
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Information
Systems School of Information Systems

11-2013

A scalable approach for malware detection through bounded A scalable approach for malware detection through bounded

feature space behavior modeling feature space behavior modeling

Mahinthan CHANDRAMOHAN

Hee Beng Kuan TAN

Lionel C BRIAND

Lwin Khin SHAR
Singapore Management University, lkshar@smu.edu.sg

Bindu Madhavi PADMANABHUNI

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
CHANDRAMOHAN, Mahinthan; TAN, Hee Beng Kuan; BRIAND, Lionel C; SHAR, Lwin Khin; and
PADMANABHUNI, Bindu Madhavi. A scalable approach for malware detection through bounded feature
space behavior modeling. (2013). Proceedings of the 2013 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE), Silicon Valley, USA, November 11-15. 1-11. Research Collection
School Of Information Systems.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4780

This Conference Proceeding Article is brought to you for free and open access by the School of Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email libIR@smu.edu.sg.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/286384172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4780&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4780&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

A Scalable Approach for Malware Detection

through Bounded Feature Space Behavior Modeling

Mahinthan Chandramohan
†
, Hee Beng Kuan Tan

†
, Lionel C. Briand

‡
, Lwin Khin Shar

†
 and

Bindu Madhavi Padmanabhuni
†

†
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore.

{mahintha001, padm0010}@e.ntu.edu.sg, {ibktan, lkshar}@ntu.edu.sg
‡
SnT Centre, University of Luxembourg, Luxembourg.

lionel.briand@uni.lu

Abstract—In recent years, malware (malicious software) has

greatly evolved and has become very sophisticated. The evolution

of malware makes it difficult to detect using traditional

signature-based malware detectors. Thus, researchers have

proposed various behavior-based malware detection techniques

to mitigate this problem. However, there are still serious

shortcomings, related to scalability and computational

complexity, in existing malware behavior modeling techniques.

This raises questions about the practical applicability of these

techniques.

This paper proposes and evaluates a bounded feature space

behavior modeling (BOFM) framework for scalable malware

detection. BOFM models the interactions between software

(which can be malware or benign) and security-critical OS

resources in a scalable manner. Information collected at run-time

according to this model is then used by machine learning

algorithms to learn how to accurately classify software as

malware or benign. One of the key problems with simple

malware behavior modeling (e.g., n-gram model) is that the

number of malware features (i.e., signatures) grows proportional

to the size of execution traces, with a resulting malware feature

space that is so large that it makes the detection process very

challenging. On the other hand, in BOFM, the malware feature

space is bounded by an upper limit N, a constant, and the results

of our experiments show that its computation time and memory

usage are vastly lower than in currently reported, malware

detection techniques, while preserving or even improving their

high detection accuracy.

Index Terms—Malware detection, Malware behavior modeling

I. INTRODUCTION

Exponential growth of malware (malicious software) is a

major threat in the software industry. Symantec, an anti-

malware vendor, reported that more than 403 million new

malware variants were created in 2011, a 41% increase over

2010 [25]. At the same time, targeted attacks, such as Stuxnet

and Duqu, and Advanced Persistent Threats (APT) also

showed a steady increase in recent years [25]. Despite the

widespread use and availability of various anti-malware

(commonly known as anti-virus) tools, the growth of malware

is phenomenal. It is observed that malware has greatly

evolved, where new malware has become very sophisticated

and is designed to avoid traditional anti-virus signatures, using

various obfuscation techniques [6].

Given the alarming growth of malware, a significant

amount of research has focused on proposing various malware

detection techniques to mitigate this problem. We can divide

these techniques into two broad categories: static (or

signature-based) and dynamic (or behavior-based) malware

detection. Signature-based malware detection has an

advantage over behavior-based analysis since it examines the

static content of the malicious binary and thus, is able to

achieve full code coverage. In addition, using signatures, it is

even possible to detect malicious applications before they are

executed. However, the major limitation of signature-based

malware detection is that it can be easily evaded by basic

obfuscation techniques. Further, malware authors can change

the syntactic characteristics (i.e., structure) of a malicious

program without changing its semantics (i.e., behavior) [4,

22]. Unfortunately, signature-based malware detection is still

the predominant detection method today [20].

To overcome the limitations of signature-based malware

detection, security researchers have proposed various behavior

-based malware detection techniques [5, 8, 14, 19, 20] that

focus on the semantics of the malicious application. In

particular, these techniques examine the run-time behavior of

the malicious binary and analyze the system calls (e.g., Win32

and native API functions) invoked during execution, in order

to model its malicious behavior. The key behavior-based

malware modeling techniques include: bags of system calls

[5], sequence of system calls such as n-gram model [19, 5],

individual system call analysis [14], behavioral graphs [8] and

system call dependency graphs [20].

However, one of the key issues in existing behavior-based

malware modeling techniques is that the scalability of these

approaches is highly problematic. Here, scalability refers to

the size of malware features (or signatures) extracted from an

execution trace. For example, even a simple model such as

bags of system calls, generates a number of malware features

that grows proportionally to the size of execution traces [5].

This makes the detection process impractical as huge feature

spaces make the learning process computationally intensive

and detection might be negatively affected if most of these

features are irrelevant. In addition to the scalability of feature

spaces, unacceptably high computational complexity and

memory consumption are also expected to impact the

practicality and efficiency of a malware detector. As a result,

practical applications of complex malware behavior modeling

techniques, such as system call dependency graph and

behavioral graph, are very limited in practice. For example, in

[20], it is reported that it took 12-48 hours to extract malware

specifications from a network worm using a graph mining

algorithm.

In this paper, we propose and evaluate a simple yet

efficient malware behavior modeling technique—called

BOFM—that systematically captures the interactions between

malware and security-critical system resources in a scalable

manner, at an adequate level of abstraction. In BOFM,

scalability is achieved through constructing an upper-bounded

malware feature space with a predetermined value N

(discussed in Section IV). In other words, BOFM can extract

malware features that do not grow in proportion with the

number of program samples under examination. In addition,

BOFM is resilient against basic obfuscation techniques [6].

As BOFM is both accurate and efficient, it can be used to

complement traditional anti-virus tools by leveraging on

BOFM features to accurately detect malware at the end host.

Indeed, our results show that, when combined with machine

learning techniques, BOFM is not only at least as accurate as

existing malware detection techniques, but its computation

times (e.g., for matching signatures) and memory consumption

are vastly lower as well, thus making it a much more practical

and scalable approach.

In summary, this paper makes the following contributions:

 We propose a malware behaviour modelling technique

(called BOFM) that captures malicious interactions be-

tween malware and security-critical OS resources in a

scalable manner. This is in turn combined with machine

learning techniques for automated malware detection.

 We conducted and report an experiment involving 5300

malware and 100 benign samples collected from various

sources. Our experimental results show that BOFM, when

combined with appropriate machine learning classifiers,

can achieve 99.4% malware detection rate with no false

positives, the latter being important in our context.

 We show that the feature space generated by BOFM is of

fixed dimension, does not grow with the number of mal-

ware samples under examination, and is three orders of

magnitude smaller than with the best reported techniques

for malware behaviour modelling. As a result, computa-

tion times and memory usage for extracting program fea-

tures and malware detection are vastly decreased.

The paper is organized as follows. Section II summarizes

the related work and our motivation. Section III gives an

overview of our behavior modeling technique. Section IV

defines our bounded feature space behavior modeling

technique. Section V describes the feature vector construction.

Section VI presents the detection method. Section VII

describes the experimental design. Section VIII summarizes

and discusses the experimental results. Finally, Section IX

concludes the paper.

II. RELATED WORK AND MOTIVATIONS

Past research includes several useful techniques for

malware detection. In this section, we shall present related

research works and discuss the pros and cons of these

approaches.

The recent study on behavior-based malware detection

reported by Canali et al. [5] is most relevant to our current

work. In [5], the authors have done a comprehensive study on

analyzing the efficiency of various malware behavior

modeling techniques. They organized the behavior models

based on three dimensions: (1) the granularity of basic model

elements (i.e., system calls at various levels of abstraction,

such as with and without parameters), (2) the relationship

among basic model elements, such as n-gram, m-bag and k-

tuple1 and, (3) cardinality of each specification (i.e., values of

n, m and k). A series of more than 200 experiments were

conducted on a large set of malware and benign samples to

systematically identify the optimal behavior model for

malware detection. Their experiment results revealed that the

optimal behavior model, 2-bags of 2-tuples of action with

arguments, achieved a 99% detection rate with only a 0.4%

false positive rate.

Though the above results are very encouraging, there are

several shortcomings associated with this approach. The most

important issue is that the scalability of this approach is highly

problematic. The behavior modeling techniques such as n-

gram, m-bag and k-tuple can easily generate huge feature

spaces. For example, from an execution trace with 400 unique

system calls, more than 10 million features are constructed

using m-bag model with a bag cardinality of 3 (m=3) . This

problem is even worse in tuple-based behavior models. In [5],

it is also reported that the memory consumption is one of the

major threat to practical implementation of this approach,

where on a standard machine (Intel Dual Core 2.66 GHz with

4GB of RAM) the prototype malware detector consumed 1GB

of RAM for 5 million malware signatures. Further, it is also

reported that feature extraction from malware samples is itself

a computationally intensive task, where almost 2 days of

computation are required for tuples of system calls with

arguments model.

In addition, the approach in [5] requires several parameter

tunings for optimal performance that makes it less practical.

Moreover, it is observed that intensive parameter tuning is

often associated with overfitting problems. For example, to

manage the huge feature space, authors have proposed a

feature pruning mechanism. A malware feature is discarded if

it is not general enough (i.e., doesn’t detect at least five

malwares) or too redundant (i.e., not represented by 20,000

other signatures), where the values 5 and 20,000 are arbitrarily

selected. Further, there is a trade-off in selecting the

cardinality of a specification (e.g., number of basic model

elements in a bag), where increasing the cardinality may result

in a high detection rate but also lead to overfitting. For

example, in [5], it is reported that detection rates achieved by

tuple-based behavior models are highly sensitive to

1 Please refer to [5] for definitions of n-gram, m-bag and k-tuple models

cardinality. Finally, the alert threshold, the number of malware

signatures that need to be matched to flag an unknown

program as malware, significantly influences the detection rate

and false positive rate. In [5], it is shown that small alert

threshold results in high detection and false positive rate and

vice versa. Thus, choosing the appropriate values for these

parameters is crucial but complex in practice.

Apart from [5], there are several other behavior-based

malware modeling techniques proposed in the literature. Lanzi

et al. [19] proposed AccessMiner, a malware detection

technique based on system-centric malware models, where the

interaction between benign sample and the OS resources is

modeled in a system-centric manner. This addresses the

limitation of program-centric approaches. Further, authors

empirically proved the inefficiencies of n-gram based malware

behavior modeling. In addition to generic malware detection

[15, 13], system call and library call based behavior modeling

is also proposed to detect more specific class of malware, such

as spyware (Kirda et al. [21]) and botnets (Stinson et al. [16])

detection.

Kolbitsch et al. [8] proposed an efficient and effective

malware detection approach at the end host, where it models

the malware behavior as a graph and detection is done at the

end host using graph matching. Similarly, Fredrikson et al.

[20] proposed malware specification mining using dependency

graphs. They managed to achieve a higher detection rate than

two commercial behavior-based malware detectors. However,

graph mining still remains very computationally intensive,

where it is reported that it took around 12-48 hours to extract

malware specification from certain network worms. In

addition, the dataset used in most of these approaches are very

limited. For example, Kolbitsch et al. [8] used only 563

malware samples and 10 benign samples, similarly,

Christodorescu et al. [13] used 16 malware and 6 benign

samples, Stinson et al. [16] used 6 malware and 9 benign

samples, and Martignoni et al. [15] used only 7 malware and 6

benign samples for evaluation.

We derive the following key observations based on the

abovementioned, behavior-based malware detection

approaches [5, 19, 8, 13, 16, 15]:

 The practicality and efficiency of malware detection

techniques are characterized on four dimensions: the

size of feature space, computational complexity, over-

head in terms of additional pre-processing activities,

and detection accuracy.

 Simple malware behaviour models such as n-gram, m-

bag and k-tuple, generate huge feature spaces and re-

quire various pruning and parameter tuning mecha-

nisms to alleviate the problem.

 More complex malware behaviour models, such as de-

pendency and behavioural graphs are, generally, highly

computationally and data intensive.

In the next two sections, we explain our proposed

approach, Bounded Feature space behavior Modeling

(BOFM), which aims at making malware detection scalable,

efficient, and practical, while retaining or improving the high

accuracy reported thus far in the literature.

III. OVERVIEW

Malwares usually achieve their objectives through

performing malicious actions on security-critical, operating

system resources. An action corresponds to a high-level

operation (e.g., reading a file) that is composed of a set of

related system calls to achieve an externally meaningful

objective [3, 5]. For example, reading a file may require two

system calls: (1) NtOpenFile to open the file, and (2)

NtReadFile to read the file content. The main advantage of

using actions over system calls is that different versions of the

same operating system (e.g., Windows 2000 and Windows

XP) may use different names for system calls that are in fact

serving the same purpose [3] and, as a result, analyzing system

calls directly may result in dealing with unnecessarily large

amounts of data. For example, in Windows OS, the system

calls NtCreateProcess and NtCreateProcessEx are both used

to create a new process. Thus, these two system calls can be

mapped to a single action called CreateProcess. System call

sequences can be mapped to actions using a mapping

algorithm [7]. There are a number of different mapping

algorithms used in the malware research community.

Depending on the algorithm used, the system call sequence

 NtOpenFile, NtReadFile can be mapped to two distinct

actions OpenFile and ReadFile, respectively, or both system

calls can be combined to represent a single action ReadFile.

In the remainder of this section, we first discuss the

various types of OS resources and then, we introduce and

illustrate our behavior modeling technique by using an

example.

A. Operating System Resource Types

The analysis of malicious behavior is usually carried out

through examining the actions it performs on security-critical

system resources. In the literature, researchers usually model

malware behavior based on its interaction with certain types of

OS resources, such as file system, registry, process and

network. For example, Kolbitsch et al. [8] considered security-

relevant system calls associated with file system, registry,

network, process and system services for malware detection,

whereas in our previous work [9], we considered the actions

performed on four security-critical OS resource types such as

file system, registry, process and network, for malware

clustering. Based on the broad classification of system calls

reported in [28] and Windows OS internals [10], we have

considered the following OS resource types in our study: file

system, registry, process, thread, section, network and

synchronization. Next, we shall briefly describe each of these

OS resource types.

 File System. Operating system and the programs that run

on it are made up of individual files. A file is an in-

stance of any opened file or I/O device.

 Registry. Registry is a system-defined database in which

applications and system components store and retrieve

configuration data [29].

 Process and Thread. Process is the virtual address

space and control information necessary for the exe-

cution of a set of threads One or more threads run in

the context of such process [27].

 Network. This corresponds to the network related activi-

ties of the program being executed.

 Synchronization. This aims to protect shared resources

from simultaneous access by multiple threads or proc-

esses [31].

 Section. Section represents a portion of memory that can

be shared, where a process can use section to share parts

of its memory address space with other processes [32].

We model malicious behavior based on the sets of actions

that malware performs on individual OS resource instances.

An OS resource instance corresponds to an identifier (or

instance) of an OS resource type. For example, for File

System, file names (e.g., C:\foo.exe and C:\Windows\abc
.dll) are identifiers and the actions performed on each of these

file instances include OpenFile, ReadFile, and DeleteFile. A

comprehensive list of actions that a malware can perform on

each OS resource type is given in Table 1.

TABLE 1: OS RESOURCES AND CORRESPONDING ACTIONS

OS Resource

Types

of

Actions
List of Actions

File system 14

CreateDirectory, QueryDirectory,
CreateFile, SetFileInformation,
UnLockFile, LockFile, OpenFile,
WriteFile, QueryFileAttributes,
QueryFileVolume, DeleteFile, ReadFile
DeviceControl, QueryFileInformation

Registry 7
CreateKey, DeleteKey, DeleteValue,
SetValue, OpenKey, NotifyChangeKey
QueryValue

Process/Thread 6
SetInformationProcesses, Create-
Process, CreateThread, OpenProcess,
KillProcess, QueryInformationProcess

Synchronization 6
CreateMutex, OpenSemaphore,
CreateSemaphore, OpenMutex,
ReleaseMutex, ReleaseSemaphore

Network 1 NetworkConnection

Section 4
OpenSection, CreateSection,
QuerySection, MapViewOfSectoin

Next, we shall present an example to illustrate our

behavior modeling technique. This example is used as a

running example in this paper.

B. Example

A sample malware execution trace is given in Figure 1,

where system calls are already mapped to high-level actions.

In a real world scenario, a single malware execution trace can

contain several thousands of actions. However, to keep it

simple, we have only considered few file and registry related

actions in this example. The behavior of our pseudo malware

is given below:

 Creates a malicious executable along with three other

dummy files.

 Reads two system files and a dummy file several

times.

 Creates a registry key and sets its value.

 Deletes all the dummy files.

1: CreateFile("C:\Windows\malicious.exe")

2: CreateFile("C:\Windows\...\dummy1.txt")

3: ReadFile("C:\Windows\...\dummy1.txt")
4: CreateFile("C:\Windows\dummy2.dll")

5: ReadFile("C:\Windows\...\sysfile1.ini")

6: ReadFile("C:\Windows\...\sysfile2.dll")

7: CreateKey("HKLM\Software\...\...\key")

8: SetValue("HKLM\Software\...\...\key", value)

9: ReadFile("C:\Windows\...\dummy1.txt")

10: ReadFile("C:\Windows\...\dummy1.txt")

11: DeleteFile("C:\Windows\...\dummy1.txt")
12: CreateFile("D:\Personel\dummy3.exe")

13: DeleteFile("D:\Personel\dummy3.exe")

14: DeleteFile("C:\Windows\dummy2.dll")

15: ReadFile("C:\Windows\...\sysfile2.dll")

Fig.1. Sample malware execution trace

 TABLE 2: EXTRACTED MALWARE FEATURES

Id Features (Action set) OS Resource Instances

1 {CreateKey, SetValue} HKLM\Software\...\...\key

2 {CreateFile} C:\Windows\malicious.exe

3
{CreateFile, ReadFile,

DeleteFile}
C:\Windows\...\dummy1.txt

4 {ReadFile}
C:\Windows\...\sysfile1.ini,
C:\Windows\...\sysfile2.dll

5 {CreateFile, DeleteFile}
C:\Windows\dummy2.dll,
D:\Personel\dummy3.exe

Table 2 shows in column 2 the five extracted features from

the sample malware execution trace shown in Figure 1. As we

will see in the next section, features are action sets, that is, fea-

tures are constructed by grouping related actions performed by

malware on individual OS resource instances, where related

actions refers to actions belonging to the same OS resource

type. Column 3, in Table 2, shows the OS resource instances

on which features are performed. For example, the action set

{CreateFile, ReadFile, DeleteFile} is performed on a file re-

source C:\Windows\...\dummy1.txt (Id-3) and action set

{ReadFile} is performed on two different OS resource instanc-

es C:\Windows\...\sysfile1.ini and C:\Windows\...\sysfile2.
dll (Id-4). In Table 2, Id 2-5 represent malware features corre-

sponding to File System and Id-1 represents a feature corre-

sponding to Registry. It is important to note that OS resource

instances (column 3 in Table 2) are only used to identify relat-

ed actions and are not included in the feature vectors used to

support malware detection (Section V). This is due to the fact

that malware tend to use random file names, mutex values and

registry key values each time they execute and, therefore,

there is no agreed-upon mechanism to generalize these highly

volatile artifacts [19].

Next, we shall precisely define our malware behavior

modeling technique, BOFM, and explain its properties.

IV. BOUNDED FEATURE SPACE BEHAVIOUR MODELLING

(BOFM)

A malware perform various actions on one or more OS

resource instances. In the proposed BOFM, for each type of

OS resources, the set of related actions performed by malware

on an individual resource instance constitutes a feature of the

malware. That is, in our example (see Section III.B), the set of

related actions: {CreateKey, SetValue}, performed by malware

on a registry instance: HKLM\Software\...\...\key, constitutes

a feature (Id-1). In total, five features are extracted (see

column 2 in Table 2) from the malware execution trace shown

in Figure 1.

Due to our modeling preference, BOFM features hold the

following three key properties;

Property 1: Regardless of the number of times an action is

performed, if the same set of actions is performed on OS

resource instances of the same type, this leads to identical

malware features. For instance, in our example, ReadFile
action is performed only once on file instance

C:\Windows\...\sysfile1.ini and twice on file instance
C:\Windows\...\sysfile2.dll; however, these two

behaviors are considered to be identical and are represented

by a single malware feature {ReadFile} (Id-4).

Property 2: The sequence, in which the actions are performed,
by malware, is ignored in feature construction. That is, in

our example, malware read the contents of system file:

C:\Windows\...\sysfile1.ini way ahead of creating file:

D:\Personel\dummy3.exe, however, this information

(i.e., sequence) is not captured by BOFM features. In

addition, ordering of actions in an action set is also

ignored. That is, features {ReadFile, QueryFileInformat-
ion} and {QueryFileInformation, ReadFile} are

considered identical.

Property 3: Identical action sets which are performed on two

different OS resource instances of same type are modeled

as a single feature. In our example, action set {CreateFile,
DeleteFile} is modeled as a single malware feature even

though it is performed on two different file resource

instances; C:\Windows\dummy2.dll and D:\Personel
\dummy3.exe (Id-5).

Next, we shall formally derive the upper-bound for malware

features constructed using BOFM.

Upper-bound. Let us assume there are types of OS

resources and for each OS resource type (), the

possible actions that a program can perform are always

predefined and fixed. The list actions considered for each OS

resource type in Table 1 is a representative example. Thus, the

total number of possible actions that a malware may

perform on a resource instance of type is a constant.

Consequently, the maximum number of possible features

(or action sets) with regard to OS resource type is also a

constant and can be computed as follows:

 +

 +

 + … +

 (1)

Where,

 Therefore, as a

result of applying BOFM, the total number of possible

features , extracted from all resource types, is always the

following constant:

From equation (2), it can be seen that the total number of

features of a malware depends only on the total number of OS

resource types and the number of possible actions performed

on each OS resource type.

Based on the number of actions considered for File System

(Table 1), using equation (1), the maximum possible number

of malware features that can be extracted is
 +

 . Similarly, the maximum possible number of

malware features extracted for various resources are: registry:

127, network: 1, process/thread: 63, synchronization: 63 and

section: 15. Finally, using equation (2), the total number of

malware features (N) that can be extracted from these six OS

resource types sums up to 16,652. It’s worth noting that the

value of N, calculated above, is specific to this study. In

practice, it will vary based on the number of OS resource types

and list of actions considered in a given context.

Hence, in contrast to existing approaches in which the

feature space grows in direct proportion to number of malware

instances under examination, the total number of possible

features for malware detection under our approach has an

upper bound (N=16,652). That is, our approach has a

bounded feature space and this is expected to improve the

scalability of malware behavior modeling. Further, we

observed that malwares often perform a combination of

actions that are not normally performed by benign

applications. This behavior is captured by the hypothesis

below.

Hypothesis (Action set characterization). To achieve

malicious objectives, malware tend to perform sets of actions,

on a number of OS resource types that are significantly

different from benign applications.

Rationale. Obfuscation techniques, such as dead-code

injection, subroutine reordering, instruction substitution and

code transposition, are widely used to evade traditional,

signature-based malware detection [6]. It is observed that

malware authors often: (1) reorder independent actions2 [13],

and (2) repeat certain actions many times [30], e.g., perform
ReadFile action in a loop, to break the byte sequence (or code

pattern) without affecting the semantics of the program to fool

byte (or action) sequence-based malware detection techniques.

Therefore, accounting for the sequence of actions in behavior

modeling may have the adverse effect of failing to capture

identical, high-level behavior with different action sequence.

In addition, as opposed to sets, sequences of actions, similar to

2 These actions are independent from others and any permutation of these ac-

tions will lead to the same end behavior [13]

n-gram, would result in a huge feature space and thus, would

be much less scalable. Thus, we modeled the malware

behavior as a set of actions, in contrast to sequences, to

overcome the above mentioned obfuscation techniques. The

advantage of using set in malware behavior modeling is

twofold: (1) repeated actions are ignored (property 1), and (2)

agnostic to reordering of independent actions (property 2).

Though it is noted that there is a trade-off in using sets as the

ordering of actions may constitute valuable information, in

practice, malware authors often use obfuscation techniques

that render this information useless. Further, OS resource

instances (column 3 in Table 2) are not considered for

malware detection as they are highly volatile (i.e., involve

randomness) and there is no agreed-upon mechanism to

generalize these highly volatile artifacts such as file names,

mutex values and IP addresses [19] (property 3).

V. CONSTRUCTION OF FEATURE VECTORS

In this section, we explain how we extract malware

features from execution traces and embed them in feature

vectors.

A. Collecting Execution Traces

The run-time behavior of malware instances are monitored

using a Sandbox, which is a dynamic malware analysis tool

such as CWSandbox [1], Anubis [2], and Cuckoo Sandbox

[12]. These systems execute programs in a controlled

environment, monitor their behavior, and generate behavior

reports. These reports generally contain high-level, action

based malware behavioral characteristics [1] such as newly

created/modified/deleted file details, registry keys, and network

traffic details. Few sandboxes, such as Cuckoo sandbox [12],

also provide low-level behavioral characteristics (i.e., Win32

and native API functions based). In such cases, system calls

can be mapped to relevant high-level actions using an

appropriate mapping algorithm [7]. It is also noted that system

calls can be used to model malware behavior but, as mentioned

earlier, one must be aware of different system calls serving the

same purpose (e.g., NtCreateProcess and NtCreateProcess-
Ex).

B. Extraction of Features

 Feature extraction from an execution trace involves three

steps. They are as follows:

Step 1: OS resource instances present in the execution trace

are identified.

Step 2: Related actions3 corresponding to an OS resource

instance are grouped, forming action sets.

Step 3: Repeat Step 2 until all the OS resource instances

identified in Step 1 are covered.

Each unique action set, constructed in Step 2, constitute a

feature (see Section III.B). Similar to other approaches [9, 11],

we use feature vector to embed the extracted malware features.

Next, we shall explain feature vector construction.

3 Related actions refer to actions belonging to the same OS resource type.

…

Malware 1 1 1 1 1 1 0 0

Fig. 2. Feature vector

C. N-dimensional Feature Vector

For each malware, once the malware features are extracted

(column 2 in Table 2) from the execution traces, we embed

them in an N-component (or N-dimensional) feature vector,

where N is the total number of possible features (equation 2).

Each component in a feature vector is designated to represent

a possible malware feature. We re-emphasize that OS resource

identifiers are only used to identify related actions and are not

part of feature vectors. Figure 2 depicts a feature vector

constructed using malware features (column 2 in Table 2)

extracted from execution traces shown in Figure 1. In a feature

vector, the n
th

 component represents feature n (denoted by Fn)

and each feature is assigned a value ‘1’ or ‘0’ to denote the

presence (i.e., active) or absence of that feature, respectively.

‘Active’ features4 refer to those features present in a malware

or benign program.

It is also noted that extracting features from benign

programs exactly follows the same process as explained

above, except that it is executed on a real-world machine

instead of a sandbox to collect representative execution traces.

In addition, the length of benign feature vectors is also upper-

bounded by a constant N (equation (2)). To summarize, each

malware and benign application is converted into an N-

dimensional binary feature vector, in our case N=16,652.

VI. DETECTION METHOD

Based on our analysis of related work (Section II), we find

that not many behavior-based malware detection frameworks

adopt Machine Learning classification techniques to build

detection engines. This is may be due to the fact that when the

feature space is extremely large, the learning process will be

computationally intensive and negatively affected if most of

the features are irrelevant. In contrast, due to its limited feature

space, BOFM is amenable to the use of Machine Learning

(ML) classification techniques for building Malware Detection

models. In our approach, Machine Learning classifiers are

used to classify unknown software as either malware or

benign. We tried and compared a number of ML classification

techniques and report here on the results with Logistic

Regression (LR) [18] and Support Vector Machine (SVM)

[23]. The latter is reported as it is a recent technique, that has

shown to work well in a number of applications, is based on a

non-probabilistic theory about learning structures in data, and

yields the best results in our particular case. The former is a

standard probabilistic technique that yields regression models

4 In the following sections of the paper, when we refer to ‘features’ extracted

by BOFM, we implicitly refer to ‘active’ features, unless otherwise stated.

The number of active features is always less than or equal to N.

{C
re

at
eK

ey
,

Se
tV

al
u

e}

{C
re

at
eF

il
e}

{C
re

at
eF

il
e,

R

ea
d

F
il

e,

D
el

et
eF

il
e}

{R
ea

d
F

il
e}

{C
re

at
eF

il
e,

D

el
et

eF
il

e}

Features

Samples

F
1

6
, 6

5
2

which are easy to interpret; in particular to assess what

features are statistically significant predictors of malware.

The malware detection process includes two phases: model

building and model evaluation. During the model building

phase, a training-set of benign and malware feature vectors is

used by the ML algorithm to build a classifier. The model

evaluation phase aims at assessing the classifier accuracy in a

realistic fashion. By analyzing the actual classification (benign

or malware) of feature vectors present in the training-set, an

ML algorithm generates a trained classifier, e.g., a logistic

regression equation with estimated parameter values. Next,

during the model evaluation phase, a test-set, of benign and

malware feature vectors, is classified by the trained classifier.

Based on classification results, the performance of the

classifier is evaluated by computing standard accuracy

evaluation criteria. Note that computing such criteria requires

the actual class labels of feature vectors in the test-set in order

to compare the actual class with the class predicted by the

trained classifier [24].

VII. EXPERIMENTAL DESIGN

To evaluate the effectiveness of BOFM in distinguishing

between malicious and benign behaviors, we performed a

large set of experiments. In the following sub-sections, we

describe the datasets used in our experiments and describe the

evaluation criteria used to evaluate our malware predictions.

A. Experimental dataset

We used three different datasets in our experiments. The

first dataset (called malware-train) is a collection of execution

traces of 5,000 malware samples obtained from the Anubis [2]

database. Similarly, the second dataset (called malware-test)
contains execution traces of 300 malware samples that are

collected on a machine that is not used to run Anubis [2]. It is

noted that these two datasets, malware-test and malware-
train, are obtained from Canali et al. [5]. The final dataset

(called benign) contains the execution traces of 100 benign

samples collected from five different real-world machines

(PCs), where each machine ran 20 benign programs. Obtaining

execution traces from various machines, for both benign and

malware programs, helps lower the chances that machine

specific artifacts influence the final outcome [5].

The benign dataset consists of applications that are

commonly used by a standard user (e.g., MS Word, Firefox)

and that are mostly interactive applications. Thus, following

the approach in [20], we obtained representative execution

traces by simulating the user interaction with the application

for around 15-20 minutes. For example, for a word processor

application (i.e., MS Word), we created a new document

including text, images and diagrams and saved it to disk, used

several MS word plug-ins, such as EndNote, and opened few

already existing documents. Similarly, for a web browser (e.g.,

Firefox,), we connected to our university webpage

(www.ntu.edu.sg) and downloaded few documents from the

site, uploaded few files the server, sent an e-mail using Gmail,

and used several browser plug-ins such as adBlock and PDF

Viewer. Likewise, for all interactive benign applications, we

performed a set of required operations to get representative

execution traces. It is important to note that to be consistent

with malware execution traces obtained using Anubis [2], we

selected the same subset of system calls, as used in Anubis [2],

from the benign execution traces.

In addition, to ascertain whether and explain why a 15-

minute simulated user interaction (with a benign application)

is good enough to represent real-world user behavior in terms

of BOFM features, we conducted a simple experiment. We

compared a representative execution trace of MS Word

application (monitored for eight hours) obtained from a real-

world machine with an execution trace of same application but

with simulated user interaction. The findings are summarized

in Table 3.

From Table 3, it can be seen that the execution trace

obtained using real-world user interactions (trace A) is larger

in size and has a larger number of system calls than the

execution trace with simulated user interaction (trace B).

However, the number of features extracted using BOFM is

larger for trace B than for trace A. This shows that in real-

world, people often tend to use a small fraction of operations

(e.g., intuitive operations) and thus generate large execution

traces with limited number of useful features. Hence, in order

to get real and representative execution traces for an

application, and thus build accurate malware predictors, one

should simulate the user interaction to explore as many

features as possible.

TABLE 3: COMPARISON OF EXECUTION TRACE FOR SIMULATED USER AND

REAL-WORLD USER INTERACTIONS

 Real-world User

Interaction (A)

Simulated User

Interaction (B)

Application MS Word MS Word

Execution environment Real-world PC Real-world PC

Execution time 8 hours 15 minutes

Size of execution trace 129,108 KB 27,313 KB

of system calls obtained 955,463 180,614

Extracted BOFM features 77 108

of common features 57 (74%) 57 (52.78%)

Further, when selecting the benign applications for

evaluation, we made sure that they were from one of the

following functionally diverse categories: word processors

(e.g., MS Word), text editors (e.g., MS Wordpad), command-

line shell (e.g., cmd.exe), web browser (e.g., Firefox), file

transfer (e.g., Filezilla FTP server), remote access (e.g., Putty

ssh client), e-mail (e.g., MS Outlook), IDE (e.g., MS Visual

Studio), media (e.g., VLC player), game (e.g., Chess Titans),

anti-visus tool (e.g., AVG antivirus), VOIP (e.g., Skype),

cloud storage (e.g., Dropbox), reader (e.g., Adobe PDF reader)

and other utility tools (e.g., Google Desktop). We observed

that execution traces of benign applications in the same

category looked similar. For example, using BOFM, we

managed to extract 66 features from ‘Notepad’ and 73 features

from ‘WordPad’ execution traces, out of which 63 features

were common to both applications. That is, 95.5% of Notepad

features and 86.3% of WordPad features are identical. This

indicates that, as long as we include a few benign applications

from each category, it is sufficient to cover a wide range of

benign applications in terms of functionality. Thus, we can

confidently say that our benign dataset of 100 applications (at

least three from each category) is sufficiently representative to

build classifiers to accurately predict malware, as it will be

confirmed by our experimental results. It is also worth noting

that in the literature, researchers have used very small benign

dataset in the range of 5-18 applications [5] and that our

experiment is much more extensive with that respect.

Finally, as mentioned in Section VI, malware detection

consists of two phases: model building and evaluation. To

build the models, we used a training-set consisting of

malware-train and execution traces of benign samples

obtained from 4 (out of 5) machines. To evaluate the classifier

models, we used a test-set consisting of malware-test and

benign execution traces from the machine that was not used

for training. This process is repeated five times where, on each

iteration, the test-set consists of benign execution traces

selected from a different machine. Due to space constraints,

only averages, across the five experiments, are presented in

the paper. Table 4 presents an overview of the benign and

malware datasets used in our experiments.

TABLE 4: OVERVIEW OF MALWARE AND BENIGN DATASETS

 Malware Dataset Benign Dataset

Total number of samples 5,300 100

Execution environment Sandbox [11] Real-world PCs

Max. size of an execution trace 37,416 KB 320,967 KB

Min. size of an execution trace 17 KB 446 KB

Avg. size of an execution trace 527 KB 56,544 KB

Total no. of system calls 31,506,686 52,447,089

Avg. # of system calls/sample 5,945 524,471

B. Evaluation Measures

We employ standard evaluation measures, including True

Positive Rate (TPR), False Positive Rate (FPR) and Total

Accuracy, to evaluate the malware detection accuracy. We

refer to definitions in [24] for further details but for the sake of

completeness, we briefly explain them here. We can use the

following contingency table to define the four possible

outcomes (i.e., TP, FP, FN and TN) from a binary classifier.

Predicted

Outcome

 Actual Value

 Malware Benign

Malware
True Positive

(TP)

False Positive
(FP)

Benign
False Negative

(FN)

True Negative
(TN)

True Positive Rate (TPR) is in our context the proportion

of malware samples correctly classified as malware. Similarly,

False Positive Rate (FPR) is the proportion of benign samples

misclassified as malware. Finally, Total Accuracy (or

detection accuracy) measures the overall proportion of

correctly classified instances, either malware or benign. These

measures are formally defined as follows:

TABLE 5: SUMMARY OF MALWARE DETECTION ACCURACY ACHIEVED BY LR

AND SVM

Classifier
True Positive

Rate/Counts

False Positive

Rate/Counts

Total

Accuracy/Counts

LR 0.996/1494 0.01/1 0.996/1593

SVM 0.994/1491 0.00/0 0.994/1591

C. Experimental Setup

All the experiments were executed using a 4 core Xeon(R)

with 4 GB RAM machine installed with Ubuntu 12.04. In

addition, a well known machine learning tool, WEKA [17],

was used to build the malware detection classifiers.

Next, we shall present and discuss the malware detection

accuracy obtained by our framework.

VIII. EXPERIMENTAL RESULTS

To assess the accuracy of our classifiers in detecting

malicious code, we measured the True positive Rate, False

Positive Rate and Total Accuracy achieved by BOFM for both

logistic regression (LR) and Support Vector Machine (SVM).

As explained in Section VII.A, we used a training-set of 5000

malware and 80 benign samples and a test-set of 300 malware

and 20 benign samples. The experiment is repeated five times

with different sets of benign samples in the test-set (refer

Section VII.A for explanation), following a standard 5-fold

cross validation process.

The average results for LR and SVM, across all five

experiments, are presented in Table 5 in the form of both rates

and counts. From Table 5, it can be seen that both LR and

SVM achieved similar detection accuracy. For LR, the slightly

better detection accuracy of 99.6%, compared to 99.4% for

SVM, comes at the cost of a 1% false positive rate. In malware

detection, a lower (or zero) false positive rate is desired since

the consequences of flagging a benign application as malware

can be disastrous. For example, if a benign system file is

flagged as malicious and deleted from the system, in the worst

case, it may prevent the system from booting. Thus, we can

conclude that SVM is a preferable solution to LR in our

context.

Since our original test-set contained a much higher

proportion of malware, we needed to check this imbalance did

not bias our results and ran the experiment again with a

randomly selected, balanced subset (test-set 2). Test-set 2

consists of 20 randomly selected (from a pool of 300 samples)

malware samples and the 20 benign samples used in the

original test-set. Again, we repeated the experiment five times

following the same procedure as on the original data set and

the averages across the five experiments were analyzed. SVM

yielded a perfect accuracy of 100%, thus not misclassifying a

N
u

m
b

e
r

o
f

m
a
lw

a
re

 f
e
a
tu

re
s

0

150

300

450

600

1000 2000 3000 4000 5000

BOFM

0

150000

300000

450000

600000

1000 2000 3000 4000 5000

2-gram

N
u

m
b

er
 o

f
m

al
w

ar
e

fe
at

ur
es

Number of malware samples

(a)

Number of malware samples

(b)

single program. However, LR achieved 99.5% detection

accuracy with 1% false positive rate. Thus, based on these two

experimental results, we can confirm that SVM performs

relatively better than LR for malware detection. Further, the

results also suggest that the accuracy of our overall approach

based on BOFM is very encouraging.

In addition, we also performed sensitivity analysis to

investigate how individual OS resource types influence

malware detection rates. That is, we repeated the above

experiment six times, using test-set 2, where on each instance

we considered features corresponding to an individual OS

resource type. For sensitivity analysis, we used SVM as our

classifier and Table 6 summarizes the outcomes. From Table

6, it can be seen that for each OS resource type the false

positive rate is unacceptably high. However, two OS resource

types: file system and process/thread, managed to achieve a

detection accuracy of 85% or greater with a false positive rate

of 30% and 5%, respectively. Thus, we can conclude that

features corresponding to individual OS resource types alone

not sufficient for malware detection as they generate

unacceptably high false positive rates.

A. Feature Space Analysis

In this section, we compare the features extracted from

malware samples using BOFM and n-gram (n=2 or bigram)

model, a simple behavior modeling technique. For this

analysis, we considered 5000 malware samples that is used to

train our classifier. One of the key aspects of BOFM is the

bounded feature space, where the number of active features

doesn’t grow in proportion with the number of samples (or

size of execution trace) under evaluation. To visualize this

characteristic of BOFM, in Figure 3(b), we have plotted the

feature space or active features’ growth against malware

sample sizes. From Figure 3(b), it can be seen that, for BOFM,

the curve flattens as the number of malware samples increases.

However, for bigram model (Figure 3(a)), the number of

features grows proportionally with the number of malware

samples under examination. It is also noted that a similar

feature space growth trend is observed in other behavior

modeling techniques such as n-bag and k-tuple. This illustrates

the scalability of BOFM, against simple malware behavior

models, in terms of feature space.

In addition, in order to investigate whether our original

hypothesis holds, we analyzed how benign and malware

program behaviors differ in general. In Table 7, we

summarized the number of common features as well as the

unique features corresponding to malware and benign datasets.

From Table 7, it can be seen that around 51% and 43% of the

features appear to be common in benign and malware samples,

respectively. Having 57% of unique malware features strongly

supports our hypothesis and suggests that behavior-based

malware analysis is a promising approach to detect malicious

software. Next, we shall briefly analyze some of the

interesting malware and benign features

B. A Brief Analysis of Interesting Features

Through our analysis, we find that certain actions drove

malware predictions to a large extent. To be more specific,

TABLE 6: SUMMARY OF SENSITIVITY ANALYSIS

OS Resource Type Total Accuracy FP Rate

File system 0.850 0.30

Section 0.750 0.50

Network 0.500 1.00

Synchronization 0.750 0.50

Process/Thread 0.975 0.05

Registry 0.750 0.50

TABLE 7: SUMMARY OF FEATURE SPACES

 Malware Dataset Benign Dataset

Common features 243 (42.71%) 243 (50.63%)

Unique features 326 (57.29%) 237 (49.37%)

Total features 569 (100%) 480 (100%)

Fig. 3. Feature space growth of malware samples: (a) using bigram

(n=2) model, and (b) using BOFM

NotifyChangeKey action (i.e., action that allows the running

application to request notification for a registry key change

[29]) is very widely used by malware samples when compared

to benign samples. That is, around 86% (4,311/5,000) of

malware applications performed NotifyChangeKey action on

registry resource whereas only 15% (15/100) of benign

applications performed it. Further, DeleteKey and

DeleteValue actions (i.e., actions that delete keys and values

from the registry, respectively) also played a significant role in

distinguishing malware from benign applications. This

behavior is expected as registry contains the system

configuration settings and malware often create (or modify)

registry keys and values to maintain persistence on the

infected system, allowing the malware to survive reboots. For

example, modification to the registry key: HKLM\SOFTWARE
\Microsoft\Windows\CurrentVersion\Run, allows the mal-

ware to automatically run every time when the Windows is

started.

In addition, with regards to file resource, we find that there

are several features such as {CreateFile, SetFileInformation,
DeviceControl, ReadFile, WriteFile} that widely appeared in

malware samples. Similarly, several features corresponding to

process/thread resource predominantly appeared in malware

samples. For example, {CreateThread, QueryInformation-
Process, SetInformationProcess} feature appeared in

67.2% (3361/5000) of malware samples and only 4% (4/100)

of benign applications. However, several other features such

as {OpenFile, QueryAttributesFile} and {CreateMutex,
ReleaseMutex} seemed to be too common, where they

appeared in almost all the malware and benign applications.

C. Comparison with Canali et al.

As discussed in Section II, Canali et al. [5], in their recent

study, proposed several malware behavior modeling

techniques for malware detection. Their experiment results

revealed that the optimal behavior model, 2-bags of 2-tuples of

action with arguments, achieved a 99% detection rate with a

false positive rate of 0.4%. Using SVM to build a classifier,

BOFM achieved 99.4% detection accuracy with no false

positives and therefore improves the already accurate results

of Canali et al. [5]. Since our benign sample is different from

theirs (due to privacy reasons), this result should be interpreted

with care but is nevertheless encouraging. More importantly,

such improvement is obtained despite a dramatic size

reduction in the malware feature space, as discussed next.

Canali et al. [5], on average, generated more than one

million malware features (i.e., signatures) for each one of

these models, whereas BOFM generated only 569 features

(i.e., active features). As listed in Section II, the feature space

size (or number of signatures) is one of the key characteristics

determining the practicality and scalability of a malware

detector. In BOFM, we achieve this by limiting our total

number of features to be a constant number N, whereas in [5],

the feature space is not constant and grows proportionally to

the size of execution traces.

To get a better insight into the feature space problem in

Canali et al. [5], let us assume an execution trace with just 100

unique actions with arguments, for example, there are 12

unique actions with arguments in the malware execution trace

shown in Figure 1. The simplest malware behavior model: 4-

bags of actions with arguments, generates a feature space of

size

 . This is very large and the number of

features heavily depends on the unique actions present in

every single execution trace. This problem is even more acute

for other models, such as 2-tuples of actions with arguments

and 2-bags of 2-tuples of actions with arguments, presented in

[5].

In addition, approaches in [5] have high memory

requirements and long execution times to perform signature

matching, whereas we were able to run standard machine

learning algorithms on a standard PC in less than a minute. To

be more specific, in [5], it took almost 48 hours to extract

malware features using tuples of system calls with arguments,

whereas, using BOFM, we were able to extract features in

1.67 hours from the same set of malware samples. Note that

our experiments were conducted using a single 4-core Xeon

(R) machine with 4GB of RAM, in contrast to [5] where the

authors used two clusters: one with eight 4-core Xeon (R)

machines with 16GB of RAM and a second one with eight 16-

core Authentic AMD machines with 45GB of RAM. Further,

we were able to train the SVM classifier, using our training-

set, in 26 seconds (averaged over 5 executions), consuming

only 200 MB of physical memory (average memory space). In

contrast, Canali et al. [5] reported that their prototype malware

detector was unable to run on a standard machine due to the

huge feature space, as it consumed 1GB of RAM to perform

matching on 5 million signatures.

This suggests that BOFM, beyond improvements in

accuracy, is also much more efficient and scalable. Further,

our approach does not require any complex parameter tuning

or preprocessing. From all the above, we can therefore

conclude that BOFM, when combined with machine learning

algorithms, is indeed a more practical solution than the

behavior modeling approaches reported in [5] and other

related works, as discussed in Section II.

IX. CONCLUSION

This paper proposes a novel malware detection solution

that combines a new malware behavior modeling technique

(BOFM) and machine learning, in order to distinguish

malware from benign programs. Our goal is to be sufficiently

efficient, scalable, and accurate to complement traditional

anti-virus software on end host machines. Our detection

models cannot be easily evaded by simple obfuscation

techniques as we characterize the behavior of malware as a set

of high-level actions that models the interaction between

malware and the operating system resources in a systematic

manner. Further, the feature space generated by BOFM is of

fixed dimension and does not grow in proportion with the

number of malware samples under examination. This makes

BOFM more efficient and scalable in practice. In addition, in

spite of all these practical advantages, when combining BOFM

and Support Vector Machines, a well-known machine learning

approach, we obtain a better detection accuracy—including no

false positives—than reported malware detection techniques.

But more importantly, given the usual difficulties in

comparing accuracy across studies, such results are obtained

with vastly lower computation times and memory usage, thus

demonstrating the improved scalability and efficiency of our

approach.

ACKNOWLEDGEMENTS

We would also like to thank David Canali [5] for providing

us the malware datasets. Lionel Briand was supported by a

PEARL grant from the Fonds National de la Recherche,

Luxembourg (FNR).

REFERENCES

[1] Willems, C., Holz, T., & Freiling, F. (2007). Toward automated

dynamic malware analysis using CWSandbox. Security and

Privacy (S&P), IEEE, 5(2), pp. 32-39.

[2] Bayer, U., Kruegel, C., & Kirda, E. (2006, April). TTAnalyze: A

tool for analyzing malware. In 15th Annual Conference of the

European Institute for Computer Antivirus Research (EICAR).

[3] Bayer, U., Comparetti, P. M., Hlauschek, C., Kruegel, C., &

Kirda, E. (2009, February). Scalable, behavior-based malware

clustering. In Network and Distributed System Security

Symposium (NDSS).

[4] Christodorescu, M., and Jha, S. (2004). Testing malware

detectors. ACM SIGSOFT Software Engineering Notes, 29(4),

pp 34-44.

[5] Canali, D., Lanzi, A., Balzarotti, D., Kruegel, C.,

Christodorescu, M., & Kirda, E. (2012, July). A quantitative

study of accuracy in system call-based malware detection. In

Proceedings of the 2012 International Symposium on Software

Testing and Analysis (ISSTA). pp. 122-132. ACM.

[6] You, I., & Yim, K. (2010, November). Malware obfuscation

techniques: A brief survey. In International Conference on

Broadband, Wireless Computing, Communication and

Applications. pp. 297-300.

[7] Kwon, T., & Su, Z. (2011, December). Modeling high-level

behavior patterns for precise similarity analysis of software. In

Data Mining (ICDM), 2011 IEEE 11th International Conference

on (pp. 1134-1139). IEEE.

[8] Kolbitsch, C., Comparetti, P. M., Kruegel, C., Kirda, E., Zhou,

X., & Wang, X. (2009, August). Effective and efficient malware

detection at the end host. In Proceedings of the 18th conference

on USENIX security symposium. pp. 351-366. USENIX

Association.

[9] Chandramohan, M., Tan, H. B. K., & Shar, L. K. (2012,

November). Scalable malware clustering through coarse-grained

behavior modeling. In Proceedings of the ACM SIGSOFT 20th

International Symposium on the Foundations of Software

Engineering (FSE). ACM.

[10] Russinovich, M. E., & Solomon, D. A. (2004). Microsoft

Windows Internals, 4th Edition. Microsoft Windows Server TM

2003, Windows XP, and Windows 2000 (Pro-Developer).

[11] Rieck, K., Trinius, P., Willems, C., & Holz, T. (2011).

Automatic analysis of malware behavior using machine

learning. Journal of Computer Security, 19(4), 639-668.

[12] Cuckoo Sandbox: http://www.cuckoosandbox.org/

[13] Christodorescu, M., Jha, S., & Kruegel, K., 2007. Mining

specifications of malicious behavior. In Proceedings of the 6th

joint meeting of the European software engineering conference

and the ACM SIGSOFT symposium on The foundations of

software engineering (ESEC-FSE). ACM, New York, NY, USA,

5-14.

[14] Egele, M., Kruegel, C., Kirda, E., Yin, H., & Song, D. (2007,

June). Dynamic spyware analysis. In Usenix Annual Technical

Conference.

[15] Martignoni, L., Stinson, E., Fredrikson, M., Jha, S., & Mitchell,

J. (2008). A layered architecture for detecting malicious

behaviors. In Recent Advances in Intrusion Detection (RAID).

pp. 78-97. Springer Berlin/Heidelberg.

[16] Stinson, E., & Mitchell, J. (2007). Characterizing bots’ remote

control behavior. Detection of Intrusions and Malware, and

Vulnerability Assessment (DIMVA). pp. 89-108.

[17] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P.,

& Witten, I. H. (2009). The WEKA data mining software: an

update. ACM SIGKDD Explorations Newsletter, 11(1), 10-18.

[18] Menard, S. Applied logistic regression analysis (Vol. 106). Sage

Publications, Incorporated. (2001).

[19] Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., &

Kirda, E. (2010, October). AccessMiner: using system-centric

models for malware protection. In Proceedings of the 17th ACM

conference on Computer and communications security (CCS).

pp. 399-412. ACM.

[20] Fredrikson, M., Jha, S., Christodorescu, M., Sailer, R., & Yan,

X. (2010, May). Synthesizing near-optimal malware

specifications from suspicious behaviors. In Security and

Privacy, 2010 IEEE Symposium on (S&P). pp. 45-60. IEEE.

[21] Kirda, E., Kruegel, C., Banks, G., Vigna, G., & Kemmerer, R.

(2006, August). Behavior-based spyware detection. In Usenix

Security Symposium (Vol. 15).

[22] Moser, A., Kruegel, C., and Kirda, E. (2007, December). Limits

of static analysis for malware detection. In Computer Security

Applications Conference (ACSAC), Twenty-Third Annual. pp.

421-430. IEEE.

[23] Steinwart, I; and Christmann, A; Support Vector Machines,

Springer-Verlag, New York, 2008.

[24] Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., & Weiss, Y.

(2012). Andromaly: a behavioral malware detection framework

for Android devices. Journal of Intelligent Information Systems,

pp. 1-30.

[25] Symantec Internet Security Threat Report:

http://www.symantec.com/content/en/us/enterprise/other_resour

ces/b-istr_main_report_2011_21239364.en-us.pdf

[26] Jang, J., Brumley, D., and Venkataraman, S. (2011, October).

Bitshred: feature hashing malware for scalable triage and

semantic analysis. In Proceedings of the 18th ACM conference

on Computer and communications security (CCS). pp. 309-320.

ACM.

[27] Process and Threads: http://msdn.microsoft.com/en-

us/library/windows/desktop/ms684841%28v=vs.85%29.aspx

[28] Nebbett, G. Windows NT/2000 Native API Reference,

Macmillan Technical Publishing (MTP), February 15, 2000.

[29] Registry: http://msdn.microsoft.com/en-

us/library/windows/desktop/ms724878%28v=vs.85%29.aspx

[30] Carrera, E., & Flake, H. (2008). Automated structural

classification of malware. In Proceedings of the RSA

Conference. pp. 7-11.

[31] Synchronization: http://msdn.microsoft.com/en-

us/library/windows/desktop/ms681924%28v=vs.85%29.aspx

[32] Section Objects and Views: http://msdn.microsoft.com/en-

us/library/windows/hardware/ff563684%28v=vs.85%29.aspx

http://www.cuckoosandbox.org/
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_2011_21239364.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_2011_21239364.en-us.pdf

	A scalable approach for malware detection through bounded feature space behavior modeling
	Citation

	Paper Title (use style: paper title)

