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† University of Michigan

{ngp5056,mcdaniel}@cse.psu.edu, {arunesh,wellman}@umich.edu

Abstract—Advances in machine learning (ML) in recent years
have enabled a dizzying array of applications such as data
analytics, autonomous systems, and security diagnostics. ML is
now pervasive—new systems and models are being deployed in
every domain imaginable, leading to rapid and widespread de-
ployment of software based inference and decision making. There
is growing recognition that ML exposes new vulnerabilities in
software systems, yet the technical community’s understanding of
the nature and extent of these vulnerabilities remains limited. We
systematize recent findings on ML security and privacy, focusing
on attacks identified on these systems and defenses crafted to
date. We articulate a comprehensive threat model for ML, and
categorize attacks and defenses within an adversarial framework.
Key insights resulting from works both in the ML and security
communities are identified and the effectiveness of approaches
are related to structural elements of ML algorithms and the
data used to train them. We conclude by formally exploring the
opposing relationship between model accuracy and resilience to
adversarial manipulation. Through these explorations, we show
that there are (possibly unavoidable) tensions between model
complexity, accuracy, and resilience that must be calibrated for
the environments in which they will be used.

I. INTRODUCTION

The coming of age of the science of machine learning
(ML) coupled with advances in computational and storage
capacities have transformed the technology landscape. For
example, ML-driven data analytics have fundamentally altered
the practice of health care and financial management. Within
the security domain, detection and monitoring systems now
consume massive amounts of data and extract actionable in-
formation that in the past would have been impossible. Yet, in
spite of these spectacular advances, the technical community’s
understanding of the vulnerabilities inherent to the design of
systems built on ML and the means to defend against them
are still in its infancy. There is a broad and pressing call to
advance a science of the security and privacy in ML.

Such calls have not gone unheeded. A number of activities
have been launched to understand the threats, attacks and
defenses of systems built on machine learning. However, work
in this area is fragmented across several research communities
including machine learning, security, statistics, and theory of
computation, and there has been few efforts to develop a
unified lexicon or science spanning these disciplines. This
fragmentation presents both a motivation and challenge for our
effort to systematize knowledge about the myriad of security
and privacy issues that involve ML. In this paper we develop a

unified perspective on this field. We introduce a unified threat
model that considers the attack surface and adversarial goals
and capabilities of systems built on machine learning. The
security model serves as a roadmap in the following sections
for exploring attacks and defenses of ML systems. We draw
major themes and highlight results in the form of take-away
messages about this new area of research. We conclude by
providing a theorem of the “no free lunch” properties of many
ML systems—identifying where there is a tension between
complexity and resilience to adversarial manipulation, how this
tension impacts the accuracy of models and the effect of the
size of datasets on this trade-off.

In exploring security and privacy in this domain, it is in-
structive to view systems built on machine learning through the
prism of the classical confidentiality, integrity, and availability
(CIA) model. In this work, confidentiality is defined with re-
spect to the model or its training data. Attacks on confidential-
ity attempt to expose the model structure or parameters (which
may be highly valuable intellectual property) or the data used
to train it, e.g., patient data. The latter class of attacks have
a potential to impact the privacy of the data source, e.g., the
privacy of patient clinical data used to train medical diagnostic
models is often of paramount importance. Conversely, we
define attacks on the integrity as those that induce particular
outputs or behaviors of the adversary’s choosing. Where those
adversarial behaviors attempt to prevent access to meaningful
model outputs or the features of the system itself, such attacks
fall within the realm of availability.

A second perspective in evaluating security and privacy
focuses on attacks and defenses with respect to the machine
learning pipeline. Here, we consider the lifecycle of a ML-
based system from training to inference, and identify the
adversarial goals and means at each phase. We observe that
attacks on training generally attempt to influence the model
by altering or injecting training samples–in essence guiding
the learning process towards a vulnerable model. Attacks at
inference time (runtime) are more diverse. Adversaries use
exploratory attacks to induce targeted outputs, and oracle
attacks to extract the model itself.

The science of defenses for machine learning are somewhat
less well developed. Here we consider several defensive goals.
First, we consider methods at training and inference time
that are robust to distribution drifts–the property that ensures
that the model performs adequately when the training and
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runtime input distributions differ. Second, we explore models
that provide formal privacy preserving guarantees–the property
that the amount of data exposed by the model is bounded by
a privacy budget (expressed in terms of differential privacy).
Lastly, we explore defenses that provide fairness (preventing
biased outputs) and accountability (explanations of why par-
ticular outputs were generated, also known as transparency).

In exploring these facets of machine learning attacks and
defense, we make the following contributions:
• We introduce a unifying threat model to allow structured

reasoning about the security and privacy of systems that
incorporate machine learning. This model, presented in
Section III, departs from previous efforts by considering
the entire data pipeline, of which ML is a component,
instead of ML algorithms in isolation.

• We taxonomize attacks and defenses identified by the
various technical communities as informed elements of
PAC learning theory. Section IV details the challenges of
in adversarial settings and Section V considers trained
and deployed systems. Section VI presents desirable
properties to improve the security and privacy of ML.

• In Section VII, we introduce a no free lunch theorem for
adversarial machine learning. It characterizes the tradeoff
between accuracy and robustness to adversarial efforts,
when learning from limited data.

Note that ML systems address a great many different problem
domains, e.g., classification, regression and policy learning.
However, for brevity and ease of exposition, we focus much
of the current paper on ML classification. We further state that
the related study of the implications of ML and AI on safety in
societies is outside the scope of this paper, and refer interested
readers to the comprehensive review by Amodei et al. [1].

The remainder of this paper focuses on a systematization of
the knowledge of security and privacy in ML. While there is
an enormous body of work in many aspects of this research,
for space we focus on attacks and defenses. As a result of a
careful analysis of the threat model, we have selected seminal
and representative works that illustrate the branches of this
research. While we attempt to be exhaustive, it is a practical
impossibility to cite all works. For instance, we do not cover
trusted computing platforms for ML [2]. We begin below by
introducing the basic structure and lexicon of ML systems.

II. ABOUT MACHINE LEARNING

We start with a brief overview of how systems apply ML al-
gorithms. In particular, we compare different kinds of learning
tasks, and some specifics of their practical implementation.

A. An Overview of Machine Learning Tasks

Machine learning provides automated methods of analysis
for large sets of data [3]. Tasks solved with machine learning
techniques are commonly divided into three types. These are
characterized by the structure of the data analyzed by the
corresponding learning algorithm.

Supervised learning: Methods that induce an association be-
tween inputs and outputs based on training examples in the

form of inputs labeled with corresponding outputs are super-
vised learning techniques. If the output data is categorical, the
task is called classification, and real-valued output domains
define regression problems. Classic examples of supervised
learning tasks include: object recognition in images [4], ma-
chine translation [5], and spam filtering [6].

Unsupervised learning: When the method is given unlabeled
inputs, its task is unsupervised. Unsupervised learning consid-
ers problems such as clustering points according to a similarity
metric [7], dimensionality reduction to project data in lower
dimensional subspaces [8], and model pre-training [10]. For
instance, clustering may be applied to anomaly detection [11].

Reinforcement learning: Methods that learn a policy for ac-
tion over time given sequences of actions, observations, and
rewards fall in the scope of reinforcement learning [12], [13].
Reinforcement learning can be viewed as the subfield of ML
concerned with planning and control. It was reinforcement
learning in combination with supervised and unsupervised
methods that recently enabled a computer to defeat a human
champion at the game of Go [14].

Readers interested in a broad survey of ML are well served
by many books covering this rich topic [3], [15], [16]. Work
on ML security and privacy to date has for the most part
conducted in supervised settings, especially in the context of
classification tasks, as reflected by our presentation in Sections
IV and V below. Since security issues are just as relevant for
unsupervised and reinforcement learning tasks, we strive to
present results in more general settings when meaningful.

B. Data Collection: Three Use Cases

Before one can learn a model that solves a task of interest,
training data must be collected. This consists in gathering a
generally large set of examples of solutions to the task that
one wants to solve with machine learning. For each of the task
types introduced above, we describe one example of a task and
how the corresponding training dataset would be collected.

The first example task is to classify software executables
in two categories: malicious and benign. This is a supervised
classification problem, where the model must learn some map-
ping between inputs (software executables) and categorical
outputs (this binary task only has two possible classes). The
training data comprises a set of labeled instances, each an
executable clearly marked as malicious or benign [17].

Second, consider the task of extracting a pattern represen-
tative of normal activity in a computer network. The training
data could consist of TCP dumps [18]. Such a scenario is
commonly encountered in anomaly-based network intrusion
detection [19]. Since the model’s desired outputs are not
given along with the input—that is, the TCP dumps are not
associated with any pattern specification—the problem falls
under the scope of unsupervised learning.

Finally, consider the same intrusion-detection problem given
access to metrics of system state indicator (CPU load, free
memory, network load, etc.) [20]. This variant of the intrusion
detector can then be viewed as an agent and the system state
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indicator as rewards for actions taken based on a prediction
made by the intrusion detector (e.g., shut down part of the
network infrastructure). In this form, the scenario then falls
under the reinforcement learning tasks.

C. Machine Learning Empirical Process

We describe the general approach taken to create a machine
learning model solving one of the tasks described above.

Training: Once the data is collected and pre-processed, a ML
model is chosen and trained. Most1 ML models can be seen as
parametric functions hθ(x) taking an input x and a parameter
vector θ. The input x is often represented as a vector of values
called features. The space of functions {∀θ, x 7→ hθ(x)}
is the set of candidate hypotheses to model the distribution
from which the dataset was sampled. A learning algorithm
analyzes the training data to find the value(s) of parameter(s)
θ. When learning is supervised, the parameters are adjusted
to reduce the gap between model predictions hθ(x) and the
expected output indicated by the dataset. In reinforcement
learning, the agent adjusts its policy to take actions that yield
the highest reward. The model performance is then validated
on a test dataset, which must be disjoint from the training
dataset in order to measure the model’s generalization. For
a supervised problem like malware classification (see above),
the learner computes the model accuracy on a test dataset, i.e.
the proportion of predictions hθ(x) that matched the label y
(malware or benign) associated with the executable x in the
dataset. When learning is done in an online fashion, parameters
θ are updated as new training points become available.

Inference: Once training completes, the model is deployed to
infer predictions on inputs unseen during training: i.e., the
value of parameters θ are fixed, and the model computes
hθ(x) for new inputs x. In our running example, the model
would predict whether an executable x is more likely to be
malware or benign. The model prediction may take different
forms but the most common for classification is a vector
assigning a probability for each class of the problem, which
characterizes how likely the input is to belong to that class.
For our unsupervised network intrusion detection system, the
model would instead return the pattern representation hθ(x)
that corresponds to a new input network traffic x.

D. A Theoretical Model of Learning

Next, we formalize the semantics of supervised ML algo-
rithms. We give an overview of the Probably Approximately
Correct (PAC) model, a theoretical underpinning of these algo-
rithms, here and later use the model in Sections IV, V, and VI
to interpret attacks and defenses. Such an interpretation helps
discover, from specific attacks and defenses, general principles
of adversarial learning that apply across all supervised ML.

PAC model of learning: PAC learning model has a very rich
and extensive body of work [22]. Briefly, the PAC model states
that data points (x, y) are samples obtained by sampling from

1A few models are non-parametric: for instance the nearest neighbor [21].

a fixed but unknown probability distribution D over the space
Z = X × Y . Here, X is the space of feature values and
Y is the space of labels (e.g., Y = {0, 1} for classification
or Y = R for regression). The mapping from X to Y is
captured by a function h : X → Y associated with a loss
function lh : X×Y → R which captures the error made by the
prediction h(x) when the true label is y. Examples include the
hinge loss [23] used in SVMs or the cross-entropy loss [3]. The
learner aims to learn a function h∗ from a family of functions
H such that the the expected loss (also called risk) r(h) =
Ex,y∼D[lh(x, y)] is minimal, that is, h∗ ∈ argminh∈H r(h).

Of course, in practice D is not known and only samples ~z =
z1, . . . , zn (the training data) is observed. The learning algo-
rithm then uses the empirical loss r̂(h, ~z) = 1

n

∑n
i=1 lh(xi, yi),

where zi = (xi, yi) as a proxy for the expected loss and
finds the h that is close to ĥ ∈ argminh∈H r̂(h, ~z). Thus,
all supervised learning algorithm perform this empirical risk
minimization (ERM) with the loss function varying across
different algorithms. The PAC guarantee states that:

P (|r(h∗)− r(ĥ)| ≤ ε) ≥ 1− δ (1)

where the probability is over samples ~z used to learn ĥ. This
guarantee holds when two pre-conditions are met: [Condition
1: Uniform bound] given enough samples (called the sample
complexity, which depends on ε, δ above) that enable a uni-
form bound of the difference between the actual and empirical
risk for all functions in H, and [Condition 2: Good ERM] ĥ
is close to the true empirical risk minimizer ĥ.

Statistical learning is primarily concerned with the uniform
bound pre-condition above, wherein a good ERM is assumed
to exist and the goal is to find the sample complexity required
to learn certain classes of function with certain loss function.

The training step in supervised learning algorithms performs
the ERM step. The accuracy measured on the test data in
machine learning typically estimates the ε (or some error value
correlated with ε). In particular, the train test procedure relies
on the assumption that training and test data arise from the
same, though unknown, distribution D and more importantly
the distribution faced in an actual deployment in the inference
step is also D. Later we show that most attacks arise from an
adversarial modification of D either in training or in inference
resulting in a mismatch between the distribution of data used
in the learning and the inference phases.

Another noteworthy point is that the PAC guarantee (and
thus most ML algorithms) is only about the expected loss.
Thus, for most data points (x, y) that lie in low probability
regions, the predictor ĥ(x) can be far from the true y yet
the output ĥ could have high accuracy (as measured by test
accuracy) because the accuracy is an estimate of the expected
loss. In the extreme, a learning accuracy of 100% could be
achieved by predicting correctly in the positive probability
region with lot of misclassification in the zero probability
regions (or more precisely sets with measure zero; a detailed
discussion of this fact is present in a recent paper [24]). An
adversary may exploit such misclassification to its advantage.
We elaborate on the two points above later in Section VII.
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III. THREAT MODEL

The security of any system is measured with respect the
adversarial goals and capabilities that it is designed to defend
against–the systems’ threat model. In this section we taxon-
omize the definition and scope of threat models in machine
learning systems and map the space of security models. We
begin by identifying the threat surface of systems built on
machine learning to inform where and how an adversary will
attempt to subvert the system under attack. For the purpose of
exposition of the following Sections, we expand upon previous
approaches at articulating a threat model for ML [25], [26].

A. The ML Attack Surface

The attack surface of a system built with data and ma-
chine learning is reflective of its purpose. However, one can
view systems using ML within a generalized data processing
pipeline (see Figure 1, top). At inference, (a) input features
are collected from sensors or data repositories, (b) processed
in the digital domain, (c) used by the model to produce an
output, and (d) the output is communicated to an external
system or user and acted upon. To illustrate, consider a
generic pipeline, autonomous vehicle, and network intrusion
detection systems in Figure 1 (middle and bottom). These
systems collect sensor inputs (video image, network events)
from which model features (pixels, flows) are extracted and
used within the models. The meaning of the model output
(stop sign, network attack) is then interpreted and action taken
(stopping the car, filtering future traffic from an IP). Here,
the attack surface for the system can be defined with respect
to the data processing pipeline. Adversaries can attempt to
manipulate the collection and processing of data, corrupt the
model, or tamper with the outputs.

Recall that the training of the model is performed using
either an offline or online process. In an offline setting, training
data is collected or generated. The training data used to
learn the model includes vectors of features used as inputs
during inference, as well as expected outputs for supervised
learning or a reward function for reinforcement learning. The
training data may also include additional features not available
at runtime (referred to as privileged information in some
settings [27]). As discussed below, the means of collection and
validation processes offer another attack surface–adversaries
who can manipulate the data collection process can do so to
induce targeted model behaviors. Similar attacks in an online
setting (such as may be encountered in reinforcement learning)
can be quite damaging, where the adversary can slowly alter
the model with crafted inputs submitted at runtime (e.g., using
false training [28]). Online attacks such as these have been
commonly observed in domains such as SPAM detection and
network intrusion detection [28].

B. Adversarial Capabilities

A threat model is also defined by the actions and infor-
mation the adversary has at their disposal. The definition of
security is made with respect to stronger or weaker adversaries
who have more or less access to the system and its data.

ModificationRead Injection Logic Corruption

Training

Model 
parameters

I/O through 
pipeline

I/O through 
model

Model 
architecture

Oracle / Black-box White-box

Inference

Inference

Pipeline 
Model 
Architecture 
Parameters 
Arch and Params 

black box
white box

(weaker)

(stronger)

Training
Read 
Injection 
Modificaiton 
Logic Corruption 

(weaker)

(stronger)

Fig. 2. Adversarial Capabilities: adversaries attack ML systems at inference
time by exploiting model internal information (white box) or probing the
system to infer system vulnerabilities (black box). Adversaries use read or
write access to the training data to mimic or corrupt the model.

The term capabilities refers to the whats and hows of the
available attacks, and indicates the attack vectors one may
use on a threat surface. For instance, in the network intrusion
detection scenario, an internal adversary may have access to
the model used to distinguish attacks from normal behavior,
whereas a weaker eaves-dropping adversary would only have
access to TCP dumps of the network traffic. Here the attack
surface remains the same for both the attacks, but the former
attacker is assumed to have much more information and is
thus a strictly ”stronger” adversary. We explore the range of
attacker capabilities in machine learning systems as they relate
to inference and training phases (see Figure 2).

Inference Phase: Attacks at inference time—exploratory at-
tacks [25]—do not tamper with the targeted model but instead
either cause it to produce adversary selected outputs (incorrect
outputs, see Integrity attacks below) or simply use the attack
to collect evidence about the model characteristics (reconnais-
sance, see privacy below). As explored at length in Section V,
the effectiveness of such attacks are largely determined by the
amount of information that is available to the adversary about
the model and its use in the target environment.

Inference phase attacks can be classified into either white
box or black box attacks. In white box attacks, the adversary
has some information about the model or its original training
data, e.g., ML algorithm h, model parameters θ, network
structure, or summary, partial, or full training data. Grossly
speaking, this information can be divided into attacks that use
information about the model architecture (algorithm and struc-
ture of the hypothesis h), model parameters θ (weights), or
both. The adversary exploits available information to identify
where a model may be exploited. For example, an adversary
who has access to the model h and its parameters θ may
identify parts of the feature space for which the model has
high error, and exploit that by altering an input to into that
space, e.g., adversarial example crafting [30].

Conversely black box attacks assume no knowledge about
the model. The adversary in these attacks use information
about the setting or past inputs to infer model vulnerability.
For example, in a oracle attack, the adversary explores a
model by providing a series of carefully crafted inputs and
observing outputs [31]. Oracle attacks work because a good
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Machine Learning
Model

Physical 
Domain

Digital 
Representation

Physical  
Domain

Input features OutputsObject, action Bits Action

Sensors, 
camera, I/O 
hardware Pre-processing Apply model Output analysis

3D tensor in [0,1] Class probabilitiesTraffic sign JPEG Car brakes

Camera Pre-processing Apply model Output analysis

Packet headers
Flow metadata

Attack probabilityAttack network traffic TCP dump Shutdown 
infrastructure

Packet sniffing 
on network card Pre-processing Apply model Output analysis

Generic Machine 
Learning System

Automotive 
Computer Vision

Network Intrusion 
Detection

Fig. 1. System’s attack surface: the generic model (top row) is illustrated with two example scenarios (bottom rows): a computer vision model used by an
automotive system to recognize traffic signs on the road and a network intrusion detection system.

deal of information about a model can be extracted from input
/ output pairs, and relatively little information is required
because of the transferability property exhibited by many
model architectures (See Section V-B).

Training Phase: Attacks on training attempt to learn, influence
or corrupt the model itself. The simplest and arguably weakest
attack on training is simply accessing a summary, partial or
all of the training data. Here, depending on the quality and
volume of training data, the adversary can create a substitute
model (also referred to as a surrogate or auxiliary model) to
use to mount attacks on the victim system. For example, the
adversary can use a substitute model to test potential inputs
before submitting them to the victim system [32]. Note that
these attacks are offline attempts at model reconnaissance, and
thus may be used to undermine privacy (see below).

There are two broad attack strategies for altering the model.
The first alters the training data either by inserting adversarial
inputs into the existing training data (injection) or altering the
training data directly (modification). In the case of reinforce-
ment learning, the adversary may modify the environment in
which the agent is evolving. Lastly, the adversaries can tamper
with the learning algorithm. We refer to these attacks as logic
corruption. Obviously, any adversary that can alter the learning
logic (and thus controls the model itself) is very powerful and
difficult to defend against.

C. Adversarial Goals

The last piece of a threat model is an articulation of the
goals of the adversary. We adopt a classical approach to
modeling adversarial goals by modeling desired ends as im-
pacting confidentiality, integrity, and availability (called a CIA
model), and adding a fourth property, privacy. Interestingly, a
duality emerges when taking a view in this way: attacks on
system integrity and availability are closely related in goal and
method, as are confidentiality and privacy.

As is often the case in security, ML systems face three types
of risks: failure to provide integrity, availability, and privacy.
Integrity and privacy can both be understood at the level of the
ML model itself, as well as for the entire system deploying it.
Availability is however ill defined for a model in isolation but
makes sense for the ML-based system as a whole. We discuss
below the range of adversarial goals that relate to each risk.

Confidentiality and Privacy: Attacks on confidentiality and
privacy are with respect to the model. Put another way, the
attacks achieving these goals attempt to extract information
about the model or training data as highlighted above. When
the model itself represents intellectual property, it requires that
the model and its parameters be confidential, e.g., financial
market systems [33]. In other contexts it is imperative that
the privacy of the training data be preserved, e.g., medical
applications [34]. Regardless of the goal, the attacks and
defenses for them relate to exposing or preventing the exposure
of the model and training data.

Machine learning models have enough capacity to capture
and memorize elements of their training data [35]. As such,
it is hard to provide guarantees that participation in a dataset
does not harm the privacy of an individual. Potential risks are
adversaries performing membership test (to know whether an
individual is in a dataset or not) [36], recovering of partially
known inputs (use the model to complete an input vector with
the most likely missing bits), and extraction of the training
data using the model’s predictions [35].

Integrity and Availability: Attacks on integrity and ability are
with respect to model outputs. Here the goal is to induce model
behavior as chosen by the adversary. Attacks attempting to
control model outputs are at the heart of integrity attacks—the
integrity of the inference process is undermined. For example,
attacks that attempt to induce false positives in a face recogni-
tion system affect the authentication process’s integrity [37].
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Closely related, attacks on availability attempt to reduce the
quality (e.g., confidence or consistency), performance (e.g.,
speed), or access (e.g., denial of service). Here again, while
the goals of these two classes of attacks may be different, the
means by which the adversary achieves them is often similar.

Integrity is essential in ML, and is the center of attention for
most performance metrics used: e.g., accuracy [38]. However,
researchers have shown that the integrity of ML systems may
be compromised by adversaries capable of manipulating model
inputs [30] or its training data [39]. First, the ML model’s
confidence may be targeted by an adversary: reducing this
value may change the behavior of the overall system. For
instance, an intrusion detection system may only raise an
alarm when its confidence is over a specified threshold. Input
misprocessing aims at misleading the model into producing
wrong outputs for some inputs, either modified at the entrance
of the pipeline, or at the input of the model directly. Depending
on the task type, the wrong outputs differ. For a ML classifier,
it may assign the wrong class to a legitimate image, or classify
noise with confidence. For an unsupervised feature extractor,
it may produce a meaningless representation of the input.
For a reinforcement learning agent, it may act unintelligently
given the environment state. However, when the adversary is
capable of subverting the input-output mapping completely,
it can control the model and the system’s behavior. For
instance, it may force an automotive’s computer vision system
to misprocess a traffic sign, resulting in the car accelerating.

Availability is somewhat different than integrity, as it is
about the prevention of access to an asset–the asset being an
output or an action induced by a model output. Hence, the
goal of these attacks is to make the model inconsistent or
unreliable in the target environment. For example, the goal
of the adversary attacking an autonomous vehicle may be to
get it to behave erratically or non-deterministically in a given
environment. Yet most of the attacks in this space require
corrupting the model through training input poisoning and
other confidence reduction attacks using many of the same
methods used for integrity attacks.

If the system depends on the output of the ML model to
take decisions that impact its availability, it may be subject to
attacks falling under the broad category of denial of service.
Continuing with the previous example, an attack that produces
vision inputs that force a autonomous vehicle to stop imme-
diately may cause a denial of service by completely stopping
traffic on the highway. More broadly, machine learning models
may also not perform correctly when some of their input
features are corrupted or missing [40]. Thus, by denying access
to these features we can subvert the system.

IV. TRAINING IN ADVERSARIAL SETTINGS

As parameters θ of the hypothesis h are fine-tuned during
learning, the training dataset analyzed is potentially vulnerable
to manipulations by adversaries. This scenario corresponds to
a poisoning attack [25], and is an instance of learning in
the presence of non-necessarily adversarial but nevertheless
noisy data [41]. Poisoning attacks alter the training dataset by

inserting, editing, or removing points with the intent of modi-
fying the decision boundaries of the targeted model [39], thus
targeting the learning system’s integrity per our threat model
from Section III. It is somewhat obvious that an unbounded
adversary can cause the learner to learn any arbitrary function
h leading to complete unavailability of the system. Thus, all
the attacks below bound the adversary in their attacks [42].
Also, in the PAC model, modifications of the training data
can be seen as altering the distribution D that generated
the training data, thereby creating a mismatch between the
distributions used for training and inference. In Section VI-A,
we present a line of work that builds on that observation to
propose learning strategies robust to distribution drifts [43].

Upon surveying the field, we note that works almost exclu-
sively discuss poisoning attacks against classifiers (supervised
models trained with labeled data). However, as we strive to
generalize our observations to other types of machine learning
tasks (see Section II), we note that the strategies described
below may apply, as for instance many algorithms used for
reinforcement learning use supervised submodels.

A. Targeting Integrity

Kearns et al. formally analyzed PAC-learnability when the
adversary is allowed to modify training samples with prob-
ability β [39]. For large datasets this adversarial capability
can be interpreted as the ability to modify a fraction β of
the training data. One of the fundamental results in the paper
states that achieving ε learning accuracy (in the PAC model)
requires β ≤ ε

1+ε for any learning algorithm. For example, to
achieve 90% accuracy (ε = 0.1) the adversary manipulation
rate must be less than 10%. The efforts below explored this
result from a practical standpoint and introduced poisoning
attacks against ML algorithms. We organize our discussion
around the adversarial capabilities highlighted in the preceding
section. Unlike some attacks at inference (see Section V-B),
training time attacks require some degree of knowledge about
the learning model, in order to find manipulations of the data
that are damaging to the learned model.

Label manipulation: When adversaries are only able to mod-
ify the labeling information contained in the training dataset,
the attack surface is limited: they must find the most harmful
label given partial or full knowledge of the learning algorithm
ran by the defender. The baseline strategy is to randomly
perturb the labels, i.e. select a new label for a fraction of the
training data by drawing from a random distribution. Biggio
et al. showed that this was sufficient to degrade inference
performance of classifiers learned with SVMs [44], as long
as the adversary randomly flips about 40% of the training
labels. It is unclear whether this attack would generalize to
multi-class classifiers, with k > 2 output classes (these results
only considered problems with k = 2 classes, where swapping
the labels is guaranteed to be very harmful to the model). The
authors also demonstrate that perturbing points classified with
confidence by the model in priority is a compelling heuristic
to later degrade the model’s performance during inference. It
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reduces the ratio of poisoned points to 30% for comparable
drops in inference accuracy on the tasks also used to evaluate
random swaps. A similar attack approach has been applied in
the context of healthcare [45]. As is the case for the approach
in [44], this attack requires that a new ML model be learned
for each new candidate poisoning point in order to measure the
proposed point’s impact on the updated model’s performance
during inference. This high computation cost is due to the
largely unknown relationship between performance metrics
respectively computed on the training and test data.

Our take-away IV.1. Search algorithms for poisoning
points are computationally expensive because of the com-
plex and often poorly understood relationship between a
model’s accuracy on training and test distributions.

Input manipulation: In this threat model, the adversary can
corrupt the input features of training points processed by
the learning algorithm, in addition to its labels. These works
assume knowledge of the learning algorithm and training set.

Direct poisoning of the learning inputs: Kloft et al. show that
by inserting points in a training dataset used for anomaly
detection, they can gradually shift the decision boundary of a
simple centroid model, i.e. a model that classifies a test input
as malicious when it is too far from the empirical mean of the
training data [28]. The detection model is learned in an online
fashion—new training data is collected at regular intervals
and the parameter values θ are computed based on a sliding
window of that data. Therefore, injection of poisoning data in
the training dataset is a particularly easy task for adversaries in
these online settings. Poisoning points are found by solving a
linear programming problem that maximizes the displacement
of the centroid (empirical mean of the training data). This
formulation is made possible by the simplicity of the centroid
model, which essentially evaluates an Euclidean distance.

Our take-away IV.2. The poisoning attack surface of
a ML system is often exacerbated when learning is
performed online, i.e. new training points are added by
observing the environment in which the system evolves.
In the settings of offline learning, Biggio et al. introduce an

attack that also inserts inputs in the training set [46]. These
malicious samples are crafted using a gradient ascent method
that identifies inputs corresponding to local maxima in the
test error of the model. Adding these inputs to the training
set results in a degraded classification accuracy at inference.
Their approach is specific to SVMs, because it relies on the
existence of a closed-form formulation of the model’s test
error, which in their case follows from the assumption that
support vectors2 do not change as a result of the insertion
of poisoning points. Mei et al. introduce a more general
framework for poisoning, which finds the optimal changes to
the training set in terms of cardinality or the Frobenius norm,
as long as the targeted ML model is trained using a convex
loss (e.g., linear and logistic regression or SVMs) and its input

2Support vectors are the subset of training points that suffice to define the
decision boundary of a support vector machine.

domain is continuous [47]. Their attack is formulated as two
nested optimization problems, which are solved by gradient
descent after reducing them to a single optimization problem
using the inner problem’s Karush-Kuhn-Tucker conditions.

Indirect poisoning of the learning inputs: Adversaries with
no access to the pre-processed data must instead poison the
model’s training data before its pre-processing (see Figure 1).
For instance, Perdisci et al. prevented Polygraph, a worm
signature generation tool [48], from learning meaningful sig-
natures by inserting perturbations in worm traffic flows [49].
Polygraph combines a flow tokenizer together with a classifier
that determines whether a flow should be in the signature.
Polymorphic worms are crafted with noisy traffic flows such
that (1) their tokenized representations will share tokens not
representative of the worm’s traffic flow, and (2) they modify
the classifier’s threshold for using a signature to flag worms.
This attack forces Polygraph to generate signatures with tokens
that do not correspond to invariants of the worm’s behavior.
Later, Xiao et al. adapted the gradient ascent strategy intro-
duced in [46] to feature selection algorithms like LASSO [50].

B. Targeting Privacy

During training, the confidentiality and privacy of the data
and ML model are not impacted by the fact that ML is used,
but rather the extent of the adversary’s access to the system
hosting the data and model. This is a traditional access control
problem, which falls outside the scope of our discussion.

V. INFERRING IN ADVERSARIAL SETTINGS

Adversaries may also attack ML systems at inference time.
In such settings, they cannot poison the training data or tamper
with the model parameters. Hence, the key characteristic that
differentiates attackers is their capability of accessing (but
not modifying) the deployed model’s internals. White-box
adversaries possess knowledge of the internals: e.g., the ML
technique used or the parameters learned. Instead, black-box
access is a weaker assumption corresponding to the capability
of issuing queries to the model or collecting a surrogate train-
ing dataset. Black-box adversaries may surprisingly jeopardize
the integrity of the model output, but white-box access allows
for finer-grain control of the outputs. With respect to privacy,
most existing efforts focus on the black-box (oracle) attacks
that expose properties of the training data or the model itself.

A. White-box adversaries

White-box adversaries have varying degrees of access to
the model h as well as its parameters θ. This strong threat
model allows the adversary to conduct particularly devastating
attacks. While it is often difficult to obtain, white-box access
is not always unrealistic. For instance, ML models trained on
data centers are compressed and deployed to smartphones [62],
in which case reverse engineering may enable adversaries to
recover the model’s internals and thus obtain white-box access.
Integrity: To target a white-box system’s prediction integrity,
adversaries perturb the ML model inputs. In the theoretical
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Integrity Privacy
Knowledge Access to model input Access to Source-target Training data Model

of model hθ x and output h(x) training data Misprediction misprediction Membership extraction extraction

White-Box Full No [51], [52], [53] [30], [26], [54] [55]
Through pipeline only No [56], [57], [37] [37]

Black-Box

Yes No [58] [36] [59] [60]

Input x only Yes [32], [30], [52] [60]
No [31], [61]

Through pipeline only No [57]

Fig. 3. Attacks at inference: all of these works are discussed in Section V and represent the threat models explored by the research community.

PAC model, this can be interpreted as modifying the distri-
bution that generates data during inference. Our discussion of
attacks against classifiers is two-fold: (1) we describe strategies
that require direct manipulation of model inputs, and (2) we
consider indirect perturbations resilient to the pre-processing
stages of the system’s data pipeline. Although most of the
research efforts study classification tasks, we conclude with a
discussion of regression and reinforcement learning.

Direct manipulation of model inputs: Here, adversaries alter
the feature values processed by the ML model directly. When
the model is a classifier, the adversary seeks to have it assign
a wrong class to perturbed inputs [25]. Szegedy et al. coined
the term adversarial example to refer to such inputs [30].
Similar to concurrent work [51], they formalize the search for
adversarial examples as the following minimization problem:

arg min
r
h(x+ r) = l s.t. x+ r ∈ D (2)

The input x, correctly classified by h, is perturbed with r such
that the resulting adversarial example x∗ = x + r remains in
the input domain D but is assigned the target label l. This is a
source-target misclassification as the target class l 6= h(x)
is chosen [26]. For non-convex models h like DNNs, the
authors apply the L-BFGS algorithm [63] to solve Equation 2.
Surprisingly, DNNs with state-of-the-art accuracy on object
recognition tasks are misled by small perturbations r.

To solve Equation 2 efficiently, Goodfellow et al. introduced
the fast gradient sign method [52]. A linearization assumption
reduces the computation of an adversarial example x∗ to:

x∗ = x+ ε · sign(∇~xJh(θ, x, y)) (3)

where Jh is the cost function used to train the model h. Despite
the approximation made, a model with close to state-of-the-art
performance on MNIST3 misclassifies 89.4% of this method’s
adversarial examples. This empirically validates the hypothesis
that erroneous model predictions on adversarial examples are
likely due to the linear extrapolation made by components of
ML models (e.g., individual neurons of a DNN) for inputs far
from the training data. In its canonical form, the technique is
designed for misclassification (in any class differing from the
correct class), but it can be extended to choose the target class.

Our take-away V.1. Adversarial examples exist in half-
spaces of the model’s output surface because of the overly

3The MNIST dataset [64] is a widely used corpus of 70,000 handwritten
digits used for validating image processing machine learning systems.

linear extrapolation that models, including non-linear
ones, make outside of their training data [52], [65].
Follow-up work reduced the size of a perturbation r accord-

ing to different metrics [53], [66]. Papernot et al. introduced
a Jacobian-based adversarial example crafting algorithm that
minimizes the number of features perturbed, i.e. the L0 norm
of r [26]. On average, only 4% of the features of an MNIST
test set input are perturbed to have it classified in a chosen
target class with 97% success. This proves essential when the
ML model has a discrete input domain for which only a subset
of the features can be modified easily by adversaries. This is
the case of malware detectors: in this application, adversarial
examples are malware applications classified as benign [56].

Classifiers always output a class, even if the input is out
of the expected distribution. It is therefore not surprising that
randomly sampled inputs can be constrained to be classified in
a class with confidence [52], [67]. The security consequences
are not so important since humans would not classify these
samples in any of the problem’s classes. Unfortunately, train-
ing models with a class specific to rubbish (out of distribution)
samples does not mitigate adversarial examples [52].

Indirect manipulation of model inputs: When the adversary
cannot directly modify feature values used as inputs of the
ML model, it must find perturbations that are preserved by the
data pipeline that precedes the classifier in the overall targeted
system. Strategies operating in this threat model construct
adversarial examples in the physical domain stage of Figure 1.

Kurakin et al. showed how printouts of adversarial examples
produced by the fast gradient sign algorithm were still mis-
classified by an object recognition model [57]. They fed the
model with photographs of the printouts, thus reproducing the
typical pre-processing stage of a computer vision system’s data
pipeline. They also found these physical adversarial examples
to be resilient to pre-processing deformations like contrast
modifications or blurring. Sharif et al. applied the approach
introduced in [30] to find adversarial examples that are printed
on glasses frames, which once worn by an individual result in
its face being misclassified by a face recognition model [37].
Adding penalties to ensure the perturbations are physically
realizable (i.e., printable) in Equation 2 is sufficient to conduct
misclassification attacks (the face is misclassified in any wrong
class), and to a more limited extent source-target misclassifica-
tion attacks (the face is misclassified in a chosen target class).

Our take-away V.2. To be resilient to the pipeline’s
deformations, adversarial examples in physical domains
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need to introduce adapted, often larger, perturbations.
As a natural extension to [67] (see above), it was shown that

rubbish audio can be classified with confidence by a speech
recognition system [68]. Consequences are not as important in
terms of security then [37]: the audio does not correspond to
any legitimate input expected by the speech system or humans.

Beyond classification: While most work has focused on attack-
ing classifiers, Alfeld et al. [54] look at autoregressive models.
An autoregressive model is one where the prediction xt of a
time series depends on previous k realizations of x, that is,
xt =

∑k
i=1 cixt−i; such models are widely used in market

predictions. The adversary can manipulate the input data with
the goal of achieving their desired prediction, given budget
constraints for the adversary. The author’s formulate the ad-
versary’s manipulation problem as a quadratic optimization
problem and provide efficient solutions for it.

Adversarial behaviors were also considered in reinforcement
learning, albeit not to address security but rather to improve the
utility of models. Pinto et al. improve a model for grasping
objects by introducing a competing model that attempts to
snatch objects before the original model successfully grasps
them [69]. The two models are trained, à la Generative
Adversarial Networks [70], with competitive cost functions.

Our take-away V.3. Although research has focused on
classification problems, algorithms developed to craft
adversarial examples naturally extend to other settings
like reinforcement learning: e.g., the adversary perturbs a
video game frame to force an agent to take wrong actions.

Privacy: As discussed in Section III, adversaries targeting the
privacy of a ML system are commonly interested in recovering
information about either the training data or the learned model
itself. The simplest attack consists in performing a membership
test, i.e. determining whether a particular input was used in the
training dataset of a model. Stronger opponents may seek to
extract fully or partially unknown training points. Few attacks
operate in the white-box threat model, as the black-box model
(see below) is more realistic when considering privacy.

Ateniese et al. infer statistical information about the training
dataset from a trained model hθ [55]: i.e., they analyze the
model to determine whether its training data verified a certain
statistical property. Their attack generates several datasets,
where some exhibit the statistical property and others don’t. A
model is trained on each dataset independently. The adversary
then trains a meta-classifier: it takes as its inputs these models
and predicts if their dataset verified the statistical property. The
meta-classifier is finally applied to the model of interest hθ to
fulfill the initial adversarial goal. One limitation is that all
classifiers must be trained with the same technique than hθ.

B. Black-box adversaries

When performing attacks against black-box systems, adver-
saries do not know the model internals. This prohibits the
strategies described in Section V-A: for instance, integrity
attacks require that the attacker compute gradients defined
using the model h and its parameters θ. However, black-box

access is perhaps a more realistic threat model, as all it requires
is access to the output responses. For instance, an adversary
seeking to penetrate a computer network rarely has access to
the specifications of the intrusion detection system deployed–
but they can often observe how it responds to network events.
Similar attacks are key to performing reconnaissance in net-
works to determine their environmental detection and response
policies. We focus on strategies designed irrespectively of the
domain ML is being applied to, albeit heuristics specific to
certain applications exist [71], [29], e.g., spam filtering.

A common threat model for black-box adversaries is the one
of an oracle, borrowed from the cryptography community: the
adversary may issue queries to the ML model and observe its
output for any chosen input. This is particularly relevant in the
increasingly popular environment of ML as a Service cloud
platforms, where the model is potentially accessible through
a query interface. A PAC based work shows that with no
access to the training data or ML algorithm, querying the target
model and knowledge of the class of target models allows
the adversary to reconstruct the model with similar amount
of query data as used in training [72] Thus, a key metric
when comparing different attacks is the wealth of information
returned by the oracle, and the number of oracle queries.

Integrity: Lowd et al. estimate the cost of misclassification in
terms of the number of queries to the black-box model [73].
The adversary has oracle access to the model. A cost function
is associated with modifying an input x to a target instance x∗.
The cost function is a weighted l1difference between x∗ and
x. The authors introduce ACRE learnability, which poses the
problem of finding the least cost modification to have a mali-
cious input classified as benign using a polynomial number of
queries to the ML oracle. It is shown that continous features
allow for ACRE learnability while discrete features make the
problem NP-hard. Because ACRE learnability also depends
on the cost function, it is a different problem from reverse
engineering the model. Following up on this thread, Nelson
et al. [74] identify the space of convex inducing classifiers—
those where one of the classes is a convex set—that are ACRE
learnable but not necessarily reverse engineerable.

Direct manipulation of model inputs: It has been hypothe-
sized that in classification, adversaries with access to class
probabilities for label outputs are only slightly weaker than
white-box adversaries. In these settings, Xu et al. apply a
computationally expensive genetic algorithm. The fitness of
genetic variants obtained by mutation is defined in terms of
the oracle’s class probability predictions [58]. The approach
evades a random forest and SVM used for malware detection.

When the adversary cannot access probabilities, it is more
difficult to extract information about the decision boundary,
a pre-requisite to find input perturbations that result in erro-
neous predictions. In the following works, the adversary only
observes the first and last stage of the pipeline from Figure 1:
e.g., the input (which they produce) and the class label in
classification tasks. Szegedy et al. first observed adversarial
example transferability: i.e., the property that adversarial ex-
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amples crafted to be misclassified by a model are likely to be
misclassified by a different model. This transferability property
holds even when models are trained on different datasets.

Assuming the availability of surrogate data to the adversary,
Srndic et al. explored the strategy of training a substitute model
for the targeted one [32]. They exploit a semantic gap to evade
a malware PDF detector: they inject additional features that are
not interpreted by PDF renderers. As such, their attack does
not generalize well to other application domains or models.

Papernot et al. used the cross-model transferability of ad-
versarial samples [30], [52] to design a black-box attack [31].
They demonstrated how attackers can force a remotely hosted
ML model to misclassify inputs without access to its architec-
ture, parameters, or training data. The attack trains a substitute
model using synthetic inputs generated by the adversary and
labeled by querying the oracle. The substitute model is then
used to craft adversarial examples that transfer back to—are
misclassified by—the originally targeted model. They force a
DNN trained by MetaMind, an online API for deep learning,
to misclassify inputs at a rate of 84.24%. In a follow-up
work [61], they show that the attack generalizes to many
ML models by having a logistic regression oracle trained by
Amazon misclassify 96% of the adversarial examples crafted.

Our take-away V.4. Black-box attacks make it more
difficult for the adversary to choose a target class in
which the perturbed input will be classified by the model,
when compared to white-box settings.

Data pipeline manipulation: Using transferability, Kurakin et
al. [57] demonstrated that physical adversarial example (i.e.,
printouts of an adversarial example) can also mislead an
object recognition model included in a smarphone app, which
differs from the one used to craft the adversarial example.
These findings suggest that black-box adversaries are able to
craft inputs misclassified by the ML model despite the pre-
processing stages of the system’s data pipeline.

Privacy: In black-box settings, adversaries targeting privacy
may pursue the goals already discussed in white-box settings:
membership attacks and training data extraction. In addition,
since the model internals are now unknown to them, extracting
model parameters themselves is now a valid goal.

Membership attacks: This type of adversary is looking to test
whether or not a specific point was part of the training dataset
analyzed to learn the model’s parameter values. Shokri et al.
show how to conduct this type of attack, named membership
inference, against black-box models [36]. Their strategy ex-
ploits differences in the model’s response to points that were
or were not seen during training. For each class of the targeted
black-box model, they train a shadow model, with the same
ML technique. Each shadow model is trained to solve the
membership inference test for samples of the corresponding
class. The procedure that generates synthetic data is initialized
with a random input and performs hill climbing by querying
the original model to find modifications of the input that yield a
classification with strong confidence in a class of the problem.

These synthetic inputs are assumed to be statistically similar to
the inputs contained in the black-box model’s training dataset.

Training data extraction: Fredrikson et al. present the model
inversion attack [59]. For a medicine dosage prediction task,
they show that given access to the model and auxiliary
information about the patient’s stable medicine dosage, they
can recover genomic information about the patient. Although
the approach illustrates privacy concerns that may arise from
giving access to ML models trained on sensitive data, it is
unclear whether the genomic information is recovered because
of the ML model or the strong correlation between the
auxiliary information that the adversary also has access to (the
patient’s dosage) [75]. Model inversion enables adversaries to
extract training data from observed model predictions [35].
However, the input extracted is not actually a specific point of
the training dataset, but rather an average representation of the
inputs that are classified in a class—similar to what is done by
saliency maps [76]. The demonstration is convincing in [35]
because each class corresponds to a single individual.

Model extraction: Among other considerations like intellectual
property, extracting ML model has privacy implications—as
models have been shown to memorize training data at least
partially. Tramer et al. show how to extract parameters of a
model from the observation of its predictions [60]. Their attack
is conceptually simple: it consists in applying equation solving
to recover parameters θ from sets of observed input-output
pairs (x, hθ(x)). However, the approach does not scale to
scenarios where the adversary looses access to the probabilities
returned for each class, i.e. when it can only access the
label. This leaves room for future work to improve upon such
extraction techniques to make them practical.

VI. TOWARDS ROBUST, PRIVATE, AND ACCOUNTABLE
MACHINE LEARNING MODELS

After presenting attacks conducted at training in Section IV
and inference in Section V, we cover efforts at the intersection
of security, privacy, and ML that are relevant to the mitiga-
tion of these previously discussed attacks. We draw parallels
between the seemingly unrelated goals of: (a) robustness to
distribution drifts, (b) learning privacy-preserving models, and
(c) fairness and accountability. Many of these remain largely
open problems, thus we draw insights useful for future work.

A. Robustness of models to distribution drifts

To mitigate the integrity attacks presented in Section V, ML
needs to be robust to distribution drifts: i.e., situations where
the training and test distributions differ. Indeed, adversarial
manipulations are instances of such drifts. During inference,
an adversary might introduce positively connotated words in
spam emails to evade detection, thus creating a test distribution
different from the one analyzed during training [29]. The
opposite, modifying the training distribution, is also possible:
the adversary might include an identical keyword in many
spam emails used for training, and then submit spam ommiting
that keyword at test time. Within the PAC framework, a
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distribution drift violates the assumption that more training
data reduces the learning algorithm’s error rate. We include a
PAC-based analysis of learning robust to distribution drifts.

Defending against training-time attacks: Most defense
mechanism at training-time rely on the fact that poisoning
samples are typically out of the expected input distribution.

Rubinstein et al. [77] pull from robust statistics to build a
PCA-based detection model robust to poisoning. To limit the
influence of outliers to the training distribution, they constrain
the PCA algorithm to search for a direction whose projections
maximize a univariate dispersion measure based on robust pro-
jection pursuit estimators instead of the standard deviation. In a
similar approach, Biggio et al. limit the vulnerability of SVMs
to training label manipulations by adding a regularization term
to the loss function, which in turn reduces the model sensitivity
to out-of-diagonal kernel matrix elements [44]. Their approach
does not impact the convexity of the optimization problem
unlike previous attempts [78], [79], which reduces the impact
of the defense mechanism on performance.

Barreno et al. make proposals to secure learning [25].
These include the use of regularization in the optimization
problems solved to train ML models. This removes some of
the complexity exploitable by an adversary (see Section VII).
The authors also mention an attack detection strategy based
on isolating a special holdout set to detect poisoning attempts.
Lastly, they suggest the use of disinformation with for instance
honeypots [80] and randomization of the ML model behavior.

Defending against inference-time attacks: The difficulty in
attaining robustness to adversarial manipulations at inference,
i.e. malicious test distribution drifts, stems from the inherent
complexity of output surfaces learned by ML techniques. Yet,
a paradox arises from the observation that this complexity
of ML hypotheses is necessary to confer modeling capacity
sufficient to train robust models (see Section VII). Defending
against attacks at inference remains largely an open problem.
We explain why mechanisms that smooth model outputs
in infinitesimal neighborhoods of the training data fail to
guarantee integrity. Then, we present more effective strategies
that make models robust to larger perturbations of their inputs

Defending by gradient masking: Most integrity attacks in Sec-
tion V rely on the adversary being able to find small perturba-
tions that lead to significant changes in the model output. Thus,
a natural class of defenses seeks to reduce the sensitivity of
models to small changes made to their inputs. This sensitivity
is estimated by computing first order derivatives of the model
h with respect to its inputs. These gradients are minimized
during the learning phase: hence the gradient masking termi-
nology. We detail why this intuitive strategy is bound to have
limited success because of adversarial example transferability.

Gu et al. introduce a new ML model, which they name deep
contractive networks, trained using a smoothness penalty [81].
The penalty is defined with the Frobenius norm of the model’s
Jacobian matrix, and is approximated layer by layer to preserve
computational efficiency. This approach was later generalized

(a) Defended model (b) Substitute model
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Fig. 4. Evading infinitesimal defenses using transferability: the defended
model is very smooth in neighborhoods of training points: i.e., gradients of
the model outputs with respect to its inputs are zero and the adversary does
not know in which direction to look for adversarial examples. However, the
adversary can use the substitute model’s gradients to find adversarial examples
that transfer back to the defended model. Note that this effect would be
exacerbated by models with more than one dimension.

to other gradient-based penalties in [82], [83]. Although Gu et
al. show that contractive models are more robust to adversaries,
the penalty greatly reduces the capacity of these models, with
consequences on their performance and applicability.

The approach introduced in [84] does not involve the expen-
sive computation of gradient-based penalties. The technique
is an adaptation of distillation [62], a mechanism designed
to compress large models into smaller ones while preserving
prediction accuracy. In a nutshell, the large model labels data
with class probabilities, which are then used to train the small
model. Instead of compression, the authors apply distillation
to increase the robustness of DNNs to adversarial samples.
They report that the additional entropy in probability vectors
(compared to labels) yields models with smoother output sur-
faces. In experiments with the fast gradient sign method [85]
and the Jacobian attack [84], larger perturbations are required
to achieve misclassification of adversarial examples by the
distilled model. However, [86] identified a variant of the attack
of [26] which distillation fails to mitigate on one dataset.

A simpler variant of distillation, called label smoothing [87],
improves robustness to adversarial samples crafted using the
fast gradient sign method [88]. It replaces hard class labels
(a vector where the only non-null element is the correct class
index) with soft labels (each class is assigned a value close to
1/N for a N -class problem). However this variant was found
to not defend against more computation expensive but precise
attacks like the Jacobian-based iterative attack [26].

These results suggest limitations of defense strategies that
seek to conceal gradient-based information exploited by adver-
saries. In fact, Papernot et al. report that defensive distillation
can be evaded using a black-box attack [31]. We here detail
the reason behind this evasion. When applying defense mech-
anisms that smooth a model’s output surface, as illustrated in
Figure 4.(a), the adversary cannot craft adversarial examples
because the gradients it needs to compute (e.g., the derivative
of the model output with respect to its input) have values close
to zero. In [31], this is referred to as gradient masking. The
adversary may instead use a substitute model, illustrated in
Figure 4.(b), to craft adversarial examples, since the substitute
is not impacted by the defensive mechanism and will still have
the gradients necessary to find adversarial directions. Due to
the adversarial example transferability property [30] described
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in Section V, the adversarial examples crafted using the substi-
tute are also misclassified by the defended model. This attack
vector is likely to apply to any defense performing gradient
masking, i.e. any mechanism defending against adversarial
examples in infinitesimal neighborhoods of the training points.

Our take-away VI.1. Any defense that tampers with
adversarial example crafting heuristics (e.g., by masking
gradients used by adversaries) but does not mitigate the
underlying erroneous model predictions can be evaded
using a transferability-based black-box attack.

Defending against larger perturbations: Szegedy et al. [30]
first suggested injecting adversarial samples, correctly labeled,
in the training set as a means to make the model robust. They
showed that models fitted with this mixture of legitimate and
adversarial samples were regularized and more robust to future
adversaries. The efficiency of the fast gradient sign method
allows for the integration of an adversarial objective during
training. The adversarial objective minimizes the error between
the model’s prediction on the adversarial example and the
original sample label. This adversarial training continuously
makes the model more robust to adversarial examples crafted
with the latest model parameters. Goodfellow et al. show that
this reduces the misclassification rate of a MNIST model from
89.4% to 17.9% on adversarial examples [52].

Huang et al. [66] developed the intuition behind adversarial
training, i.e. penalize misclassification of adversarial examples.
They formulate a min-max problem between the adversary
applying perturbations to each training point to maximize
the model’s classification error, and the learning procedure
attempting to minimize the model’s misclassification error:

min
h

∑
i

max
‖r(i)‖≤c

l(h(xi + r(i)), yi) (4)

They solve the problem using stochastic gradient descent [89].
Their experimentation shows improvements over [52], but they
are often statistically non-significative. The non-adaptiveness
of adversarial training explains some of the results reported
by Moosavi et al. [53], where they apply the defense with an
attack and evaluate robustness with another one.

Our take-away VI.2. In adversarial training, it is es-
sential to include adversarial examples produced by all
known attacks, as the defensive training is non-adaptive.

Interpreting robust learning in the PAC model: As stated
earlier, inference attacks can be interpreted in the PAC model
as the adversary choosing a different data distribution during
inference from the one used in training. Thus, an approach to
handle such adversaries is to modify the distribution D that is
used to generate the training data so that training data samples
reflect a probability distribution that maybe encountered during
inference, i.e., a distribution that places more probability mass
on possibly adversarially classified data. The additions of
adversarial samples in the training data [30], [53] or modifying
the training loss function [66] can be viewed as modifying the
training distribution D towards such an end.

Recall that the PAC model captures the fact that learn-
ing algorithms only optimize for expected loss and hence
existence of mis-classfied instances can never be ruled out
completely. Thus, a formal approach of modifying the training
data must also consider the adversary’s cost in modifying
the distribution in order to tractably deal with adversarial
manipulation. Game theory is a natural tool to capture such
defender-adversary interaction. Next, we use the Stackelberg
game framework to capture the adversarial interaction. It is a
model for defender-adversary interaction where the defender
lays out her strategy (in this paper the classifier) and the
adversary responds optimally (choose a least cost evasion).
Stackelberg games also allow for scalability compared to the
corresponding simultaneous move game [90], [91].

Bruckner et al. [92] first recognized that test data manipu-
lation can be seen in the PAC framework as modifying the
distribution D to

.

D. Then, the learner’s expected cost for
output h is E

x,y∼
.
D

[lh(x, y)].
The basic approach in all game based adversarial learning

technique is to associate a cost function c : X × X → R
that provides the cost c(x, x′) for the adversary in modifying
the feature vector x to x′. The game involves the following
two stages (we provide a generalization of the statistical
classification game by Hardt et al. [93]):

1) The defender publishes its hypothesis ĥ. She has knowl-
edge of c, and training samples drawn according to D.

2) The adversary publishes a modification function ∆.
The defender’s loss is Ex,y∼D[lh(∆(x), y)] and the adver-
sary’s cost is Ex,y∼D[lah(∆(x), y)+c(x,∆(x))] where lah(x) is
a loss function for the adversary that captures the loss when
the prediction is h(x) and the true output is y. It is worth
pointing out that ∆ : X → X can depend on the hypothesis
ĥ. This game follows the test data manipulation framework
described earlier. The function ∆ induces a change of the test
distribution D to some other distribution

.

D4 and the defender’s
loss function can be written as E

x,y∼
.
D

[lh(x, y)]. Thus, just
like the PAC framework, the costs for both players are stated
in terms of the unknown D (or

.

D) and then the empirical
counterparts of these functions are:

1

n

n∑
i=1

lh(∆(xi), yi) and
1

n

n∑
i=1

lah(∆(xi), yi) + c(xi,∆(xi))

The Stackelberg equilibrium computation problem is stated
below. This problem is the analogue of the empirical risk
minimization that the learner solves in the standard setting.

min

n∑
i=1

lh(∆(xi), yi)

∆ ∈ argmin
∆

n∑
i=1

lah(∆(xi), yi) + c(xi,∆(xi))

Unlike the standard empirical risk minimization, this problem
is a bi-level optimization problem and is in general NP Hard.

4If (X,Y ) is a random value distributed according to D, then the
distribution of (∆(X), Y ) is

.
D.
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Bruckner et al. [92] add a regularizer for the learner and the
cost function c(x, x′) as the l2 distance between x and x′.
They solve the problem with a sequential quadratic approach.

Following the approach of Lowd et al. [73], Li et al. [94] use
a cost function that is relevant for many security settings. The
adversary is interested in classifying a malicious data point as
non-malicious. Thus, the cost function only imposes costs for
modifying the malicious data points.

B. Learning and Inferring with Privacy

One way of defining privacy-preserving models is that they
do not reveal any additional information about the subjects
involved in their training data. This is captured by differential
privacy [95], a rigorous framework to analyze the privacy
guarantees provided by algorithms. Informally, it formulates
privacy as the property that an algorithm’s output does not
differ significantly statistically for two versions of the data
differing by only one record. In our case, the record is a
training point and the algorithm the ML model.

A randomized algorithm is said to be (ε, δ) differentially
private if for two neighboring training datasets T, T ′, i.e.
which differ by at most one training point, the algorithm A
satisfies for any acceptable set S of algorithm outputs:

Pr[A(T ) ∈ S] ≤ eεPr[A(T ′) ∈ S] + δ (5)

The parameters (ε, δ) define an upper bound on the probability
that the output of A differs between T and T ′. Parameter ε
is a privacy budget: smaller budgets yield stronger privacy
guarantees. The second parameter δ is a failure rate for which
it is tolerated that the bound defined by ε does not hold.

Training: The behavior of a ML system needs to be ran-
domized in order to provide privacy guarantees. At training,
random noise may be injected to the data, the cost minimized
by the learning algorithm, or the values of parameters learned.

An instance of training data randomization is formalized by
local privacy [96]. In the scenario where users send reports to
a centralized server that trains a model with the data collected,
randomized response protects privacy: users respond to server
queries with the true answer at a probability q, and otherwise
return a random value with probability 1 − q. Erlingsson et
al. showed that this allowed the developers of a browser to
collect meaningful and privacy-preserving usage statistics from
users [97]. Another way to obtain randomized training data is
to first learn an ensemble of teacher models on data partitions,
and then use these models to make noisy predictions on public
unlabeled data, which is used to train a private student model.
This strategy was explored in [98], [99].

Chaudhuri et al. show that objective perturbation, i.e. in-
troducing random noise—drawn from an exponential distri-
bution and scaled using the model sensitivity5—in the cost
function minimized during learning, can provide ε-differential
privacy [100]. Bassily et al. provide improved algorithms and

5In differential privacy research, sensitivity denotes the maximum change
in the model output when one training point is changed. This is not identical
to the sensitivity of ML models to adversarial perturbations (see Section V).

privacy analysis, along with references to many of the works
intervening in private empirical risk minimization [101]

Our take-away VI.3. Learning models with differential
privacy guarantees is difficult because the sensitivity of
models is unknown for most interesting ML techniques.
Despite noise injected in parameters, Shokri et al. showed

that large-capacity models like deep neural networks can be
trained with multi-party computations from perturbed param-
eters and provide differential privacy guarantees [102]. Later,
Abadi et al. introduced an alternative approach to improve
the privacy guarantees provided: the strategy followed is to
randomly perturb parameters during the stochastic gradient
descent performed by the learning algorithm [103].

Inference: To provide differential privacy, the ML’s behavior
may also be randomized at inference by introducing noise
to predictions. Yet, this degrades the accuracy of predictions,
since the amount of noise introduced increases with the num-
ber of inference queries answered by the ML model. Note that
different forms of privacy can be provided during inference.
For instance, Dowlin et al. use homomorphic encryption [104]
to encrypt the data in a form that allows a neural network
to process it without decrypting it [105]. Although, this does
not provide differential privacy, it protects the confidentiality
of each individual input. The main limitations are the perfor-
mance overhead and the restricted set of arithmetic operations
supported by homomorphic encryption, which introduce addi-
tional constraints in the architecture design of the ML model.

C. Fairness and Accountability in Machine Learning

The opaque nature of ML generates concerns regarding a
lack of fairness and accountability of decisions taken based
on the model predictions. This is especially important in
applications like credit decisions or healthcare [106].

Fairness: In the pipeline from Figure 1, fairness is relevant
to the action taken in the physical domain based on the model
prediction. It should not nurture discrimination against specific
individuals [107]. Training data is perhaps the strongest source
of bias in ML. For instance, a dishonest data collector might
adversarially attempt to manipulate the learning into producing
a model that discriminates against certain groups. Historical
data also inherently reflects social biases [108]. To learn fair
models, Zemel et al. first learn an intermediate representation
that encodes a sanitized variant of the data, as first discussed
in [109]. Edwards et al. showed that fairness could be achieved
by learning in competition with an adversary trying to predict
the sensitive variable from the fair model’s prediction [110].
They find connections between fairness and privacy, as their
approach also applies to the task of removing sensitive anno-
tations from images. We expect future work at the intersection
of fairness and topics discussed in this paper to be fruitful.

Accountability: Accountability explains model predictions us-
ing the ML model internals hθ. This is fundamentally relevant
to understanding model failures on adversarial examples. Few
models are interpretable by design, i.e., match human reason-
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ing [111]. Datta et al. introduced quantitative input influence
measures to estimate the influence of specific inputs on the
model output [112]. Another avenue to provide accountability
is to compute inputs that the machine learning model’s com-
ponents are most sensitive to. An approach named activation
maximization synthesizes an input that highly activates a
specific neuron in a neural network [113]. The challenge lies in
producing synthetic inputs easily interpreted by humans [114]
but faithfully representing the model’s behavior.

VII. NO FREE LUNCH IN ADVERSARIAL LEARNING

We begin by pointing out that if a classifier is perfect, i.e.,
predicts the right class for every possible input, then it cannot
be manipulated. Thus, the presence of adversarial examples
is a manifestation of the classifier being inaccurate on many
inputs. Hence the dichotomy between robustness to adversarial
examples and better prediction is a false one. Also, it is well-
known in ML that, given enough data, more complex hypoth-
esis classes (e.g., non-linear classifier as opposed to linear
ones) provide better prediction (see Figure VII). As a result,
we explore the interaction between prediction loss, adversarial
manipulation at inference and complexity of hypothesis class.

Recall the theoretical characterization for data poisoning by
Kearns and Li [39] (see Section IV). While poisoning attacks
can be measured by the percentage of data modified, math-
ematically describing an attack at inference is non-obvious.
Thus, our first result in this section is an identification of the
characteristics of an effective attack at inference. Our second
result reveals that, given a positive probability of presence
of an adversary, any supervised ML algorithm suffers from
performance degradation under an effective attack. Finally, our
third result is that increased capacity is required for resilience
to adversarial examples (and can also give more precision
as a by-product). But to prevent empirical challenges, e.g.,
overfitting, more data is needed to accompany the increase
in capacity. Yet, in most practical settings, one is given a
dataset of fixed size, which creates a tension between resilience
and precision. A trade-off between the two must be found by
empirically searching for the optimal capacity to model the
underlying distribution. Note that this result (presented below)
is analogous to the no free lunch result in data privacy that
captures the tension between utility and privacy [115], [116].

In the PAC learning model, data x, y is sampled from
a distribution D. Recall that the learner learns ĥ such that
P (|r(h∗) − r(ĥ)| ≤ ε) ≥ 1 − δ. For this section, we assume
that there is enough data6 so that ε, δ are negligible, hence we
assume ĥ is same as h∗ for all practical purpose. Recall that
the performance of any learning algorithm is characterized by
the expected loss of its output h: Ex,y∼D[lh(x, y)]. In the real
world, it is often not known whether an adversary will be
present or not. Thus, we assume that an adversary is present
with probability q ∈ (0, 1); where q is not extremely close
to 0 or 1 so that both q and 1 − q are not negligible. Also,

6This assumption is practical in many applications today. Moreover, in-
sufficient data presents fundamental information theoretic limitations [22] on
learning accuracy problems in the benign (without adversaries) setting itself.

Fig. 5. Subfigure A shows the data available for learning and the true
separator between the positive and negative region. The top left corner has
few data points, which in the PAC model means that the data distribution
D has low probability mass over that region. Subfigure B shows the model
learned with an hypothesis class H of linear classifiers. Subfigure C shows
all points misclassified by the linear model. Also shown is an adversarially
chosen uniform distribution

.
D restricted to the red oval in the top left corner;

two observations are (1) the red crosses will cause a significant prediction loss
with

.
D and the linear model shown, and (2) the true separator in this red oval

is highly non-linear (compared to rest of the space) and hence even the best
linear classifier learned w.r.t.

.
D will suffer significant expected loss. Subfigure

D shows that a more complex non-linear classifier can be more accurate and
can provide a lower expected loss against

.
D (modulo over-fitting issues).

recall that an attack in the inference phase is captured by an
adversarially modified distribution

.

D of test data.
Our first result is the following definition that characterizes

an effective attack by the adversary.
• α-effective attack against H and D: the best

hypothesis
.

h
∗

in the adversarial setting, i.e.,
.

h
∗
∈ argminh∈HEx,y∼

.
D

[lh(x, y)] still suffers a
loss E

x,y∼
.
D

[l .
h
∗(x, y)] such that for the best hypothesis

in the benign setting h∗ ∈ argminh∈HEx,y∼D[lh(x, y)]

E
x,y∼

.
D

[l .
h
∗(x, y)] = Ex,y∼D[lh∗(x, y)] + α

This definition implies that for α > 0 it is not trivial to
defend against the modified distribution that the adversary
presents compared to the benign scenario, since even the best
hypothesis

.

h
∗

against the modified distribution
.

D suffers a
greater loss than the best hypothesis h∗ in the benign case.

Note that the definition above does not restrict the adversary
to choose any particular

.

D, that is, the adversary is not
restricted to a particular attack. The definition is parametrized
by H and D, that is, the attack is effective against the given
choice of hypothesis class H and data distribution D. We
leave open the research question about whether a mathematical
characterization of when such attacks exists or is feasible given
the attackers cost–however, we illustrate in Figure VII-C why
it is reasonable to assume that such attacks abound in practice.

For the sake of comparison, we contrast our definition with
a possible alternate attack definition: one may call an attack
effective if E

x,y∼
.
D

[lh∗(x, y)] = Ex,y∼D[lh∗(x, y)] + α, that

is, the adversarial choice of
.

D cause an increase in prediction
loss against the deployed h∗. While such an attack is indeed
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practical as shown in Figure VII-C, the impact of such an
attack can be reduced if a different data distribution D is used
or by gathering more data from the feature space (such as
adding the adversarial samples back into training data). We
present such an example in Appendix A. Our definition of
α-effective attack leads to an impossibility of defense result
that rules out any defense for any data distribution D and any
defense measures based on gathering more data; further, later
the same definition reveals the fundamental importance of the
complexity of the hypothesis class used in adversarial settings.

No free lunch: In our result below, we reveal that higher
the probability that an adversary is present leads to higher
expected loss for any learner. In fact, we prove a stronger
result: we show the above statement holds even if the learner
is allowed to combine outputs in a randomized manner. Thus,
we define the set of hypothesis that can be formed by choosing
a set of hypothesis and randomly choosing one hypothesis: let
hq(S) = h such that h ∈ S and h is chosen from S according
to distribution q, then R(H) = ∪S⊆H,S finite ∪q {hq(S)}.

Theorem 1. Fix any hypothesis (function) class H and distri-
bution D, and assume that an attacker exists with probability
q. Given the attacker uses an α-effective attack against H and
D with α ≥ α0 > 0, for all hypothesis h ∈ R(H) the learner’s
loss is at least

Ex,y∼D[lh∗(x, y)] + qα0

This theorem is proved in Appendix B. While the above
result is a lower bound negative result, next, we present a
positive upper bound result that shows that increasing the
complexity of the hypothesis class considered by the learner
can lead to better protection against adversarial manipulation.
Towards that end, we begin by defining the lowest loss possible
against a given distribution D: lD = minhEx,y∼D[lh(x, y)].
• β-rich hypothesis class: A hypothesis class H′

with the following properties: (1) H ⊂ H′ and
(2) Ex,y∼D[lh′(x, y)] ≤ min{lD, Ex,y∼D[lh∗(x, y)] −
β} for h′ ∈ argminh∈H′ Ex,y∼D[lh(x, y)], h∗ ∈
argminh∈HEx,y∼D[lh(x, y)] and all D.

Intuitively, H′ is a more complex hypothesis class that pro-
vides lower minimum loss against any possible distribution.

Theorem 2. Fix any hypothesis (function) class H and
distribution D and a β-rich hypothesis class H′. Assume
the attacker is present with probability q and lD <<
Ex,y∼D[lh∗(x, y)] − β and l .

D
<< E

x,y∼
.
D

[l .
h
∗(x, y)] − β.

Given the attacker that uses an α-effective against H and D
with α = α0 and the learner uses the β-rich hypothesis class
H′, there exists a h ∈ H′ such that the loss for h is less than

Ex,y∼D[lh∗(x, y)] + qα0 − β

This theorem is proved in Appendix C. There are a number
of subtle points in the above result that we elaborate below:
• The result is an upper bound result and hence requires

bounding the attacker’s capabilities by imposing a bound
on its effectiveness α (compare with Theorem 1).

• The attack used is effective against the less complex class
H whereas the defender uses the more complex class H′.
Following the lower bound in Theorem 1, if the attacker
were to use an effective attack against the class H′ then
the defender cannot benefit from using the rich class H′.

Standard techniques to increase the hypothesis complexity
include: considering more features, using non-linear kernels in
SVM and, using a neural network with more neurons. In ad-
dition, a well known general technique—ensemble methods—
is to combine any classifiers to form complex hypothesis, in
which combinations of classifiers are used as the final output.

Complexity is not free. The above results reveal that more
complex models can defend against adversaries; however, an
important clarification is necessary. We assumed the existence
of enough data to learn the model with high fidelity; as long
as it is the case, increasing complexity leads to lower bias and
better accuracy. Otherwise, learning may lead to over-fitting or
high variance in the model. Thus, while the above theoretical
result and recent empirical work [94] suggests more complex
models for defeating adversaries, in practice, availability of
data may prohibit the use of this general result.

Our take-away VII.1. Adversaries can exploit funda-
mental limitations of simple hypothesis classes in pro-
viding accurate predictions in sub-regions of the feature
space. Such attacks can be thwarted by moving to a more
complex (richer) hypothesis class, but over-fitting issues
must be addressed with the more complex class.

VIII. CONCLUSIONS

The security and privacy of machine learning is an active yet
nascent area. We have explored the attack surface of systems
built upon machine learning. That analysis yields a natural
structure for reasoning about their threat models, and we
have placed numerous works in this framework as organized
around attacks and defenses. We formally showed that there is
often a fundamental tension between security or privacy and
precision of ML predictions in machine learning systems with
finite capacity. In the large, the vast body of work from the
diverse scientific communities jointly paint a picture that many
vulnerabilities of machine learning and the countermeasures
used to defend against them are as yet unknown–but a science
for understanding them is slowly emerging.
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APPENDIX

A. EXAMPLE OF DEFENSE USING ADDITIONAL DATA

In Figure 6 we show in sub-figure A the original data-set and
the true classifier. The hypothesis class being used contains
either a single linear separator or two linear separators. Thus,
this hypothesis class can provide a classifier that is very close
to the true classifier. However, for the data-set in A, the learned
classifier is shown in sub-figure B, which is clearly far from
optimal. This is not a problem of the hypothesis class; a
different distribution of data shown in sub-figure C can provide
for the learning of a much better classifier as shown. Another
way is to add back adversarial examples as shown in sub-
figure D (adversarial examples in red), which again makes the
learned classifier much better.

Fig. 6. Defense using additional data

B. PROOF OF THEOREM 1

Theorem 1. Fix any hypothesis (function) class H and distri-
bution D, and assume that an attacker exists with probability
q. Given the attacker uses an α-effective attack against H and
D with α ≥ α0 > 0, for all hypothesis h ∈ R(H) the learner’s
loss is at least

Ex,y∼D[lh∗(x, y)] + qα0

Proof. Choose any hypothesis h ∈ R(H). The learner’s loss is
E
x,y∼

.
D

[lh(x, y)] =
∫
lh(x, y)

.
p(x, y)dxdy. For a randomized

classifier h which randomizes over h1, . . . , hn with prob-
abilities q1, . . . , qn respectively, the loss for any (x, y) is
the expected loss

∑
i qilhi

(x, y). Thus, E
x,y∼

.
D

[lh(x, y)] =∑
i qi

∫
lhi(x, y)

.
p(x, y)dxdy =

∑
i qiEx,y∼

.
D

[lhi(x, y)].
Now, from the definition of α-effective attack we have
that E

x,y∼
.
D

[lhi
(x, y)] ≥ Ex,y∼D[lh∗(x, y)] + α0. Thus,

E
x,y∼

.
D

[lh(x, y)] ≥ Ex,y∼D[lh∗(x, y)] + α0. Also, by defi-
nition Ex,y∼D[lh(x, y)] ≥ Ex,y∼D[lh∗(x, y)]

Next, for any choice of h the adversary is present with
probability q. Thus, the expected loss of any hypothesis is
qE

x,y∼
.
D

[lh(x, y)] + (1− q)Ex,y∼D[lh(x, y)], which using the
inequalities above is ≥ Ex,y∼D[lh∗(x, y)] + qα0
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C. PROOF OF THEOREM 2

Theorem 2. Fix any hypothesis (function) class H and
distribution D and a β-rich hypothesis class H′. Assume
the attacker is present with probability q and lD <<
Ex,y∼D[lh∗(x, y)] − β and l .

D
<< E

x,y∼
.
D

[l .
h
∗(x, y)] − β.

Given the attacker that uses an α-effective against H and D
with α = α0 and the learner uses the β-rich hypothesis class
H′, there exists a h ∈ H′ such that the loss for h is less than

Ex,y∼D[lh∗(x, y)] + qα0 − β

Proof. Let the adversary’s choice of distribution in his at-
tack be

.

D. Choose the hypothesis h ∈ H ′ such that
h′ ∈ argminh∈H′ Ex,y∼

.
D

[lh(x, y)]. The learner’s loss is
E
x,y∼

.
D

[lh′(x, y)]. By definition of β-richness, we have

E
x,y∼

.
D

[lh′(x, y)] ≤ E
x,y∼

.
D

[l .
h
∗(x, y)]− β

where
.

h
∗
∈ argminh∈HEx,y∼

.
D

[lh(x, y)]. Also, by definition
of α-effective attack against H we have

E
x,y∼

.
D

[l .
h
∗(x, y)] = Ex,y∼D[lh∗(x, y)] + α0

for h∗ ∈ argminh∈HEx,y∼D[lh(x, y)]. Thus, we have

E
x,y∼

.
D

[lh′(x, y)] ≤ Ex,y∼D[lh∗(x, y)] + α0 − β

Also, by β-richness we have

Ex,y∼D[lh′(x, y)] ≤ Ex,y∼D[lh∗(x, y)]− β

Next, the adversary is present with probability q. Thus, the
expected loss of the hypothesis h′ is qE

x,y∼
.
D

[lh′(x, y)] +

(1 − q)Ex,y∼D[lh′(x, y)], which using the inequalities above
is ≤ Ex,y∼D[lh∗(x, y)] + qα0 − β
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