe-

tition events is to differentiate agents based on their capabilities

and contributions. That is, the designer cares that the most capable

performers and contributors actually win the contest or get the

lion’s share of prizes.

In pursuing its objectives, the competition designer is limited to

specifying a scoring scheme for participants. Unlike more generic

mechanism design settings, we assume the designer takes the action

space and outcomes as given, and has no ability to compute coun-

terfactual outcomes, that is, what would have happened had the

agents behaved differently. Whereas classical mechanism design

focuses on incentives for revelation of private information [23], the

spirit of a competition is to spur innovation in agent behavior. Thus,

it would not make sense to assume the designer could compute

optimal behavior itself.

We model the competition domain in terms of an abstract col-
laboration game, where individual utilities directly capture the per-

formance of the player. The game has a graphical structure, such

that players can affect performance only of themselves and their

neighbors. The key decision for players in our abstraction is how

much to collaborate with their neighbors. Collaborative effort im-

proves performance, but at a cost. Agent capability is captured by

player-dependent fixed parameters of their utility function, which

combines performance and collaboration cost. The competition de-

signer aims to achieve its objectives by defining a scoring function

that depends only on the observed performance outcome of the

agent behavior and the graph of collaboration.

We claim three main contributions. Our first contribution is the

local social welfare maximizing (LSWM) scoring mechanism, in

which every player receives a score equal to its own individual

performance plus the sum over its neighbors’. We prove that maxi-

mizing social welfare is a Nash Equilibrium (NE) of this mechanism.

Second, we identify conditions under which an increase in player

capability (Definition 4.5) leads to an increase in collaboration and

in scores. Our third contribution is a definition of distinguishability
that captures whether a scoring scheme assigns higher scores to

players with greater capability, all else equal. We prove that the

LSWM mechanism provides distinguishability under modularity
assumptions on the utility function.



Finally, we conduct simulations to demonstrate that best-

response dynamics converges quickly to social optimum in the

LSWMmechanism. We also investigate distinguishability over mul-

tiple simulated instances of graphical games, showing that distin-

guishability is prevalent evenwhen the utility function used violates

the conditions ensuring the property. All full proofs omitted in the

main text are provided in an online appendix.
1

2 A MOTIVATING EXAMPLE DOMAIN
DARPA is a US government research funding agency that regularly

employs competitions to spur innovation in high-priority tech-

nology areas. For example, their current Spectrum Collaboration

Challenge (SC2) offers a total of US$3.75 million in prize money

for the final competition to be held in 2019. The premise of SC2 is

that fluid collaboration among intelligent radios can dramatically

improve efficiency in use of limited spectrum (frequency range),

compared to static spectrum allocations. The challenge is posed as

a competition among teams of radio networks moving about in an

arena, attempting to accomplish communication goals despite sig-

nal interference. The aim of the competition is to spur novel ideas,

and at the same time, to demonstrate the benefits of collaboration

in avoiding interference, as measured by global communication

performance. Inspired by this competition, we address the general

abstract problem of scoring a competition in order to identify teams

with better capabilities while also encouraging collaboration in

service of global performance.

3 MODEL
3.1 Preliminaries: Notation and Definitions
We indicate vector variables by an arrow on top, for instance ®x . The

ith element of ®x is xi and ®x ≥ ®y denotes element-wise comparison:

xi ≥ yi for all i . In particular, ®x ≥ 0 means all elements of ®x are

nonnegative. To focus on one element xi of a vector ®x we write

®x = (xi , ®x−i ). Similarly, to focus on a subset S ⊂ {1, . . . ,d} of

elements we write ®x = (®xS , ®x−S ), where −S = {1, . . . ,d}\S denotes
the complement of S .

3.2 Matches and Measurement Intervals
The unit of play in the competition is a match M played over a

fixed time interval by a set of playersm ⊆ {1, . . . ,n} with |m | ≤ n.
The players receive a score Si at the end of the match. The match

duration is further partitioned into a setT ofmeasurement intervals
(MIs). Player i receives interval score Si (t) for each MI t ∈ T . The
overall match score is additive over MIs: Si (M) =

∑
t∈T Si (t). Next,

we model the interaction within each MI as a collaboration game.

3.3 Collaboration Game Structure
Since scoring is additive over MIs, we focus on a single MI, return-

ing to match-level analysis in Section 5. The interaction in each MI

is represented by a collaboration game G among them players. We

model G as a graphical game [16], that is, structured according to

a collaboration graph where the nodes denote players and edges

connect players whose actions affect each other’s utility. The collab-

oration graph is chosen by the competition designer. A match is a

1
Available on the authors’ webpage.
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Figure 1: A collaboration graph evolving over a series ofmea-
surement intervals. The graph arises from an interaction
scenario defined by the designer.

sequence of collaboration games with differing underlying graphs.

The sequence of collaboration graphs in a match is generated ran-

domly by the competition designer and the generation process is

publicly known. The players know the realization of the sequence

of graphs before the start of a match. Figure 1 shows how the collab-

oration graph can evolve over the course of a match. For example,

in the intelligent radio domain, as radios move in prescribed paths,

the set of radios they may interfere with naturally varies. Thus, the

collaboration graph changes over MIs; the MI is short enough to

assume a single collaboration graph in each MI. We elaborate on

matches further in Section 5; here we focus on a MI.

A player’s action in G is a choice of how much to collaborate.

Let N (i) denote the set of neighboring players of i , not including i .
Action ai, j ∈ [0, 1], j ∈ N (i), denotes the collaboration effort of

player i towards player j, higher values corresponding to greater
degrees of collaboration. We use ®ai to denote i’s action vector. The

actions of other players that affect i are aj,i , j ∈ N (i). We use ®aN (i)
to denote this neighbor action vector. The node occupied by player

i is denoted by v(i).
The effect of a player i’s own action and that of its neigh-

bors on its individual performance is represented by a function

Ev(i) : [0, 1]
|N (i) | ×[0, 1] |N (i) | → [0, 1]. The cost of collaboration is

captured by a function Cv(i) : [0, 1]
|N (i) | → [0, 1]. The individual

utility ui for player i is a combination of collaborative performance

and cost of collaboration:

ui (®ai , ®aN (i)) = Pi × Ev(i)(®ai , ®aN (i)) − ci ×Cv(i)(®ai ), (1)

where Pi and ci are positive player-specific coefficients that weigh

the two components. Pi and ci can be viewed as representing the

inherent capability of player i , amplifying or attenuating the efficacy

and cost of its collaboration effort. Players can choose their Pi , ci
prior to the start of the competition, but these parameters are fixed

once the competition has started. Note that the functions E andC are

specific to the position in the graph, and not specific to the players.

In particular, when focusing on a single collaboration game with a

fixed graph (as is the case in a MI) we drop the subscript for E andC
as they are clear from context. Observe thatG is a continuous game,

with topological action space and utility continuous in actions.

The gameG in a MI abstracts away from domain-specific compe-

tition details. Individual utilityui in the collaboration game captures

the performance of each player in a MI. For example, in the intel-

ligent radio domain performance might be measured by bytes of

data successfully delivered. Similarly, E abstractly captures how

players interact. Thus, in the radio domain the static interaction

function E captures the effect of interference and C captures the



cost of avoiding interference. The players make a number of other

radio design choices before the start of the competition, which are

captured by Pi , ci . Hence, the capabilities Pi , ci are not part of the
strategic interaction with other players but are influenced by choice

of error-correcting code, power, bandwidth management, etc. It

is natural to assume monotonicity in E and C , that is, a positive
effect of collaboration on outcomes for a player and its neighbors

(through E), but also an increase in cost (through C). We specify

this formally in Section 4.3.

3.4 MI Score Design Problem
If rational agents play the collaboration game G in a MI directly,

they will be unlikely to collaborate sufficiently, as individual utility

(Eq. 1) imposes a cost for collaboration, with much of the benefit

going to neighbors. A competition designer aims to correct for this

externality through the scoring mechanism. At the same time, a key

design goal is to distinguish relative capabilities of the participants

in anymatch. In doing so, the competition designer is limited to only

specifying a score function. Specifically, this scoring mechanism

design problem is constrained as follows:

• Score designer takes the action and outcome spaces as given.

• Score designer has no knowledge of player capabilities Pi , ci
or the functions E,C . For example, in the intelligent radio

domain the Pi , ci values depend on the secret radio design

choices of each player.

• Score designer only observes the final result of the players’

interaction, which is the performance of each player as mea-

sured by individual utility ui . For example, in the intelligent

radio domain the designer may observe how much traffic

was successfully delivered by each player.

As a result, the designer has no ability to mandate a direct mech-

anism or compute counterfactual outcomes—required for classical

mechanisms like VCG [22].
2
Rather, the target mechanism needs

to operate by assigning scores that are a function of the observed

outcomes, as measured by individual utilities. Observe that the de-

signer assigns scores, which has no monetary value for the designer,

thus, positive payments by the designer is not a concern here.

4 LOCAL SOCIAL WELFARE MAXIMIZATION
The local social welfare maximizing (LSWM) mechanism scores

player i by the sum of its individual performance (i.e., utility in G)
and those of its neighbors: Si = ui +

∑
j ∈N (i) uj . The mechanism

induces a new game, where players are assigned scores Si rather
than self performance ui . We show below that LSWM optimizes

social welfare for any graph in game G in a MI. Moreover, we

analyze the mechanism’s ability to distinguish between players of

different capabilities.

4.1 Social Welfare Maximization
Our first result is that there are NE action profiles that maximize

social welfare for the LSWM induced game.

2
Counterfactual inference is required specifically by the Clarke pivot in VCG. VCG

with a zero payment in our context assigns the social welfare as score to every player,

which as we argue is unacceptable for a competition due to lack of distinguishability.

Theorem 4.1. Games induced by the LSWM mechanism have NE
that maximize social welfare.

Proof. Observe that the game with LSWM is an exact potential
game [20] with the global social welfare P(®a) =

∑
i ui (®ai , ®aN (i)) as

the potential. This can be seen as any change in the action ®ai of
player i changes the score Si = ui +

∑
j ∈N (i) uj of player i . As the

utility uk of any non-neighbor of i is unaffected by ®ai , the change
in P is also exactly in the terms ui +

∑
j ∈N (i) uj . Thus, Si and P

change by the same amount. Then, the proof directly follows from

properties of infinite continuous potential games [13] with compact

action spaces, mainly that maximum-potential pure strategies are

guaranteed to exist and constitute a NE. □

Note that the above result applies to any graphical game and not

just our collaboration-game model. As stated in the proof, LSWM

induces a potential game, which has several further advantages.

In a potential game, a NE is provably reached by best-response

dynamics.
3
Further, the NE is unique if the utility functions are

differentiable [21]. Moreover, best-response dynamics requires only

knowledge of other players’ actions and not their utilities. This

means that as players learn about the environment and adapt by

playing a best response in the LSWM-induced game, they are guar-

anteed to converge to the NE.

4.2 Supermodularity: Background and Results
We provide background on supermodularity and some results that

are required for the analysis in subsequent sections.

Definition 4.2 ([26]). Let ®x ∨ ®x ′ (®x ∧ ®x ′) denote the vector with a

component-wise maximum (minimum) of ®x and ®x ′. f : X → R is

supermodular iff

f (®x) + f (®x ′) ≤ f (®x ∨ ®x ′) + f (®x ∧ ®x ′)

whenever ®x ∨ ®x ′ ∈ X and ®x ∧ ®x ′ ∈ X .

For our proofs, it is convenient to employ a related condi-

tion on left directional derivatives, which is defined as d−
®v f (x) =

limt→0
−
f ( ®x+t ®v)−f ( ®x )

t in the direction ®v . d−
®v f is known to ex-

ist for all convex and concave functions with open convex do-

main [25]. Note that d−
®v f is invariant in the magnitude of ®v , that

is, d−
®v f (x) = d

−
α ®v f (x) for any α > 0. Thus, as a convention we take

∥ ®v ∥ = 1. For differentiable functions it is known that supermodu-

larity is equivalent to
∂f ( ®x )
∂xi

increasing with any other dimension

j , i for all i . We prove the following result, which can be seen as

a generalization of the above for non-differentiable supermodular

functions.

Theorem 4.3. Let f : X → R be any continuous function for
which the left directional derivative exists for all x ∈ X (X ⊂ Rd

and open convex) and for all directions ®v . Then the following are
equivalent

(1) f is supermodular.

3
For infinite games the convergence is in the limit when the potential is continuous

and strictly concave [13, Thm. 2.2.1], which follows from assumptions introduced

below.



(2) (monotone left positive directional derivative) For any ®x , ®x ′

consider the non-empty subset S ∈ {1, . . . ,d} such thatx ′i = xi
for i ∈ S and x ′i ≥ xi otherwise, and any direction ®v such that
vi ≥ 0 for i ∈ S and 0 otherwise (with strict inequality for some
j ∈ S since ∥ ®v ∥ = 1), then it holds that d−

®v f (®x
′) ≥ d−

®v f (®x).

We call the second condition above MLPDD for short. Next,

using the above equivalence, we prove a lemma stating that if

at any point ®x0 the left directional derivatives are positive in all

positive directions for a strictly concave function, then the function

maximizer is more than ®x0. The result additionally handles subtle

cases of ®x0 being on the boundary of the feasible region or some

dimensions being fixed.

Lemma 4.4. Consider a continuous strictly concave function f :

Y → R with Y open convex and X = [0, 1]n ⊂ Y . LetT ⊂ {1, . . . ,n}
be dimensions such that values inT can vary and the values of dimen-
sions in −T are fixed. Let ®x0 ∈ X be any point. Further, let S ⊂ T be a
set such that ®x0T \S = 0 and ®x0S > 0. Then d−

®v f (®x
0) ≥ 0 for all ®v with

®vS ≥ 0 and ®v−S = 0 (strict inequality for at least some i ∈ S since
∥ ®v ∥ = 1) and f a supermodular function (or equivalently satisfying
the MLPDD property), implies that the maximizer ®x∗ ∈ X of f (x)
satisfies ®x∗ ≥ ®x0.

4.3 Monotone Collaboration
That the LSWMmechanism produces optimal collaboration in equi-

librium is the primary sense in which it meets the goal of incen-

tivizing collaboration. In this section we consider conditions that

tend to promote mutual collaboration. For this analysis, we require

the following technical conditions on the components of individual

utility (1):

• (monotone concave E) E is non-decreasing in any argument

and concave. That is, increasing collaboration leads to higher

E (though could lower overall performance due to C), but
with diminishing returns.

• (strictly monotone and strictly convex C) C is a strictly in-

creasing and strictly convex function. Collaboration is costly,

and the marginal cost grows with effort level.

Next, we restrict E and −C to be supermodular. As a positively

weighted sum of supermodular functions is still supermodular,

the score of every player is supermodular and so is the potential

P . Under these conditions, we wish to show that improving an

individual player’s capability leads to across-the-board increases in

collaboration. First, we define what it means to improve capability.

Definition 4.5. Suppose that player i’s utility parameters Pi and
ci are replaced by Pi′ = (1 + ϵ)Pi and ci′ = (1 − δ )ci , respectively,
for ϵ,δ > 0. We then say that player i improves by (ϵ,δ ), and write

i ′ ≻ϵ,δ i .

The above notation naturally extends to comparing capabilities

of distinct players i and j, which we use in Section 5. We consider

what happens when player i improves by (ϵ,δ ).

Theorem 4.6. In gameG suppose the social-welfare-maximizing
NE score is attained at the action profile ®a∗k ,k ∈m. For any player i , let
i ′ ≻ϵ,δ i , and with the improvement suppose the new social-welfare-
maximizing NE is ®a′k . Then, ®a

′
k ≥ ®a∗k for all k ∈m.

Proof Sketch. Theorem 1.1.1 in part VII in [12] states that for

any maximizer x∗ of a concave function f on a closed convex set

X satisfies d−
®v f (®x

∗) ≥ 0 for all ®v in the direction ®x∗ − ®x for all

®x ∈ X . The potential P satisfies the requirements of Lemma 4.4.

Also, since ®a∗k for all k ∈ m maximizes P , from the maximizer

property above we get that d−
®vP(®a

∗
k∀k) ≥ 0 all ®v such that ®vS ≥

0 where S is the set {(k, l) | ak,l > 0} and ®v−S = 0. With ϵ,δ
improvement the potential function has additional terms in the

derivative: ϵPid
−
®vE(®a

∗
j , ®a

∗
N (j)) + δd−

®vciC(®a
∗
j ). Due to monotonic E

and C , the additional terms are ≥ 0 for v ≥ 0. Thus, given the

maximizer condition we get that still d−
®vP(®a

∗
k∀k) ≥ 0 for all ®v such

that ®vS ≥ 0 where S is the set {(k, l) | ak,l > 0} and ®v−S = 0.

By Lemma 4.4 this implies a potential-maximizing NE ®a′k with i ′

satisfies ®a′k ≥ ®a∗k for all k ∈m. □

The above result is a complete characterization for all NE if the

scores are differentiable, since then there is a unique NE. More

generally, a similar result holds for any NE.

Theorem 4.7. In game G suppose a NE score is attained at the
action profile ®a∗k , k ∈m. For any player i , given i ′ ≻ϵ,δ i , there exists
a NE ®a′k after the improvement such that ®a′k ≥ ®a∗k for all k ∈m.

Proof Sketch. When i improves we analyze the best-response

dynamics starting from ®a∗k , showing collaboration increases at each

step. As stated above, best-response dynamics converges to a NE

[13]. We show, via induction, that at any step n the left directional

derivatives of the utility of best responding playerk w.r.t. the actions
of k satisfy the conditions of Lemma 4.4, so that k best responds

by increasing its collaboration. Showing this requires invocation

of MLPDD; informally since others’ collaborations have increased

since the last time player k best-responded (by the induction hy-

pothesis) so the left directional derivatives in positive directions

also increase by the MLPDD property, which then allows us to

invoke Lemma 4.4. □

Counterexample for monotone collaboration with non-
supermodular function: Consider a three-node line graph with

the middle player 2’s individual utility:

0.1(a2,1 + a2,3) + a1,2 + a3,2 − a2
2,1 − a2

2,3 + 1 − exp(a2,1 + a
2

2,3)

Player 1’s individual utility is P1(0.1a1,2+a2,1)−a
2

1,2 and player 3’s

individual utility is 0.1a3,2 + a2,3 − a2
3,2. Observe that the term

1 − exp(a2,1 + a
2

2,3) is not supermodular, which can be inferred by

noting that its partial derivative decreases with increase in other

dimensions. This term is concave (and monotone in the positive

quadrant) as it is the negation of an exponentiation of a convex

function. It can be readily checked that all other terms satisfy the

monotonicity and (strict) concavity assumptions. Collaboration

efforts at the NE for this game are shown in Fig. 2 with varying P1,
which reveals that collaborations do not increase with P1.

4.4 Monotone Scores and Distinguishability
A natural desideratum for any scoring mechanism is that improve-

ment in a player’s capability leads to higher scores for that player.

We show below how this concept connects to distinguishability.

We define monotone scores in a MI as follows:
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Definition 4.8 (Monotone Scores). A scoring mechanism possesses

the monotone scores property on a MI if i ′ ≻ϵ,δ i entails that the
scores satisfy Si′ ≥ Si + bi (ϵ,δ ), for some bi (ϵ,δ ) > 0, when other

players are held fixed in the MI. bi should be monotonically increas-

ing in ϵ and δ .

Next, we focus on obtaining an expression for bi in Definition 4.8
that is guaranteed by the LSWM mechanism. We show that LSWM

provides distinguishability under a modularity assumption, and also

show a counterexample when distinguishability is not achieved

if the modularity assumption is violated. Specifically, we assume

the following modular (or separable) form of the individual utility

function:

ui (®ai , ®aN (i)) =
∑

j ∈N (i)

Pi ×Ee(i, j)(ai, j ,aj,i )−ci ×Ce(i, j)(ai, j ) , (2)

where e(i, j) denotes the edge between player i and player j. We

adopt the same monotonicity, concavity and supermodularity as-

sumptions for Ee(i, j) and −Ce(i, j) as we had for E and −C in Sec-

tion 4.3.

The following readily verifiable observations allow for a struc-

tured proof of the next result on distinguishability: Associate

the valueWi, j = Pi × Ee(i, j)(ai, j ,aj,i ) − ci × Ce(i, j)(ai, j ) + Pj ×
Ee(j,i)(aj,i ,ai, j ) − c j × Ce(j,i)(aj,i ) with every edge (i, j). Then,
the potential function (or social welfare) is

∑
i, jWi, j . Further,

ai, j ,aj,i affects only the valueWi, j . Then, the score of player i is∑
j ∈N (i)Wi, j +O , whereO are other terms not affected by ai, j ,aj,i

or Pi , ci .

Theorem 4.9. Assume the collaboration game has modular utility
function as defined above. For player i playing the LSWM induced
game suppose the potential maximizing NE score is attained at the
action profile ®a∗k for all k ∈ m. Given i ′ ≻ϵ,δ i , i’s score with the
improvement at the potential maximizing NE satisfies

Si′ ≥ Si +
∑

j ∈N (i)

ϵPiEe(i, j)(®a
∗
i , ®a

∗
N (i)) + δciCe(i, j)(®a

∗
i ).

Proof. Given the observations above that the potential is a

sum of Wi, j ’s, we can only consider the effect of the improve-

ment i ′ ≻ϵ,δ i on each Wi, j separately for all neighbors j of
i: j ∈ N (i). The NE strategy with i yields an additional value

ϵPiEe(i, j)(®a
∗
i , ®a

∗
N (i)) + δciCe(i, j)(®a

∗
i ) forWi, j after i improves, thus,

any potential maximizer after the improvement yields a value that

is increased by at least ϵPiEe(i, j)(®a
∗
i , ®a

∗
N (i))+δciCe(i, j)(®a

∗
i ) forWi, j .

Next, as observed earlier, since eachWi, j is affected only locally

by ai, j ,aj,i , in the new NE any change in ai, j ,aj,i does not affect
otherWk,m (where (k,m) < {(i, j) | j ∈ N (i)}) terms. In fact, the

other actions ak,m stay the same as old NE. Also, as the score of i
is

∑
j ∈N (i)Wi, j +O where O does not depend on ai, j ,aj,i or Pi , ci

and hence O is same in old and new NE, i’s score improves due to

improvement in

∑
j ∈N (i)Wi, j . This provides the desired result. □

Counterexample for monotone scores with non-modular
function: We provide a counterexample with a supermodular score

function that does provide monotone collaboration as proved above.

Consider a three-node line graph with the middle player 2’s indi-

vidual score being

0.1(a2,1 + a2,3) + a1,2 + a3,2 − a1.05
2,1 − a1.05

2,3 − (a4
2,1 + a

4

2,3)
.25

Player 1’s individual score is P1(0.1a1,2+a2,1)−a
1.05
1,2 and player 3’s

individual score is 0.1a3,2 +a2,3 −a1.05
3,2 . Observe that term −(a4

2,1 +

a4
2,3)

.25
is not modular, but is supermodular, which can be infor-

mally inferred by noting that its partial derivative, when it exists,

increases in other dimensions within the domain. This term is also

concave (and monotone in the positive quadrant) as it is the nega-

tion of a norm and norms are convex. It can be readily checked

that all other terms satisfy the supermodularity, monotonicity and

concavity assumptions. The scores at the NE for this game is shown

in Fig. 3 with varying P1. As can be seen, the score of player 1 does

not increase with increase in its capability P1.

Effect of a player’s capability improvement on other play-
ers’ score: The next result shows that the increase in other players’

score when i improves depends on the graph structure.



Theorem 4.10. Assume the collaboration game has modular util-
ity function. For player i playing the LSWM induced game suppose
the potential maximizing NE score is attained at the action profile ®a∗k
for all k ∈m. Given i ′ ≻ϵ,δ i , player j’s score (j , i) at the potential
maximizing NE satisfies

• If player j is more than two hops away from player i , then j’s
score stays the same.

• If player j is one or two hops away from player i , then j’s score
increases but not more than i’s increase.

Proof. When i improves, it leads to change in actions ai,k and

ak,i for any neighbor k . No other actions change. Then, the utility

(not score) of every player two hops or more from i does not change
(since no relevant action changed). If player j is more than two hops

away, then all its neighbors are at least two hops away and hence

unchanged utilities, thus, j’s score (sum of its and neighbors utility)

is unchanged.

For j being one hop away, the change for i requires re-

maximizing Wi, j = P ′i × Ee(i, j)(ai, j ,aj,i ) − c ′i × Ce(i, j)(ai, j ) +
Pj × Ee(j,i)(aj,i ,ai, j ) − c j × Ce(j,i)(aj,i ). We claim that this re-

maximization leads to increase of both past utilities (part of it that

arises from i, j interaction) Pj × Ee(j,i)(a
∗
j,i ,a

∗
i, j ) − c j ×Ce(j,i)(a

∗
j,i )

and Pi × Ee(i, j)(a
∗
i, j ,a

∗
j,i ) − ci ×Ce(i, j)(a

∗
i, j ); this claim is proved in

the next paragraph. Thus, j’s utility (part of it that depends on i)
increase is not more than the increase inWi, j . Thus, j’s increase of
score from increase inWi, j and the increased utility of some node

k neighbor of both i, j together is less than i’s score increase from
Wi, j andWi,k ’s. Hence j’s score increases by less than i’s score.

Now, we prove the claim from the last paragraph. First, let the

new maximum be at a′i, j ,a
′
j,i . We know from super-modularity

(adopting proof of Theorem 4.6 for this simpler scenario) that a′i, j ≥

a∗i, j anda
′
j,i ≥ a∗j,i . The following function of onlyaj,i is maximized

at a′j,i : f (aj,i ) = P ′i × Ee(i, j)(a
′
i, j ,a

′
j,i ) − c ′i × Ce(i, j)(a

′
i, j ) + Pj ×

Ee(j,i)(aj,i ,a
′
i, j ) − c j ×Ce(j,i)(aj,i ). Now, due to monotone super-

modular Ee(j,i) and a′i, j ≥ a∗i, j , we know that Ee(j,i)(a
∗
j,i ,a

′
i, j ) ≥

Ee(j,i)(a
∗
j,i ,a

∗
i, j ). Also, as the other terms of the function f are

fixed, we have Pj × Ee(j,i)(a
′
j,i ,a

′
i, j ) − c j × Ce(j,i)(a

′
j,i ) ≥ Pj ×

Ee(j,i)(a
∗
j,i ,a

′
i, j ) − c j × Ce(j,i)(a

∗
j,i ) ≥ Pj × Ee(j,i)(a

∗
j,i ,a

∗
i, j ) − c j ×

Ce(j,i)(a
∗
i, j ). Thus, j’s utility increases. Next, the following function

of only ai, j is maximized at a′j,i : f (ai, j ) = P ′i × Ee(i, j)(ai, j ,a
′
j,i ) −

c ′i × Ce(i, j)(ai, j ) + Pj × Ee(j,i)(a
′
j,i ,a

′
i, j ) − c j × Ce(j,i)(a

′
j,i ). Now,

due to monotone super-modular Ee(i, j) and a
′
i, j ≥ a∗i, j , we know

that Ee(i, j)(a
∗
i, j ,a

′
j,i ) ≥ Ee(i, j)(a

∗
i, j ,a

∗
j,i ). Also, as the other terms

of the function f are fixed, we have P ′i × Ee(i, j)(a
′
i, j ,a

′
j,i ) − c ′i ×

Ce(i, j)(a
′
i, j ) ≥ P ′i × Ee(i, j)(a

∗
i, j ,a

′
j,i ) − c ′i × Ce(i, j)(a

∗
i, j ) ≥ P ′i ×

Ee(i, j)(a
∗
i, j ,a

∗
j,i ) − c ′i ×Ce(i, j)(a

∗
i, j ). Further, as P

′
i > Pi , c

′
i < ci we

get P ′i ×Ee(i, j)(a
∗
i, j ,a

∗
j,i )−c

′
i ×Ce(i, j)(a

∗
i, j ) > Pi ×Ee(i, j)(a

∗
i, j ,a

∗
j,i )−

ci ×Ce(i, j)(a
∗
i, j ). Thus, i’s utility increases.

If j is two hops away, from the above result its score increase

due to increase in utility of k that is both a neighbor of i and j. As
argued above the increase in k’s utility is less than the increase in

score of i due to k . Thus, j’s increase in score is also limited to less

than i’s increase in score. □

Theorem 4.10 forms the crux of our argument in Section 5 on

match distinguishability. Note that this result does not hold for

social welfare scoring, where every player’s score increases by the

same amount as for the improved player.

5 DISTINGUISHABILITY IN A MATCH
5.1 Match Score Design Problem
As argued above, an important goal of competition design is to

distinguish the relative capabilities of participants. In collaborative

environments such as ours where the performance of one agent

may enhance the score of others and the scoring mechanism is

designed to incentivize collaboration, it is particularly important to

verify that the differential capability accrues higher match scores

to the improved agent. Here we show, under specified conditions,

that LSWM achieves distinguishability in a match, in a precise

quantitative sense.

Recall that a match is a sequence of |T | number of MIs played

by a setm of players. We posit that the match generation process

samples a graph randomly (sample an edge with probability p)
for each MI. p must be chosen judiciously; a smaller p generates

more sparse graphs encouraging distinguishability but not enabling

testing the collaborative interaction. For notational ease, we use

ϵ = δ for the rest of this paper. In particular, if ϵ = δ then it can be

seen that Thm. 4.9 for a MI implies Si′(t) ≥ (1 + ϵ)Si (t). Further,
we normalize the scores in a MI to lie in [V , 1] assuming that every

player can achieve at least V > 0 score (for any graph).

Definition 5.1 (Match Distinguishability). Given i ≻ϵ j, match

distinguishability means that the match scores satisfy Si (M) ≥

Sj (M) + д(ϵ) with probability p(ϵ) for player i and j and any set of

other opponents playing in a match M sampled randomly as de-

scribed above. The functions д(.),p(.) should be both monotonically

increasing and д(0),p(0) ≥ 0.

Also, as LSWM maximizes social welfare in each MI and the

score in a match is the sum of scores in every MI within the match,

LSWM also maximizes social welfare over a match. Thus, we only

need to analyze match distinguishability of LSWM in the sense

defined above.

5.2 Match Distinguishability of LSWM
Lemma 5.2. If i ≻ϵ j and the collaboration game has modular

utility function as in Theorem 4.9, then for any matchM sampled as
described above we get

E(Si (M)) ≥ E(Sj (M)) + (1 − p)(1 − p2) |m |−2ϵV |T |

.

Proof. First, observe that if i and j have same capability then

E(Si (M)) = E(Sj (M)). Observe that the expected match score is

the sum of expected measurement interval scores. Also, expected

measurement interval score is just the probability weighted aver-

age over all possible graphs. Then, we claim that the probability

weighted average of scores for each measurement interval over

all possible graphs is same for both players. This follows from the

fact that for any graph, switching i and j switches their score (due
to same capability) and the resultant graph is still one among all

possible graphs occurring with the same probability as the original



one. Thus, the weighted average of scores over all graphs is same

for i and j.
Next, if i improves his capability by ϵ , then his score improves

by at least ϵV for each possible graph (V is min score across all

graphs). Also, if i is connected to j by a path length > 2 or not

connect at all, then j’s score does not change when i improves due

to the modularity assumption on utility. This follows from the proof

of Theorem 4.10 where a player improving affects only utility of

neighbors, thereby only affecting scores of players within length 2

path. The probability mass of graphs satisfying any path between

i, j length > 2 or not connected is (1 − p)(1 − p2) |m |−2
. 1 − p arises

from no direct edge, and (1 − p2) |m |−2
arises from no length two

paths. Thus, i’s probability weighted average score over all graphs

increase by at least (1 − p)(1 − (1 − p2) |m |−2)ϵV , which is the score

increase for a measurement interval. Adding over all measurement

intervals gives the desired results. □

Lemma 5.2 establishes distinguishability in expected scores. The

main result of this section uses the McDiarmid’s concentration

inequality [5] to also establish distinguishability in actual scores

with high probability.

Theorem 5.3. If i ≻ϵ j and the collaboration game has modular
utility function as in Theorem 4.9, then for any match M sampled
as described above we get Si (M) ≥ Sj (M) + ξ , with probability 1 −

2 exp

(
−2 |T |ν 2

9

)
for |T | ≥ 3ξ

ν , where ν = (1 − p)(1 − p2) |m |−2ϵV .

6 EXPERIMENTS
Our experiments shed light on (1) convergence rate of best-response

dynamics in the LSWM-induced game and (2) variation of distin-

guishability with sparsity of graphs. We also analyze distinguisha-

bility further by an in-depth analysis of the counterexample shown

earlier for distinguishability and analyze the effect of out of equi-

librium non-collaborative actions of players. Towards that end, we

experiment with games with parametrized utilities where the pa-

rameters are chosen at random, and the results are averages over

the randomly chosen instances. We use parametrized utility func-

tion family from our counterexamples to also show experimentally

that distinguishability holds on average even though it does not

for the specific values of parameters in the counterexample. All

experiments were performed using MATLAB on a machine with a

2.8GHz processor and 12GB RAM.

For the best-response dynamics we chose a supermodular func-

tion with score functions as

E(®ai , ®aN (i)) =
∑
j
wi, j (aj,i + f ∗ ai, j ) and

C(®ai ) =
(∑

j
aKi, j

)
1/K
+
∑
j
ci, ja

L
i, j ,

with wi, j , ci, j ≥ 0. The graph is chosen with 0.5 probability of

each edge existing. The parameters wi, j , ci, j , f ,K ,L are sampled

at random from the value ranges (0, 1), (0, 1), (0, 0.1), (1, 7), (1, 2)

respectively. The performance level and cost of collaboration pa-

rameters Pi , ci are fixed to 1. The best-response dynamics was run

until no strategies changed, with a 10
−4

tolerance. As shown in

Fig. 4, the number of rounds grows with increasing graph size.

Our next set of experiments build on the counterexample for

distinguishability presented earlier. We examine what happens in

the case different graphs are sampled with the same kind of utility

in that counterexample. Towards that end, we choose the utility of

each player to be

0.1Pi (1 +
∑

j ∈N (i)

ai, j ) −
∑

j ∈N (i)

a1.05i, j − 1(|N (i)| > 1)(
∑

j ∈N (i)

a4i, j )
.25 ,

where 1 is the indicator function. This utility imposes a l4 norm
cost only when more than one neighbor is present and has the

same utility as for the counterexample against distinguishability.

We perform the experiment with P1 = 1, P2 = 2, P3 = 3 (so that

player 3 deserves highest scores due to highest capabilities). We

sample 50 graphs for each fixed number of edges and Fig. 5 shows

the percentage change in scores of players as measured against

player 2’s scores. As can be seen, a complete graph provides no

distinguishability whereas distinguishability increases on average

in percentage variation with fewer edges.

Next, we conduct the same experiment as done in Fig. 5, but

make player 3 a non-collaborator, that is player 3 plays an out of

equilibrium action to not collaborate with any other player and

other players continue to use their collaboration strategy. Fig. 6

shows the results where it can be seen that when collaboration

matters (that is, with 1 or 2 edges) player 3 loses a significant amount

of score in spite of possessing the best capability. As expected, when

collaboration is not required (that is, no edges in the graph) player 3

performs the best.

Finally, we show how the total match scores evolve with increas-

ing MI averaged over 30 randomly chosen match runs (probability

of edge is 0.5), for the all-collaborating setup used in Fig. 5 as well

as player 3 non-collaborator setup used in Fig. 6. Following the

result of Fig. 6, this result reinforces the claim that higher scores

in a match arise from both capability of player and playing the

equilibrium action.

7 RELATEDWORK
Potential games and graphical games have been studied extensively

[23]. Games that are both potential and graphical have also been

explored [4, 7, 27, 27]. Recent work [2, 24] relates such games to

Markov random fields. We contribute to this literature by provid-

ing a mechanism to convert a graphical game to a social-welfare-

maximizing graphical potential game while providing the distin-

guishability property.

Collaboration has been studied extensively in the framework

of cooperative or coalitional games [8]. Supermodularity has also

been widely used, in the form of supermodular set functions, in co-

operative games [11, 30] and in modeling social networks [14]. Our

work is set within the non-cooperative game framework, under the

assumption that neither the competition designer nor participants

have the means to enforce coalition agreements. Supermodular

games [18] (games with continuous supermodular utility) have also

been extensively studied in non-cooperative settings, particularly

for modeling economic situations with complementary goods. Our

supermodularity and modularity conditions reveal the nature of

utility functions that enable providing the properties we desire.

Private provisioning of public goods is an area of research where

a consumer benefits from provisioning of public goods by players
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[3, 9]. Our work relates to some recent work on private provision-

ing of public goods on networks, in which a consumer interact

within a fixed network structure and benefits only from their di-

rect neighbors’ provisions [1, 6]. In particular, these works assume

knowledge of the private provisioning of each player to decide any

payments for the players. The income redistribution mechanisms

also restricts the payments as, unlike free scores in our case, it is

not desirable for the designer to incur a cost. Thus, the income

redistribution mechanisms have very different characteristics from

our LSWM mechanism. Moreover, these works have no notion of

capability of players and ensuring higher overall utility of players’

with higher capability is not a concern.

There is a large body of work on mechanism design [23] includ-

ing constrained design [10] as well as design on graphs [19]. As

described above, however, our competition scoring problem differs

considerably from the standard mechanism design setting.

8 SUMMARY
We studied the problem of designing scoring mechanisms to pro-

mote collaboration in a competition. Our proposed LSWM scoring

mechanism maximizes social welfare in equilibrium, while preserv-

ing distinguishability under certain conditions. The key idea of

LSWM is to exploit locality in the underlying interaction so that

only relevant counterparts are brought into the incentive scheme.

We supported the design through theoretical and experimental

analyses. Some of the ideas presented in this work apply more

broadly to graphical games and characterizations of continuous

supermodularity.
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