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GraphH: High Performance Big Graph Analytics in Small Clusters

Peng Sun, Yonggang Wen, Ta Nguyen Binh Duong and Xiaokui Xiao
School of Computer Science and Engineering, Nanyang Technological University, Singapore

{sunp0003, ygwen, donta, xkxiao}@ntu.edu.sg

Abstract—It is common for real-world applications to an-
alyze big graphs using distributed graph processing systems.
Popular in-memory systems require an enormous amount of
resources to handle big graphs. While several out-of-core
approaches have been proposed for processing big graphs on
disk, the high disk I/O overhead could significantly reduce
performance. In this paper, we propose GraphH to enable high-
performance big graph analytics in small clusters. Specifically,
we design a two-stage graph partition scheme to evenly divide
the input graph into partitions, and propose a GAB (Gather-
Apply-Broadcast) computation model to make each worker
process a partition in memory at a time. We use an edge
cache mechanism to reduce the disk I/O overhead, and design
a hybrid strategy to improve the communication performance.
GraphH can efficiently process big graphs in small clusters
or even a single commodity server. Extensive evaluations have
shown that GraphH could be up to 7.8x faster compared to
popular in-memory systems, such as Pregel+ and PowerGraph
when processing generic graphs, and more than 100x faster
than recently proposed out-of-core systems, such as GraphD
and Chaos when processing big graphs.

Keywords-Graph Processing, Distributed Computing System,
Network

I. INTRODUCTION

Many distributed graph processing systems have been
proposed to tackle general graph analytics in memory. They
usually follow the “think like a vertex” philosophy, and
abstract graph computation as vertex-centric programs. More
specifically, Pregel [1], Giraph [2], Pregel+ [3], GPS [4],
MOCGraph [5] and HuSky [6] adopt the Pregel computation
model: they assign the input graph’s vertices to multiple ma-
chines, and provide interaction between vertices by message
passing along out-edges. PowerGraph [7], PowerLyra [8],
GraphX [9] and LFGraph [10] use the GAS (Gather-Apply-
Scatter) model: they split a vertex into multiple replicas, and
parallelize the computation for a single vertex in different
machines. Many benchmarking results have shown that these
systems could offer better performance than general-purpose
systems like Hadoop and Spark [11], [12], [13].

Aforementioned in-memory approaches require powerful
computation resources to process and analyze big graphs1,
neglecting the need of average users who cannot afford a
large cluster. During the computation, these systems need to

1A big graph usually contains billions of vertices or hundreds of billions
of edges.

Table I: Benchmark Graph Datasets.

Graphs Vertex
Num

Edge
Num

Avg
Deg

Max
Indeg

Max
Outdeg

Size
(CSV)

Twitter-2010 42M 1.5B 35.3 0.7M 770K 25GB
UK-2007 134M 5.5B 41.2 6.3M 22.4K 93GB
UK-2014 788M 47.6B 60.4 8.6M 16.3K 0.9TB
EU-2015 1.1B 91.8B 85.7 20M 35.3K 1.7TB
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Figure 1: Memory requirements and execution time for running PageRank
on UK-2007 with various distributed graph processing systems. The testbed
has 9 servers, and each server contains 12x2.0GHz cores (two Intel Xeon
E5-2620 CPUs), 128GB memory, 4x4TB HDDs (RAID5) and 10Gbps
Ethernet. We use Giraph-1.1, GraphX-2.0, PowerGraph-2.2 and the newest
version of PowerLyra (hybrid-ginger mode), Pregel+, GraphD and Chaos.

store the entire input graph and all network-transmitted mes-
sages in memory. This strategy is appropriate when process-
ing generic graphs with a few billion edges, such as Twitter-
2010 and UK-2007 as shown in Table I. Unfortunately, it is
common for real-world applications to process and analyze
big graphs like UK-2014 and EU-2015, which are orders of
magnitude larger than Twitter-2010 for example. In this case,
the input graph and intermediate messages can easily exceed
the memory limit of a small-scale cluster, leading to signifi-
cant performance degradation or even program crashes. We
evaluated the memory requirement for running PageRank on
UK-2007 with five in-memory graph processing systems in
a 9-node cluster. As shown in Figure 1 (a), Giraph, GraphX,
PowerGraph, PowerLyra and Pregel+ need 795GB, 685GB,
357GB, 511GB and 281GB memory, indicating 8.5x, 7.3x,
3.8x, 5.5x and 2.9x memory explosions with respect to the
input graph’s size. To process big graphs like EU-2015, these
in-memory approaches require a large cluster with at least
5TB memory, approximately.

Researchers have proposed several out-of-core systems to
enable big graph analytics with limited memory. Specifically,
single-node systems, such as GraphChi [14], VENUS [15],
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Table II: A Comparison of Different Distributed Graph Processing Systems.

In-Memory Out-of-Core Hybrid
Distributed Graph
Processing System

Pregel, Pregel+, Giraph, GPS, MOCGraph, HuSky
GraphX, LFGraph, PowerGraph, PowerLyra

GraphD, Chaos GraphH (Our Approach)

In Memory Data All Vertex States, Edges & Messages (Part) Vertex States All Vertex States & Messages, Cached Edges
Required Platform Large-Scale Clusters or Supercomputers Small Commodity Clusters Small Commodity Clusters
Performance High (no disk I/O during computation) Low (frequent disk I/O) High (reduce disk I/O by cache)

X-Stream [16] and GridGraph [17], can process big graphs
from secondary storage on a single server. GraphD [18] and
Chaos [19] could scale out-of-core graph processing to mul-
tiple servers in a cluster. These out-of-core systems typically
maintain vertices in memory, and manage edges/messages
on disks to reduce memory footprint. As shown in Figure
1 (a), GraphD and Chaos use 73GB and 26GB memory to
run PageRank on UK-2007, respectively. Both systems can
process UK-2014 and EU-2015 in a 9-node cluster.

However, existing out-of-core systems could incur a huge
amount of disk accesses, resulting in significant performance
reduction. As shown in Figure 1 (a), while each server has
128GB memory, GraphD and Chaos only use 8GB and 3GB
memory per server respectively, and cannot efficiently lever-
age idle memory to reduce disk I/O overhead. Thus, out-core
systems usually have much lower performance than most in-
memory systems. As shown in Figure 1 (b), PowerGraph,
PowerLyra and Prgel+ outperform GraphD by 3.3x, 4.8x,
and 1.9x, and outperform Chaos by 3.8x, 5.6x and 2.2x,
when running PageRank on UK-2007. Giraph and GraphX
have lower performance than GraphD and Chaos, since
they are implemented based on general-purpose Hadoop and
Spark, which lack some graph specific optimizations.

We propose a new distributed graph processing system
named GraphH to enable high-performance big graph an-
alytics in small clusters. GraphH is a memory-disk hybrid
approach, which does not require storing all data in memory,
but maximizes the amount of in-memory data. To achieve
this goal, GraphH employs three techniques: 1) Two-Stage
Graph Partitioning. GraphH performs graph partitioning
in two stages. In the first stage, GraphH evenly divides the
graph into a set of tiles, each of which uses a compact data
structure to organize assigned edges. In the second stage,
GraphH uniformly assigns tiles to computation servers for
running vertex-centric programs. 2) GAB (Gather-Apply-
Broadcast) Computation Model. GraphH uses GAB to rep-
resent distributed out-of-core graph computation. During the
computation, each vertex maintains a replica on all servers2,
and each computation worker loads a tile into memory for
processing at a time. GraphH uses three functions to update
a vertex: Gather data along in-edges from local memory to

2 A typical commodity server can easily fit all vertices in memory. Take
PageRank as an example, EU-2015 needs 21GB memory to store all rank
values, out-degrees and intermediate messages in a single node. Meanwhile,
each server has 128GB memory in our testbed , and has 256GB memory
in [20],[21]. A single EC2 M4 instance can have up to 256GB memory.

compute an accumulator, Apply the accumulator to the target
vertex, and Broadcast new vertex values to other servers. 3)
Edge Cache Mechanism. We build an edge cache system
to leverage idle memory to reduce disk I/O overhead.

We implement GraphH using C++, MPI, OpenMP, and
ZMQ. MPI is used to parallelize vertex-centric computation
across multiple servers. OpenMP parallelizes the computa-
tion across multiple CPU cores of a single server. To improve
the communication performance, we use ZMQ to implement
a broadcast interface instead of using MPI Bcast. Exten-
sive valuations showed that GraphH performs better than
existing distributed in-memory and out-of-core systems: 1)
When processing generic graphs like Twitter-2010, GraphH
outperforms Giraph, GraphX, PowerGraph, PowerLyra and
Pregel+ by up to 7.8x. 2) When processing big graphs like
EU-2015, GraphH outperforms GraphD and Chaos by at
least 100x. 3) GraphH’s memory management strategy is
efficient, it can process big graphs like EU-2015 even on a
single commodity server without disk I/O accesses. GraphH
is available at https://github.com/cap-ntu/GraphH.

The rest of the paper is structured as follows. In section
II, we present the background of distributed graph pro-
cessing. Section III describes GraphH system design and
implementation details. Section IV shows three performance
optimization techniques. The evaluation results are detailed
in Section V. Section VI concludes the paper.

II. BACKGROUND: DISTRIBUTED GRAPH PROCESSING

Pregel and GAS are two widely-used vertex-centric mod-
els to represent distributed graph processing. In this section,
we review 2 in-memory systems (Pregel+ and PowerGraph)
and 2 out-of-core systems (GraphD and Chaos). Pregel+ and
GraphD are designed based on the Pregel model. Power-
Graph and Chaos adopt the GAS model.

A. Notations

The input graph G = (V,E) has |V | vertices and |E|
edges. All graphs are directed graphs in this paper, and it is
easy to map an undirected graph to a directed graph. Each
vertex v ∈ V has a unique ID id(v), an incoming adjacency
list Γin(v) and an outgoing adjacency list Γout(v). Vertex
v maintains a value val(a), which may be updated during
the computation, and a boolean field active(v) indicating
whether v is active or halted. The in-degree and out-degree
of v are denoted by din(v) and dout(v), where din(v) =
|Γin(v)| and dout(v) = |Γout(v)|. If a vertex u ∈ Γin(v),
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there is an edge (u, v) ∈ E. In this case, (u, v) is an in-
edge of v, and u is an incoming neighbor of v. Similarly, if
u ∈ Γout(v), (v, u) is an out-edge of v, and u is an outgoing
neighbor of v. Let val(u, v) denote the edge value of (v, u).
If G is a unweighted graph, val(u, v) = 1,∀(u, v) ∈ E.
The vertex state of v, denoted by state(v), contains different
components in various systems. To be consistent, we define
state(v) as follows:

state(v) = (id(v), val(v), dout(v), din(v), active(v)). (1)

B. Graph Partitioning

Before the vertex-centric computation, a distributed graph
processing system first divides the input graph into parti-
tions, and assigns them to N servers. Figure 2 shows the
graph partitioning strategies used in Pregel+, PowerGraph,
GraphD and Chaos.

1) Hash-based Edge-Cut Graph Partitioning: Pregel+
and GraphD use a hash function to assign vertex v and
its outgoing adjacency list Γout(v) to a server, and provide
interaction between vertices along out-edges. Each server
approximately maintains |V |/N vertex states in memory. To
enable in-memory computation, Pregel+ maintains Γout(v)
in memory, so it requires additional memory to store |E|
edges during the computation. As a comparison, GraphD
stores Γout(v) on disks to reduce memory footprint during
the computation. This hash-based edge-cut graph partition-
ing strategy can evenly distribute vertices among servers, but
cannot balance workloads when processing skewed graphs,
since high-degree vertices need more execution time [7], [8].

2) Intelligent Vertex-Cut Graph Partitioning: Power-
Graph could evenly assign |E| edges to N servers to improve
workload balance. Specifically, if a server has edge (u, v), it
also maintains state(u) and state(v) in memory. A single
vertex may have multiple replicas on different servers. For
example, both server-A and server-B in Figure 2 (b) maintain
a replica of vertex-1. Since PowerGraph requires each vertex
v to be aware of Γin(v) and Γout(v), it needs double
spaces to store an edge, which is indexed by its source and
target vertex separately. Therefore, PowerGraph maintains
M |V | vertex states and 2|E| edges in memory, where M is
the average vertex replication factor. To reduce the storage
and communication overhead, many intelligent vertex-cut
methods have been proposed to reduce the value of M in
PowerGraph and other GAS-based systems [7], [8].

3) Streaming Partitioning: Chaos divides the input graph
into P streaming partitions, and store them on disks. Each
partition consists of a set of vertices along with their out-
edges and received messages. All edges with the same source
vertex appear in a single partition, and they are not required
to be sorted or grouped. During the computation, each server
processes a streaming partition at a time: it loads the vertices
into memory and streams other data from disks. Therefore,
each server only needs to maintain |V |/P vertex states in
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Figure 2: Graph partitioning strategies used in Pregel+, PowerGraph,
GraphD and Chaos. In (a)(c), vertices are distributed to different servers
based on a hash function. In (b), the black cycle denotes a vertex replica.

memory. Chaos does not manages a streaming partition on a
single server. Instead, it spreads all data of a single partition
over all servers in the cluster uniformly and randomly.

C. Computation Engine & Programming Abstraction

Pregel+ and GraphD follow the Pregel computation model
to process input graphs. PowerGraph uses the GAS model to
optimize the processing of skewed graphs. Chaos designs an
edge-centric GAS model to represent distributed out-of-core
graph processing.

1) Pregel: A Pregel program processes the input graph
in supersteps. In each superstep, all active vertices execute a
user-defined function compute(msgs) to update their values,
then send messages along its out-edges, and vote to halt.
A halted vertex will be reactivated if it receives messages
from other vertices. The program terminates when there are
no active vetices. To reduce the communication overhead,
Pregel+ and GraphD can combine messages with the same
target vertex into a single one. Take PageRank as an exam-
ple, after message combining, Pregel+ stores η|E| and |V |
messages in memory at sender and receiver side respectively,
where 0 < η ≤ 1 is the combining ratio3. GraphD stores |E|
messages on disk at sender side, sends η|E| messages over
network after message combining, and digests all incoming
messages in a small memory buffer.

2) GAS: GAS represents vertex-centric computation with
three phases: gather, apply and scatter. During the gather
phase, each active vertex collects information along its in-
edges to compute an accumulator. Since a single vertex may

3Pregel+ and GraphD only combine messages managed by the same
worker. According to [1], [22], η ≈ (1 − exp(−davg

TN
)) TN

davg
, where T

is the number of workers in a server, davg is the input graph’s average
degree. For example, when running PageRank on EU-2015 (davg = 85.7)
in a 9-node cluster with 216 workers, η is excepted to be 0.82.

3



Algorithm 1: Pregel Abstraction

1 super step ← 0
2 while active vertices 6= ∅ do
3 for v ∈ active vertices do
4 v.value ← v.compute(msgs)
5 v.send message(Γout(v)), v.halt()

6 super step ← super step + 1

Algorithm 2: GAS Abstraction
1 super step ← 0
2 while active vertices 6= ∅ do
3 for v ∈ active vertices do

/* pull data from replicas via network */
4 accumulator ← sum(v.gather(Γin(v))

/* sync update to replicas via network */
5 v.value ← v.apply(accumulator, val(v))
6 v.scatter(Γout(v))

7 super step ← super step + 1

have multiple replicas, the gather function runs locally on
each replica, and generates a partial result. Each mirror sends
its partial result to the master, which would compute the final
accumulator. In the apply phase, the master vertex updates
its values, and sends its new value to all mirrors. In the
scatter phase, each vertex activates its outgoing neighbors.
Take PageRank as an example, PowerGraph sends 2M |V |
messages via network in each superstep, where M is the
average vertex replication factor, and keeps M |V | messages
in memory during the gather and apply phases.

Algorithm 3: Edge-Centric GAS Abstraction

1 super step ← 0
2 while not done do
3 for p ∈ streaming partitions do
4 load to memory(p.vertices)
5 for e ∈ p.out edges do
6 scatter(e.src.value, e.target)

7 for p ∈ streaming partitions do
8 load to memory(p.vertices)
9 for m ∈ p.messages do

10 m.target.accum ← gather(m.target, m.value)

11 for v ∈ p.vertices do
12 v.value ← apply(v.accum, v.value)

13 super step ← super step + 1

3) Edge-Centric GAS: Chaos leverages an edge-centric
GAS model to represent out-of-core graph processing with
three phases: scatter, gather and apply. During the scatter

Table III: Distributed Graph Processing System Comparison.

In-Memory Out-of-Core Hybrid
System Pregel+ PowerG. GaphD Chaos GraphH

RAM
Vertex O(|V |) O(M |V |)# O(|V |) O(N |V |/P )† O(N |V |)
Edge O(|E|) O(2|E|) O(1) O(1) O(N |E|/P )

Msg O(η|E|+|V |)* O(M |V |) O(1) O(1) O(N |V |)
Network O(η|E|) O(2M |V |) O(η|E|) O(3|E|+3|V |) O(N |V |)

Disk Read − − O(2|E|) O(2|E|+2|V |) O(β|E|)‡

Disk Write − − O(|E|) O(|E|+|V |) −
* η is the message combination ratio in Pregel+ and GraphD, 0 < η ≤ 1.
# M denotes the number of vertex replicas in PowerGraph.
† N is the server number, P is the graph partition number, and N ≤ P .
‡ β represents the cache miss ratio in GraphH’s edge cache system, 0 ≤ γ ≤ 1.

phase, the Scatter function scans all edges from streaming
partitions. When dealing with a streaming partition, Chaos
first loads its vertex states into memory, and process its edges
sequentially. For each edge, the Scatter function computes
and sends a message to the target vertex. Each message is
written into the associate streaming partition on disks. In
the gather phase, the Gather function scans all messages in
sequence, which are generated in the scatter phase. For each
message, the Gather function updates the accumulator of its
target vertex. Finally, in the apply phase, the Apply function
scans all vertices and update their values sequentially. For
each vertex, the Apply function uses the corresponding accu-
mulator to its vertex value. Take PageRank as an example, in
a single superstep, Chaos reads 2|V | vertex states, |E| edges
and |E| messages from disks, and writes |E| messages and
|V | vertex states into disks. All I/O operations need network
communication, since Chaos distributes a single streaming
partition across the cluster uniformly and randomly.

D. Comparison

Take PageRank as an example, Table III shows memory
usage, network traffic and disk I/Os of Pregel+, PowerGraph,
GraphD and Chaos. We should note that |E| is typically
much large than |V | [18]. For example, a user could easily
have tens of friends in a social network. For this reason, to
reduce memory footprint, GraphD and Chaos leave all or
a part of vertex states in memory, and stream edges from
disks. Moreover, GraphD and Chaos need to store network-
transmitted messages on disks at sender or receiver side.

Our proposed system, GraphH, does not require to store
all data in memory, but tries to maximize the amount of in-
memory data. First, we design a GAB model, which allows
a server to process a small partition of edges in memory at
a time. Therefore, the memory space required by edges is
O(N |E|/P ), where N is the server number and P denotes
the graph partition number. While the GAB model stores |V |
vertex states and |V | messages in memory on each server,
we note that current commodity servers easily fit these data
in memory. We then design an edge cache system to reduce
the amount of disk I/O operations for edges to O(β|E|),
where β is the cache miss ratio.

4
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III. GRAPHH: SYSTEM DESIGN

In this section, we introduce GraphH system architecture.
Then, we present the graph partitioning strategy. Next, we
introduce the GAB computation model and a set of system
optimizations. Finally, we analyze the cost of GraphH.

A. System Architecture

Figure 3 shows GraphH architecture. GraphH consists of
a distributed file system (DFS), a Spark-based graph pre-
processing engine (SPE), and an MPI-based graph process-
ing engine (MPE). Tile is the basic graph processing unit.

1) DFS: DFS centrally manages all raw input graphs
(e.g., edge lists), partitioned graphs (i.e., tiles), and process-
ing results. GraphH can work in conjunction with several
widely used DFSs, including HDFS and Lustre.

2) SPE: SPE leverages Spark to split a raw graph into
disjoin sets of edges, called tiles, and writes them to DFS.

3) MPE: MPE takes tiles as input, and runs user-defined
functions on them in supersteps (or iterations). Specifically,
MPE uses MPI to parallelize the computation across multi-
ple servers in a cluster, and leverages OpenMP to parallelize
the computation across multiple workers in a server. Each
vertex has a replica on all servers. Each worker loads a tile
into memory for processing at a time. In this way, MPE can
handle big graphs in a small cluster with limited memory. To
reduce disk I/O overhead, we build an edge cache system on
each server. To reduce communication overhead, we design
a hybrid communication channel.

GraphH performs graph partitioning in two stages. In the
first stage, SPE evenly splits the input graph’s edges into P
tiles. In the second stage, MPE uniformly assigns P tiles to
N servers before running specific vertex-centric programs.
SPE can be called one time for each input graph, since the
pre-processing results (i.e., tiles) are persisted into DFS, and
can be reused by MPE to run many vertex-centric programs.
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Figure 4: SPE splits the input graph into tiles, each of which contains a
similar number of edges in CSR format. Edges appear in the same tile as
their target vertex. SPE also stores din(v) and dout(v) for each vertex v.

B. Spark-based Graph Pre-Processing

The data pre-processing stage presents following three
challenges: 1) how to evenly assign the input graph’s |E|
edges to P tiles; 2) how to organize assigned edges in a
tile; and 3) how to pre-process big graphs with hundreds of
millions of edges. To tackle with these challenges, we design
a Spark-based graph pre-processing engine in GraphH.

1) Data Pre-Processing Overview: SPE uses three steps
to split the input graph G into P tiles. As shown in Figure 4,
in the first step, we use a |V |×|V | sparse matrix to represent
G, where the entry in column i and row j is the value of edge
(i, j) in G. If G is an unweighted graph, then val(i, j) = 1.
In the second step, SPE splits the sparse matrix into P tiles
in a 1D fashion, each of which roughly holds S = |E|/P
nonzero entries. In Figure 4, S = 2, P = 4. In the third
step, we organize the edges of each tile in the Compressed
Sparse Row (CSR) format, and persist them into DFS in
binary mode. After these three steps, each tile has following
properties: 1) Each tile approximately contains |E|/P edges;
2) Edges appear in the same tile as their target vertex; 3)
The target vertices in the same tile have consecutive ids.
Moreover, SPE also computes each vertex’s in-degree and
out-degree, and store them as two arrays in DFS.

2) Data Structure: Each tile organizes its assigned edges
in an enhanced CSR format. Given a sparse matrix, its basic
CSR format consists of three arrays: val, col and row.
More specifically, val and col store all nonzero entries and
their column indices in row-major order, respectively. The
array row records each vertex’s edge distribution: row[i]
and row[i+1] indicate the beginning and ending offsets
of vertex i’s column indices and edge values. If the input
graph is unweighted, all its edge values are 1, and its tiles
would not manage the array val to save storage spaces.

3) Tile Size: GraphH allows users to manually configure
the average tile size S (i.e., number of edges in a tile),
where S = |E|/P . Since tile is the basic processing unit
on MPE, S has high impact on performance. If S is too
large, GraphH may have the memory overflow problem.
For example, if S = 256M, each tile consumes more than
1GB memory. Given a server with 24 workers, GraphH must
reserve at least 24GB memory for tiles. Since the power-law
distribution of vertex degrees can be observed in most real-
world graphs [7], if S is too small, the size of a tile would be
bounded by high-degree vertices. As a result, GraphH cannot
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Algorithm 4: Spark-based Data Pre-Processing
1 outdegree = edges.map(e ⇒ (e.src, 1)).reduce(SUM)
2 indegree = edges.map(e ⇒ (e.target, 1)).reduce(SUM)

3 tile id = 0, size = 0, splitter = empty
4 while vertex id < vertex number do
5 size += indegree[vertex id], splitter[tile id+1] =

vertex id
6 if size ≥ S then // S is avg tile size
7 tile id += 1, size = 0

8 vertex id = vertex id + 1

9 kv = edges.map(e ⇒ (get tile id(e.target, splitter), e))
10 tiles = kv.group by key().to CSR()
11 save to dfs(outdegree, indegree, tiles)

evenly split the input graph into tiles, leading to storage and
computation imbalance. In this paper, we configure S to be
a value between 15M and 25M to balance the storage and
computation requirements.

4) Splitting Big Graphs on Spark: SPE replies on Spark
to pre-process big graphs using three map-reduce jobs, as
shown in Algorithm 4. The first two map-reduce jobs (line
1-2) return each vertex’s in-degree and out-degree. Then, we
traverse the in-degree array, assign all encountered vertex’s
in-edges to a tile until it has more than S = |E|/P edges,
and store the split information in a splitter array. Given
a vertex v, all its in-edges are assigned to tile[t id], if
splitter[t id] ≤ v < splitter[t id+1]. We run the third map-
reduce job (line 9-10) to group edges by their tile ids, and
organize them in CSR.

Table IV: Input data size (GB) for different graph processing systems.

Graphs Edge List
(CSV)

Pregel+
GraphD Giraph Chaos GraphH#

Twitter-2010 24 12 18 11 7
UK-2007 94 48 69 38 25
UK-2014 874 445 624 351 204
EU-2015 1700 862 1220 684 378

# Including all tiles, vertex in-degree array and vertex out-degree array.

5) SPE Output: SPE converts the input graph into tiles
along with an in-degree array and an out-degree array, and
use them as the input of specific applications on MPE. We
show the input data size of MPE and other graph processing
systems in Table IV. GraphX, PowerGraph and PowerLyra
use edge list as input. Pregel+, GraphD, Giraph and Chaos
require users to manually convert the input graph to a given
format. We observe that SPE also reduces the storage space
significantly, other than evenly splitting the input graph. For
example, GraphH needs 378GB disk to store EU-2015 in
tiles, while its raw edge list needs 1.7TB. The corresponding
values of Pregel+, Giraph and Chaos are 862GB, 1.22TB,and
684GB, respectively. Vertex-centric programs can benefit a
lot from this compact graph representation: 1) reduced disk
I/O overhead when accessing on-disk edges; 2) improved

the amount of edges that can be cached in memory.

C. GAB-based Vertex-Centric Computation

We design an MPI-based graph processing engine (MPE)
to perform vertex-centric computation. We first describe the
data layout in MPE. Next, we present the GAB computation
model and the parallel computation strategy. The complete
pseudo-code description of MPE is shown in Algorithm 5.

1) Data Layout: When running a vertex-centric program
on MPE, each server maintains three types of data: tiles
(partitioned edges), vertex states and messages. MPE uses
following strategies to manage these data.

• Tiles. Each server stores all assigned tiles on local disk,
and uses an edge cache system to store a portion of tiles
in memory. MPE uniformly assigns P tiles across N
servers as following: ith tile is assigned to jth server if
i (mod N) = j, and make each server fetch assigned
tiles from DFS to local disk.

• Vertices. Each vertex has a replica on all servers. Thus,
each server stores |V | vertex states in memory. GraphH
leverages a list of dense arrays to represent vertex
states, and allow users to decide which array to include.
For example, each server maintains a rank value array
and an out-degree array to run PageRank.

• Messages. GraphH stores all messages in memory. As
shown in Algorithm 5 (line 13), a server only transmits
updated vertex values to other servers. Therefore, each
server uses a |V |-dimensional dense array to manage
all received messages.

2) GAB Model: GraphH abstracts vertex-centric pro-
grams into the GAB (Gather, Apply, Broadcast) computa-
tion model. GAB is designed based on the GAS (Gather,
Apply, Scatter) model, but differs significantly. With GAB,
each vertex executes three functions to update its value in
supersteps: the gather function collects information along its
in-edges and compute an accumulator; the apply function
uses the accumulator to produce an updated vertex value;
the broadcast function copies the updated vertex value to
other replicas. The vertex-centric program terminates when
there are no updated vertices. GAB only requires users to
implement the gather and apply functions.

In Algorithm 6 and 7, we use GAB to implement PageR-
ank and single source shortest path (SSSP). In PageRank, for
each vertex, the gather function collects information along
its in-edges and sums them to be an accumulator. The apply
function then produces a new rank value. In SSSP, the gather
function computes the shortest path through each of the
in-edges, and the apply function returns the new distance.
Both PageRank and SSSP require users to implement an
additional function to initiate all vertex values and specificity
required vertex state components. For example, PageRank
needs to load the vertex out-degree array into memory.
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Algorithm 5: MPE Computation Engine
1 for tile ∈ all tiles do
2 if tile.id (mode N) = server id then
3 assigned tiles.append(tile)

4 load tiles from dfs to disk(assigned tiles), initial vertices()
5 while updated vertex num > 0 do
6 updated vertex num = 0;

/* Parallelized computation on T workers */
7 # pragma omp parallel for num threads(T)
8 for tile ∈ assigned tiles do
9 if tile.bloom filer contains(updated vertices) then

10 load to memory(tile)
11 for v ∈ tile.target vertices do
12 accum = Gather(v.in edges, vertex states)
13 updated value = Apply(v.accum, v.value)
14 if updated value 6= v.value then
15 Broadcast(v.vertex id, updated value)

16 free memory(tile)

17 wait other servers()
18 for v ∈ all vertices do
19 if v.has updated value() then
20 v.value = v.updated value
21 updated vertex num += 1

22 super step = super step + 1

3) Parallelized Out-of-Core GAB Computation on MPE:
MPE performs parallelized out-of-core GAB computation at
the level of tiles. As shown in Algorithm 5 (line 6 - 22), each
server processes assigned tiles with T workers in supersteps.
During the computation, each worker is scheduled to process
a tile at a time. More specifically, a worker firstly loads
a tile into memory, and then traverses it from the first
target vertex. For each target vertex, user-defined gather
and apply functions are called sequentially to produce an
update value. The gather function would not incur any
network communications, since each vertex has a replica
on all servers. Finally, MPE calls the broadcast function
to copy the updated vertex value to all other replicas. In
addition, MPE follows the Bulk Synchronous Parallel (BSP)
synchronization model. As shown in Algorithm 5 (line 15 -
22), after all servers have completed tile preprocessing, each
server updates its vertex replicas.

4) Avoid Loading Inactive Tiles: For many algorithms,
GraphH may just update a few vertices in a superstep. If a
tile does not contain any source vertices with updated values,
GraphH would not update any target vertices, wasting time
to load and process it. To solve this problem, GraphH makes
each tile leave a bloom filter in memory to record its source
vertex information. When processing a tile, GraphH would
first check whether its source vertex list contains any update
vertices. If yes, GraphH would continue to load the tile into
memory for processing. Otherwise, GraphH skips this tile.

Algorithm 6: PageRank implemented with GAB
1 Function PageRank initial vertex states()
2 load to memmory(vertices.out degree)
3 for v ∈ vertices do v.value = 1 / num vertex

4 Function PageRank Gather(v.in edges, vertices)
5 for e ∈ v.in edges do
6 accum += e.source.value / vertices.out degree[u.id]

7 return accum

8 Function PageRank Apply(v.accum, v.value)
9 updated value = 0.15 / num vertex + 0.85 * v.accum

10 return updated value

Algorithm 7: SSSP implemented with GAB
1 Function SSSP initial vertex states()
2 for v ∈ vertices do v.value = ∞

all vertices[source vertex id] = 0
3 Function SSSP Gather(v.in edges, vertices)
4 accum = ∞
5 for e ∈ v.in edges do
6 accum = min (e.source.value + e.value, accum)

7 return accum

8 Function SSSP Apply(v.accum, v.value)
9 return min (v.accum, v.value)

5) GAS vs. GAB: GAB is designed based on GAS, but
differs significantly, as shown in Figure 5. First, GAS needs
five operations to update a single vertex, and GAB requires a
computation and a communication operation. Second, GAS
tries to reduce the vertex replication factor by placing edges
intelligently [7], while GAB requires each vertex to have
a replica on all servers. However, GAB does not maintain
all edges in memory, thus it uses much less memory than
GAS. Third, given an updated vertex, GAS would activate
its neighbors along out-edges. Only active vertices can join
the computation of next superstep. As a comparison, GAB
does not contain this step to save the memory used to store
out-edges. At each superstep, GAB make each vertex checks
whether its in-coming neighbors have new values and run
the gather, apply functions accordingly.
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Figure 5: GAS vs. GAB. GAS requires thee computation operations (local
sum in the gather phase, update vertex in the apply phase, and active
neighbors in the scatter phase) and two communication operations to update
a vertex. GAB needs one computation operation (gather and apply), and
one communication operation (broadcast updated vertex values).
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IV. SYSTEM OPTIMIZATIONS

To improve system performance, GraphH involves a set
of optimizations on system storage and communication.

A. All-in-All Vertex Replication

GraphH uses an All-in-All (AA) vertex replication policy
to manage vertex states across N servers. Specifically, the
AA policy requires each vertex has a replica on all servers.
Therefore, each server maintains all |V | vertex replicas in
memory, even if some of them are used. While the AA
policy wastes some memory to store unused vertices, it can
manage each vertex state component in a dense array without
indexing overhead. For example, when running PageRank,
each server maintains a value array and an out-degree array.
Given a vertex v, its position in the array is equal to id(v).
Moreover, with the AA policy, GraphH also manages all
network-transmitted messages in a dense array, which is
used to update vertex values at the end of a superstep. Let
Mi,aa denote the amount of memory required by GraphH for
vertex-centric computation on ith server with the AA policy:

Mi,AA = Size(V ertex,Msg)×|V |+Size(Tile)×T, (2)

where Size(V ertex,Msg) is the size of a vertex state and
a message, and T denotes the number of workers in a server,
each of which processes a tile in memory at a time.

The On-Demand (OD) replication policy can avoid storing
unused vertex states, but incurs additional indexing over-
head. Let Vi,OD be the set of vertices managed in ith server
with the OD policy. More specifically, |Vi,OD| only contains
the source and target vertices that appear in assigned tiles
of ith server. Each vertex state and its updated value are
indexed and positioned by the vertex id. With the OD policy,
the amount of required memory in ith server is:

Mi,OD = Size(ID, V ertex,Msg)×|Vi,OD|+Size(Tile)×T.
(3)

Assume the input graph G is a random graph: the neighbors
of a vertex in G are randomly chosen among V . In this case,
|V | vertices and |E| edges are evenly assigned to N servers.
The expected number of vetices maintained by ith server is:

E[|Vi,od|] ≤ (1− (1− davg/|V |)|V |/N ))|V |+ |V |/N, (4)

where (1−(1−davg/|V |)|V |/N ))|V | is the number of source
vertices, |V |/N is the amount of target vertex number, and
some target vertices may appear in the source vertex list.
For big graphs, due to limn→∞ (1− 1/n)

n
= e−1, we have

E[|Vi,od|] ≤ (1− e−davg/N )|V |+ |V |/N. (5)

We take PageRank as an example to show that the AA
policy is more memory efficient than the OD policy in
small clusters, since it eliminates the indexing overhead at
the cost of storing unused vertices and messages. Specifi-
cally, with the AA policy, Size(V ertex,Msg) = 20 bytes,
since each vertex value and message is represent by a
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Figure 6: GraphH memory usage analytics. (a) shows the expected amount
of used memory per server, when running PageRank with the All-in-All
policy and On-Demand policy. (b) shows the GraphH (using the AA policy
without edge cache) memory usage per server in a 9-node cluster to run
PageRank and SSSP. Each server in the cluster has 128GB memory.

double-precision number (8 bytes), and each vertex out-
degree is an integer (4 bytes). When using the OD policy,
Size(ID, V ertex,Msg) = 24 bytes, since each vertex id
is represented by an unsigned integer (4 bytes). Assume that
Twitter-2010, UK-2007, UK-2014 and EU-2015 are random
graphs4, Figure 6 (a) shows the expected memory usage per
server. We can observe that the AA policy consumes less
memory than the OD policy for all graphs in a small cluster
with less than 16 servers. In a big cluster with more than
48 servers, the OD policy consumes less memory than the
AA policy to run PageRank on EU-2015. Since GraphH is
designed for big graph analytics in small clusters, we use
the AA policy in GraphH for memory-efficiency purpose.

Figure 6 (b) shows the memory usage of GraphH (using
the AA policy without edge cache) per server to run PageR-
ank and SSSP in a 9-node cluster. We see that the AA policy
would not be a bottleneck, since current single commodity
server can easily fit all vertex states and messages in the
main memory. For example, to run PageRank on EU-2015,
each server roughly consumes 33GB memory (including
HDFS). The corresponding value of SSSP is 18GB.

B. Edge Cache Mechanism

We design an edge cache system to further reduce the
disk I/O overhead of GraphH. As shown is Figure 6 (b),
when running PageRank on EU-2015 in a 9-node cluster,
each server only uses 33GB memory, leaving other 95GB
memory idle. To reduce the amount of costly disk accesses,
we build a tile cache system on these idle memory. During
the vertex-centric computation, when a worker needs to load
a tile, it firstly searches the cache system. If hit, the worker
can get the target tile without disk I/O operations. Otherwise,
the worker reads the target tile from local disks, and leaves
it in the cache system if the cache system is not full.

To further reduce disk I/O overhead, GraphH can com-
press tiles in the edge cache system. Table V shows that
popular compressors, such as snappy and zlib, can efficiently

4This assumption may not be accurate for a real graph. We use experi-
ments to show that expected memory usage is effective on real graphs.
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Table V: Compression ratio and processing throughput per CPU core.

Compression Ratio Throughput (MB/s)
snappy zlib-1 zlib-3 snappy zlib-1 zlib-3

Twitter-2010 1.75 2.78 3.22 870 55 46
UK-2007 1.89 3.71 4.54 947 58 53
UK-2014 1.96 4.34 5.26 903 65 50
EU-2015 1.96 4.35 5.88 890 62 56

Edge List
(CSV)

Tile
(raw)

Tile
(snappy)

Tile
(zlib-1)

Tile
(zlib-3)

Twitter-2010 24GB 6.5GB 3.7GB 2.3GB 2GB
UK-2007 94GB 23GB 12GB 6.2GB 5GB
UK-2014 874GB 196GB 100GB 45GB 37GB
EU-2015 1700GB 362GB 185GB 80GB 62GB

reduce the data size of real-world graphs. For example, zlib-
3 (N denotes the compression level of zlib in zlib-N ) can
compress EU-2015 tiles by a factor of 5.88, and reduce its
data size to 62GB. While workers need additional decom-
pression time, GraphH’s edge cache system still provides
much higher performance than hard disks. Table V shows
that snappy can decompress tiles at a rate of up to 903MB/s
per CPU core. The corresponding value of zlib-3 is 56MB/s.
If a server has 22 workers, its overall tile loading rate of zlib-
3 is about 1.2GB/s. In contrast, we can only achieve up to
310MB/s sequential disk read speed with RAID5, and the
available disk bandwidth is shared by all workers of a server.

GraphH’s edge cache system can automatically switch to
the most suitable mode, considering disk I/O and decompres-
sion overhead. In this work, we consider 4 cache modes:
• Mode-1: Cache uncompressed tiles.
• Mode-2: Cache compressed tiles processed by snappy.
• Mode-3: Cache compressed tiles processed by zlib-1.
• Mode-4: Cache compressed tiles processed by zlib-3.

When having limited memory, it is crucial to reduce the
disk I/O overhead by selecting compressors or libraries with
high compression rate. As shown in Figure 7, when running
PageRank on EU-2015 using three servers, compared to
mode-1, mode-3 could improve the system performance by
a factor of 17.6 by caching all tiles in memory. With the
same cache hit ratio, the decompression overhead can reduce
the system performance. For example, Figure 7 shows that
mode-4 increases the execution time by a factor of 2 with 9
servers, compared to mode-1. To minimize disk I/O overhead
as well as decompression overhead, GraphH automatically
selects the most suitable cache mode at the beginning a
vertex-centric program. Let C denote GraphH’s edge cache
capability, S is the input graph’s tile size, and γi is the
estimated compression ratio of cache mode-i. GraphH would
minimize i constrained by S/γi ≤ C. If no mode can satisfy
this constraint, GraphH would use mode-3. In this work,
γ0 = 1, γ1 = 2, γ2 = 4, γ3 = 5, according to Table V.

C. Hybrid Communication Mode
We observe that a single communication mode cannot

perform well all the time for vertex-centric programs. More
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Figure 7: Execution time and cache hit ratio comparison with different
cache modes. These experiments are done using PageRank on EU-2015.
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Figure 8: Network traffic of PageRank on UK-2007 in a 9-node cluster.

specifically, each worker generates a set of updated vertex
values when processing a tile. GraphH makes each worker
buffer updated vertex values, and broadcast them to other
servers in a single message after processing the whole tile.
It is advantageous to use a dense array representation for up-
dated vertex values along with a bitvector to record updated
vertex id. However, this dense communication mode may
waste a lot of network bandwidth when a few of vertices are
updated, because it needs to send many zeros. For example,
Figure 8 (a) shows that less than 50% vertices are updated
after the 160th superstep when running PageRank on UK-
2007 in a 9-node cluster. The sparse array representation,
which converts a dense array into a list of indices and values,
can solve this problem, since it only sends updated vertex
values. However, sparse communication mode would waste
a huge amount of network resources to send indices, if the
vertex updated ratio is high. As shown in Figure 8 (b), only
after the 160th superstep, the sparse mode has lower network
traffic than the dense mode.

We design a hybrid communication mode to save network
bandwidth. Specifically, GraphH firstly uses a dense array
to store all updated vertex values. Before the broadcasting
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Figure 9: The average execution time per superstep to run PageRank.

phase, GraphH checks its sparsity ratio 5. If the sparsity ratio
is higher than a given threshold (in this paper, this threshold
is set to 0.8), GraphH converts it into a sparse array, which
only stores non-zero values and their indices. Take PageRank
as an example, as shown in Figure 8 (c), at the beginning of
the program, GraphH broadcasts messages under the dense
node. At the end of the program, GraphH would switch to
the sparse communication mode to avoid sending zeros.

Message compressing can further improve communication
performance as in [23]. Figure 8 (c) shows that snappy,
zlib-1 and zlib-3 could reduce network traffic by a factor
of 1.7, 2.3 and 2.3, respectively. Figure 8 (d) shows that
reduced network traffic can lead to improved graph process-
ing performance. In the first 50 supersteps, GraphH roughly
takes 2.32s per superstep without compression. When using
snappy, zlib-1 and zlib-3, GraphH averagely takes 1.73s,
1.56s and 1.5s per superstep. While zlib could save more net-
work traffic, the additional decompressing overhead makes
it consume more execution time than snappy. The default
network traffic compressor of GraphH is snappy.

V. EVALUATION RESULTS

In this section, we evaluate GraphH’s performance using
a testbed with two applications (PageRank, SSSP) and four
graphs (Twitter-2010, UK-2007, UK-2014 and EU-2015).
The hardware and software configurations are same with the
testbed shown in Figure 1. We use the average execution
time per superstep as the performance metric. For each
experiment, we run 21 supersteps, and calculate the average
execution time without the first superstep, since distributed
graph processing systems usually load the input graph to

5Sparsity ratio is measured by the unchanged vertex number over the
total vertex number of a tile.
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Figure 10: The average execution time per superstep to run SSSP.

memory during this superstep. We do not compare the graph
loading time, since existing graph processing systems do
not have unique storage system requirements. For example,
Pregel+ and GraphD only support HDFS. In Chaos, we must
manually distributed the graph partitions to multiple servers.

A. Performance of PageRank

Figure 9 shows that GraphH can achieve much higher per-
formance than Pregel+, PowerGraph, PowerLyra, GraphD
and Chaos when running PageRank on all four input graphs.
Moreover, we observe that GraphH’s memory management
strategy is efficient, since it can even process big graphs like
UK-2014 and EU-2015 in a single node.

When running PageRank on Twitter-2010 with 9 servers,
GraphH could outperform Pregel+, PowerGraph, PowerLyra,
GraphD and Chaos by 7.8x, 6.3x, 5.3x, 13x and 25x,
respectively. The corresponding speedup ratios for UK-2007
are 7.5, 4.3, 3.5, 18 and 19. The performance gain comes
from GraphH’s reduced communication overhead.

As shown in Figure 9 (c) (d), GraphH can efficiently run
PageRank on big graphs like UK-2014 and EU-2015 in a
small cluster or even a single machine with limited memory.
More specifically, on a single node, GraphH only takes 68s
and 131s to run a superstep of PageRank on UK-2014 and
EU-2015, respectively. When having a cluster with 9 server,
GraphH only needs 7.5s and 10s on average per superstep,
and could roughly outperforms GraphD and Chaps by 320
and 110, respectively. The performance gain comes from the
reduced disk I/O overhead of GraphH.

B. Performance of SSSP

Figure 10 shows that GraphH also works well with SSSP.
When running SSSP on Twitter-2010 and UK-2007 with 9
servers, GraphH has a similar performance with Pregel+,
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and both of them roughly takes 0.4s to run a superstep. The
reason is that the communication overhead is not significant
for SSSP, since only a small partition of vertices may update
their values. In addition, GraphH outperforms PowerGraph
and PowerLyra by up to 2 for running SSSP on Twitter-
2010 and UK-2007. From Figure 10 (c) (d), we can see that
GraphH’s memory management is efficient when running
SSSP on big graphs. Specifically, GraphH roughly takes 1.3s
and 2.1s to run a superstep of SSSP on UK-2014 and EU-
2015 with 9 servers. Since GraphD and Chaos have high
disk I/O overhead, GraphH could outperform them by at
least 350x.

VI. CONCLUSION

In this paper, we tackle the challenge of big graph
analytics in small clusters. Existing in-memory systems need
a huge amount of resources to handle big graphs, and out-of-
core systems have poor performance due to high disk I/O
overhead. We propose a new distributed graph processing
system named GraphH, which does not require to store
all data in memory, but it maximizes the amount of in-
memory data. GraphH partitions the input graph into tiles,
and makes each worker process a tile in memory at a time to
reduce memory footprint. We design an edge cache system
to reduce disk I/O overhead, and propose a hybrid approach
to reduce communication overhead. As a result, GraphH
can efficiently process big graphs with limited memory.
Extensive evaluations show that GraphH could outperform
existing in-memory systems by up to 7.8x when processing
generic graphs, and outperform existing out-of-core systems
by more than 100x when processing big graphs.
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