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Abstract—In recent years, malware (malicious software) has 

greatly evolved and has become very sophisticated. The evolution 

of malware makes it difficult to detect using traditional 

signature-based malware detectors. Thus, researchers have 

proposed various behavior-based malware detection techniques 

to mitigate this problem. However, there are still serious 

shortcomings, related to scalability and computational 

complexity, in existing malware behavior modeling techniques. 

This raises questions about the practical applicability of these 

techniques.  

This paper proposes and evaluates a bounded feature space 

behavior modeling (BOFM) framework for scalable malware 

detection. BOFM models the interactions between software 

(which can be malware or benign) and security-critical OS 

resources in a scalable manner. Information collected at run-time 

according to this model is then used by machine learning 

algorithms to learn how to accurately classify software as 

malware or benign. One of the key problems with simple 

malware behavior modeling (e.g., n-gram model) is that the 

number of malware features (i.e., signatures) grows proportional 

to the size of execution traces, with a resulting malware feature 

space that is so large that it makes the detection process very 

challenging. On the other hand, in BOFM, the malware feature 

space is bounded by an upper limit N, a constant, and the results 

of our experiments show that its computation time and memory 

usage are vastly lower than in currently reported, malware 

detection techniques, while preserving or even improving their 

high detection accuracy. 

 

Index Terms—Malware detection, Malware behavior modeling 

I. INTRODUCTION 

Exponential growth of malware (malicious software) is a 

major threat in the software industry. Symantec, an anti-

malware vendor, reported that more than 403 million new 

malware variants were created in 2011, a 41% increase over 

2010 [25]. At the same time, targeted attacks, such as Stuxnet 

and Duqu, and Advanced Persistent Threats (APT) also 

showed a steady increase in recent years [25]. Despite the 

widespread use and availability of various anti-malware 

(commonly known as anti-virus) tools, the growth of malware 

is phenomenal. It is observed that malware has greatly 

evolved, where new malware has become very sophisticated 

and is designed to avoid traditional anti-virus signatures, using 

various obfuscation techniques [6]. 

Given the alarming growth of malware, a significant 

amount of research has focused on proposing various malware 

detection techniques to mitigate this problem. We can divide 

these techniques into two broad categories: static (or 

signature-based) and dynamic (or behavior-based) malware 

detection. Signature-based malware detection has an 

advantage over behavior-based analysis since it examines the 

static content of the malicious binary and thus, is able to 

achieve full code coverage. In addition, using signatures, it is 

even possible to detect malicious applications before they are 

executed. However, the major limitation of signature-based 

malware detection is that it can be easily evaded by basic 

obfuscation techniques. Further, malware authors can change 

the syntactic characteristics (i.e., structure) of a malicious 

program without changing its semantics (i.e., behavior) [4, 

22]. Unfortunately, signature-based malware detection is still 

the predominant detection method today [20]. 

To overcome the limitations of signature-based malware 

detection, security researchers have proposed various behavior 

-based malware detection techniques [5, 8, 14, 19, 20] that 

focus on the semantics of the malicious application. In 

particular, these techniques examine the run-time behavior of 

the malicious binary and analyze the system calls (e.g., Win32 

and native API functions) invoked during execution, in order 

to model its malicious behavior. The key behavior-based 

malware modeling techniques include: bags of system calls 

[5], sequence of system calls such as n-gram model [19, 5], 

individual system call analysis [14], behavioral graphs [8] and 

system call dependency graphs [20].  

However, one of the key issues in existing behavior-based 

malware modeling techniques is that the scalability of these 

approaches is highly problematic. Here, scalability refers to 

the size of malware features (or signatures) extracted from an 

execution trace. For example, even a simple model such as 

bags of system calls, generates a number of malware features 

that grows proportionally to the size of execution traces [5]. 

This makes the detection process impractical as huge feature 

spaces make the learning process computationally intensive 

and detection might be negatively affected if most of these 

features are irrelevant. In addition to the scalability of feature 

spaces, unacceptably high computational complexity and 

memory consumption are also expected to impact the 



practicality and efficiency of a malware detector. As a result, 

practical applications of complex malware behavior modeling 

techniques, such as system call dependency graph and 

behavioral graph, are very limited in practice. For example, in 

[20], it is reported that it took 12-48 hours to extract malware 

specifications from a network worm using a graph mining 

algorithm.    

In this paper, we propose and evaluate a simple yet 

efficient malware behavior modeling technique—called 

BOFM—that systematically captures the interactions between 

malware and security-critical system resources in a scalable 

manner, at an adequate level of abstraction. In BOFM, 

scalability is achieved through constructing an upper-bounded 

malware feature space with a predetermined value N 

(discussed in Section IV). In other words, BOFM can extract 

malware features that do not grow in proportion with the 

number of program samples under examination. In addition, 

BOFM is resilient against basic obfuscation techniques [6].  

As BOFM is both accurate and efficient, it can be used to 

complement traditional anti-virus tools by leveraging on 

BOFM features to accurately detect malware at the end host. 

Indeed, our results show that, when combined with machine 

learning techniques, BOFM is not only at least as accurate as 

existing malware detection techniques, but its computation 

times (e.g., for matching signatures) and memory consumption 

are vastly lower as well, thus making it a much more practical 

and scalable approach.  

In summary, this paper makes the following contributions: 

 We propose a malware behaviour modelling technique 

(called BOFM) that captures malicious interactions be-

tween malware and security-critical OS resources in a 

scalable manner. This is in turn combined with machine 

learning techniques for automated malware detection. 
 

 We conducted and report an experiment involving 5300 

malware and 100 benign samples collected from various 

sources. Our experimental results show that BOFM, when 

combined with appropriate machine learning classifiers, 

can achieve 99.4% malware detection rate with no false 

positives, the latter being important in our context. 
 

 We show that the feature space generated by BOFM is of 

fixed dimension, does not grow with the number of mal-

ware samples under examination, and is three orders of 

magnitude smaller than with the best reported techniques 

for malware behaviour modelling. As a result, computa-

tion times and memory usage for extracting program fea-

tures and malware detection are vastly decreased.  
 

The paper is organized as follows. Section II summarizes 

the related work and our motivation. Section III gives an 

overview of our behavior modeling technique. Section IV 

defines our bounded feature space behavior modeling 

technique. Section V describes the feature vector construction. 

Section VI presents the detection method. Section VII 

describes the experimental design. Section VIII summarizes 

and discusses the experimental results. Finally, Section IX 

concludes the paper. 

II. RELATED WORK AND MOTIVATIONS 

Past research includes several useful techniques for 

malware detection. In this section, we shall present related 

research works and discuss the pros and cons of these 

approaches. 

The recent study on behavior-based malware detection 

reported by Canali et al. [5] is most relevant to our current 

work. In [5], the authors have done a comprehensive study on 

analyzing the efficiency of various malware behavior 

modeling techniques. They organized the behavior models 

based on three dimensions: (1) the granularity of basic model 

elements (i.e., system calls at various levels of abstraction, 

such as with and without parameters), (2) the relationship 

among basic model elements, such as n-gram, m-bag and k-

tuple1 and, (3) cardinality of each specification (i.e., values of 

n, m and k). A series of more than 200 experiments were 

conducted on a large set of malware and benign samples to 

systematically identify the optimal behavior model for 

malware detection. Their experiment results revealed that the 

optimal behavior model, 2-bags of 2-tuples of action with 

arguments, achieved a 99% detection rate with only a 0.4% 

false positive rate.  

Though the above results are very encouraging, there are 

several shortcomings associated with this approach. The most 

important issue is that the scalability of this approach is highly 

problematic. The behavior modeling techniques such as n-

gram, m-bag and k-tuple can easily generate huge feature 

spaces. For example, from an execution trace with 400 unique 

system calls, more than 10 million features are constructed 

using m-bag model with a bag cardinality of 3 (m=3) . This 

problem is even worse in tuple-based behavior models. In [5], 

it is also reported that the memory consumption is one of the 

major threat to practical implementation of this approach, 

where on a standard machine (Intel Dual Core 2.66 GHz with 

4GB of RAM) the prototype malware detector consumed 1GB 

of RAM for 5 million malware signatures. Further, it is also 

reported that feature extraction from malware samples is itself 

a computationally intensive task, where almost 2 days of 

computation are required for tuples of system calls with 

arguments model. 

In addition, the approach in [5] requires several parameter 

tunings for optimal performance that makes it less practical. 

Moreover, it is observed that intensive parameter tuning is 

often associated with overfitting problems. For example, to 

manage the huge feature space, authors have proposed a 

feature pruning mechanism. A malware feature is discarded if 

it is not general enough (i.e., doesn’t detect at least five 

malwares) or too redundant (i.e., not represented by 20,000 

other signatures), where the values 5 and 20,000 are arbitrarily 

selected. Further, there is a trade-off in selecting the 

cardinality of a specification (e.g., number of basic model 

elements in a bag), where increasing the cardinality may result 

in a high detection rate but also lead to overfitting. For 

example, in [5], it is reported that detection rates achieved by 

tuple-based behavior models are highly sensitive to 

                                                           
1 Please refer to [5] for definitions of n-gram, m-bag and k-tuple models  



cardinality. Finally, the alert threshold, the number of malware 

signatures that need to be matched to flag an unknown 

program as malware, significantly influences the detection rate 

and false positive rate. In [5], it is shown that small alert 

threshold results in high detection and false positive rate and 

vice versa. Thus, choosing the appropriate values for these 

parameters is crucial but complex in practice. 

Apart from [5], there are several other behavior-based 

malware modeling techniques proposed in the literature. Lanzi 

et al. [19] proposed AccessMiner, a malware detection 

technique based on system-centric malware models, where the 

interaction between benign sample and the OS resources is 

modeled in a system-centric manner. This addresses the 

limitation of program-centric approaches. Further, authors 

empirically proved the inefficiencies of n-gram based malware 

behavior modeling. In addition to generic malware detection 

[15, 13], system call and library call based behavior modeling 

is also proposed to detect more specific class of malware, such 

as spyware (Kirda et al. [21]) and botnets (Stinson et al. [16]) 

detection. 

Kolbitsch et al. [8] proposed an efficient and effective 

malware detection approach at the end host, where it models 

the malware behavior as a graph and detection is done at the 

end host using graph matching. Similarly, Fredrikson et al. 

[20] proposed malware specification mining using dependency 

graphs. They managed to achieve a higher detection rate than 

two commercial behavior-based malware detectors. However, 

graph mining still remains very computationally intensive, 

where it is reported that it took around 12-48 hours to extract 

malware specification from certain network worms. In 

addition, the dataset used in most of these approaches are very 

limited. For example, Kolbitsch et al. [8] used only 563 

malware samples and 10 benign samples, similarly, 

Christodorescu et al. [13] used 16 malware and 6 benign 

samples, Stinson et al. [16] used 6 malware and 9 benign 

samples, and Martignoni et al. [15] used only 7 malware and 6 

benign samples for evaluation. 

We derive the following key observations based on the 

abovementioned, behavior-based malware detection 

approaches [5, 19, 8, 13, 16, 15]:  
 

 The practicality and efficiency of malware detection 

techniques are characterized on four dimensions:  the 

size of feature space, computational complexity, over-

head in terms of additional pre-processing activities, 

and detection accuracy.   

 Simple malware behaviour models such as n-gram, m-

bag and k-tuple, generate huge feature spaces and re-

quire various pruning and parameter tuning mecha-

nisms to alleviate the problem.  

 More complex malware behaviour models, such as de-

pendency and behavioural graphs are, generally, highly 

computationally and data intensive.  
 

In the next two sections, we explain our proposed 

approach, Bounded Feature space behavior Modeling 

(BOFM), which aims at making malware detection scalable, 

efficient, and practical, while retaining or improving the high 

accuracy reported thus far in the literature. 

III. OVERVIEW 

Malwares usually achieve their objectives through 

performing malicious actions on security-critical, operating 

system resources. An action corresponds to a high-level 

operation (e.g., reading a file) that is composed of a set of 

related system calls to achieve an externally meaningful 

objective [3, 5]. For example, reading a file may require two 

system calls: (1) NtOpenFile to open the file, and (2) 

NtReadFile to read the file content. The main advantage of 

using actions over system calls is that different versions of the 

same operating system (e.g., Windows 2000 and Windows 

XP) may use different names for system calls that are in fact 

serving the same purpose [3] and, as a result, analyzing system 

calls directly may result in dealing with unnecessarily large 

amounts of data. For example, in Windows OS, the system 

calls NtCreateProcess and NtCreateProcessEx are both used 

to create a new process. Thus, these two system calls can be 

mapped to a single action called CreateProcess. System call 

sequences can be mapped to actions using a mapping 

algorithm [7]. There are a number of different mapping 

algorithms used in the malware research community. 

Depending on the algorithm used, the system call sequence 

   NtOpenFile, NtReadFile     can be mapped to two distinct 

actions OpenFile and ReadFile, respectively, or both system 

calls can be combined to represent a single action ReadFile.  

In the remainder of this section, we first discuss the 

various types of OS resources and then, we introduce and 

illustrate our behavior modeling technique by using an 

example.  

A. Operating System Resource Types 

The analysis of malicious behavior is usually carried out 

through examining the actions it performs on security-critical 

system resources. In the literature, researchers usually model 

malware behavior based on its interaction with certain types of 

OS resources, such as file system, registry, process and 

network. For example, Kolbitsch et al. [8] considered security-

relevant system calls associated with file system, registry, 

network, process and system services for malware detection, 

whereas in our previous work [9], we considered the actions 

performed on four security-critical OS resource types such as 

file system, registry, process and network, for malware 

clustering.  Based on the broad classification of system calls 

reported in [28] and Windows OS internals [10], we have 

considered the following OS resource types in our study: file 

system, registry, process, thread, section, network and 

synchronization. Next, we shall briefly describe each of these 

OS resource types. 
 

 File System. Operating system and the programs that run 

on it are made up of individual files.  A file is an in-

stance of any opened file or I/O device.  

 Registry. Registry is a system-defined database in which 

applications and system components store and retrieve 

configuration data [29]. 

 Process and Thread.  Process is the virtual address 

space  and  control  information  necessary  for  the exe-



cution  of  a  set  of  threads   One or more threads run in 

the context of such process [27]. 

 Network. This corresponds to the network related activi-

ties of the program being executed. 

 Synchronization. This aims to protect shared resources 

from simultaneous access by multiple threads or proc-

esses [31]. 

 Section. Section represents a portion of memory that can 

be shared, where a process can use section to share parts 

of its memory address space with other processes [32]. 
 

We model malicious behavior based on the sets of actions 

that malware performs on individual OS resource instances. 

An OS resource instance corresponds to an identifier (or 

instance) of an OS resource type. For example, for File 

System, file names (e.g., C:\foo.exe and C:\Windows\abc 
.dll ) are identifiers and the actions performed on each of these 

file instances include OpenFile, ReadFile, and DeleteFile. A 

comprehensive list of actions that a malware can perform on 

each OS resource type is given in Table 1. 

TABLE 1: OS RESOURCES AND CORRESPONDING ACTIONS 

OS Resource 

Types 

# of 

Actions 
List of Actions 

 

File system 14 

CreateDirectory, QueryDirectory, 
CreateFile, SetFileInformation, 
UnLockFile, LockFile, OpenFile,  
WriteFile, QueryFileAttributes, 
QueryFileVolume, DeleteFile, ReadFile 
DeviceControl, QueryFileInformation 

Registry 7 
CreateKey, DeleteKey, DeleteValue,  
SetValue, OpenKey, NotifyChangeKey 
QueryValue 

Process/Thread 6 
SetInformationProcesses, Create-
Process, CreateThread, OpenProcess, 
KillProcess, QueryInformationProcess 

Synchronization 6 
CreateMutex, OpenSemaphore, 
CreateSemaphore,  OpenMutex, 
ReleaseMutex, ReleaseSemaphore 

Network 1 NetworkConnection 

Section 4 
OpenSection, CreateSection, 
QuerySection, MapViewOfSectoin 

  
Next, we shall present an example to illustrate our 

behavior modeling technique. This example is used as a 

running example in this paper. 

B. Example 

A sample malware execution trace is given in Figure 1, 

where system calls are already mapped to high-level actions. 

In a real world scenario, a single malware execution trace can 

contain several thousands of actions. However, to keep it 

simple, we have only considered few file and registry related 

actions in this example. The behavior of our pseudo malware 

is given below: 

 Creates a malicious executable along with three other 

dummy files. 

 Reads two system files and a dummy file several 

times. 

 Creates a registry key and sets its value. 

 Deletes all the dummy files. 

 
1: CreateFile("C:\Windows\malicious.exe") 

2: CreateFile("C:\Windows\...\dummy1.txt") 

3: ReadFile("C:\Windows\...\dummy1.txt") 
4: CreateFile("C:\Windows\dummy2.dll") 

5: ReadFile("C:\Windows\...\sysfile1.ini") 

6: ReadFile("C:\Windows\...\sysfile2.dll") 

7: CreateKey("HKLM\Software\...\...\key") 

8: SetValue("HKLM\Software\...\...\key", value) 

9: ReadFile("C:\Windows\...\dummy1.txt") 

10: ReadFile("C:\Windows\...\dummy1.txt") 

11: DeleteFile("C:\Windows\...\dummy1.txt") 
12: CreateFile("D:\Personel\dummy3.exe") 

13: DeleteFile("D:\Personel\dummy3.exe") 

14: DeleteFile("C:\Windows\dummy2.dll") 

15: ReadFile("C:\Windows\...\sysfile2.dll") 

Fig.1. Sample malware execution trace 

 TABLE 2: EXTRACTED MALWARE FEATURES 

Id Features (Action set) OS Resource Instances 
 

1 {CreateKey, SetValue} HKLM\Software\...\...\key 

2 {CreateFile} C:\Windows\malicious.exe 

3 
{CreateFile, ReadFile, 

DeleteFile} 
C:\Windows\...\dummy1.txt 

4 {ReadFile} 
C:\Windows\...\sysfile1.ini, 
C:\Windows\...\sysfile2.dll 

5 {CreateFile, DeleteFile} 
C:\Windows\dummy2.dll, 
D:\Personel\dummy3.exe 

 

Table 2 shows in column 2 the five extracted features from 

the sample malware execution trace shown in Figure 1. As we 

will see in the next section, features are action sets, that is, fea-

tures are constructed by grouping related actions performed by 

malware on individual OS resource instances, where related 

actions refers to actions belonging to the same OS resource 

type. Column 3, in Table 2, shows the OS resource instances 

on which features are performed. For example, the action set 

{CreateFile, ReadFile, DeleteFile} is performed on a file re-

source C:\Windows\...\dummy1.txt (Id-3) and action set 

{ReadFile} is performed on two different OS resource instanc-

es C:\Windows\...\sysfile1.ini and C:\Windows\...\sysfile2. 
dll (Id-4). In Table 2, Id 2-5 represent malware features corre-

sponding to File System and Id-1 represents a feature corre-

sponding to Registry. It is important to note that OS resource 

instances (column 3 in Table 2) are only used to identify relat-

ed actions and are not included in the feature vectors used to 

support malware detection (Section V). This is due to the fact 

that malware tend to use random file names, mutex values and 

registry key values each time they execute and, therefore, 

there is no agreed-upon mechanism to generalize these highly 

volatile artifacts [19].  

Next, we shall precisely define our malware behavior 

modeling technique, BOFM, and explain its properties. 



IV. BOUNDED FEATURE SPACE BEHAVIOUR MODELLING 

(BOFM) 

A malware perform various actions on one or more OS 

resource instances. In the proposed BOFM, for each type of 

OS resources, the set of related actions performed by malware 

on an individual resource instance constitutes a feature of the 

malware. That is, in our example (see Section III.B), the set of 

related actions: {CreateKey, SetValue}, performed by malware 

on a registry instance: HKLM\Software\...\...\key, constitutes 

a feature (Id-1). In total, five features are extracted (see 

column 2 in Table 2) from the malware execution trace shown 

in Figure 1. 

Due to our modeling preference, BOFM features hold the 

following three key properties; 
 

Property 1: Regardless of the number of times an action is 

performed, if the same set of actions is performed on OS 

resource instances of the same type, this leads to identical 

malware features. For instance, in our example, ReadFile 
action is performed only once on file instance 

C:\Windows\...\sysfile1.ini and twice on file instance 
C:\Windows\...\sysfile2.dll; however, these two 

behaviors are considered to be identical and are represented 

by a single malware feature {ReadFile} (Id-4).  
 

Property 2: The sequence, in which the actions are performed, 
by malware, is ignored in feature construction. That is, in 

our example, malware read the contents of system file: 

C:\Windows\...\sysfile1.ini way ahead of creating file: 

D:\Personel\dummy3.exe, however, this information 

(i.e., sequence) is not captured by BOFM features. In 

addition, ordering of actions in an action set is also 

ignored. That is, features {ReadFile, QueryFileInformat- 
ion} and {QueryFileInformation, ReadFile} are 

considered identical.    
 

Property 3: Identical action sets which are performed on two 

different OS resource instances of same type are modeled 

as a single feature. In our example, action set {CreateFile, 
DeleteFile} is modeled as a single malware feature even 

though it is performed on two different file resource 

instances; C:\Windows\dummy2.dll and D:\Personel 
\dummy3.exe (Id-5).  

 

Next, we shall formally derive the upper-bound for malware 

features constructed using BOFM. 
 

Upper-bound. Let us assume there are   types of OS 

resources and for each OS resource type   (     ), the 

possible actions that a program can perform are always 

predefined and fixed. The list actions considered for each OS 

resource type in Table 1 is a representative example. Thus, the 

total number    of possible actions that a malware may 

perform on a resource instance of type   is a constant.  

Consequently, the maximum number    of possible features 

(or action sets) with regard to OS resource type   is also a 

constant and can be computed as follows:  

                        
  

 +   
  

 +   
  

 + … +    
  

            (1) 

Where,   
 

  
 

   

         
           Therefore, as a 

result of applying BOFM, the total number of possible 

features  , extracted from all resource types, is always the 

following constant: 

                                            

 

   

                                     

From equation (2), it can be seen that the total number of 

features of a malware depends only on the total number of OS 

resource types and the number of possible actions performed 

on each OS resource type.  

Based on the number of actions considered for File System 

(Table 1), using equation (1), the maximum possible number 

of malware features that can be extracted is   
  +   

     
   
         . Similarly, the maximum possible number of 

malware features extracted for various resources are: registry: 

127, network: 1, process/thread: 63, synchronization: 63 and 

section: 15. Finally, using equation (2), the total number of 

malware features (N) that can be extracted from these six OS 

resource types sums up to 16,652. It’s worth noting that the 

value of N, calculated above, is specific to this study. In 

practice, it will vary based on the number of OS resource types 

and list of actions considered in a given context. 

Hence, in contrast to existing approaches in which the 

feature space grows in direct proportion to number of malware 

instances under examination, the total number of possible 

features for malware detection under our approach has an 

upper bound   (N=16,652). That is, our approach has a 

bounded feature space and this is expected to improve the 

scalability of malware behavior modeling. Further, we 

observed that malwares often perform a combination of 

actions that are not normally performed by benign 

applications. This behavior is captured by the hypothesis 

below.  
 

Hypothesis (Action set characterization). To achieve 

malicious objectives, malware tend to perform sets of actions, 

on a number of OS resource types that are significantly 

different from benign applications. 
 

Rationale. Obfuscation techniques, such as dead-code 

injection, subroutine reordering, instruction substitution and 

code transposition, are widely used to evade traditional, 

signature-based malware detection [6]. It is observed that 

malware authors often: (1) reorder independent actions2 [13], 

and (2) repeat certain actions many times [30], e.g., perform 
ReadFile action in a loop, to break the byte sequence (or code 

pattern) without affecting the semantics of the program to fool 

byte (or action) sequence-based malware detection techniques. 

Therefore, accounting for the sequence of actions in behavior 

modeling may have the adverse effect of failing to capture 

identical, high-level behavior with different action sequence. 

In addition, as opposed to sets, sequences of actions, similar to 

                                                           
2 These actions are independent from others and any permutation of these ac-

tions will lead to the same end behavior [13] 



n-gram, would result in a huge feature space and thus, would 

be much less scalable. Thus, we modeled the malware 

behavior as a set of actions, in contrast to sequences, to 

overcome the above mentioned obfuscation techniques. The 

advantage of using set in malware behavior modeling is 

twofold: (1) repeated actions are ignored (property 1), and (2) 

agnostic to reordering of independent actions (property 2). 

Though it is noted that there is a trade-off in using sets as the 

ordering of actions may constitute valuable information, in 

practice, malware authors often use obfuscation techniques 

that render this information useless. Further, OS resource 

instances (column 3 in Table 2) are not considered for 

malware detection as they are highly volatile (i.e., involve 

randomness) and there is no agreed-upon mechanism to 

generalize these highly volatile artifacts such as file names, 

mutex values and IP addresses [19] (property 3).  

V. CONSTRUCTION OF FEATURE VECTORS 

In this section, we explain how we extract malware 

features from execution traces and embed them in feature 

vectors. 

A. Collecting Execution Traces 

The run-time behavior of malware instances are monitored 

using a Sandbox, which is a dynamic malware analysis tool 

such as CWSandbox [1], Anubis [2], and Cuckoo Sandbox 

[12]. These systems execute programs in a controlled 

environment, monitor their behavior, and generate behavior 

reports. These reports generally contain high-level, action 

based malware behavioral characteristics [1] such as newly 

created/modified/deleted file details, registry keys, and network 

traffic details. Few sandboxes, such as Cuckoo sandbox [12], 

also provide low-level behavioral characteristics (i.e., Win32 

and native API functions based). In such cases, system calls 

can be mapped to relevant high-level actions using an 

appropriate mapping algorithm [7].  It is also noted that system 

calls can be used to model malware behavior but, as mentioned 

earlier, one must be aware of different system calls serving the 

same purpose (e.g., NtCreateProcess and NtCreateProcess-
Ex).  

B. Extraction of Features  

 Feature extraction from an execution trace involves three 

steps. They are as follows: 

Step 1: OS resource instances present in the execution trace 

are identified.  

Step 2: Related actions3 corresponding to an OS resource 

instance are grouped, forming action sets. 

Step 3: Repeat Step 2 until all the OS resource instances   

identified in Step 1 are covered.  

Each unique action set, constructed in Step 2, constitute a 

feature (see Section III.B). Similar to other approaches [9, 11], 

we use feature vector to embed the extracted malware features. 

Next, we shall explain feature vector construction. 

                                                           
3 Related actions refer to actions belonging to the same OS resource type. 
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Fig. 2. Feature vector 

C. N-dimensional Feature Vector 

For each malware, once the malware features are extracted 

(column 2 in Table 2) from the execution traces, we embed 

them in an N-component (or N-dimensional) feature vector, 

where N is the total number of possible features (equation 2). 

Each component in a feature vector is designated to represent 

a possible malware feature. We re-emphasize that OS resource 

identifiers are only used to identify related actions and are not 

part of feature vectors. Figure 2 depicts a feature vector 

constructed using malware features (column 2 in Table 2) 

extracted from execution traces shown in Figure 1. In a feature 

vector, the n
th

 component represents feature n (denoted by Fn) 

and each feature is assigned a value ‘1’ or ‘0’ to denote the 

presence (i.e., active) or absence of that feature, respectively. 

‘Active’ features4 refer to those features present in a malware 

or benign program.   

It is also noted that extracting features from benign 

programs exactly follows the same process as explained 

above, except that it is executed on a real-world machine 

instead of a sandbox to collect representative execution traces. 

In addition, the length of benign feature vectors is also upper-

bounded by a constant N (equation (2)). To summarize, each 

malware and benign application is converted into an N-

dimensional binary feature vector, in our case N=16,652. 

VI. DETECTION METHOD 

Based on our analysis of related work (Section II), we find 

that not many behavior-based malware detection frameworks 

adopt Machine Learning classification techniques to build 

detection engines. This is may be due to the fact that when the 

feature space is extremely large, the learning process will be 

computationally intensive and negatively affected if most of 

the features are irrelevant. In contrast, due to its limited feature 

space, BOFM is amenable to the use of Machine Learning 

(ML) classification techniques for building Malware Detection 

models. In our approach, Machine Learning classifiers are 

used to classify unknown software as either malware or 

benign. We tried and compared a number of ML classification 

techniques and report here on the results with Logistic 

Regression (LR) [18] and Support Vector Machine (SVM) 

[23]. The latter is reported as it is a recent technique, that has 

shown to work well in a number of applications, is based on a 

non-probabilistic theory about learning structures in data, and 

yields the best results in our particular case. The former is a 

standard probabilistic technique that yields regression models 

                                                           
4 In the following sections of the paper, when we refer to ‘features’ extracted 

by BOFM, we implicitly refer to ‘active’ features, unless otherwise stated. 

The number of active features is always less than or equal to N.  
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which are easy to interpret; in particular to assess what 

features are statistically significant predictors of malware.  

The malware detection process includes two phases: model 

building and model evaluation. During the model building 

phase, a training-set of benign and malware feature vectors is 

used by the ML algorithm to build a classifier. The model 

evaluation phase aims at assessing the classifier accuracy in a 

realistic fashion. By analyzing the actual classification (benign 

or malware) of feature vectors present in the training-set, an 

ML algorithm generates a trained classifier, e.g., a logistic 

regression equation with estimated parameter values. Next, 

during the model evaluation phase, a test-set, of benign and 

malware feature vectors, is classified by the trained classifier. 

Based on classification results, the performance of the 

classifier is evaluated by computing standard accuracy 

evaluation criteria. Note that computing such criteria requires 

the actual class labels of feature vectors in the test-set in order 

to compare the actual class with the class predicted by the 

trained classifier [24].  

VII. EXPERIMENTAL DESIGN 

To evaluate the effectiveness of BOFM in distinguishing 

between malicious and benign behaviors, we performed a 

large set of experiments. In the following sub-sections, we 

describe the datasets used in our experiments and describe the 

evaluation criteria used to evaluate our malware predictions.  

A. Experimental dataset 

We used three different datasets in our experiments. The 

first dataset (called malware-train) is a collection of execution 

traces of 5,000 malware samples obtained from the Anubis [2] 

database. Similarly, the second dataset (called malware-test) 
contains execution traces of 300 malware samples that are 

collected on a machine that is not used to run Anubis [2]. It is 

noted that these two datasets, malware-test and malware-
train, are obtained from Canali et al. [5]. The final dataset 

(called benign) contains the execution traces of 100 benign 

samples collected from five different real-world machines 

(PCs), where each machine ran 20 benign programs. Obtaining 

execution traces from various machines, for both benign and 

malware programs, helps lower the chances that machine 

specific artifacts influence the final outcome [5].  

The benign dataset consists of applications that are 

commonly used by a standard user (e.g., MS Word, Firefox) 

and that are mostly interactive applications. Thus, following 

the approach in [20], we obtained representative execution 

traces by simulating the user interaction with the application 

for around 15-20 minutes.  For example, for a word processor 

application (i.e., MS Word), we created a new document 

including text, images and diagrams and saved it to disk, used 

several MS word plug-ins, such as EndNote, and opened few 

already existing documents. Similarly, for a web browser (e.g., 

Firefox,), we connected to our university webpage 

(www.ntu.edu.sg) and downloaded few documents from the 

site, uploaded few files the server, sent an e-mail using Gmail, 

and used several browser plug-ins such as adBlock and PDF 

Viewer. Likewise, for all interactive benign applications, we 

performed a set of required operations to get representative 

execution traces. It is important to note that to be consistent 

with malware execution traces obtained using Anubis [2], we 

selected the same subset of system calls, as used in Anubis [2], 

from the benign execution traces. 

In addition, to ascertain whether and explain why a 15-

minute simulated user interaction (with a benign application) 

is good enough to represent real-world user behavior in terms 

of BOFM features, we conducted a simple experiment. We 

compared a representative execution trace of MS Word 

application (monitored for eight hours) obtained from a real-

world machine with an execution trace of same application but 

with simulated user interaction. The findings are summarized 

in Table 3.  

From Table 3, it can be seen that the execution trace 

obtained using real-world user interactions (trace A) is larger 

in size and has a larger number of system calls than the 

execution trace with simulated user interaction (trace B). 

However, the number of features extracted using BOFM is 

larger for trace B than for trace A. This shows that in real-

world, people often tend to use a small fraction of operations 

(e.g., intuitive operations) and thus generate large execution 

traces with limited number of useful features. Hence, in order 

to get real and representative execution traces for an 

application, and thus build accurate malware predictors, one 

should simulate the user interaction to explore as many 

features as possible.  

TABLE 3: COMPARISON OF EXECUTION TRACE FOR SIMULATED USER AND 

REAL-WORLD USER INTERACTIONS 

 Real-world User 

Interaction (A) 

Simulated User 

Interaction (B) 
 

Application MS Word MS Word 

Execution environment Real-world PC Real-world PC 

Execution time 8 hours 15 minutes 

Size of execution trace 129,108 KB 27,313 KB 

# of system calls obtained 955,463 180,614 

Extracted BOFM features 77 108 

# of common features 57 (74%) 57 (52.78%) 
 

Further, when selecting the benign applications for 

evaluation, we made sure that they were from one of the 

following functionally diverse categories: word processors 

(e.g., MS Word), text editors (e.g., MS Wordpad), command-

line shell (e.g., cmd.exe), web browser (e.g., Firefox), file 

transfer (e.g., Filezilla FTP server), remote access (e.g., Putty 

ssh client), e-mail (e.g., MS Outlook), IDE (e.g., MS Visual 

Studio),   media (e.g., VLC player), game (e.g., Chess Titans), 

anti-visus tool (e.g., AVG antivirus), VOIP (e.g., Skype), 

cloud storage (e.g., Dropbox), reader (e.g., Adobe PDF reader) 

and other utility tools (e.g., Google Desktop). We observed 

that execution traces of benign applications in the same 

category looked similar. For example, using BOFM, we 

managed to extract 66 features from ‘Notepad’ and 73 features 

from ‘WordPad’ execution traces, out of which 63 features 

were common to both applications. That is, 95.5% of Notepad 

features and 86.3% of WordPad features are identical. This 

indicates that, as long as we include a few benign applications 



from each category, it is sufficient to cover a wide range of 

benign applications in terms of functionality.  Thus, we can 

confidently say that our benign dataset of 100 applications (at 

least three from each category) is sufficiently representative to 

build classifiers to accurately predict malware, as it will be 

confirmed by our experimental results. It is also worth noting 

that in the literature, researchers have used very small benign 

dataset in the range of 5-18 applications [5] and that our 

experiment is much more extensive with that respect.   

Finally, as mentioned in Section VI, malware detection 

consists of two phases: model building and evaluation. To 

build the models, we used a training-set consisting of 

malware-train and execution traces of benign samples 

obtained from 4 (out of 5) machines. To evaluate the classifier 

models, we used a test-set consisting of malware-test and 

benign execution traces from the machine that was not used 

for training. This process is repeated five times where, on each 

iteration, the test-set consists of benign execution traces 

selected from a different machine. Due to space constraints, 

only averages, across the five experiments, are presented in 

the paper. Table 4 presents an overview of the benign and 

malware datasets used in our experiments.  

TABLE 4: OVERVIEW OF MALWARE AND BENIGN DATASETS 

 Malware Dataset Benign Dataset 
 

Total number of samples 5,300 100 

Execution environment Sandbox [11] Real-world PCs 

Max. size of an execution trace 37,416 KB 320,967 KB 

Min. size of an execution trace 17 KB 446 KB 

Avg. size of an execution trace 527 KB 56,544 KB 

Total no. of system calls  31,506,686 52,447,089 

Avg. # of system calls/sample 5,945 524,471 
 

B. Evaluation Measures 

We employ standard evaluation measures, including True 

Positive Rate (TPR), False Positive Rate (FPR) and Total 

Accuracy, to evaluate the malware detection accuracy. We 

refer to definitions in [24] for further details but for the sake of 

completeness, we briefly explain them here. We can use the 

following contingency table to define the four possible 

outcomes (i.e., TP, FP, FN and TN) from a binary classifier. 
 

 

 

 

Predicted 

Outcome 

                      Actual Value 

 Malware Benign 

Malware 
True Positive  

(TP) 

False Positive 
(FP) 

Benign 
False Negative  

(FN) 

True Negative 
(TN) 

 

True Positive Rate (TPR) is in our context the proportion 

of malware samples correctly classified as malware. Similarly, 

False Positive Rate (FPR) is the proportion of benign samples 

misclassified as malware. Finally, Total Accuracy (or 

detection accuracy) measures the overall proportion of 

correctly classified instances, either malware or benign. These 

measures are formally defined as follows: 

TABLE 5: SUMMARY OF MALWARE DETECTION ACCURACY ACHIEVED BY LR 

AND SVM 

Classifier 
True Positive 

Rate/Counts 

False Positive 

Rate/Counts 

Total 

Accuracy/Counts 
 

LR 0.996/1494 0.01/1 0.996/1593 

SVM 0.994/1491 0.00/0 0.994/1591 
 

                                      
  

     
                                       

                                      
  

     
                                        

                       
     

           
                     

C. Experimental Setup 

All the experiments were executed using a 4 core Xeon(R) 

with 4 GB RAM machine installed with Ubuntu 12.04. In 

addition, a well known machine learning tool, WEKA [17], 

was used to build the malware detection classifiers. 
   

Next, we shall present and discuss the malware detection 

accuracy obtained by our framework. 

VIII. EXPERIMENTAL RESULTS 

To assess the accuracy of our classifiers in detecting 

malicious code, we measured the True positive Rate, False 

Positive Rate and Total Accuracy achieved by BOFM for both 

logistic regression (LR) and Support Vector Machine (SVM). 

As explained in Section VII.A, we used a training-set of 5000 

malware and 80 benign samples and a test-set of 300 malware 

and 20 benign samples. The experiment is repeated five times 

with different sets of benign samples in the test-set (refer 

Section VII.A for explanation), following a standard 5-fold 

cross validation process.  

The average results for LR and SVM, across all five 

experiments, are presented in Table 5 in the form of both rates 

and counts. From Table 5, it can be seen that both LR and 

SVM achieved similar detection accuracy. For LR, the slightly 

better detection accuracy of 99.6%, compared to 99.4% for 

SVM, comes at the cost of a 1% false positive rate. In malware 

detection, a lower (or zero) false positive rate is desired since 

the consequences of flagging a benign application as malware 

can be disastrous. For example, if a benign system file is 

flagged as malicious and deleted from the system, in the worst 

case, it may prevent the system from booting. Thus, we can 

conclude that SVM is a preferable solution to LR in our 

context.  

Since our original test-set contained a much higher 

proportion of malware, we needed to check this imbalance did 

not bias our results and ran the experiment again with a 

randomly selected, balanced subset (test-set 2). Test-set 2 

consists of 20 randomly selected (from a pool of 300 samples) 

malware samples and the 20 benign samples used in the 

original test-set. Again, we repeated the experiment five times 

following the same procedure as on the original data set and 

the averages across the five experiments were analyzed. SVM 

yielded a perfect accuracy of 100%, thus not misclassifying a 
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single program. However, LR achieved 99.5% detection 

accuracy with 1% false positive rate. Thus, based on these two 

experimental results, we can confirm that SVM performs 

relatively better than LR for malware detection. Further, the 

results also suggest that the accuracy of our overall approach 

based on BOFM is very encouraging. 

In addition, we also performed sensitivity analysis to 

investigate how individual OS resource types influence 

malware detection rates. That is, we repeated the above 

experiment six times, using test-set 2, where on each instance 

we considered features corresponding to an individual OS 

resource type. For sensitivity analysis, we used SVM as our 

classifier and Table 6 summarizes the outcomes. From Table 

6, it can be seen that for each OS resource type the false 

positive rate is unacceptably high. However, two OS resource 

types: file system and process/thread, managed to achieve a 

detection accuracy of 85% or greater with a false positive rate 

of 30% and 5%, respectively. Thus, we can conclude that 

features corresponding to individual OS resource types alone 

not sufficient for malware detection as they generate 

unacceptably high false positive rates. 

A. Feature Space Analysis 

In this section, we compare the features extracted from 

malware samples using BOFM and n-gram (n=2 or bigram) 

model, a simple behavior modeling technique. For this 

analysis, we considered 5000 malware samples that is used to 

train our classifier. One of the key aspects of BOFM is the 

bounded feature space, where the number of active features 

doesn’t grow in proportion with the number of samples (or 

size of execution trace) under evaluation. To visualize this 

characteristic of BOFM, in Figure 3(b), we have plotted the 

feature space or active features’ growth against malware 

sample sizes. From Figure 3(b), it can be seen that, for BOFM, 

the curve flattens as the number of malware samples increases. 

However, for bigram model (Figure 3(a)), the number of 

features grows proportionally with the number of malware 

samples under examination. It is also noted that a similar 

feature space growth trend is observed in other behavior 

modeling techniques such as n-bag and k-tuple. This illustrates 

the scalability of BOFM, against simple malware behavior 

models, in terms of feature space. 

In addition, in order to investigate whether our original 

hypothesis holds, we analyzed how benign and malware 

program behaviors differ in general. In Table 7, we 

summarized the number of common features as well as the 

unique features corresponding to malware and benign datasets. 

From Table 7, it can be seen that around 51% and 43% of the 

features appear to be common in benign and malware samples, 

respectively. Having 57% of unique malware features strongly 

supports our hypothesis and suggests that behavior-based 

malware analysis is a promising approach to detect malicious 

software. Next, we shall briefly analyze some of the 

interesting malware and benign features 

B. A Brief Analysis of Interesting Features 

Through our analysis, we find that certain actions drove 

malware predictions to a large extent. To be more specific, 

TABLE 6: SUMMARY OF SENSITIVITY ANALYSIS 

OS Resource Type Total Accuracy FP Rate 
 

File system 0.850 0.30 

Section 0.750 0.50 

Network 0.500 1.00 

Synchronization 0.750 0.50 

Process/Thread 0.975 0.05 

Registry  0.750 0.50 
 

TABLE 7: SUMMARY OF FEATURE SPACES 

 Malware Dataset Benign Dataset 
 

Common features 243 (42.71%) 243 (50.63%) 

Unique features 326 (57.29%) 237 (49.37%) 

Total features 569 (100%) 480 (100%) 

 

 

Fig. 3. Feature space growth of malware samples: (a) using bigram 

(n=2) model, and (b) using BOFM 

 

NotifyChangeKey action (i.e., action that allows the running 

application to request notification for a registry key change 

[29]) is very widely used by malware samples when compared 

to benign samples. That is, around 86% (4,311/5,000) of 

malware applications performed NotifyChangeKey action on 

registry resource whereas only 15% (15/100) of benign 

applications performed it. Further, DeleteKey and 

DeleteValue actions (i.e., actions that delete keys and values 

from the registry, respectively) also played a significant role in 

distinguishing malware from benign applications. This 

behavior is expected as registry contains the system 

configuration settings and malware often create (or modify) 

registry keys and values to maintain persistence on the 



infected system, allowing the malware to survive reboots. For 

example, modification to the registry key: HKLM\SOFTWARE 
\Microsoft\Windows\CurrentVersion\Run, allows the mal-

ware to automatically run every time when the Windows is 

started.  

In addition, with regards to file resource, we find that there 

are several features such as {CreateFile, SetFileInformation, 
DeviceControl, ReadFile, WriteFile} that widely appeared in 

malware samples. Similarly, several features corresponding to 

process/thread resource predominantly appeared in malware 

samples. For example, {CreateThread, QueryInformation-
Process, SetInformationProcess} feature appeared in 

67.2% (3361/5000) of malware samples and only 4% (4/100) 

of benign applications. However, several other features such 

as {OpenFile, QueryAttributesFile} and {CreateMutex, 
ReleaseMutex} seemed to be too common, where they 

appeared in almost all the malware and benign applications. 

C. Comparison with Canali et al. 

As discussed in Section II, Canali et al. [5], in their recent 

study, proposed several malware behavior modeling 

techniques for malware detection. Their experiment results 

revealed that the optimal behavior model, 2-bags of 2-tuples of 

action with arguments, achieved a 99% detection rate with a 

false positive rate of 0.4%. Using SVM to build a classifier, 

BOFM achieved 99.4% detection accuracy with no false 

positives and therefore improves the already accurate results 

of Canali et al. [5]. Since our benign sample is different from 

theirs (due to privacy reasons), this result should be interpreted 

with care but is nevertheless encouraging. More importantly, 

such improvement is obtained despite a dramatic size 

reduction in the malware feature space, as discussed next. 

Canali et al. [5], on average, generated more than one 

million malware features (i.e., signatures) for each one of 

these models, whereas BOFM generated only 569 features 

(i.e., active features). As listed in Section II, the feature space 

size (or number of signatures) is one of the key characteristics 

determining the practicality and scalability of a malware 

detector. In BOFM, we achieve this by limiting our total 

number of features to be a constant number N, whereas in [5], 

the feature space is not constant and grows proportionally to 

the size of execution traces. 

To get a better insight into the feature space problem in 

Canali et al. [5], let us assume an execution trace with just 100 

unique actions with arguments, for example, there are 12 

unique actions with arguments in the malware execution trace 

shown in Figure 1. The simplest malware behavior model: 4-

bags of actions with arguments, generates a feature space of 

size  
   
 

           . This is very large and the number of 

features heavily depends on the unique actions present in 

every single execution trace. This problem is even more acute 

for other models, such as 2-tuples of actions with arguments 

and 2-bags of 2-tuples of actions with arguments, presented in 

[5]. 

In addition, approaches in [5] have high memory 

requirements and long execution times to perform signature 

matching, whereas we were able to run standard machine 

learning algorithms on a standard PC in less than a minute. To 

be more specific, in [5], it took almost 48 hours to extract 

malware features using tuples of system calls with arguments, 

whereas, using BOFM, we were able to extract features in 

1.67 hours from the same set of malware samples. Note that 

our experiments were conducted using a single 4-core Xeon 

(R) machine with 4GB of RAM, in contrast to [5] where the 

authors used two clusters: one with eight 4-core Xeon (R) 

machines with 16GB of RAM and a second one with eight 16-

core Authentic AMD machines with 45GB of RAM. Further, 

we were able to train the SVM classifier, using our training-

set, in 26 seconds (averaged over 5 executions), consuming 

only 200 MB of physical memory (average memory space). In 

contrast, Canali et al. [5] reported that their prototype malware 

detector was unable to run on a standard machine due to the 

huge feature space, as it consumed 1GB of RAM to perform 

matching on 5 million signatures. 

This suggests that BOFM, beyond improvements in 

accuracy, is also much more efficient and scalable. Further, 

our approach does not require any complex parameter tuning 

or preprocessing. From all the above, we can therefore 

conclude that BOFM, when combined with machine learning 

algorithms, is indeed a more practical solution than the 

behavior modeling approaches reported in [5] and other 

related works, as discussed in Section II.  

IX. CONCLUSION  

This paper proposes a novel malware detection solution 

that combines a new malware behavior modeling technique 

(BOFM) and machine learning, in order to distinguish 

malware from benign programs. Our goal is to be sufficiently 

efficient, scalable, and accurate to complement traditional 

anti-virus software on end host machines. Our detection 

models cannot be easily evaded by simple obfuscation 

techniques as we characterize the behavior of malware as a set 

of high-level actions that models the interaction between 

malware and the operating system resources in a systematic 

manner. Further, the feature space generated by BOFM is of 

fixed dimension and does not grow in proportion with the 

number of malware samples under examination. This makes 

BOFM more efficient and scalable in practice. In addition, in 

spite of all these practical advantages, when combining BOFM 

and Support Vector Machines, a well-known machine learning 

approach, we obtain a better detection accuracy—including no 

false positives—than reported malware detection techniques.  

But more importantly, given the usual difficulties in 

comparing accuracy across studies, such results are obtained 

with vastly lower computation times and memory usage, thus 

demonstrating the improved scalability and efficiency of our 

approach.  
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