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ABSTRACT

Deep Neural Networks (DNNs) have been shown to be vulnerable
against adversarial examples, which are data points cleverly con-
structed to fool the classifier. Such attacks can be devastating in
practice, especially as DNNs are being applied to ever increasing
critical tasks like image recognition in autonomous driving. In this
paper, we introduce a new perspective on the problem. We do so by
first defining robustness of a classifier to adversarial exploitation.
Next, we show that the problem of adversarial example generation
can be posed as learning problem. We also categorize attacks in
literature into high and low perturbation attacks; well-known at-
tacks like FGSM [11] and our attack produce higher perturbation
adversarial examples while the more potent but computationally in-
efficient Carlini-Wagner [5] (CW) attack is low perturbation. Next,
we show that the dual approach of the attack learning problem can
be used as a defensive technique that is effective against high per-
turbation attacks. Finally, we show that a classifier masking method
achieved by adding noise to the a neural network’s logit output
protects against low distortion attacks such as the CW attack. We
also show that both our learning and masking defense can work
simultaneously to protect against multiple attacks. We demonstrate
the efficacy of our techniques by experimenting with the MNIST
and CIFAR-10 datasets.
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1 INTRODUCTION

Recent advances in deep learning have led to its wide adoption in
various challenging tasks such as image classification. However,
the current state of the art has been shown to be vulnerable to
adversarial examples, small perturbations of the original inputs,
often indistinguishable to a human, but carefully crafted to mis-
guide the learning models into producing incorrect outputs. Recent
results have shown that generating these adversarial examples are
inexpensive [11]. Moreover, as safety critical applications such as
autonomous driving increasingly rely on these tasks, it is impera-
tive that the learning models be reliable and secure against such
adversarial examples.

Prior work has yielded a lot of attack methods that generate
adversarial samples, and defense techniques that improve the ac-
curacy on these samples (see related work for details). However,
defenses are often specific to certain attacks and cannot adaptively
defend against any future attack and some general defense tech-
niques have been shown to be ineffective against more powerful
novel attacks. More generally, attacks and defenses have followed
the cat-and-mouse game that is typical of many security settings.

Further, traditional machine learning theory assumes a fixed sto-
chastic environment hence accuracy in the traditional sense is not
enough to measure performance in presence of an adversarial agent.

In this paper, with the goal of generality, we pursue a princi-
pled approach to attacks and defense. Starting from a theoretical
robustness definition, we present a attack and a defense that learns
to generate adversarial examples against any given classifier and
learns to defend against any attack respectively. Based on formal
intuition, we categorize known attacks into high and low pertur-
bation attacks. Our learning attack is a high perturbation attack
and analogously our learning defense technique defends against
high perturbation attack. For low perturbation attacks, we provide
a masking approach that defends against such attacks. Our two
defense techniques can be combined to defend against multiple
types of attacks. While our guiding principle is general, this paper
focuses on the specific domain of adversarial examples in image
classification.

Our first contribution is a definition of robustness of classifiers
in presence of an adversarial agent. Towards the definition, we
define the exploitable space by the adversary which includes data
points already mis-classified (errors) by any given classifier and
any data points that can be perturbed by the adversary to force
mis-classifications. Robustness is defined as the probability of data
points occurring in the exploitable space. We believe our definition
captures the essence of the multi-agent defender-adversary interac-
tion, and is natural as our robustness is a strictly stronger concept
than accuracy. We also analyze why accuracy fails to measure ro-
bustness. The formal set-up also provides an intuition for all the
techniques proposed in this paper.

Our second contribution is an attack learning neural network
(ALN). ALN is motivated by the fact that adversarial examples
for a given classifier C are subsets of the input space that the C
mis-classifies. Thus, given a data distribution with data points x
and a classifier C trained on such data, we train a feed forward
neural network A with the goal of generating output points A(x)
in the mis-classified space. Towards this end, we re-purpose an
autoencoder to work as our ALN A with a special choice of loss
function that aims to make (1) the classifier C mis-classify A(x) and
(2) minimize the difference between x and A(x).

Our third contribution are two defense techniques: defense learn-
ing neural network (DLN) and noise augmented classifier (NAC).
Following the motivation and design of ALN, we motivate DLN
D as a neural network that, given any classifier C attacked by an
attack technique A, takes in an adversarial example A(x) and aims
to generate benign example D(A(x)) that does not lie in the mis-
classified space of C. The DLN is prepended to the classifier C acting
as a sanitizer for C. Again, similar to the ALN, we re-purpose an au-
toencoder with a special loss function suited for the goal of the DLN.
For non-adversarial inputs the DLN is encouraged to reproduce the
input as well as make the classifier predict correctly. We show that



DLN allows for attack and defense to be set up as a repeated com-
petition leading to more robust classifiers. Next, while DLN works
efficiently for attacks that produces adversarial examples with high
perturbation, such as fast gradient sign method [11] (FGSM), it is
not practical for low perturbation attacks (discussed in details in
Section 3.4) such as Carlini-Wagner [5] (CW). For low perturbation
attacks, we present NAC which masks the classifier boundary by
adding a very small noise at the logits output of the neural network
classifier. The small noise added affects classification in rare cases,
thereby ensuring original accuracy is maintained, but also fools
low perturbation attacks as the attack is mislead by the incorrect
logits. DLN and NAC can work together to defend simultaneously
against both high and low perturbation attacks.

We tested our approach on two datasets: MNIST and CIFAR-10.
Our ALN based attack was able to attack all classifiers we considered
and achieve performance comparable to other high perturbation
attacks. Our defense approach made the resultant classifier robust to
the FGSM and CW. Detailed experiments are presented in Section 4
and 5. Missing proofs are in an online appendix! (see footnote).

2 ATTACK MODEL

Given the adversarial setting, it is imperative to define the capa-
bilities of the adversary, which we do in this section. First, we use
inference phase of a classifier to mean the stage when the classifier
is actually deployed as an application (after all training and test-
ing is done). The attacker attacks only in the inference phase and
can channel his attack only through the inputs. In particular, the
attacker cannot change the classifier weights or inject any noise in
the hidden layers. The attacker has access to the classifier weights,
so that it can compute gradients if required. The attacker’s goal
is to produce adversarial data points that get mis-classified by the
classifier. These adversarial examples should be legitimate (that is
not a garbage noisy image) and the true class and the predicted class
of the data point could be additional constraints for the adversary.

3 APPROACH

This section formally describes our approach to the adversarial
example generation and defense problem using the notion of ro-
bustness we define. We start by defining basic notations. Let the
function C : X — Y denote a classifier that takes input data points
with feature values in X and outputs a label among the possible
k labels Y = {1,...,k}. Further, for neural networks based clas-
sifiers we can define C, : X — AY as the function that takes
in data and produces a probability distribution over labels. Thus,
C = max{Cp(x)}, where max provides the maximum component
of the vector Cp(x). Let sim(x, x") denote the dissimilarity between
x and x’. Let H(p, q) denote the cross entropy — ; pi log(g;). In
particular, let H(p) denotes the entropy given by H(p, p). For this
paper, we assume X is the set of legitimate images (and not garbage
images or ambiguous images). Legitimate images are different for
different domains, e.g., they are digits for digit classification. Given
a label y, let Cat(y) denote the categorical probability distribution
with the component for y set to 1 and all else 0. Let opsim(y,y’)
denote the dissimilarity between output distributions y,y’ € AY.

!https://drive.google.com/open?id=1CBaHsU6IL9jQ4UN_2yYUteUsbLP2aKMk

3.1 Robustness

We first introduce some concepts from PAC learning [1], in order
to present the formal results in this section. It is assumed that data
points arise from a fixed but unknown distribution  over X. We de-
note the probability mass over a set Z € X as P(Z). A loss function
I(yx, C(x)) captures the loss of predicting C(x) when the true label
for x is Y. As we are focused on classification, we restrict ourselves
to the ideal 0/1 loss, that is, 1 for incorrect classification and 0 other-
wise. A classifier C is chosen that minimizes the empirical loss over
the n training data points 3", I(yx;,x;). Given enough data, PAC
learning theory guarantees that C also minimizes the expected loss
/X I(yx, C(x))P(x). Given, 0/1 loss this quantity is just P(Mc(X)),
where Mc(X) C X denote the region where the classifier C mis-
classifies. Accuracy for a classifier is then just 1 — P(M¢(X)). In
this paper we will assume that the amount of data is always enough
to obtain low expected loss. Observe that a classifier can achieve
high accuracy (low expected loss) even though its predictions in
the low probability regions may be wrong.

All classifier families have a capacity that limits the complexity of
separators (hypothesis space) that they can model. A higher capac-
ity classifier family can model more non-smooth separators®. Pre-
vious work [11] has conjectured that adversarial examples abound
due to the low capacity of the classifier family used. See Figure 1A
for an illustration.

Adversarial exploitable space: Define Ec ((X) = Mc(X) U
{x | sim(x, Mc(X)) < €}, where sim is a dissimilarity measure
that depends on the domain and sim(x, Mc (X)) denotes the lowest
dissimilarity of x with any data point in Mc(X). For image classi-

fication sim can just be the I; (Euclidean) distance: {/3;(x; — x; )2

where i indexes the pixels. Ec, (X) is the adversarial exploitable
space, as this space includes all points that are either mis-classified
or can be mis-classified by a minor e-perturbation. Note that we
assume that any already present mis-classifications of the classifier
is exploitable by the adversary without the need of any perturba-
tion. For example, if a stop sign image in a dataset is mis-classified
then an adversary can simply use this image as is to fool an au-
tonomously driven vehicle.

Robustness: Robustness is simply defined as 1 — P(Ec,¢(X)).
First, it is easy to see that robustness is a strictly stronger concept
than accuracy, that is, a classifier with high robustness has higher
accuracy. We believe this property makes our definition more natu-
ral than other current definitions. Further, another readily inferable
property from the definition of Ec ¢ that we utilize later is that a
classifier C’ with M+ (X) € M¢(X) is more robust than classifier C
in the same setting. We call a classifier C” perfect if the robustness
is 100%.

There are a number of subtle aspects of the definition that we
elaborate upon below:

e A 100% robust classifier can still have Mc/(X) # ¢. This is
because robustness is still defined w.r.t. P, for example, large
compact regions of zero probability with small sub-region
of erroneous prediction far away from the boundary can
still make robustness 100%. However, M (X) = ¢ provides

2While capacity is defined for any function class [1] (includes deep neural networks),
the value is known only for simple classifiers like single layered neural networks.
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100% robustness for any P. Thus, robustness based on just
M (X) and not P is a stronger but much more restrictive
concept of robustness than ours.

o A perfect classifier (100% robust) is practically impossible
due to large data requirement especially as the capacity of
the classifier family grows. As shown in Figure 1 low capac-
ity classifiers cannot model complex separators, thus, large
capacity is required to achieve robustness. On the other hand,
classifiers families with large capacity but not enough data
tend to overfit the data [1]. Thus, there is a delicate bal-
ance between the capacity of the classifier family used and
amount of data available. The relation between amount of
data and capacity is not very well understood for Dep Neural
Networks. In any case, perfect robustness provides a goal
that robust classifiers should aim to achieve. In this paper, for
the purpose of defense, we seek to increase the robustness
of classifiers.

e Robustness in practice may apparently seem to be com-
putable by calculating the accuracy for the test set and the
adversarially perturbed test set for any given dataset, which
we also do and has been done in all prior work. However,
this relies on the fact that the attack is all powerful, i.e., it can
attack all perturb-able points. It is easy to construct abstract
examples with probability measure zero mis-classification set
(single mis-classified point in a continuous Euclidean space)
that is computationally intractable for practical attacks to dis-
cover. A detailed analysis of computing robustness is beyond
the scope of this paper and is left for future work.

o The definition can be easily extended to weigh some kinds
of mis-classification more, if required. For example, predict-
ing a malware as benign is more harmful than the opposite
erroneous prediction. For our focus area of image classifica-
tion in this paper, researchers have generally considered all
mis-classification equally important. Also the sim function
in the definition is reasonably well agreed upon in litera-
ture on adversarial learning as the I distance; however, we
show later in experiments that [ distance does not capture
similarity well enough. Instantiating the definition for other
domains such as malware classification requires exploring
sim further such as how to capture that two malwares are
functionally similar.

Lastly, compared to past work [9, 27], our robustness definition
has a clear relation to accuracy and not orthogonal to it. Also, our
definition uses the ideal 0/1 loss function rather than an approxi-
mate loss function [ (often used in training due to smoothness) as
used in other definitions [7? ]. We posit that the 0/1 loss measures
robustness more precisely, as these other approaches have specified
the adversary goal as aiming to perturb in order to produce the
maximum loss within an e ball B(x, €) of any given point x, with the
defender expected loss defined as /X max; e p(x, e) [(Yx, C(2))P(x).
However, this means that even if the class is same throughout the
€ ball, with a varying [ the adversary still conducts a supposed “at-
tack” and increases loss for the defender without flipping labels. For
example, the well-known hinge loss varies rapidly within one of the
classes and such supposed attacks could lead to an overestimation

of the loss for defender and hence underestimate robustness. Fur-
ther, use of an approximation in the definition allows an adversary
to bypass the definition by exploiting the approximation by / when
the true loss is 0/1. It is an interesting question for future on what
kind of approximations can help in computing robustness within
reasonable error bounds.

Finally, we analyze if accuracy is ever suitable to capture robust-
ness. First, we make a few mild technical assumptions that there
exists a density p(x) for the data distribution # over X, X is a metric
space with metric d and vol(X) = 1. We have the following result:

THEOREM 3.1. 1 — a accuracy implies at least 1 — (a + v + Ke/T)
robustness for any output C if

e Forallx € X, sim(x,x") = Td(x,x") for some T > 0.

o Mc(X) lies in a low density region, that is, for all x € Mc(X)
we have p(x) < v for some small v.

e p(x) is K-Lipschitz, that is, |p(x) — p(x”)| < Kd(x,x") for all
x,x" € X.

The first two conditions in the above result are quite natural. In
simple words, the first two conditions says dissimilarity increases
with distance (high T) and the regions that the output classifier
predicts badly has low amount of data in the data-set (low v).

However, the final condition may not be satisfied in many natural
settings. This condition states that the data distribution must not
change abruptly (low K). This is required as the natural behavior
of most classifiers is to predict bad in a low data density region
and if this region is near a high data density region, the adversary
can successfully modify the data points in the high density region
causing loss of robustness. But in high dimensional spaces, data
distribution is quite likely to be not distributed smoothly with many
pockets or sub-spaces of zero density as pointed out in a recent
experimental work [? ]. Thus, data distribution is an important
contributing factor that determines robustness.

3.2 ALN

Our goal is to train a neural network ALN to produce samples in the
misclassification region of a given neural network based classifier.
The ALN acts on a data point x producing x’. Thus, we choose the
following loss function for the ALN that takes into account the
output for the given classifier:

asim(x,x") — opsim(Cat(yx), Cp(x,)) )

The input dissimilarity term in the loss function aims to produce
data points x’ that are similar to the original input x while the
output dissimilarity term aims to maximize the difference between
the true label of x and prediction of C on x’. The « is a weight that
is tuned through a simple search. Observe that this loss function is
general and can be used with any classifier (by inferring Cp from
C in case of specific non neural network based classifiers). For the
image classification problem we use the I, distance for sim. For
W we tried a number of functions, but the best performance
was for the [y loss ||Cat(yx) — Cp(x”)|I1.

Note that an alternate loss function is possible that does not
use the actual label yy of x, rather using Cp(x). This would also
work assuming that the classifier is good; for poor classifiers a lot
of the data points are as it is mis-classified and hence adversarial
example generation is interesting only for good classifiers. Further,
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Figure 1: Intuition behind ALN and DLN. (A) shows a linear
classifier (low capacity) is not able to accurately model a non-
linear boundary. (B) shows the ALN as the distribution map-
ping function F. (C) shows that DLN does the reverse map-
ping of ALN.

this choice would allow using unlabeled data for conducting such
an attack, making attack easier for an attacker. However, in our
experiments we use the more powerful attack using the labels.

Next, we provide a formal intuition of what ALN actually achieves.

Any adversarial example generation can be seen as a distribution
transformer F such that acting on the data distribution # the resul-
tant distribution F(#) has support mostly limited to Mc(X). The
support may not completely limited to Mc(X) as the attacks are
never 100% effective. Also, attacks in literature aim to find points in
Mc(X) that are close to given images in the original dataset. ALN
is essentially a neural network representation of such a function
F against a given classifier C. See Figure 1B for an illustration. We
return to this interpretation in the next sub-section to provide a
formal intuition about the DLN defense.

Lastly, we show in our experiments that ALN produces adver-
sarial examples whose perturbations are roughly of the same order
as the prior attack FGSM. We categorize these as high perturba-
tion attacks. On the other the attack CW produces adversarial
perturbation with very small perturbations, we call such attacks
low perturbation attacks. As mentioned earlier, we provide two
separate defenses for these two types of attacks. Both these defense
can be used simultaneously to defend against both types of attacks.

3.3 DLN

Our first defense approach is to insert a neural network DLN D
between the input and classifier so that D sanitizes the input en-
abling the classifier to correctly classify the input. Each data point
for training DLN has three parts: x” is the image to sanitize, x is
the expected output and yx is the correct label of x. x are images
from the provided dataset, and there are two possibilities for x’:
(1) x’ = x so that DLN attempts to satisfy C(D(x)) = yx, even if
C(x) # yx, and (2) x” = A(x) so that DLN undoes the attack and
make the classifier C correctly classify x’.

We formulate a loss function for DLN that, similar to ALN, has
two terms: sim(x, D(x")) that aims to produce output D(x’) close
to x and opsim(Cat(yx), Cp(D(x"))) that aims to make the classifier
output on D(x”) be the same as yx. Thus, the loss function is

asim(x, D(x")) + opsim(Cat(yx), Cp(D(x’))) .

In this paper we only use a = 1. Note that the attack A is used as a
black box here to generate training data and is not a part of the loss

function. After training the DLN, our new classifier is C’ which is
C prepended by the DLN. The working of DLN can be interpreted
as an inverse map F~! for the mapping F induced by the attack
A. See Figure 1C for an illustration. For the image classification
problem we use the I, distance for sim. For opsim we tried a number
of functions, but the best performance was for the cross-entropy
loss H(Cat(yx ), Cp(D(x")).

An important point to note is that the original classifier C is un-
changed. What this ensures is the mis-classification space M¢(X)
does not change and allows us to prove an important result about
C’ under certain assumptions. For the sake of this result, we as-
sume that attacks A generate adversarial examples in a sub region
Mc, a(X) € Mc(X). We also assume a good DLN D, that is, C(D(x))
is correct for a non-empty subset Z C Mc, 4(X) and C(D(x)) con-
tinues to be correct for all x ¢ Mc(X). Then, we prove

LEMMA 3.2. Assuming Mc, o(X) € Mc(X), DLN is good as defined
above, and Mc, A(X) # ¢, then Mc/(X) € Mc(X)

Proor. Since DLN does not decrease the performance of C on
points outside Mc(X), C”’s prediction on inputs outside M¢(X) is
correct, hence Mc/(X) € Mc(X). Any data point not mis-classified
by a classifier does not belong to its mis-classification space. Good
sanitization by DLN makes C’ predict correctly on Z ¢ Mc 4(X),
which makes Mc, 4(X) N Mc(X) € Mc, 4(X). Thus, we can claim
the result in the lemma statement. O

While the above proof is under ideal assumptions, it provides
an intuition to how the defense works. Namely, the reduction in
the adversarial exploitable space makes the new classifier more
robust (see robustness properties earlier). This also motivates the
generalization of this technique to multiple attacks presented in
the next sub-section.

3.4 Repeated DLN Against Multiple Attacks

The above DLN can be naturally extended to multiple attacks, say
A1, ...,Apn. The only change required is to feed in all possible adver-
sarial examples A1(x)’s, . . . ,Ap(x)’s. It is straightforward to see that
under assumptions of Lemma 3.2 for all the attacks, the resultant
classifier C’ has an adversarial example space M (X) that removes
subsets of Mc 4, (X) for all A; € A from Mc(X). This provides, at
least theoretically under ideal assumptions, a monotonic robust-
ness improvement property with increasing number of attacks for
the DLN based approach. In fact, if all the attacks combined act as
a generator for all the points in Mc(X), then given enough data
and perfect sanitization the resultant classifier C’ tends towards
achieving M/ (X) = ¢ which essentially would make C’ a perfect
classifier. Perfect classifiers have no adversarial examples.
However, attacks rarely explore all of the mis-classified space,
which is why new attacks have defeated prior defense techniques.
Even for our approach, attacks successfully work against the DLN
that has been trained only once (accuracy numbers are in Experi-
ments). However, DLN allows for easy retraining (without retrain-
ing the classifier) as follows: repeatedly attack and re-learn a DLN
in rounds, that is, conduct an attack on the classifier obtained in
every round and train a DLN in a round using the attacked training
data from all the previous rounds and the original training data.
More formally, at round i our training data consists of i copies of
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Figure 2: Intuition behind working of repeated DLN against
high and low perturbation attacks. (A),(B) shows a high per-
turbation attack causes a faster improvement in resultant
classifier. Further, beyond some rounds the attack does not
work as it can only find adversarial examples with high per-
turbation. (C),(D) shows a low perturbation attack causes a
slow improvement in resultant classifier.

original training data and i instances of attacked training data from
previous rounds. Observe that we add copies of the original training
data in each round, this is because the adversarial data swamps out
the original training data and accuracy suffers in regions where the
original training data is distributed. See Figure 2 for an illustration
of how repeated DLN works.

The following result provides formal intuition for this approach:

LEMMA 3.3. Assume the following conditions hold for every round
i:Mc,_,,A(X) € Mc,_,(X) and the DLN D; has good memory, which
means that given there exists a largest set Z; C Mc,_, A(X) which the
DLN D; correctly sanitizes so that C(Dj(x)) is correct for all x € Z;
then Z;_1 C Z;. That is DLN D; can correctly sanitize data points that
the previous round DLN did plus possibly more data points. Further,
C(Dj(x)) continues to be correct for allx ¢ Mc(X). Then the classifier
Cn after n rounds satisfies Mc,(X) € Mc,_,(X).

ProoF. Arguing similarly to Lemma 3.2 we can show that Mc, (X) C

Mc(X) due to the correct classification outside of M (X). Further,
it is easily inferable that Mc,, (X) = Mc(X)\Zy, given Zy, is a subset
of Mc(X) and given the largest such set condition on Z;. Then, the
good memory property leads to the required result. O

The attack-defense competition technique is somewhat akin
to GANs [10]. However, there is a big difference, since in every
round the dataset used to train the DLN grows. Practically, this
requires DLN to have a large capacity in order to be effective; also
depending on the capacity and the size of dataset over or under

fitting problems could arise, which needs to be taken care of in
practice. Also, the training become more expensive over rounds
with increasing data size. In particular, low perturbation attacks are
not defeated with few rounds. We do observe improvement with
the low perturbation CW attack over rounds, but the improvement
is very small, as represented visually in Figure 2. The main reason is
that low perturbation attacks only exposes a very small volume of
misclassified space, thus, it would require a huge number of rounds
for repeated DLN to reduce the mis-classified space to such a small
volume that cannot be attacked. This motivates our next approach
of noise augmented classifier.

3.5 NAC

Figure 2 also provides a hint on how to overcome low perturbation
attacks. In order to achieve low perturbation, such attacks rely a
lot on the exact classifier boundary. Thus, masking the classifier
boundary can fool low perturbation attacks. We achieve this by
adding a small noise to the logits of the neural network calling the
resultant classifier a noise augmented classifier (NAC). This noise
should be small enough that it does not affect the classification
of original data points by much, but is able to mis-lead the low
perturbation attack. Also, following our intuition NAC should not
provide any defense against high perturbation attacks, which we
indeed observe in our experiments. However, observe that DLN
and NAC can be used simultaneously, thus, providing benefits of
both defense which we show in our experiments.

Further, a natural idea to bypass the defense provided by NAC is
to take the average of multiple logit outputs for the same given input
image (to cancel the randomness) and then use the average logits
as the logits required for the CW attack. We show experimentally
that this idea does not work effectively even after averaging over
many logit outputs.

4 EXPERIMENTS FOR ATTACKS

All our experiments, including for DLN and NAC, were conducted
using the Keras framework on a NVIDIA K40 GPU. The learning
problem can be solved using any gradient-based optimizer. In our
case, we used Adam with learning rate 0.0002. We use two well-
known datasets: MNIST digits and CIFAR-10 colored images.

We consider two classifiers one for MNIST and one for CIFAR-10:
we call them Cjp; and Cc. These classifiers are variants of well-
known architectures that achieved state-of-the-art performances
on their respective datasets. As stated earlier, we consider three
attacks: ALN, FGSM and CW. CW has been referred to in the litera-
ture [28] as one of the best attacks till date (at the time of writing
of this paper), while FGSM runs extremely fast. For the autoen-
coder we use a fourteen hidden layer convolutional architecture.
Our code is publicly available, but the github link is elided in this
submitted version for the review process. For our experiments we
pre-process all the images so that the pixels values lie between
[-0.5,0.5], so all components (attacks, autoencoders, classifiers)
work in space [-0.5,0.5]. We use FGSM with values of 0.03 and
0.01 for its parameter € on MNIST and CIFAR, respectively.

Observe that all these attacks work against a given classifier
C, thus, we use the notation A(C, .) to denote the attack A acting
on an image x to produce the adversarial example A(C, x) (A can



0 1 2 3 4 5 6 8 9
Figure 3: Targeted attacks by ALN: target class on bottom

be any of the three attacks). A(C, Z) denotes the set of adversarial
examples {A(C, x) | x € Z}. We report accuracies on various test
sets: (1) original test dataset (OT D): these images are the original
test dataset from the dataset under consideration, (2) A(C, OTD) is
the adversarially perturbed dataset using attack A against classi-
fier C, for example, this could be FGSM(Cys, OT D). We also report
distortion numbers as has been done in literature [5]. Distortion
measures how much perturbation on average was added by an
attack and is meant to capture how visually similar the image is to
the original image. Distortion is measured as the average over all
test images of the I, distance between the original and perturbed
image.

Results: Untargeted attacks refers to attack that aim to produce
mis-classification but not with the goal of making the classifier out-
put a specific label. Targeted attacks aim to produce an adversarial
example that gets classified as a given class y. It is also possible
to modify ALN to perform targeted attacks. This is achieved by
modifying the loss function to use a positive opsim term, like the
DLN loss function, but using the target class label y instead of the
original class label yyx in the opsim term. Then, we can perform an
ALN attack in two ways: ALNU uses the ALN loss function as stated
and ALNT constructs a targeted attack per class label differing from
the original label and chooses the one with least distortion. Figure 3
shows an example of targeted attack with different target labels.
Table 1 shows this approach for MNIST with the targeted ALNT
version performance better than other attacks.

Test data type Accuracy Distortion
OTD 99.45 % -
FGSM(Cp, OTD) 0.72 % 14.99
CW(Cp, OTD) 0.03 % 1.51
ALNU(Cyp, OTD) 1.65 % 4.43
ALNT(Cp, OTD) 0.0 % 4.34

Table 1: Attacks on MNIST Dataset

Table 2 shows the result of untargeted attacks using ALN, FGSM
and CW on the CIFAR-10 dataset. We can see that ALN, just like
FGSM, produces slightly higher adversarial accuracy for MNIST,
but the distortion of FGSM is much higher. This does result in
a large difference in visual quality of the adversarial examples
produced—see Figure 4 for randomly chosen 25 perturbed images
using ALN and Figure 5 for randomly chosen 25 perturbed images
using FGSM. Also, we can attribute the higher distortion of ALN
for CIFAR as compared to MNIST partially to the CIFAR being a
higher dimensional space problems and the same capacity of the
autoencoder we used for CIFAR and MNIST.

Test data type ~ Accuracy Distortion

OTD 84.59 % -
FGSM(Cc,OTD)  4.21 % 10.03
CW(Cc, OTD) 0% 0.18
ALNU(Cc,OTD) 616 % 2.57
ALNT(Cc,OTD) 821 % 3.01

Table 2: Attacks on CIFAR-10 Dataset

Figure 5: Attack using FGSM for CIFAR-10

5 EXPERIMENTS FOR DEFENSE

For defense, we denote the new classifier using the DLN trained
against any attack A or NAC modified classifier as C}; (for MNIST)
or C ,C (for CIFAR). Also, we test accuracies on test data adversari-
ally perturbed by attacks against the new classifiers, for example,
following our convention one such dataset would be denoted as
A(CY,,OTD). For defense we focus on defending against known
attacks in literature.

5.1 DLN Defense Against Single Attack

Table 3 shows the results when the DLN is trained to defense against
specific attacks using MNIST dataset to yield a new classifier C}.



A Learning and Masking Approach to Secure Learning

Along expected lines, the accuracy on OTD drops slightly for all the
cases where DLN is trained against FGSM or CW. However, the new
classifier C}, is able to perform quite good on adversarial examples
that were produced by any attack on the original classifier Cyy, for
example, Cy, gets an accuracy of 95% of the adversarial examples
CW(Cp1, OTD) that was produced by CW attacking Cyy. Lastly,
when attacked again the new classifier C is still not resilient to
attacks as shown by the low accuracies for FGSM(C},, OTD) and
CW(C,,0TD).

One number that stands out is the success of the new classifier
C}, in correctly classifying the adversarial example generated by
CW for the original classifier Cys. This supports our hypothesis
that CW is very sensitive to the exact classifier boundary, and a
newer classifier with a slightly different boundary is able to defeat
prior adversarial examples. Of course, CW is is able to attack CZ/\/I
against quite successfully, which we later show can be defended
by our NAC approach. For FGSM, we show in later sections that
the performance of the classifier greatly improves when DLN is
repeatedly trained against FGSM—revealing that the DLN approach
is flexible enough to keep on improving its performance against
high perturbation attacks.

DLN Test data type Accuracy Distortion
Trained

FGSM OTD 96.77 % -
FGSM  FGSM(Cys, OTD) 88.5 % 4.55
FGSM  FGSM(C%,,0TD)  13.75 % 6.98
Ccw OTD 98.6 % -
CW CW(Cy,OTD) 9542 % 5.77
CwW CwW(C4,,0TD) 0.14 % 3.5

Table 3: New DLN prepended classifier C;, for MNIST

5.2 Repeated DLN

In this section, we run DLN repeatedly as described earlier in Sec-
tion 3.4. We cut off the experiments when a single round took more
than 24 hours to solve. We show the results for MNIST in Table 4
showing a clearly increasing trend in accuracy on adversarial ex-
amples produced by FGSM attacking the newer classifier, revealing
increasing robustness. For CIFAR, the approach becomes too com-
putationally expensive within two rounds. Thus, while the DLN
approach is promising, as stated earlier it is computationally expen-
sive, more so with larger and complex data sets. Further, as stated
earlier running DLN against low perturbation attacks like CW does
not show much improvement. However, we tackle that next using
the NAC defense approach.

5.3 NAC defense

Recall that the NAC defense works by adding noise to the logits
layer of the neural network classifier to produce a new classifier
Cy for MNIST and C[, for CIFAR. We use Gaussian noise with 0
mean and variance 1. In this section, we show that the NAC defense
is able to produce classifiers that are resilient to CW attack. Further,
the new classifier’s accuracy on the original test data-set is nearly

Round  Acc. OTD Acc. Distortion
FGSM(C;, OTD)
0 99.36 % 0.72 % 14.99
1 97.70 % 13.70 % 13.63
2 97.61 % 24.86 % 14.58
3 97.95 % 43.39 % 14.73
4 97.79 % 52.88 % 14.57
5 97.77 % 56.57 % 14.52

Table 4: Classifier trained repeatedly against FGSM for
MNIST

unchanged. This can be seen in Table 5. The second line in that
table shows that the CW attack completely fails as the accuracy on
the adversarial examples in 93%. However, it can also be observed
that the new classifier is not resilient to attack by FGSM, as shown
by the third line in that table. This follows the intuition we provided
in Figure 2. For CIFAR, Table 6 shows that NAC is able to overcome
CW to a large extent.

Attack  Test data type Accuracy Distortion
- OTD 99.36 % -

cw CW(C’,,0TD) 93.60 % 1.49
FGSM  FGSM(C’,,OTD) 074 % 14.99

Table 5: Accuracy of NAC Classifier C;, for MNIST

Attack  Test data type Accuracy Distortion
- OTD 84.67 % -

CW CW(C},.OTD) 77.70 % 0.17
FGSM  FGSM(C},, OTD) 419 % 10.04

Table 6: Accuracy of NAC Classifier C;; for CIFAR-10

As stated earlier, a natural idea to attack NAC would be to query
an image n times and then average the logits before using it for the
CW attack. This augmented attack does make CW more effective
but not by much. Table 7 shows that the accuracy on the adversarial
example generated for C}, remains high. Moreover, more queries
make it more difficult to conduct the CW attack in practice (as
the adversary may be query limited), while also causing a small
increase (1% with 5000 sample) in the already high runtime of CW.

n  Adversarial accuracy Distortion

500 95.14 % 1.51
5000 82.07 % 1.51

Table 7: Accuracy of NAC Classifier C}, against improved
CW for MNIST



5.4 Defense Against Multiple Attacks

Finally, we show that DLN and NAC can work together. We show
this by presenting the accuracy on the adversarial example gener-
ated in each round of DLN repetition when the classifier C; after
each round is augmented with NAC and attacked by FGSM and
CW both. See Table 8. One observation is that NAC’s performance
decreases slightly over rounds stabilizing at 79%, while the accu-
racy for original test set and FGSM perturbed test set stays almost
exactly same as Table 4.

Round  Acc. OTD Acc. Acc.
FGSM(C;, OTD) CW(C;,0TD)

0 99.36 % 0.72 % 94.2
1 97.70 % 13.72 % 93.7
2 97.73 % 24.28 % 84.7
3 97.60 % 43.20 % 83.3
4 97.64 % 53.17 % 79

5 97.73 % 56.45 % 79.3

Table 8: Classifier trained repeatedly against FGSM for
MNIST and augmented with NAC in each round

6 RELATED WORK

A thorough survey of security issues in machine learning is present
in surveys [25] and some of the first results appeared in [8, 19].
Here we discuss the most closely related work.

Attacks: Most previous attack work focuses on adversarial ex-
amples for computer vision tasks. Multiple techniques to create such
adversarial examples have been developed recently. Broadly, such at-
tacks can be categorized as either using costs gradients [3, 11, 14, 20]
or the forward gradient of the neural network [24] and perturbing
along most promising direction or directly solving an optimization
problem (possibly using gradient ascent/descent) to find a pertur-
bation [5, 21]. In addition, adversarial examples have been shown
to transfer between different network architectures, and networks
trained on disjoint subsets of data [22, 26]. Adversarial examples
have also been shown to translate to the real world [15], that is,
adversarial images can remain adversarial even after being printed
and recaptured with a cell phone camera. Attacks on non-neural
networks have also been explored in literature [3]. Our approach
is distinctly different from all these approaches as we pose the
problem of generating adversarial samples as a generative learn-
ing problem, and demonstrate generation of adversarial examples
given access to any given classifier. Our approach also applies to
any classifier that output class probabilities and not just neural
networks.

Defense: Also, referred to as robust classification in many pa-
pers, defense techniques can be roughly categorized into techniques
that do (1) adversarial (re)training, which is adding back adversarial
examples to the training data and retraining the classifier, often re-
peatedly [17], or modifying loss function to account for attacks [14];
(2) gradient masking, which targets that gradient based attacks by
trying to make the gradient less informative [23]; (3) input mod-
ification, which are techniques that modify (typically lower the

dimension) the feature space of the input data to make crafting
adversarial examples difficult [28]; (4) game-theoretic formulation,
which modifies the loss minimization problem as a constrained
optimization with constraints provided by adversarial utility in per-
forming perturbations [16], and (5) filtering and de-noising, which
aims to detect/filter or de-noise adversarial examples (cited below).

Our defense approach differs from the first four kinds of defense
as our DLN approach never modify the classifier or inputs but add a
sanitizer (DLN) before the classifier. First, this increases the capacity
of the resultant classifier C’, so that it can model more complex
separators, which is not achieved when the classifier family stays
the same. Further, our defense is agnostic to the type of attack and
does not utilize properties of specific types of attacks. Interestingly,
the DLN approach can be used with any classifier that output class
probabilities and not just neural networks. Further, NAC is a very
minor modification to the classifier that, distinct from other ran-
domized approaches [? ] that randomize over multiple classifiers,
aims to mask the classifier boundary. Also, NAC can work with
other defenses unlike techniques that modify inputs to try and
defend against CW [28].

More closely related to our work are some defense techniques
that have focused on detecting and filtering out adversarial sam-
ples [12, 18] or de-noising input [13]; here the filter or de-noiser
with the classifier could be considered as a larger neural network.
However, unlike these work, our goal for DLN is targeted sani-
tization. Moreover, recent attack work [4] have produced attack
techniques to defeat many known detection techniques. Our tech-
nique provides the flexibility to be resilient against more powerful
attacks by training the DLN with such an attack for high perturba-
tion attacks or using NAC for low perturbation attacks.

Lastly, two concurrent unpublished drafts (available online) have
independently and simultaneously proposed an attack [2] similar to
ALN and a defense [6] apparently similar to DLN. The difference
for the attack work is in using the class label vs classifier output
in W term for the attack. For the defense work, we differ as we
show how DLN technique extends to multiple attacks and can be
repeatedly used in an attack-defense competition. Moreover, unlike
these drafts, we provide another defense technique NAC that works
against CW, define robustness and show that our defense techniques
approximately aims to achieve our definition of robustness. Further,
our formal reasoning reveals the underlying nature of attacks and
defenses.

7 CONCLUSION AND FUTURE WORK

Our work provides a new learning perspective of the adversarial
examples generation and defense problems with a formal intuition
of how these approaches work, using which we were able to defend
against multiple attacks including the potent CW. Further, unlike
past work, our defense technique does not claim to a catchall or
specific to any attack; in fact, it is flexible enough to possibly de-
fend against any attack. Posing the attack and defense as learning
problems allows for the possibility of using the rapidly developing
research in machine learning itself to make the defense more effec-
tive in future, for example, by using a different specialized neural
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network architecture rather than an autoencoder. A number of vari-
ations of our theory and and tuning of the application framework
provides rich content for future work.
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