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University of Michigan, Ann Arbor
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ABSTRACT
Deep Neural Networks (DNNs) have been shown to be vulnerable

against adversarial examples, which are data points cleverly con-

structed to fool the classifier. Such attacks can be devastating in

practice, especially as DNNs are being applied to ever increasing

critical tasks like image recognition in autonomous driving. In this

paper, we introduce a new perspective on the problem. We do so by

first defining robustness of a classifier to adversarial exploitation.

Next, we show that the problem of adversarial example generation

can be posed as learning problem. We also categorize attacks in

literature into high and low perturbation attacks; well-known at-

tacks like FGSM [11] and our attack produce higher perturbation

adversarial examples while the more potent but computationally in-

efficient Carlini-Wagner [5] (CW) attack is low perturbation. Next,

we show that the dual approach of the attack learning problem can

be used as a defensive technique that is effective against high per-

turbation attacks. Finally, we show that a classifier masking method

achieved by adding noise to the a neural network’s logit output

protects against low distortion attacks such as the CW attack. We

also show that both our learning and masking defense can work

simultaneously to protect against multiple attacks. We demonstrate

the efficacy of our techniques by experimenting with the MNIST

and CIFAR-10 datasets.

KEYWORDS
adversarial examples; robust learning

1 INTRODUCTION
Recent advances in deep learning have led to its wide adoption in

various challenging tasks such as image classification. However,

the current state of the art has been shown to be vulnerable to

adversarial examples, small perturbations of the original inputs,

often indistinguishable to a human, but carefully crafted to mis-

guide the learning models into producing incorrect outputs. Recent

results have shown that generating these adversarial examples are

inexpensive [11]. Moreover, as safety critical applications such as

autonomous driving increasingly rely on these tasks, it is impera-

tive that the learning models be reliable and secure against such

adversarial examples.

Prior work has yielded a lot of attack methods that generate

adversarial samples, and defense techniques that improve the ac-

curacy on these samples (see related work for details). However,

defenses are often specific to certain attacks and cannot adaptively

defend against any future attack and some general defense tech-

niques have been shown to be ineffective against more powerful

novel attacks. More generally, attacks and defenses have followed

the cat-and-mouse game that is typical of many security settings.

Further, traditional machine learning theory assumes a fixed sto-

chastic environment hence accuracy in the traditional sense is not

enough to measure performance in presence of an adversarial agent.

In this paper, with the goal of generality, we pursue a princi-

pled approach to attacks and defense. Starting from a theoretical

robustness definition, we present a attack and a defense that learns

to generate adversarial examples against any given classifier and

learns to defend against any attack respectively. Based on formal

intuition, we categorize known attacks into high and low pertur-

bation attacks. Our learning attack is a high perturbation attack

and analogously our learning defense technique defends against

high perturbation attack. For low perturbation attacks, we provide

a masking approach that defends against such attacks. Our two

defense techniques can be combined to defend against multiple

types of attacks. While our guiding principle is general, this paper

focuses on the specific domain of adversarial examples in image

classification.

Our first contribution is a definition of robustness of classifiers
in presence of an adversarial agent. Towards the definition, we

define the exploitable space by the adversary which includes data

points already mis-classified (errors) by any given classifier and

any data points that can be perturbed by the adversary to force

mis-classifications. Robustness is defined as the probability of data

points occurring in the exploitable space. We believe our definition

captures the essence of the multi-agent defender-adversary interac-

tion, and is natural as our robustness is a strictly stronger concept

than accuracy. We also analyze why accuracy fails to measure ro-

bustness. The formal set-up also provides an intuition for all the

techniques proposed in this paper.

Our second contribution is an attack learning neural network
(ALN). ALN is motivated by the fact that adversarial examples

for a given classifier C are subsets of the input space that the C
mis-classifies. Thus, given a data distribution with data points x
and a classifier C trained on such data, we train a feed forward

neural network A with the goal of generating output points A(x)
in the mis-classified space. Towards this end, we re-purpose an

autoencoder to work as our ALN A with a special choice of loss

function that aims to make (1) the classifierC mis-classifyA(x) and
(2) minimize the difference between x and A(x).

Our third contribution are two defense techniques: defense learn-
ing neural network (DLN) and noise augmented classifier (NAC).

Following the motivation and design of ALN, we motivate DLN

D as a neural network that, given any classifier C attacked by an

attack technique A, takes in an adversarial example A(x) and aims

to generate benign example D(A(x)) that does not lie in the mis-

classified space ofC . The DLN is prepended to the classifierC acting

as a sanitizer forC . Again, similar to the ALN, we re-purpose an au-

toencoder with a special loss function suited for the goal of the DLN.

For non-adversarial inputs the DLN is encouraged to reproduce the

input as well as make the classifier predict correctly. We show that
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DLN allows for attack and defense to be set up as a repeated com-

petition leading to more robust classifiers. Next, while DLN works

efficiently for attacks that produces adversarial examples with high

perturbation, such as fast gradient sign method [11] (FGSM), it is

not practical for low perturbation attacks (discussed in details in

Section 3.4) such as Carlini-Wagner [5] (CW). For low perturbation

attacks, we present NAC which masks the classifier boundary by

adding a very small noise at the logits output of the neural network

classifier. The small noise added affects classification in rare cases,

thereby ensuring original accuracy is maintained, but also fools

low perturbation attacks as the attack is mislead by the incorrect
logits. DLN and NAC can work together to defend simultaneously

against both high and low perturbation attacks.

We tested our approach on two datasets: MNIST and CIFAR-10.

Our ALN based attackwas able to attack all classifiers we considered

and achieve performance comparable to other high perturbation

attacks. Our defense approachmade the resultant classifier robust to

the FGSM and CW. Detailed experiments are presented in Section 4

and 5. Missing proofs are in an online appendix
1
(see footnote).

2 ATTACK MODEL
Given the adversarial setting, it is imperative to define the capa-

bilities of the adversary, which we do in this section. First, we use

inference phase of a classifier to mean the stage when the classifier

is actually deployed as an application (after all training and test-

ing is done). The attacker attacks only in the inference phase and

can channel his attack only through the inputs. In particular, the

attacker cannot change the classifier weights or inject any noise in

the hidden layers. The attacker has access to the classifier weights,

so that it can compute gradients if required. The attacker’s goal

is to produce adversarial data points that get mis-classified by the

classifier. These adversarial examples should be legitimate (that is

not a garbage noisy image) and the true class and the predicted class

of the data point could be additional constraints for the adversary.

3 APPROACH
This section formally describes our approach to the adversarial

example generation and defense problem using the notion of ro-

bustness we define. We start by defining basic notations. Let the

function C : X → Y denote a classifier that takes input data points

with feature values in X and outputs a label among the possible

k labels Y = {1, . . . ,k}. Further, for neural networks based clas-

sifiers we can define Cp : X → ∆Y as the function that takes

in data and produces a probability distribution over labels. Thus,

C = max{Cp (x)}, where max provides the maximum component

of the vectorCp (x). Let sim(x ,x ′) denote the dissimilarity between

x and x ′. Let H (p,q) denote the cross entropy −∑
i pi log(qi ). In

particular, let H (p) denotes the entropy given by H (p,p). For this
paper, we assume X is the set of legitimate images (and not garbage

images or ambiguous images). Legitimate images are different for

different domains, e.g., they are digits for digit classification. Given

a label y, let Cat(y) denote the categorical probability distribution

with the component for y set to 1 and all else 0. Let opsim(y, y′)
denote the dissimilarity between output distributions y, y′ ∈ ∆Y .

1
https://drive.google.com/open?id=1CBaHsU6IL9jQ4UN_2yYUteUsbLP2aKMk

3.1 Robustness
We first introduce some concepts from PAC learning [1], in order

to present the formal results in this section. It is assumed that data

points arise from a fixed but unknown distribution P overX . We de-

note the probability mass over a set Z ⊂ X as P(Z ). A loss function

l(yx ,C(x)) captures the loss of predicting C(x) when the true label

for x isyx . As we are focused on classification, we restrict ourselves

to the ideal 0/1 loss, that is, 1 for incorrect classification and 0 other-
wise. A classifierC is chosen that minimizes the empirical loss over

the n training data points

∑n
i=1 l(yxi ,xi ). Given enough data, PAC

learning theory guarantees thatC also minimizes the expected loss∫
X l(yx ,C(x))P(x). Given, 0/1 loss this quantity is just P(MC (X )),
where MC (X ) ⊂ X denote the region where the classifier C mis-

classifies. Accuracy for a classifier is then just 1 − P(MC (X )). In
this paper we will assume that the amount of data is always enough

to obtain low expected loss. Observe that a classifier can achieve

high accuracy (low expected loss) even though its predictions in

the low probability regions may be wrong.

All classifier families have a capacity that limits the complexity of

separators (hypothesis space) that they can model. A higher capac-

ity classifier family can model more non-smooth separators
2
. Pre-

vious work [11] has conjectured that adversarial examples abound

due to the low capacity of the classifier family used. See Figure 1A

for an illustration.

Adversarial exploitable space: Define EC,ϵ (X ) = MC (X ) ∪
{x | sim(x ,MC (X )) ≤ ϵ}, where sim is a dissimilarity measure

that depends on the domain and sim(x ,MC (X )) denotes the lowest
dissimilarity of x with any data point inMC (X ). For image classi-

fication sim can just be the l2 (Euclidean) distance:
√∑

i (xi − x ′i )2
where i indexes the pixels. EC,ϵ (X ) is the adversarial exploitable
space, as this space includes all points that are either mis-classified

or can be mis-classified by a minor ϵ-perturbation. Note that we
assume that any already present mis-classifications of the classifier

is exploitable by the adversary without the need of any perturba-

tion. For example, if a stop sign image in a dataset is mis-classified

then an adversary can simply use this image as is to fool an au-

tonomously driven vehicle.

Robustness: Robustness is simply defined as 1 − P(EC,ϵ (X )).
First, it is easy to see that robustness is a strictly stronger concept

than accuracy, that is, a classifier with high robustness has higher

accuracy. We believe this property makes our definition more natu-

ral than other current definitions. Further, another readily inferable

property from the definition of EC,ϵ that we utilize later is that a

classifierC ′
withMC ′(X ) ⊂ MC (X ) is more robust than classifierC

in the same setting. We call a classifier C ′
perfect if the robustness

is 100%.

There are a number of subtle aspects of the definition that we

elaborate upon below:

• A 100% robust classifier can still have MC ′(X ) , ϕ. This is
because robustness is still defined w.r.t. P, for example, large

compact regions of zero probability with small sub-region

of erroneous prediction far away from the boundary can

still make robustness 100%. However,MC ′(X ) = ϕ provides

2
While capacity is defined for any function class [1] (includes deep neural networks),

the value is known only for simple classifiers like single layered neural networks.

https://drive.google.com/open?id=1CBaHsU6IL9jQ4UN_2yYUteUsbLP2aKMk
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100% robustness for any P. Thus, robustness based on just

MC ′(X ) and not P is a stronger but much more restrictive

concept of robustness than ours.

• A perfect classifier (100% robust) is practically impossible

due to large data requirement especially as the capacity of

the classifier family grows. As shown in Figure 1 low capac-

ity classifiers cannot model complex separators, thus, large

capacity is required to achieve robustness. On the other hand,

classifiers families with large capacity but not enough data

tend to overfit the data [1]. Thus, there is a delicate bal-

ance between the capacity of the classifier family used and

amount of data available. The relation between amount of

data and capacity is not very well understood for Dep Neural

Networks. In any case, perfect robustness provides a goal

that robust classifiers should aim to achieve. In this paper, for

the purpose of defense, we seek to increase the robustness

of classifiers.

• Robustness in practice may apparently seem to be com-

putable by calculating the accuracy for the test set and the

adversarially perturbed test set for any given dataset, which

we also do and has been done in all prior work. However,

this relies on the fact that the attack is all powerful, i.e., it can

attack all perturb-able points. It is easy to construct abstract

examples with probabilitymeasure zeromis-classification set

(single mis-classified point in a continuous Euclidean space)

that is computationally intractable for practical attacks to dis-

cover. A detailed analysis of computing robustness is beyond

the scope of this paper and is left for future work.

• The definition can be easily extended to weigh some kinds

of mis-classification more, if required. For example, predict-

ing a malware as benign is more harmful than the opposite

erroneous prediction. For our focus area of image classifica-

tion in this paper, researchers have generally considered all

mis-classification equally important. Also the sim function

in the definition is reasonably well agreed upon in litera-

ture on adversarial learning as the l2 distance; however, we
show later in experiments that l2 distance does not capture
similarity well enough. Instantiating the definition for other

domains such as malware classification requires exploring

sim further such as how to capture that two malwares are

functionally similar.

Lastly, compared to past work [9, 27], our robustness definition

has a clear relation to accuracy and not orthogonal to it. Also, our

definition uses the ideal 0/1 loss function rather than an approxi-

mate loss function l (often used in training due to smoothness) as

used in other definitions [7? ]. We posit that the 0/1 loss measures

robustness more precisely, as these other approaches have specified

the adversary goal as aiming to perturb in order to produce the

maximum loss within an ϵ ball B(x , ϵ) of any given point x , with the
defender expected loss defined as

∫
X maxz∈B(x,ϵ ) l(yx ,C(z))P(x).

However, this means that even if the class is same throughout the

ϵ ball, with a varying l the adversary still conducts a supposed “at-

tack” and increases loss for the defender without flipping labels. For

example, the well-known hinge loss varies rapidly within one of the

classes and such supposed attacks could lead to an overestimation

of the loss for defender and hence underestimate robustness. Fur-

ther, use of an approximation in the definition allows an adversary

to bypass the definition by exploiting the approximation by l when
the true loss is 0/1. It is an interesting question for future on what

kind of approximations can help in computing robustness within

reasonable error bounds.

Finally, we analyze if accuracy is ever suitable to capture robust-

ness. First, we make a few mild technical assumptions that there

exists a density p(x) for the data distribution P overX ,X is a metric

space with metric d and vol(X ) = 1. We have the following result:

Theorem 3.1. 1 − a accuracy implies at least 1 − (a + ν + Kϵ/T )
robustness for any output C if

• For all x ∈ X , sim(x ,x ′) ≥ Td(x ,x ′) for some T > 0.
• MC (X ) lies in a low density region, that is, for all x ∈ MC (X )
we have p(x) ≤ ν for some small ν .

• p(x) is K-Lipschitz, that is, |p(x) − p(x ′)| ≤ Kd(x ,x ′) for all
x ,x ′ ∈ X .

The first two conditions in the above result are quite natural. In

simple words, the first two conditions says dissimilarity increases

with distance (high T ) and the regions that the output classifier

predicts badly has low amount of data in the data-set (low ν ).
However, the final conditionmay not be satisfied inmany natural

settings. This condition states that the data distribution must not

change abruptly (low K). This is required as the natural behavior

of most classifiers is to predict bad in a low data density region

and if this region is near a high data density region, the adversary

can successfully modify the data points in the high density region

causing loss of robustness. But in high dimensional spaces, data

distribution is quite likely to be not distributed smoothly with many

pockets or sub-spaces of zero density as pointed out in a recent

experimental work [? ]. Thus, data distribution is an important

contributing factor that determines robustness.

3.2 ALN
Our goal is to train a neural network ALN to produce samples in the

misclassification region of a given neural network based classifier.

The ALN acts on a data point x producing x ′. Thus, we choose the
following loss function for the ALN that takes into account the

output for the given classifier:

αsim(x ,x ′) − opsim(Cat(yx ),Cp (x ′)) ,
The input dissimilarity term in the loss function aims to produce

data points x ′ that are similar to the original input x while the

output dissimilarity term aims to maximize the difference between

the true label of x and prediction of C on x ′. The α is a weight that

is tuned through a simple search. Observe that this loss function is

general and can be used with any classifier (by inferring Cp from

C in case of specific non neural network based classifiers). For the

image classification problem we use the l2 distance for sim. For

opsim we tried a number of functions, but the best performance

was for the l1 loss | |Cat(yx ) −Cp (x ′)| |1.
Note that an alternate loss function is possible that does not

use the actual label yx of x , rather using Cp (x). This would also

work assuming that the classifier is good; for poor classifiers a lot

of the data points are as it is mis-classified and hence adversarial

example generation is interesting only for good classifiers. Further,



Figure 1: Intuition behind ALN and DLN. (A) shows a linear
classifier (low capacity) is not able to accuratelymodel a non-
linear boundary. (B) shows the ALN as the distribution map-
ping function F . (C) shows that DLN does the reverse map-
ping of ALN.

this choice would allow using unlabeled data for conducting such

an attack, making attack easier for an attacker. However, in our

experiments we use the more powerful attack using the labels.

Next, we provide a formal intuition ofwhat ALN actually achieves.

Any adversarial example generation can be seen as a distribution

transformer F such that acting on the data distribution P the resul-

tant distribution F (P) has support mostly limited to MC (X ). The
support may not completely limited to MC (X ) as the attacks are
never 100% effective. Also, attacks in literature aim to find points in

MC (X ) that are close to given images in the original dataset. ALN

is essentially a neural network representation of such a function

F against a given classifier C . See Figure 1B for an illustration. We

return to this interpretation in the next sub-section to provide a

formal intuition about the DLN defense.

Lastly, we show in our experiments that ALN produces adver-

sarial examples whose perturbations are roughly of the same order

as the prior attack FGSM. We categorize these as high perturba-

tion attacks. On the other the attack CW produces adversarial

perturbation with very small perturbations, we call such attacks

low perturbation attacks. As mentioned earlier, we provide two

separate defenses for these two types of attacks. Both these defense

can be used simultaneously to defend against both types of attacks.

3.3 DLN
Our first defense approach is to insert a neural network DLN D
between the input and classifier so that D sanitizes the input en-

abling the classifier to correctly classify the input. Each data point

for training DLN has three parts: x ′ is the image to sanitize, x is

the expected output and yx is the correct label of x . x are images

from the provided dataset, and there are two possibilities for x ′:
(1) x ′ = x so that DLN attempts to satisfy C(D(x)) = yx , even if

C(x) , yx , and (2) x ′ = A(x) so that DLN undoes the attack and

make the classifier C correctly classify x ′.
We formulate a loss function for DLN that, similar to ALN, has

two terms: sim(x ,D(x ′)) that aims to produce output D(x ′) close
to x and opsim(Cat(yx ),Cp (D(x ′))) that aims to make the classifier

output on D(x ′) be the same as yx . Thus, the loss function is

αsim(x ,D(x ′)) + opsim(Cat(yx ),Cp (D(x ′))) .

In this paper we only use α = 1. Note that the attack A is used as a

black box here to generate training data and is not a part of the loss

function. After training the DLN, our new classifier is C ′
which is

C prepended by the DLN. The working of DLN can be interpreted

as an inverse map F−1 for the mapping F induced by the attack

A. See Figure 1C for an illustration. For the image classification

problem we use the l2 distance for sim. For opsim we tried a number

of functions, but the best performance was for the cross-entropy

loss H (Cat(yx ),Cp (D(x ′)).
An important point to note is that the original classifier C is un-

changed. What this ensures is the mis-classification spaceMC (X )
does not change and allows us to prove an important result about

C ′
under certain assumptions. For the sake of this result, we as-

sume that attacks A generate adversarial examples in a sub region

MC,A(X ) ⊂ MC (X ). We also assume a good DLND, that is,C(D(x))
is correct for a non-empty subset Z ⊂ MC,A(X ) and C(D(x)) con-
tinues to be correct for all x < MC (X ). Then, we prove

Lemma 3.2. AssumingMC,A(X ) ⊂ MC (X ), DLN is good as defined
above, andMC,A(X ) , ϕ, thenMC ′(X ) ⊂ MC (X )

Proof. Since DLN does not decrease the performance of C on

points outsideMC (X ), C ′
’s prediction on inputs outsideMC (X ) is

correct, henceMC ′(X ) ⊆ MC (X ). Any data point not mis-classified

by a classifier does not belong to its mis-classification space. Good

sanitization by DLN makes C ′
predict correctly on Z ⊂ MC,A(X ),

which makesMC,A(X ) ∩MC ′(X ) ⊂ MC,A(X ). Thus, we can claim

the result in the lemma statement. □

While the above proof is under ideal assumptions, it provides

an intuition to how the defense works. Namely, the reduction in

the adversarial exploitable space makes the new classifier more

robust (see robustness properties earlier). This also motivates the

generalization of this technique to multiple attacks presented in

the next sub-section.

3.4 Repeated DLN Against Multiple Attacks
The above DLN can be naturally extended to multiple attacks, say

A1, . . . ,An . The only change required is to feed in all possible adver-
sarial examplesA1(x)’s, . . . ,An (x)’s. It is straightforward to see that
under assumptions of Lemma 3.2 for all the attacks, the resultant

classifierC ′
has an adversarial example spaceMC ′(X ) that removes

subsets ofMC,Ai (X ) for all Ai ∈ A fromMC (X ). This provides, at
least theoretically under ideal assumptions, a monotonic robust-

ness improvement property with increasing number of attacks for

the DLN based approach. In fact, if all the attacks combined act as

a generator for all the points in MC (X ), then given enough data

and perfect sanitization the resultant classifier C ′
tends towards

achievingMC ′(X ) = ϕ which essentially would make C ′
a perfect

classifier. Perfect classifiers have no adversarial examples.

However, attacks rarely explore all of the mis-classified space,

which is why new attacks have defeated prior defense techniques.

Even for our approach, attacks successfully work against the DLN

that has been trained only once (accuracy numbers are in Experi-

ments). However, DLN allows for easy retraining (without retrain-

ing the classifier) as follows: repeatedly attack and re-learn a DLN

in rounds, that is, conduct an attack on the classifier obtained in

every round and train a DLN in a round using the attacked training

data from all the previous rounds and the original training data.

More formally, at round i our training data consists of i copies of
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Figure 2: Intuition behind working of repeated DLN against
high and low perturbation attacks. (A),(B) shows a high per-
turbation attack causes a faster improvement in resultant
classifier. Further, beyond some rounds the attack does not
work as it can only find adversarial examples with high per-
turbation. (C),(D) shows a low perturbation attack causes a
slow improvement in resultant classifier.

original training data and i instances of attacked training data from
previous rounds. Observe that we add copies of the original training

data in each round, this is because the adversarial data swamps out

the original training data and accuracy suffers in regions where the

original training data is distributed. See Figure 2 for an illustration

of how repeated DLN works.

The following result provides formal intuition for this approach:

Lemma 3.3. Assume the following conditions hold for every round
i :MCi−1,A(X ) ⊂ MCi−1 (X ) and the DLN Di has good memory, which
means that given there exists a largest set Zi ⊂ MCi−1,A(X ) which the
DLN Di correctly sanitizes so that C(Di (x)) is correct for all x ∈ Zi
thenZi−1 ⊂ Zi . That is DLNDi can correctly sanitize data points that
the previous round DLN did plus possibly more data points. Further,
C(Di (x)) continues to be correct for all x < MC (X ). Then the classifier
Cn after n rounds satisfiesMCn (X ) ⊂ MCn−1 (X ).

Proof. Arguing similarly to Lemma 3.2we can show thatMCn (X ) ⊆
MC (X ) due to the correct classification outside ofMC (X ). Further,
it is easily inferable thatMCn (X ) = MC (X )\Zn given Zn is a subset

ofMC (X ) and given the largest such set condition on Zi . Then, the
good memory property leads to the required result. □

The attack-defense competition technique is somewhat akin

to GANs [10]. However, there is a big difference, since in every

round the dataset used to train the DLN grows. Practically, this

requires DLN to have a large capacity in order to be effective; also

depending on the capacity and the size of dataset over or under

fitting problems could arise, which needs to be taken care of in

practice. Also, the training become more expensive over rounds

with increasing data size. In particular, low perturbation attacks are

not defeated with few rounds. We do observe improvement with

the low perturbation CW attack over rounds, but the improvement

is very small, as represented visually in Figure 2. The main reason is

that low perturbation attacks only exposes a very small volume of

misclassified space, thus, it would require a huge number of rounds

for repeated DLN to reduce the mis-classified space to such a small

volume that cannot be attacked. This motivates our next approach

of noise augmented classifier.

3.5 NAC
Figure 2 also provides a hint on how to overcome low perturbation

attacks. In order to achieve low perturbation, such attacks rely a

lot on the exact classifier boundary. Thus, masking the classifier

boundary can fool low perturbation attacks. We achieve this by

adding a small noise to the logits of the neural network calling the

resultant classifier a noise augmented classifier (NAC). This noise

should be small enough that it does not affect the classification

of original data points by much, but is able to mis-lead the low

perturbation attack. Also, following our intuition NAC should not

provide any defense against high perturbation attacks, which we

indeed observe in our experiments. However, observe that DLN

and NAC can be used simultaneously, thus, providing benefits of

both defense which we show in our experiments.

Further, a natural idea to bypass the defense provided by NAC is

to take the average of multiple logit outputs for the same given input

image (to cancel the randomness) and then use the average logits

as the logits required for the CW attack. We show experimentally

that this idea does not work effectively even after averaging over

many logit outputs.

4 EXPERIMENTS FOR ATTACKS
All our experiments, including for DLN and NAC, were conducted

using the Keras framework on a NVIDIA K40 GPU. The learning

problem can be solved using any gradient-based optimizer. In our

case, we used Adam with learning rate 0.0002. We use two well-

known datasets: MNIST digits and CIFAR-10 colored images.

We consider two classifiers one for MNIST and one for CIFAR-10:

we call them CM and CC . These classifiers are variants of well-

known architectures that achieved state-of-the-art performances

on their respective datasets. As stated earlier, we consider three

attacks: ALN, FGSM and CW. CW has been referred to in the litera-

ture [28] as one of the best attacks till date (at the time of writing

of this paper), while FGSM runs extremely fast. For the autoen-

coder we use a fourteen hidden layer convolutional architecture.

Our code is publicly available, but the github link is elided in this

submitted version for the review process. For our experiments we

pre-process all the images so that the pixels values lie between

[−0.5, 0.5], so all components (attacks, autoencoders, classifiers)

work in space [−0.5, 0.5]. We use FGSM with values of 0.03 and

0.01 for its parameter ϵ on MNIST and CIFAR, respectively.

Observe that all these attacks work against a given classifier

C , thus, we use the notation A(C, .) to denote the attack A acting

on an image x to produce the adversarial example A(C,x) (A can



Figure 3: Targeted attacks by ALN: target class on bottom

be any of the three attacks). A(C,Z ) denotes the set of adversarial
examples {A(C,x) | x ∈ Z }. We report accuracies on various test

sets: (1) original test dataset (OTD): these images are the original

test dataset from the dataset under consideration, (2) A(C,OTD) is
the adversarially perturbed dataset using attack A against classi-

fier C , for example, this could be FGSM(CM ,OTD). We also report

distortion numbers as has been done in literature [5]. Distortion

measures how much perturbation on average was added by an

attack and is meant to capture how visually similar the image is to

the original image. Distortion is measured as the average over all

test images of the l2 distance between the original and perturbed

image.

Results: Untargeted attacks refers to attack that aim to produce

mis-classification but not with the goal of making the classifier out-

put a specific label. Targeted attacks aim to produce an adversarial

example that gets classified as a given class y. It is also possible

to modify ALN to perform targeted attacks. This is achieved by

modifying the loss function to use a positive opsim term, like the

DLN loss function, but using the target class label y instead of the

original class label yx in the opsim term. Then, we can perform an

ALN attack in two ways: ALNU uses the ALN loss function as stated

and ALNT constructs a targeted attack per class label differing from

the original label and chooses the one with least distortion. Figure 3

shows an example of targeted attack with different target labels.

Table 1 shows this approach for MNIST with the targeted ALNT

version performance better than other attacks.

Test data type Accuracy Distortion

OTD 99.45 % −
FGSM(CM ,OTD) 0.72 % 14.99

CW(CM ,OTD) 0.03 % 1.51

ALNU(CM ,OTD) 1.65 % 4.43

ALNT(CM ,OTD) 0.0 % 4.34

Table 1: Attacks on MNIST Dataset

Table 2 shows the result of untargeted attacks using ALN, FGSM

and CW on the CIFAR-10 dataset. We can see that ALN, just like

FGSM, produces slightly higher adversarial accuracy for MNIST,

but the distortion of FGSM is much higher. This does result in

a large difference in visual quality of the adversarial examples

produced—see Figure 4 for randomly chosen 25 perturbed images

using ALN and Figure 5 for randomly chosen 25 perturbed images

using FGSM. Also, we can attribute the higher distortion of ALN

for CIFAR as compared to MNIST partially to the CIFAR being a

higher dimensional space problems and the same capacity of the

autoencoder we used for CIFAR and MNIST.

Test data type Accuracy Distortion

OTD 84.59 % −
FGSM(CC ,OTD) 4.21 % 10.03

CW(CC ,OTD) 0 % 0.18

ALNU(CC ,OTD) 6.16 % 2.57

ALNT(CC ,OTD) 8.21 % 3.01

Table 2: Attacks on CIFAR-10 Dataset

Figure 4: Untargeted attack by ALN for CIFAR-10

Figure 5: Attack using FGSM for CIFAR-10

5 EXPERIMENTS FOR DEFENSE
For defense, we denote the new classifier using the DLN trained

against any attack A or NAC modified classifier as C ′
M (for MNIST)

or C ′
C (for CIFAR). Also, we test accuracies on test data adversari-

ally perturbed by attacks against the new classifiers, for example,

following our convention one such dataset would be denoted as

A(C ′
M ,OTD). For defense we focus on defending against known

attacks in literature.

5.1 DLN Defense Against Single Attack
Table 3 shows the results when the DLN is trained to defense against

specific attacks using MNIST dataset to yield a new classifier C ′
M .
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Along expected lines, the accuracy onOTD drops slightly for all the

cases where DLN is trained against FGSM or CW. However, the new

classifierC ′
M is able to perform quite good on adversarial examples

that were produced by any attack on the original classifier CM , for

example, C ′
M gets an accuracy of 95% of the adversarial examples

CW(CM ,OTD) that was produced by CW attacking CM . Lastly,

when attacked again the new classifier C ′
M is still not resilient to

attacks as shown by the low accuracies for FGSM(C ′
M ,OTD) and

CW(C ′
M ,OTD).

One number that stands out is the success of the new classifier

C ′
M in correctly classifying the adversarial example generated by

CW for the original classifier CM . This supports our hypothesis

that CW is very sensitive to the exact classifier boundary, and a

newer classifier with a slightly different boundary is able to defeat

prior adversarial examples. Of course, CW is is able to attack C ′
M

against quite successfully, which we later show can be defended

by our NAC approach. For FGSM, we show in later sections that

the performance of the classifier greatly improves when DLN is

repeatedly trained against FGSM—revealing that the DLN approach

is flexible enough to keep on improving its performance against

high perturbation attacks.

DLN

Trained

Test data type Accuracy Distortion

FGSM OTD 96.77 % −
FGSM FGSM(CM ,OTD) 88.5 % 4.55

FGSM FGSM(C ′
M ,OTD) 13.75 % 6.98

CW OTD 98.6 % −
CW CW(CM ,OTD) 95.42 % 5.77

CW CW(C ′
M ,OTD) 0.14 % 3.5

Table 3: New DLN prepended classifier C ′
M for MNIST

5.2 Repeated DLN
In this section, we run DLN repeatedly as described earlier in Sec-

tion 3.4. We cut off the experiments when a single round took more

than 24 hours to solve. We show the results for MNIST in Table 4

showing a clearly increasing trend in accuracy on adversarial ex-

amples produced by FGSM attacking the newer classifier, revealing

increasing robustness. For CIFAR, the approach becomes too com-

putationally expensive within two rounds. Thus, while the DLN

approach is promising, as stated earlier it is computationally expen-

sive, more so with larger and complex data sets. Further, as stated

earlier running DLN against low perturbation attacks like CW does

not show much improvement. However, we tackle that next using

the NAC defense approach.

5.3 NAC defense
Recall that the NAC defense works by adding noise to the logits

layer of the neural network classifier to produce a new classifier

C ′
M for MNIST and C ′

C for CIFAR. We use Gaussian noise with 0

mean and variance 1. In this section, we show that the NAC defense

is able to produce classifiers that are resilient to CW attack. Further,

the new classifier’s accuracy on the original test data-set is nearly

Round Acc. OTD Acc.

FGSM(Ci ,OTD)
Distortion

0 99.36 % 0.72 % 14.99

1 97.70 % 13.70 % 13.63

2 97.61 % 24.86 % 14.58

3 97.95 % 43.39 % 14.73

4 97.79 % 52.88 % 14.57

5 97.77 % 56.57 % 14.52

Table 4: Classifier trained repeatedly against FGSM for
MNIST

unchanged. This can be seen in Table 5. The second line in that

table shows that the CW attack completely fails as the accuracy on

the adversarial examples in 93%. However, it can also be observed

that the new classifier is not resilient to attack by FGSM, as shown

by the third line in that table. This follows the intuition we provided

in Figure 2. For CIFAR, Table 6 shows that NAC is able to overcome

CW to a large extent.

Attack Test data type Accuracy Distortion

- OTD 99.36 % -

CW CW(C ′
M ,OTD) 93.60 % 1.49

FGSM FGSM(C ′
M ,OTD) 0.74 % 14.99

Table 5: Accuracy of NAC Classifier C ′
M for MNIST

Attack Test data type Accuracy Distortion

- OTD 84.67 % -

CW CW(C ′
M ,OTD) 77.70 % 0.17

FGSM FGSM(C ′
M ,OTD) 4.19 % 10.04

Table 6: Accuracy of NAC Classifier C ′
M for CIFAR-10

As stated earlier, a natural idea to attack NAC would be to query

an image n times and then average the logits before using it for the

CW attack. This augmented attack does make CW more effective

but not by much. Table 7 shows that the accuracy on the adversarial

example generated for C ′
M remains high. Moreover, more queries

make it more difficult to conduct the CW attack in practice (as

the adversary may be query limited), while also causing a small

increase (1% with 5000 sample) in the already high runtime of CW.

n Adversarial accuracy Distortion

500 95.14 % 1.51

5000 82.07 % 1.51

Table 7: Accuracy of NAC Classifier C ′
M against improved

CW for MNIST



5.4 Defense Against Multiple Attacks
Finally, we show that DLN and NAC can work together. We show

this by presenting the accuracy on the adversarial example gener-

ated in each round of DLN repetition when the classifier Ci after
each round is augmented with NAC and attacked by FGSM and

CW both. See Table 8. One observation is that NAC’s performance

decreases slightly over rounds stabilizing at 79%, while the accu-

racy for original test set and FGSM perturbed test set stays almost

exactly same as Table 4.

Round Acc. OTD Acc.

FGSM(Ci ,OTD)
Acc.

CW(Ci ,OTD)
0 99.36 % 0.72 % 94.2

1 97.70 % 13.72 % 93.7

2 97.73 % 24.28 % 84.7

3 97.60 % 43.20 % 83.3

4 97.64 % 53.17 % 79

5 97.73 % 56.45 % 79.3

Table 8: Classifier trained repeatedly against FGSM for
MNIST and augmented with NAC in each round

6 RELATEDWORK
A thorough survey of security issues in machine learning is present

in surveys [25] and some of the first results appeared in [8, 19].

Here we discuss the most closely related work.

Attacks: Most previous attack work focuses on adversarial ex-

amples for computer vision tasks. Multiple techniques to create such

adversarial examples have been developed recently. Broadly, such at-

tacks can be categorized as either using costs gradients [3, 11, 14, 20]

or the forward gradient of the neural network [24] and perturbing

along most promising direction or directly solving an optimization

problem (possibly using gradient ascent/descent) to find a pertur-

bation [5, 21]. In addition, adversarial examples have been shown

to transfer between different network architectures, and networks

trained on disjoint subsets of data [22, 26]. Adversarial examples

have also been shown to translate to the real world [15], that is,

adversarial images can remain adversarial even after being printed

and recaptured with a cell phone camera. Attacks on non-neural

networks have also been explored in literature [3]. Our approach

is distinctly different from all these approaches as we pose the

problem of generating adversarial samples as a generative learn-

ing problem, and demonstrate generation of adversarial examples

given access to any given classifier. Our approach also applies to

any classifier that output class probabilities and not just neural

networks.

Defense: Also, referred to as robust classification in many pa-

pers, defense techniques can be roughly categorized into techniques

that do (1) adversarial (re)training, which is adding back adversarial

examples to the training data and retraining the classifier, often re-

peatedly [17], or modifying loss function to account for attacks [14];

(2) gradient masking, which targets that gradient based attacks by

trying to make the gradient less informative [23]; (3) input mod-

ification, which are techniques that modify (typically lower the

dimension) the feature space of the input data to make crafting

adversarial examples difficult [28]; (4) game-theoretic formulation,

which modifies the loss minimization problem as a constrained

optimization with constraints provided by adversarial utility in per-

forming perturbations [16], and (5) filtering and de-noising, which

aims to detect/filter or de-noise adversarial examples (cited below).

Our defense approach differs from the first four kinds of defense

as our DLN approach never modify the classifier or inputs but add a

sanitizer (DLN) before the classifier. First, this increases the capacity

of the resultant classifier C ′
, so that it can model more complex

separators, which is not achieved when the classifier family stays

the same. Further, our defense is agnostic to the type of attack and

does not utilize properties of specific types of attacks. Interestingly,

the DLN approach can be used with any classifier that output class

probabilities and not just neural networks. Further, NAC is a very

minor modification to the classifier that, distinct from other ran-

domized approaches [? ] that randomize over multiple classifiers,

aims to mask the classifier boundary. Also, NAC can work with

other defenses unlike techniques that modify inputs to try and

defend against CW [28].

More closely related to our work are some defense techniques

that have focused on detecting and filtering out adversarial sam-

ples [12, 18] or de-noising input [13]; here the filter or de-noiser

with the classifier could be considered as a larger neural network.

However, unlike these work, our goal for DLN is targeted sani-

tization. Moreover, recent attack work [4] have produced attack

techniques to defeat many known detection techniques. Our tech-

nique provides the flexibility to be resilient against more powerful

attacks by training the DLN with such an attack for high perturba-

tion attacks or using NAC for low perturbation attacks.

Lastly, two concurrent unpublished drafts (available online) have

independently and simultaneously proposed an attack [2] similar to

ALN and a defense [6] apparently similar to DLN. The difference

for the attack work is in using the class label vs classifier output

in opsim term for the attack. For the defense work, we differ as we

show how DLN technique extends to multiple attacks and can be

repeatedly used in an attack-defense competition. Moreover, unlike

these drafts, we provide another defense technique NAC that works

against CW, define robustness and show that our defense techniques

approximately aims to achieve our definition of robustness. Further,

our formal reasoning reveals the underlying nature of attacks and

defenses.

7 CONCLUSION AND FUTUREWORK
Our work provides a new learning perspective of the adversarial

examples generation and defense problems with a formal intuition

of how these approaches work, using which we were able to defend

against multiple attacks including the potent CW. Further, unlike

past work, our defense technique does not claim to a catchall or

specific to any attack; in fact, it is flexible enough to possibly de-

fend against any attack. Posing the attack and defense as learning

problems allows for the possibility of using the rapidly developing

research in machine learning itself to make the defense more effec-

tive in future, for example, by using a different specialized neural
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network architecture rather than an autoencoder. A number of vari-

ations of our theory and and tuning of the application framework

provides rich content for future work.
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