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Sequential Schemes for Frequentist Estimation of
Properties in Statistical Model Checking?

Cyrille Jegourel1, Jun Sun1, and Jin Song Dong2

1Singapore University of Technology and Design, Singapore
2Griffith University, Australia

{cyrille.jegourel,sunjunhqq,dongjs1}@gmail.com

Abstract Statistical Model Checking (SMC) is an approximate verification method
that overcomes the state space explosion problem for probabilistic systems by
Monte Carlo simulations. Simulations might be however costly if many samples
are required. It is thus necessary to implement efficient algorithms to reduce the
sample size while preserving precision and accuracy. In the literature, some se-
quential schemes have been provided for the estimation of property occurrence
based on predefined confidence and absolute or relative error. Nevertheless, these
algorithms remain conservative and may result in huge sample sizes if the re-
quired precision standards are demanding. In this article, we compare some useful
bounds and some sequential methods based on frequentist estimations. We pro-
pose outperforming and rigorous alternative schemes, based on Massart bounds
and robust confidence intervals. Our theoretical and empirical analysis show that
our proposal reduces the sample size while providing guarantees on error bounds.

1 Introduction

Probabilistic Model Checking (PMC) [16] is a formal verification method to analyse
quantitative properties of probabilistic systems. PMC algorithms perform an exhaustive
traversal of the state space of the system. However, real-world applications often involve
multiple interacting components and the resulting state space becomes intractable. This
limitation has led to the development of alternative methods like discrete event sim-
ulation and Statistical (Probabilistic) Model Checking (SMC) [23]. These simulation-
based approaches require the use of an executable model of the system and then estimate
the probability of a property based on simulations. SMC provides rigorous bounds of
the error of the estimated results, based on robust statistical techniques (e.g., [19,4,21]).
For real-world complex systems, SMC has a lot of potential as it requires little memory
and remains very efficient for large systems. Finally, SMC is sometimes the only option
for verifying many realistic models.

SMC also faces some specific problems. For example, simulations may be costly
and time consuming. Moreover, the specifications of critical or important events are in
practice tight. SMC must thus focus on additional statistical aspects to provide optim-
ised sampling schemes while guaranteeing a rigorous confidence of the estimation. The
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need of rigorous sampling schemes have been addressed from the early days in SMC
[23,11] to more recent [10,8] just to cite a few. A key feature in designing a sampling
procedure is to determine the number of simulations necessary to generate an estim-
ation within acceptable margins of error and confidence. Bayesian SMC may be used
to address this problem. However, in this approach, the probability to estimate must be
given by a prior random variable whose density is based on previous experiments and
knowledge about the system [25]. This limitation motivates the alternative frequentist
estimation approaches. The scope of this article is restricted to this class of methods.

In [11], the authors discussed the notion of absolute and relative margin of error
for SMC. To guarantee that the absolute error is bounded, they introduced a procedure
relying on the Okamoto bound1 that, given fixed confidence and error parameters, de-
termines a priori the number of Bernoulli samples required, which is independent of
the probability to estimate. Supporting relative errors (i.e., errors which depend on the
probability to quantify) is more difficult, although theoretical bounds exist. Dagum et
al. [7] proposed an approximate algorithm based on Bernstein’s inequalities.

Approximate algorithms work by rough parameter estimations that are then reused
in a stopping rule to update the number of simulations achieving the desired precision
task. More recently, Watanabe proposed a sequential algorithm for bounding the relative
error [22] based on a simpler stopping rule. The procedures described in [11] have been
at least partially implemented in statistical model checkers like PRISM [16], PLASMA
[14], APMC [12] and UPPAAL-SMC [8]. These sampling schemes are however very
conservative notably when the probability to estimate is close to 0 or 1. Moreover,
Dagum’s algorithm was initially used to estimate the mean value of any random variable
distributed in [0, 1] and is thus not optimised for Bernoulli random variables.

In this article, our main goal is to provide better performing sampling schemes that
rigorously fulfil absolute and relative error specifications. The key idea of our schemes
is to define sequentially confidence intervals (CI) of the probability and then to apply
Massart bounds, sharper than the Chernoff bounds, over the worst value of the CI to
decide whether enough traces have been sampled. For this purpose, we also aim to
clarify the two-sided “Chernoff” bounds for absolute and relative error specifications,
to promote Massart bounds and last but not least, to give proofs of all these bounds.
Indeed, the original theorems are one-sided and the two-sided versions must be clearly
stated. The proofs are sometimes straightforward, at least for Theorems 3 and 5, but
sometimes require more arguments. In particular, we could not find clear wordings
and proofs of Theorem 2 and Theorem 4 in the literature. Finally, as far as we know,
Theorems 6 and 7 are original as well as the algorithms using them. The proofs of the
bounds can be found in the appendix.

In Section 2, we formally state the absolute and relative specifications which we
want to fulfil. We also recall the basics of Monte Carlo estimation and some subtleties
concerning coverage and CI. In Section 3, we introduce the Massart bounds. So far, they
seem to suffer from a lack of recognition. For that reason, we present a comparison with
the Chernoff bounds. We then describe some existing sampling schemes related to our
problem in Section 4. In Section 5, we propose alternative sequential algorithms based
on two inequalities, previously proven, which depend on the coverage of the probability.

1 The Okamoto bound is sometimes called the Chernoff bound in the literature.



Finally, we show in Section 6 that these new schemes outperform the current approaches
for the absolute and relative error problems by reducing significantly the sampling size.
Section 7 concludes the article and leaves open questions for future work.

2 Background

In the following, a stochastic system S is interpreted as a set of interacting components
in which the state is determined randomly with respect to a global probability distribu-
tion. Let (Ω,F , µ) be the probability space induced by the system with Ω a set of finite
paths with respect to system’s property φ, F a σ-algebra ofΩ and µ the probability dis-
tribution defined overF . Before going further, it is worth mentioning that SMC initially
addressed the problem of verifying whether a property probability exceeds a threshold
or not. This problem can be solved by using the sequential probability ratio test in hy-
pothesis testing [23]. Other issues have been considered since, notably the estimation
of the probability that a system property holds. In spite of similarities, both problems
are different and in what follows, we focus on the estimation problem.

2.1 Statement of the problem

Given a probabilistic system S, a property φ and a probability γ, we write S |= Pr(φ) =
γ if and only if the probability that a random execution of S satisfies φ is equal to γ.
In principle, if γ is unknown, we can apply analytical methods to determine this value.
However, due for example to numerical imprecisions, we often relax the constraints
over γ and introduce the following notations:

S |=aε Pr(φ) = γ and S |=rε Pr(φ) = γ (1)

The left formula means that a random execution of S satisfies φ with probability γ plus
or minus an absolute error ε, i.e. Pr(φ) ∈ [γ − ε, γ + ε]. The right formula means that
a random execution of S satisfies φ with probability γ up to some relative error ε, i.e.
Pr(φ) ∈ [(1− ε)γ, (1 + ε)γ].

SMC applies on an executable system S and a property φ that is verified in finite
time. In SMC, the satisfaction of property φ is quantified by a Bernoulli random variable
of unknown mean γ. This mean is then approximated using a Monte Carlo estimation
scheme. The output of the scheme is thus not an exact but an approximate value, given
within certain error bounds and a confidence parameter δ that is the probability of out-
putting a false estimate. SMC thus requires a sampling scheme which outputs, after n
samples, an estimate γ̂n close to γ up to some absolute or relative ε-based error with
probability greater or equal than 1− δ. Formally, we write:

S |=aε,δ Pr(φ) = γ̂n or S |=rε,δ Pr(φ) = γ̂n (2)

if and only if an algorithm outputs estimators while guaranteeing:

Pr(|γ̂n − γ| > ε) ≤ δ (3)



or respectively:
Pr(|γ̂n − γ| > εγ) ≤ δ. (4)

We call (3) the absolute error specification and (4) the relative error specification. The
goal of the article is thus to equip SMC with sampling algorithms that fulfil Specifica-
tion (3) or (4) with as few samples as possible.

2.2 Monte Carlo Estimation

Let ω be a path sampled from space Ω with respect to distribution µ; z be a function
from Ω to {0, 1} assigning 1 if ω satisfies property φ and 0 otherwise and γ be the
probability that an arbitrary path of the system satisfies φ. In SMC, the behaviour of
function z is interpreted as a Bernoulli random variable Z with mean parameter γ. By
definition, the average value γ is the integral of function z with respect to distribution µ
over space Ω: γ = Eµ[Z] =

´
Ω
z(ω) dµ(ω) and an estimator γ̂n is given by the Monte

Carlo method by drawing n independent samples ωi ∼ µ, i ∈ {1, . . . , n}, as follows:

γ̂n =
1

n

n∑
i=1

z(ωi) ≈ Eµ[Z] (5)

Let m =
∑n
i=1 z(ωi) be the number of successes and σ2 = γ(1 − γ) the variance of

Z. In what follows, for sake of simplicity, we use both notations γ̂n and m/n to denote
the estimate.
Confidence Intervals and Coverage An estimator is given in general within a CI.
However, in order to make use of the theorems presented in Section 5, we need to
distinguish the notion of coverage and approximate CI.

Definition 1. Given probability γ and a CI I , we call C(γ, I) = Pr(γ ∈ I) the cover-
age of γ (by I).

Denoting Φ(.) the standard normal distribution function and zδ/2 = Φ−1(1− δ/2)
the (1−δ/2)th quantile of the normal distribution, the notional (1−δ)-CI for γ is given
by I =

[
γ̂n − zδ/2 σ√

n
, γ̂n + zδ/2

σ√
n

]
in virtue of the central limit theorem. However,

in practice, σ2 is replaced by a sample approximation σ̂2
n = γ̂n(1− γ̂n)/n (and if n is

small, zδ/2 by tδ/2,n−1 the quantile of the Student’s t-distribution with n − 1 degrees
of freedom). Then, an approximate (1− δ)-CI Ĩ is given by:

Ĩ =
[
γ̂n − zδ/2σ̂n, γ̂n + zδ/2σ̂n

]
(6)

Unfortunately, the coverage of γ by an approximate CI Ĩ , may be significantly below
the (desired) notional coverage: C(γ, Ĩ) < C(γ, I) = 1 − δ. More details about this
topic are available in the appendix and in [2].
Exact Clopper-Pearson CI The algorithms proposed in Section 5 require an iterative
computation of CI to evaluate a rigorous coverage of γ. For that purpose, we use the
Clopper-Pearson (1 − δ)-CI [6]. This CI guarantees that the actual coverage is always
equal to or above the nominal confidence level. In others words, a (1 − δ)-Clopper-
Pearson CI J guarantees that C(γ, J) ≥ 1− δ and its closed-form expression is easily
computed: J = [β−1

(
δ
2 ,m, n−m+ 1

)
, β−1(1− δ

2 ,m+ 1, n−m) ] with β−1(δ, u, v)
being the δ-th quantile of a Beta distribution parametrised by u and v.



Agresti-Coull CI As γ decreases, the Clopper-Pearson CI becomes more conservative.
The Agresti-Coull CI consists in replacing the number of samples n by n+ z2δ and the
number of successesm bym+z2δ/2 in the binomial CI (6). The CI is only approximate
but still presents a good coverage close to the boundaries and may represent a good
compromise between exactness and conservativeness (see [2] for more details).

3 Chernoff-Hoeffding-Okamato and Massart bounds

In the literature, the Chernoff bounds [4] refer to exponential decreasing bounds, in the
number of simulations, of the probability of deviation between a Monte Carlo estimate
and its mean. However, they exist under various forms, additive or multiplicative, one or
two-sided, more or less “simplified”. Moreover, tighter bounds have been established,
notably in [18], but they still suffer from a lack of recognition. In this section, we intend
to clear up confusion on the bounds by presenting a brief survey of the two-sided bounds
and show the improvements achieved by the Massart bounds to give them the attention
they deserve.

3.1 Absolute error bounds

Though the seminal work is due to Chernoff [4], the two-sided absolute error bound has
been first stated for binomial distributions by M. Okamoto in [20].

Theorem 1 (Okamoto bound). For any ε, 0 < ε < 1, we have the following inequal-
ity:

Pr(|γ̂n − γ| > ε) ≤ 2 exp(−2nε2) (7)

Given ε, δ, writing out δ = 2 exp(−2nε2), the Okamato bound can be used to
determine a minimal number n of simulations to perform a Monte Carlo plan fulfilling
the absolute error specification (3). The main advantage of the Okamoto bound is that
it is independent of the value to estimate. However, the bound is very conservative
and in many cases, a much lower sample size would achieve the same absolute error
specification. Hoeffding provided a one-sided tighter exponential bound in [13]. We
present below a two-sided version of his bound.

Theorem 2 (Absolute Error Hoeffding bound). For any ε such that 0 < ε < 1 and γ
such that 0 < γ < 1, we have the following inequality:

Pr(|γ̂n − γ| > ε) ≤ 2 exp
(
−nε2f(γ)

)
(8)

where f(γ) =
{
1/(1− 2γ) log((1− γ)/γ) if γ 6= 1/2
2 if γ = 1/2

Surprisingly, we could not find a clear statement and a proof of this result in the literat-
ure. We thus present a proof in the appendix.

In this article, the Hoeffding bound is only presented because of its repute. Indeed,
Massart established in [18] a sharper bound that holds if the absolute error ε is lower
than probabilities γ and 1 − γ. In what follows, we use the two-sided absolute and
relative error versions of Massart bounds.



Theorem 3 (Absolute Error Massart bound). For all γ such that 0 < γ < 1 and any
ε such that 0 < ε < min(γ, 1− γ), we have the following inequality:

Pr(|γ̂n − γ| > ε) ≤ 2 exp
(
−nε2ha(γ, ε)

)
(9)

where ha(γ, ε) =

{
9/2 ((3γ + ε)(3(1− γ)− ε))−1 if 0 < γ < 1/2

9/2 ((3(1− γ) + ε)(3γ + ε))
−1 if 1/2 ≤ γ < 1

3.2 Relative error bounds

In practice, the absolute error is set independently of γ. However, it could be that the
approximation is meaningless, especially if the absolute error is large with respect to
γ. In this case, setting a relative error that remains ‘small’ with respect of γ may be
more adequate. The literature mentions a Chernoff-Hoeffding bound with relative error
(e.g. [1]). This bound is known under multiple forms, more or less sharp and one or
two-sided. For sake of consistency, we here provide a two-sided bound. As the existing
literature adopts slightly different results, sometimes without providing their proof, we
give a complete proof in the appendix adapted from two online references2.

Theorem 4 (Relative Error Hoeffding bound). For any ε, 0 < ε < 1 and γ, 0 < γ <
1, we have the following inequality:

Pr (|γ̂n − γ| > εγ) ≤ 2 exp

(
−nε

2γ

2 + ε

)
(10)

Finally, the Massart bound has a two-sided relative form.

Theorem 5 (Relative Error Massart bound). For γ, 0 < γ < 1 and any ε, 0 < ε <
(1− γ)/γ, we have the following inequality:

Pr(|γ̂n − γ| ≥ εγ) ≤ 2 exp
(
−nε2hr(γ, ε)

)
(11)

with hr(γ, ε) =

{
9γ/2 ((3 + ε)(3− γ(3 + ε)))

−1 if 0 < γ < 1/2

9γ/2 ((3− ε)(3− γ(3− ε)))−1 if 1/2 ≤ γ < 1

Notional sample size If we let δ be equal to any of the right side expression of the
inequalities given in Theorems (1) to (5), we can deduce a notional sample size n such
that specification (3) or (4) is fulfilled. For example, using Theorem 5 given ε and δ, we
only need to set n > 1/(hr(γ, ε)ε

2) log(2/δ) to satisfy the relative error specification
(4). However, Hoeffding and Massart inequalities are not directly applicable because
they depend on γ, in contrast to the Okamoto bound. But, they still have a theoretical
interest: Figure 1 indicates for any notional γ the number of simulations necessary to
produce an (ε, δ)-estimator according to the Okamoto, Hoeffding and Massart bounds.
Though the bounds are approximately equivalent when γ is 1/2, the bounds are far

2 http://crypto.stanford.edu/∼blynn/pr/chernoff.html and www.cs.princeton.edu/courses/
archive/fall09/cos521/Handouts/probabilityandcomputing.pdf
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Figure 2: Hoeffding (dot) and Massart
(plain) bounds with relative error ε =
0.1 and confidence parameter δ =
0.05.

apart when γ is away from 1/2. Given ε = 0.01, δ = 0.05 and γ = 0.05 for example,
the absolute error specification would be fulfilled with n ≥ 3283 simulations according
to the Massart bound instead of n ≥ 11276 or n ≥ 18445 for the respective Hoeffding
and Okamoto bounds. Similarly for the relative error specification, Figure 2 shows that
the Massart sample size is always lower than the Chernoff-Hoeffding sample size. The
gain in sample size is more important when γ is high. With ε = 0.1, δ = 0.05, the ratio
between Hoeffding and Massart sample sizes tends to decrease to 1.086 when γ tends
to zero, that may still be non-negligible if sampling is time-costly.

4 Related work

In this section, we give a brief summary of existing sequential methods based on fre-
quentis estimations to address specification (3) or (4). Some of them have already been
implemented in SMC. We also recall that the specifications can be alternatively ad-
dressed by Bayesian SMC, not explored in this article, when beliefs and knowledge
about the system are exploitable [25].

4.1 Schemes for the absolute error specification

Given ε and δ, the standard method to satisfy specification (3) is to compute a sample
size n independently of probability γ using the Okamoto bound. Since there does not
exist a bound independent of γ in the relative error case, the sequential schemes are
mostly used to address specification (4) but they are not limited to it.

Simple scheme A simple idea could be to sample and update a (1 − δ)-CI until it is
included into an interval γ̂n± ε. This frequentist approach is implemented in UPPAAL-
SMC [8]. However, though this technique may work more often if the CI are computed
according to the Clopper-Pearson method, this scheme does not guarantee in general
specification (3) for any δ, ε and γ (see for example [9,17]). For sake of understanding,



we added a brief but technical explanation in the appendix. It is however possible to
pre-compute a value δ∗ that guarantees a final coverage greater than 1− δ (see [9]).

Chen’s scheme [3] A promising sequential scheme which may work in practice, at
least for some common values of ε and δ, is the work proposed by Chen in [3]. Chen’s
scheme also takes advantage of the Massart bounds. The idea is to sample while n <
2 log(2/δ)

ε2

[
1/4− (|γ̂n − 1/2| − 2/3ε)

2
]
. Unfortunately, this rule only guarantees to pro-

duce an estimation which does not exceed the error bound ε on one side. So far, showing
the other half of the bound has not been proven and was conjectured by the authors after
some experiments.

4.2 Schemes for the relative error specification

In [11], the relative error specification is addressed by Dagum’s algorithm.

Dagum’s scheme [7] is a three-step procedure to perform an estimation of the mean of
a general [0, 1]-valued random variable X given relative error ε and confidence δ. The
two first steps consist in providing a coarse estimation γ̂k and a dispersion parameter ρ̂l.
Finally, the third step provides the final estimation γ̂n using γ̂k and ρ̂l. The three steps
are independent and depend on three different stopping rules, omitted here for sake of
simplicity (see [7] for more details). The final sample size is thus given by k + l + n.
Nevertheless, Dagum’s scheme is based on coarser bounds than the Chernoff bounds.
Moreover, this algorithm is used to estimate the mean of any random variable with
support in [0, 1]. Consequently, the scheme has a very general use but is not optimised
for Bernoulli random variables.

Watanabe’s scheme [22] In order to guarantee the relative error specification, Watanabe
proposed to sample until the number of successes is greater than 3(1+ε)

ε2 log 2
δ . The main

advantage is that this simple scheme does not require to perform pre-samples as in the
first two steps of Dagum’s algorithm. As far as we know, this scheme, more recent than
Dagum’s, has not been implemented in SMC.

5 A sequential scheme involving coverage

In this section, we present our sequential scheme for the absolute and relative error
specification. Our scheme performs better than Watanabe and Dagum’s scheme in the
relative error case and, unlike the simple and Chen’s schemes, is guaranteed to bound
the error on both sides while strictly maintaining a coverage greater than 1 − δ. Apart
from the Okamoto bound, the inequalities presented in Section 3 require the knowledge
of γ and they are thus not directly applicable. However, one may still exploit some in-
formation about probability γ. For example, depending on the problem, one may know
or numerically evaluate with certainty a rough interval in which γ evolves. We present
in the first subsection two theorems and the underlying sample sizes and, in the second
subsection, our sampling schemes.



5.1 Bounds with coverage

The following theorems make use of the Massart bounds presented in Theorems 3 and
5 as they are sharper than the Chernoff-Hoeffding bounds.

Theorem 6 (Absolute Error Massart Bound with coverage). Let a and b be the ex-
trema of CI I ∈ B([0, 1]) and Ic be the complement of I in [0, 1]:

Pr (|γ̂n − γ| > ε) ≤ 2 exp
(
−nε2ha(x, ε)

)
+ C(γ, Ic) (12)

where function ha is defined in Theorem 3 and x = a if b < 1/2, x = b if a > 1/2 and
x = 1/2 if 1/2 ∈ I .

By default, a = 0, b = 1, C(γ, [0, 1]c) = 0 and the theorem is consistent with the
Okamoto bound. We remark that even if an accurate estimation of γ is not feasible to
obtain within a reasonable time, Theorem 6 can exploit coarse but exact bounds a, b
calculated analytically. In that case, we would have C(γ, [a, b]c) = 0. Finally, a similar
theorem involving relative error can be established.

Theorem 7 (Relative Error Massart Bound with coverage). Let a be a (random)
element of [0, 1] and hr defined as in Theorem 5.

Pr (|γ̂n − γ| > εγ) ≤ 2 exp
(
−nε2hr(a, ε)

)
+ C(γ, [0, a[) (13)

Both theorems state that the probability of absolute or relative error is bounded by
the respective Massart bound applied over the most pessimistic value of a CI plus the
probability that the CI does not contain γ. We deduce from both theorems the following
sample-size result:

Theorem 8. Let δ′ < δ such that C(γ, Ic) < δ′. (i) Under the conditions of Theorem
6, a Monte Carlo algorithm A that outputs an estimate γ̂n fulfils Specification (3) if
n > 1

min(ha(a,ε),ha(b,ε))ε2
log 2

δ−δ′ .
(ii) Similarly, under the conditions of Theorem 7, a Monte Carlo algorithm A that

outputs an estimate γ̂n fulfils Specification (4) if n > 1
hr(a,ε)ε2

log 2
δ−δ′ .

The proof is immediate in both cases once we set δ = 2s+δ′ with s being the respective
exponential expressions of Theorems 6 or 7.

The bounds of Theorem 8 are more conservative than the bounds induced by The-
orems 3 and 5 because the Massart bounds are evaluated in the most pessimistic value
of CI [a, b]. In addition, our bound also takes into account the probability that γ is not
in I , that implies an additional number of samples in the final sample size. In the abso-
lute error case, if a CI I containing 1/2 is determined, applying the previous theorem
is unnecessary because the sample size is simply bounded with respect to the Okamoto
bound. Similarly, if a (or b) is lower-bounded (or respectively upper-bounded) by 1/2
but still close to 1/2, the Okamoto bound is likely better. However, if γ is closer to 0 or
1, the logarithmic extra number of samples is largely compensated by the evaluation of
the Massart bound in a or b.



5.2 Sequential algorithms

In the following, we present two new sampling schemes. Both of them require three
inputs: an error parameter ε, and two confidence parameters δ and δ′ such that δ′ < δ.
After each sample, we update a Monte Carlo estimator and a (1 − δ′)-CI for γ. Then,
the most pessimistic bound of the CI is used in the Massart function to compute a
new minimal sample size n that satisfies Theorem 8. The process is repeated until the
calculated sample size is lower than or equal to the current number of runs. We provide
the pseudo-code of our Algorithms (1) and (2). Keywords GENERATE corresponds to a
sample path generation and DETERMINE to the evaluation of the CI, slightly different
in both schemes. Theorems 6 and 7 guarantee the correctness of our schemes since,
for any tuple (m,n), if we are able to compute a (1 − δ′)-CI I and its exact coverage,
the deviation probability is bounded by δ defined as the sum of the coverage and the
Massart function at n, ε and the most pessimistic value of I .

Absolute Error Sequential Algorithm We initiate the algorithm with a CI I0 in which
γ belongs (by default, I0 = [0, 1]) and a worst-case (ε, δ)-sample size n0 = M with
M = d 1

2ε2 log
2
δ e determined by the Okamoto bound (d.e denotes the ceiling function).

Once a trace ω(k) is generated and monitored, the number of successes with respect to
property φ and the total number of traces are updated. Then, an exact (1− δ′)-CI Ik is
evaluated. Iteration after iteration, the CI width tends to shorten and becomes more and
more accurate. Theorem 8-i is applied to determine a new sample size nk, bounded from
above by M if necessary. These steps are repeated until k ≥ nk at which specification
(3) is rigorously fulfilled.
Relative Error Sequential Algorithm We first assume the existence, in a practical
case study, of a threshold γmin, supposedly low, corresponding to a tolerated pre-
cision error (e.g. a floating-point approximation). Estimating a value below γmin is
then unnecessary. The maximal number of simulations is consequently bounded by
M = d 1

ε2hr(γmin,ε)
log 2

δ e. The relative error scheme is similar to the absolute error
scheme. Note however that it is only necessary to determine a lower bound of Ik since
hr is a decreasing function in γ. Then, we determine a one-sided Clopper-Pearson
(1 − δ′)-CI of shape [ak, 1] with ak = β−1(δ′,m, n − m + 1). Theorem 8-ii is ap-
plied to determine a new sample size nk, upper bounded by M if ak < γmin and the
steps are repeated until k ≥ nk. If the final output γ̂k is higher than γmin, Specification
(4) is rigorously fulfilled. Otherwise, we can still output that γ is lower than γmin with
probability greater that 1− δ.

6 Experiment Results

Our methods significantly reduce the sampling size while rigorously guaranteeing the
specifications when probability γ gets away from 1/2 in the absolute error case and for
any γ in the relative error case, in comparison to the methods that have been documented
for SMC in [11]. Both methods can be easily used to improve existing SMC tools. To
give a glimpse of their efficiency, we give the gain in sampling size obtained with our
methods in Table 1 over 3 standard Prism benchmarks described in [24]: the tandem



Algorithm 1: Absolute Error Sequential Algorithm
Data:
ε, δ, δ′ : the original parameters
M = d 1

2ε2
log 2

δ
e: the Okamoto bound

k = 0
m = 0: the number of successes
nk =M
Ik = [ak, bk] [0, 1]: the initial CI to which γ is known to belong

1 while k < nk do
2 k ← k + 1

3 GENERATE ω(k)

4 z(ω(k)) = 1(ω(k) |= φ)

5 m← m+ z(ω(k))
6 DETERMINE Ik
7 if 1/2 ∈ Ik then
8 nk =M
9 else if bk < 1/2 then

10 nk = d 2
ha(bk,ε)ε

2 log 2
δ−δ′ e

11 else
12 nk = d 2

ha(ak,ε)ε
2 log 2

δ−δ′ e

13 nk ← min(nk,M)

Output: γ̂k = m/k

Algorithm 2: Relative Error Sequential Algorithm
Data:
ε, δ, δ′, γmin : the original parameters
M = d 1

ε2hr(γmin,ε)
log 2

δ
e

k = 0
nk =M
Ik = [ak, 1] = [γmin, 1]: the initial CI in which γ is supposed to belong

1 while k < nk do
2 k ← k + 1

3 GENERATE ω(k)

4 z(ω(k)) = 1(ω(k) |= φ)

5 m← m+ z(ω(k))
6 DETERMINE Ik
7 if γmin ≥ ak then
8 nk =M
9 else

10 nk = d 1
ε2hr(ak,ε)

log 2
δ−δ′ e

11 nk ← min(nk,M)

Output: γ̂k = m/k

queueing network in which queue capacities are equal to 3, the 10-station symmetric
polling system and the 20-dependable workstation cluster. We respectively verify that,



γ APMC (ε, δ) (AE) Gain Dagum (ε, δ) (RE) Gain
tandem 0.155132 (0.01, 0.001) 1.7 (0.05, 0.001) 5.18

polling 0.540786 (0.001, 0.01) 1 (0.01, 0.01) 3.65

cluster 5.160834× 10−4 (10−4, 0.05) 399 (0.2, 0.05) 9

Table 1: Sampling size gains over standard Prism benchmarks

from their respective initial states, the system is full within 20 time units in the tandem
example, that station 1 will be served before station 2 in the second example and that
the QoS will drop below minimum of quality within 1000 time units in the third ex-
ample. We refer to the appendix and [24] for more details concerning the models and
the properties. In Prism, the Okamoto sampling size can be computed with the APMC
method. For a given ε and δ, we report in column ”(AE) Gain” the ratio between the
Okamoto sampling size and our sampling size (average based on 5 experiments). For
example, the property of the cluster model has probability γ = 5.160834 × 10−4 to
occur. Given absolute error ε = 10−4 and confidence parameter δ = 0.05, it requires
184443973 paths to guarantee Specification (3) when our method only requires 462077
paths to guarantee the same specification, which is 399 fewer samples. Similarly, given
relative error ε and confidence parameters in column ”Dagum (ε, δ)”, ”(RE) Gain” cor-
responds to the ratio of the 5-experiment average sampling sizes obtained by Dagum’s
algorithm and our method, necessary to fulfil Specification (4). The sampling sizes of
these examples are given in the appendix.

Our methods are general and the class of probabilistic systems on which the sampling
schemes can be applied does not really matter as long as the systems are executable and
the executions can be monitored. In what follows, we evaluate our sampling schemes
on a small benchmark, available in the appendix, that can be easily investigated using
model checker Prism [16] to corroborate our results.

6.1 Absolute Error Scheme Results

We compare our algorithm with the simple and Chen’s schemes. To guarantee specific-
ation (3) in the simple scheme, one can use the algorithm proposed by Frey in [9]. This
procedure pre-computes a value δ∗ that guarantees a final coverage greater than 1 − δ
when the CI are computed according to the Clopper-Pearson method. For each couple
of successes and trials (m,n) where n is smaller than the Okamoto bound M , the al-
gorithm computes the number of sequences of observations h(m,n, ε) that lead to the
output m/n. Unfortunately, we were unable to get results for ε smaller than 0.1 due
to overflows of values h(m,n, ε) > 10309 in addition to an excessive amount of time
required by this recursive computation. Thus, we used the default δ∗ = δ.

We repeated each set of experiments 200 times with the three schemes for several
values of γ, ε and δ. We estimated the empirical coverage by the number of times the
specification (3) is fulfilled divided by 200 and computed the average, the standard
deviation and the extrema values of the sample size and of the estimations γ̂. For sake
of clarity, as our results are consistent for all ε, δ and are symmetric with respect to
γ = 1/2, we summarize the most relevant results for ε = 0.01, δ = 0.05 and 0 <
γ ≤ 1/2 in Table 2. More details are provided for every scheme and set of experiments
in the appendix. For every ε and δ, the sampling size is significantly lower for the



γ 0.005 0.01 0.02 0.05 0.1 0.3 0.5

Coverage (simple) 1 0.965 0.94 0.96 0.965 0.975 0.945
γ̂ min (simple) 0 0 0.007 0.036 0.087 0.288 0.484
γ̂ max (simple) 0.013 0.021 0.029 0.062 0.113 0.316 0.513
N mean (simple) 518 729 1107 2172 3777 8278 9703

Coverage (Chen) 1 0.98 1 0.995 1 0.995 0.995

γ̂ min (Chen) 0 0 0.011 0.04 0.091 0.292 0.492

γ̂ max (Chen) 0.01 0.017 0.028 0.059 0.107 0.31 0.511

N mean (Chen) 810 1171 1900 3946 7035 15684 18444

Coverage (new) 1 0.99 995 0.995 0.995 1 1

γ̂ min (new) 0 0 0.01 0.039 0.089 0.291 0.491

γ̂ max (new) 0.011 0.019 0.027 0.059 0.106 0.309 0.51

N mean (new) 831 1229 2064 4474 8161 18434 18445

Table 2: Results of the Absolute Error scheme with ε = 0.01 and δ = 0.05

simple scheme than for Chen and our schemes. However, the empirical coverage is
below 1 − δ for some γ (in bold and red in the table). For example, Table 2) indicates
an empirical coverage of 0.94 for ε = 0.01, δ = 0.05, and γ = 0.02. Moreover,
we remark that for every set of experiments, the simple scheme outputs at least one
estimation that exceeds γ ± 1.25ε (in bold and red in the table). This indicates that the
difference between the estimation and γ exceeds the absolute error ε by more than 25%,
that may consequently lead to important analysis errors. In comparison, the difference
between γ̂ and γ never exceeds ε by more than 10% in both other schemes. We thus do
not recommend to use the simple scheme if specification (3) is rigorously prescribed.
The theoretical expectations of Chen and our schemes are empirically confirmed: the
coverage is significantly above 1 − δ in each case (> 0.95 in Table 2). Specification
(3) is thus strictly satisfied. Chen’s scheme shows a slightly better performance than
our algorithm in terms of sampling size. However, we recall that Chen only guarantees
that the estimation does not exceed the error bound ε on one side. For that reason, we
recommend to use our algorithm that seems to be reasonably more conservative.

Figure 3a shows an empirical plot of the sample size as a function of probability γ.
In this experiment, we let the sample size be greater than the Okamoto bound (dotted
blue line) to illustrate the gap between the empirical and the notional bounds. With
the sampling algorithm 1 described in Section 5, the sample size would be bounded
in virtue of Okamoto’s inequality between 0.3 and 0.7. Note that the empirical plot
has no particular meaning but is a guide to the eye that illustrates the behaviour of our
algorithm. As expected, the gain is larger close to 0 and 1. For γ = 0.02, the Okamoto
sample size (18445) is divided in average by 9. The empirical sample size is always
maintained above the notional Massart sample size, indicating that the sample size has
not been mistakenly minimised due to a wrong CI.

6.2 Relative Error Scheme Results

We repeated 200 times Dagum’s, Watanabe’s and our relative error schemes for eight
values of γ with several ε and δ. We reported the results for several ε and δ in Table 3.



γ 0.9 0.7 0.5 0.3 0.1 0.05 0.01 0.001

N mean Dagum, (ε, δ) = (0.1, 0.01) 1871 4402 9056 19703 74064 152757 803572 8124356

N mean Dagum, (ε, δ) = (0.1, 0.05) 1360 3160 6412 14253 52432 111703 570763 5787456

N mean Dagum, (ε, δ) = (0.05, 0.05) 3162 8912 19244 43276 163084 346269 1800585 18208080

N mean Dagum, (ε, δ) = (0.05, 0.01) 4394 12337 26677 60263 226889 479164 2467430 25300472

N mean W., (ε, δ) = (0.1, 0.01) 1942 2498 3501 5836 17479 35006 175092 1746713

N mean W., (ε, δ) = (0.1, 0.05) 1353 1738 2439 4048 12207 24362 122029 1218779

N mean W., (ε, δ) = (0.05, 0.05) 5163 6634 9299 15453 46496 92950 465144 4650289

N mean W., (ε, δ) = (0.05, 0.01) 7416 9540 13347 22235 66756 133581 665536 6677525

N mean New, (ε, δ) = (0.1, 0.01) 202 623 1373 3043 11365 23812 122426 1236491

N mean New, (ε, δ) = (0.1, 0.05) 137 441 991 2204 8208 17356 88838 895496

N mean New, (ε, δ) = (0.05, 0.05) 476 1631 3737 8473 32175 67850 348706 3515688

N mean New, (ε, δ) = (0.05, 0.01) 669 2266 5151 11675 44346 93236 482998 4871059

Table 3: Sample size average of the Relative Error schemes, given ε and δ.

More detailed tables, containing the descriptive statistics of the sample sizes, are avail-
able in the appendix. The average sample sizes are drawn for each scheme on Figure
3c. We did not report the coverage of the sampling schemes because specification (4)
was largely satisfied in the three cases. However, Dagum scheme is very conservative
in sample size as Table 3 and Figure 3c illustrate. We observe that our scheme is better
than Watanabe’s for all values of γ, especially when γ tends to 1. As γ decreases, the
Clopper-Pearson CI becomes more conservative but our algorithm still presents better
performances. However, when γ is below 0.05, the conservativeness of the Clopper-
Pearson CI becomes too significant and exponentially impacts the sample size. Once
the number of simulations k exceeds 1000 and γ̂k ∈ [1/k, 0.04], we thus replaced the
evaluation of the Clopper-Pearson CI by the Agresti-Coull CI. The results in the last
two columns of Table 3 are obtained using the Agresti-Coull CI. The approximation
maintains the highest performance and seems to be a good alternative to exact CI. A
deeper investigation is left to future work, but even if the lower bound of the exact CI
is below the lower bound of the Agresti-Coull CI, their difference is likely tight and
reusing a slightly too optimistic value in the Massart bound is unlikely to pose problem.

We compare in Figure 3b the empirical plot of the sample size as a function of
probability γ with the notional bound. As for the absolute error case, the empirical
plot is always maintained above the notional Massart sample size. Figure 3d shows
the typical evolution of the CI bounds for the absolute and relative error problem with
respectively, γ = 0.05 and γ = 0.1 and shows their accuracy and reliability over time.

7 Conclusion

The focus of this paper was to minimise using sequential schemes based on frequentist
estimations the sampling size necessary to estimate a property with absolute or relat-
ive error in comparison to the standard methods in SMC. To build estimators that fulfil
Specifications (3) or (4), we proved two inequalities and presented two sequential al-
gorithms based on Massart bounds and coverage of probability γ. The comparison with
the schemes commonly used in SMC showed significant improvements. We leave for
future work theoretical improvements of the algorithms, notably concerning the choice
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Figure 3: Experimental results

of δ′. Finally, it is worth recalling that all the Monte Carlo sampling schemes anyway
require a lot of samples for rare event estimation. Though the problem of designing
sampling schemes for Binomial estimators is well-documented, the lack of exact con-
centration inequalities for importance sampling [5] and splitting estimators [15] in SMC
makes the design of robust sampling procedures challenging in the rare event context.
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24. Håkan L. S. Younes, Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Numerical
vs. statistical probabilistic model checking: An empirical study. In TACAS 2004, Barcelona,
Spain, pages 46–60, 2004.

25. P. Zuliani, A. Platzer, and E. M. Clarke. Bayesian Statistical Model Checking with Applica-
tion to Stateflow/Simulink Verification. Formal Methods in System Design, 43(2):338–367,
2013.



Appendix A Content of the Appendices

In what follows, we provide in Appendix B the proofs of the theorems presented in the
article. Due to the page limit and for sake of simplicity, some technicalities are omitted
in the article. For these reasons, we briefly answer some common questions that readers
may have about approximate confidence intervals and the simple scheme in Appendix
C. We however refer to the references mentioned in the article for more details. In
Appendix D, we describe the group repair model that we used in Section 6. We notably
provide the Prism code of the model and the property and a table of correspondence
between failure parameter α and γ. We also provide the settings of the other models
(tandem, polling and cluster) for the readers. In Appendix E, we provide more results
with different ε and δ for various γ.

Appendix B Proofs

In what follows, for more convenience and readability, we use both ex and exp(x) to
denote the exponential of a real number x.

B.1 Proof of Theorem 2 [Absolute Error Hoeffding bound]

Proof. Let us first introduce a few notations. We define f as the following function:

f : ]0, 1[ −→ R
γ 7−→ 1

1−2γ log
(

1−γ
γ

)
Let g be the function defined as:

g : ]0, 1[ −→ R
γ 7−→ 1

2γ(1−γ)

Note that f is defined by continuity in 1/2 and that f(1/2) = 2 and that g(γ) > 0. Let
us recall the result established by Hoeffding in [13]:

Theorem 9 (Hoeffding’s bound). For any ε, 0 < ε < 1, we have the following in-
equalities:

∀0 < γ <
1

2
, P r(γ̂n − γ > ε) ≤ exp

(
−nε2f(γ)

)
(14)

and

∀1
2
≤ γ < 1, P r(γ̂n − γ > ε) ≤ exp

(
−nε2g(γ)

)
(15)

In order to prove the two-sided version presented in the article, we need to prove
the following lemma.

Lemma 1. ∀γ ∈ ]0, 1[ , f(γ) ≤ g(γ).



Proof. Proving this lemma is equivalent to prove that h(γ) ≤ 0 with

h(γ) = |1− 2γ|f(γ)
g(γ)

− |1− 2γ|.

The derivative h′ of h is equal to sgn(1 − 2γ) × 2(1 − 2γ) log
(

1−γ
γ

)
with sgn(.) the

function that assigns to an element x of R its sign (1 if x ≥ 0, −1 otherwise). From the
sign of h′, we deduce the variation of h (increasing between 0 and 1/2 and decreasing
between 1/2 and 1). The maximum is thus reached in 1/2 and h(1/2) = 0. ut

Let µ = 1− γ and µ̂n = 1− γ̂n.

Pr(|γ̂n − γ| > ε) = Pr(γ̂n − γ > ε) + Pr(γ̂n − γ < −ε)
= Pr(γ̂n − γ > ε) + Pr(µ̂n − µ > ε)

If 0 < γ < 1
2 , as µ = 1− γ, we use twice the Hoeffding’s bound to write:

Pr(|γ̂n − γ| > ε) ≤ exp
(
−nε2f(γ)

)
+ exp

(
−nε2g(µ)

)
And if 1

2 ≤ γ <, similarly, we write:

Pr(|γ̂n − γ| > ε) ≤ exp
(
−nε2g(γ)

)
+ exp

(
−nε2f(µ)

)
However, for all γ ∈ ]0, 1[, f(γ) = f(1−γ) and g(γ) = g(1−γ). Thus, both previous
inequations may be simplified as follows:

Pr(|γ̂n − γ| > ε) ≤ exp
(
−nε2f(γ)

)
+ exp

(
−nε2g(γ)

)
≤ 2 exp

(
−nε2 min(f(γ), g(γ)

)
The proof is achieved by the use of Lemma 1. ut

B.2 Proof of Theorem 3 [Absolute Error Massart bound]

Proof. According to Massart’s seminal work [18], we already have the following in-
equality for γ, 0 < γ < 1 and any ε, 0 < ε < min(γ, 1− γ):

Pr(γ̂n − γ > ε) ≤ exp

(
− 9nε2

2(3γ + ε)(3(1− γ)− ε)

)
(16)

Then, setting µ = 1− γ and µ̂n = 1− γ̂n, dually, we have:

Pr(µ̂n − µ > ε) ≤ exp

(
− 9nε2

2(3µ+ ε)(3(1− µ)− ε)

)
(17)

Rewriting the expression with respect to γ, we end up with the two-sided bound:

Pr(|γ̂n − γ| > ε) ≤ e−
9nε2

2(3γ+ε)(3(1−γ)−ε) + e−
9nε2

2(3(1−γ)+ε)(3γ−ε)

≤ 2 exp
(
− 9nε2

2 min
(

1
(3γ+ε)(3(1−γ)−ε) ,

1
(3(1−γ)+ε)(3γ−ε)

))



The right-side expression is not very convenient to manipulate. We thus evaluate which
exponential of the sum dominates the other. Let A = (3γ + ε)(3(1 − γ) − ε) and
B = (3(1− γ) + ε)(3γ − ε). After simplification, we get:

A−B = 6ε(1− 2γ)

that is greater than 0 if and only if 0 < γ ≤ 1/2. The conclusion follows immediately.
ut

B.3 Proof of Theorem 4 [Relative Error Hoeffding bound]

The following proof has been adapted from the partial proofs available online3.

Proof. Let Sn =
∑n
i=1 zi be the sum of the independent Bernoulli observations zi. To

recall, by definition, γ̂n = Sn/n. Let us first bound Pr (γ̂n − γ > εγ) or equivalently,
Pr (Sn > (1 + ε)nγ). For all t > 0, we have:

Pr (Sn > (1 + ε)nγ) = Pr
(
etSn > et(1+ε)nγ

)
Then, by the Markov’s inequality,

Pr (Sn > (1 + ε)nγ) ≤
E
[
etSn

]
et(1+ε)nγ

Then since the zi are independent:

E
[
etSn

]
= E

[
et

∑n
i=1 zi

]
= E

[
n∏
i=1

etzi

]
=

n∏
i=1

E
[
etzi
]

zi are Bernoulli random variables of parameter γ. We can thus evaluate E [etzi ] easily.
With probability γ, etzi = et and with probability 1 − γ, etzi = 1. So, E [etzi ] =
1 + γ(et − 1). Moreover, for all x > 0, 1 + x < ex. Thus,

n∏
i=1

E
[
etzi
]
= (1 + γ(et − 1))n < enγ(e

t−1)

Hence,

Pr (γ̂n − γ > εγ) ≤ enγ(e
t−1)

et(1+ε)nγ
(18)

This inequation is valid for all t > 0, in particular for the value t that minimises the
right-hand side. By differentiation, we can show that the minimum is reached when
t = log(1 + ε). Finally, after rewrital, we end up with a nice multiplicative Chernoff
bound:

Pr (γ̂n − γ > εγ) ≤
(

eε

(1 + ε)1+ε

)nγ
≤ enγ(ε−(1+ε) log(1+ε))

3 http://crypto.stanford.edu/∼blynn/pr/chernoff.html and www.cs.princeton.edu/courses/
archive/fall09/cos521/Handouts/probabilityandcomputing.pdf



Lemma 2. ∀x ≥ 0, log(1 + x) ≥ 2x
2+x .

Proof. Let h the function defined on R as h(x) = log(1 + x)− 2x
2+x . The derivative h′

is:

h′(x) =
1

1 + x
− 4

(2 + x)2
=

x2

(1 + x)(2 + x)2
≥ 0. (19)

So h is an increasing function, thus its global minimum is reached in 0. But h(0) = 0.
ut

Using Lemma 2, we obtain:

Pr (γ̂n − γ > εγ) ≤ exp

(
nγ

(
ε− (1 + ε)

2ε

2 + ε

))
(20)

≤ exp

(
−nε

2γ

2 + ε

)
(21)

For the lower tail P (γ−γ̂n > εγ), we proceed as before. We apply Markov’s inequality,
then use the approximation 1 + x < ex, and finally choose t to minimize the bound,
that is t = log(1− ε), to obtain:

Pr (γ − γ̂n > εγ) ≤
(

e−ε

(1− ε)1−ε

)nγ
(22)

≤ enγ(−ε−(1−ε) log(1−ε)) (23)

Recall that for x < 1, the Taylor expansion of − log(1 − x) is
∑∞
k=1

xk

k . Thus, as
ε < 1, log(1 − ε) > −ε + ε2/2. Substituting this inequality in Expression (22) leads,
after simplification, to:

Pr (γ̂n − γ > εγ) ≤ exp

(
−nε

2γ

2

)
(24)

Finally, we have:

Pr (|γ̂n − γ| > εγ) ≤ Pr (γ̂n − γ > εγ) + Pr (γ − γ̂n > εγ)

≤ exp

(
−nε

2γ

2 + ε

)
+ exp

(
−nε

2γ

2

)
The proof of the Theorem is achieved noticing that 1/2 ≥ 1/(2 + ε). ut

B.4 Proof of Theorem 5 [Relative Error Massart bound]

Theorem 5 is just a particular case of Theorem 3. Let 0 < ε < min(1, 1−γγ ) and ε′ = εγ.
By construction, 0 < ε′ < min(γ, 1− γ). Thus, we can apply Theorem 3 and we get:

Pr(|γ̂n − γ| > ε′) ≤ 2 exp
(
−nε′2ha(γ, ε′)

)
(25)

The theorem is straightforward after the replacement of ε′ by εγ and simplification. ut



B.5 Proof of Theorem 6 [Absolute Error Massart Bound involving knowledge]

Proof. First, let us establish the following lemma:

Lemma 3. For any events A,B ∈ F , denoting Bc the complement of B, we have:

Pr(A) ≤ Pr(A | B) + Pr(Bc)

.

Proof. A = (A ∩ B) t (A ∩ Bc) with t denoting a disjoint union. So, Pr(A) =
Pr(A∩B)+Pr(A∩Bc). But, by the Bayes Theorem, Pr(A | B)Pr(B) = Pr(A∩B)
and A ∩Bc ⊂ Bc, thus Pr(A ∩B) ≤ Pr(A | B) and Pr(A ∩Bc) ≤ Pr(Bc). ut
Then, by applying Lemma 3 on events A = {|γ̂n − γ| ≥ ε} and B = {γ ∈ I}, we get:

Pr (|γ̂n − γ| > ε) ≤ Pr (|γ̂n − γ| > ε | γ ∈ I) + Pr (γ /∈ I) (26)

First, by definition, Pr (γ /∈ I) = C(γ, Ic). Then, under hypothesis a ≤ γ ≤ b, the
absolute error bounds imply that the first probability of the right expression is bounded
by:

Pr (|γ̂n − γ| > ε | γ ∈ I) ≤ 2 exp

(
−nε2 min

γ∈I
f(γ)

)
A simple function analysis shows that f strictly decreases between 0 and 1/2 and
strictly increases between 1/2 and 1. Its maximum is thus reached at one of the bounds
of interval [a, b], a if a ≥ 1/2 and b if b ≤ 1/2. ut

B.6 Proof of Theorem 7 [Relative Error Massart Bound involving knowledge]

Proof. Let I = [a, 1]. We apply Lemma 3 on events A = {|γ̂n − γ| > εγ} and B =
{γ /∈ I}. We get:

Pr (|γ̂n − γ| > εγ) ≤ Pr (|γ̂n − γ| > εγ | {γ ∈ I}) + Pr (γ < a)

≤ 2 exp

(
−nε2 min

γ∈I
ζR(γ)

)
+ Pr (γ < a)

Similarly, function analysis shows that h increases on ]0, 1]. The minimum is thus
reached in a. ut

Appendix C Questions

C.1 What are the problems with approximate confidence intervals?

First of all, the standard confidence interval results from the central limit theorem. This
theorem is an asymptotic result involving the normal distribution. Thus, this asymptotic
theorem should not be used if the central limit approximation is not accurate. But the
heuristics provided by statistical textbooks are often imprecise (e.g. “the number of
samples n must be large”) or unverifiable (e.g. “ nγ(1− γ) must be greater than 5”) as
γ is unknown. Last but not least, even if the qualifications of the central limit theorem
are true, the coverage of γ by an approximate confidence interval Ĩ , may be significantly
below the (desired) notional coverage: C(γ, Ĩ) < C(γ, I) = 1−δ. We refer the readers
to [2] for the excellent discussion about the coverage of confidence intervals.



γ 0.001 0.005 0.01 0.02 0.05 0.1 0.3 0.5 0.7 0.9

α 0.2384 0.2784 0.2978 0.3186 0.3491 0.3755 0.4303 0.4723 0.5272 0.7325

Table 4: Correspondence between α and γ in the failure-repair benchmark

C.2 Why does the simple scheme often fail?

The reason is that a long sequence of successes (or failures) tend to reduce too drastic-
ally the width of the confidence interval. Any failure (or success) posterior to that se-
quence would provoke a significant change of width. In practice, it would be thus neces-
sary to keep sampling until these changes of width have a minor impact. More formally,
one can indeed claim that, given a number of successes m, a coverage 1− δ and a fixed
width d, there exists a number of samples n such that a (1 − δ)-confidence interval of
fixed width d, based on m and n, has a coverage greater than 1 − δ. But there is no
theoretical result that claims that the smallest integer n such that the (1− δ)-confidence
interval width is lower than d satisfies this coverage.

Appendix D Benchmark

D.1 Group repair benchmark

We used a benchmark small enough (125 states) to be investigated using model checker
Prism [16] to corroborate our results. The system is modelled as a continuous time
Markov chain and comprises three types (1, 2, 3) of 4 components that may fail inde-
pendently. The components fail with rates (λ1 = α2, λ2 = α, λ3 = α) and are repaired
with rate µ = 1. In addition, components are repaired with priority according to their
type (type i has highest priority than type j if i < j). Components of type 1 and 2
are repaired simultaneously if at least two of their own type have failed. Type 3 com-
ponents are repaired one by one as soon as one has failed. The property we consider is
the probability γ of reaching a failure state that corresponds to the failure of all com-
ponents, before returning to the initial state of no failures. Since γ is impacted by the
failure rates of the system, we first determined with Prism the failure rates α such that
γ ∈ {0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9} and summarised the corres-
pondence between α and γ in Table 4.

D.2 Prism code

We give below the code of the Prism model and the property under investigation.

ctmc

const int n=4;
const double alpha = 0.2384;
const double alpha2 = alpha*alpha;
const double mu = 1.0;

module type1



state1 : [0..n] init 0;
[] state1 < n -> (n-state1)*alpha2 : (state1’=state1+1);
[] state1 >=2 -> mu : (state1’=0);
endmodule

module type2
state2 : [0..n] init 0;
[] state2 < n -> (n-state2)*alpha : (state2’=state2+1);
[] state2 >=2 & state1 < 2 -> mu : (state2’=0);
endmodule

module type3
state3 : [0..n] init 0;
[] state3 < n -> (n-state3)*alpha : (state3’=state3+1);
[] state3 > 0 & state2 < 2 & state1 < 2 -> mu : (state3’=state3-1);
endmodule

label "failure" = state1 = n & state2 = n & state3 = n;

The property code is:

P=?["init" & (X !"init" U "failure")]

D.3 Other benchmarks

The following benchmarks are described in [24] and the Prism codes are available on-
line4. For each example, we indicate below the specific parameters of the models and
the property of interest.

Tandem Queueing Network In this benchmark, we set the queue capacity c = 3. γ
is the probability that the network becomes full in T time units with T = 15. This
probability, equal to 0.155132, is expressed in the Prism model by:

P=? [ true U<=T sc=c&sm=c&ph=2 ]

Fulfilling Specification 3 with (ε, δ) = (0.01, 0.001) requires 38005 samples ac-
cording to the Okamoto bound (APMC method in Prism) and about 22355 samples in
average according to our method.

Fulfilling Specification 4 with (ε, δ) = (0.05, 0.001) requires 194553 samples ac-
cording to Dagum’s algorithm and about 37558 samples in average according to our
method.

Symmetric Polling System In this benchmark, we set the number of stations N = 10.
γ is the probability, from the inital state, that station 1 is served before station 2. This
probability, equal to 0.540786, is expressed in the Prism model by:

4 http://www.prismmodelchecker.org/casestudies/index.php



P=? [ !(s=2&a=1) U (s=1&a=1) ]

Fulfilling Specification 3 with (ε, δ) = (0.001, 0.01) requires 2649159 samples
according to the Okamoto bound and our method (because probability γ is close to
1/2).

Fulfilling Specification 4 with (ε, δ) = (0.01, 0.01) requires 379585 samples ac-
cording to Dagum’s algorithm and about 103995 samples in average according to our
method.

Dependable Workstation Cluster In this benchmark, we set the number of stations
N = 20. γ is the probability, from the initial state, that QoS drops below minimum
quality within T time units with T = 1000. This probability, equal to 5.160834×10−4,
is expressed in the Prism model by:

P=? [ true U<=T !"minimum" ]

Fulfilling Specification 3 with (ε, δ) = (10−4, 0.05) requires 184443973 samples
according to the Okamoto bound and about 462265 samples in average according to
our method.

Fulfilling Specification 4 with (ε, δ) = (0.2, 0.05) requires 4246711 samples ac-
cording to Dagum’s algorithm and about 471856 samples in average according to our
method.

Appendix E More results

E.1 Absolute Error schemes

γ 0.005 0.01 0.02 0.05 0.1 0.3 0.5

Coverage 1 1 0.99 0.99 0.955 0.92 0.94

γ̂ min 0 0 0 0.029 0.074 0.267 0.47

γ̂ max 0.019 0.024 0.039 0.072 0.122 0.326 0.533

γ̂ mean 0.005 0.009 0.019 0.048 0.1 0.3 0.5

N mean 228 266 360 615 1024 2121 2450

N min 183 183 183 451 827 1994 2448

N max 364 411 539 810 1184 2208 2451

σ(N) 41 55 63 72 70 41 1

Table 5: Results of the naive scheme with ε = 0.02 and δ = 0.05



γ 0.005 0.01 0.02 0.05 0.1 0.3 0.5

Coverage 1 1 1 0.985 0.99 0.99 0.985

γ̂ min 0 0 0.003 0.027 0.079 0.281 0.479

γ̂ max 0.013 0.024 0.035 0.067 0.121 0.322 0.525

γ̂ mean 0.004 0.009 0.02 0.05 0.1 0.3 0.5

N mean 333 414 591 1041 1729 3629 4195

N min 263 263 318 703 1459 3501 4193

N max 476 660 826 1292 1994 3753 4197

σ(N) 60 82 104 104 91 49 1

Table 6: Results of the naive scheme with ε = 0.02 and δ = 0.01

γ 0.005 0.01 0.02 0.05 0.1 0.3 0.5

Coverage 1 0.965 0.94 0.96 0.965 0.975 0.945

γ̂ min 0 0 0.007 0.036 0.087 0.288 0.484

γ̂ max 0.013 0.021 0.029 0.062 0.113 0.316 0.513

γ̂ mean 0.004 0.009 0.02 0.05 0.1 0.3 0.5

N mean 518 729 1107 2172 3777 8278 9703

N min 368 368 661 1731 3384 8098 9701

N max 859 1172 1434 2583 4158 8510 9704

σ(N) 103 147 163 166 144 71 1

Table 7: Results of the naive scheme with ε = 0.01 and δ = 0.05

γ 0.005 0.01 0.02 0.05 0.1 0.3 0.5

Coverage 1 0.99 0.985 0.98 1 0.99 0.985

γ̂ min 0 0 0.009 0.035 0.091 0.289 0.491

γ̂ max 0.013 0.016 0.029 0.06 0.109 0.309 0.513

γ̂ mean 0.004 0.009 0.019 0.05 0.099 0.3 0.5

N mean 833 1157 1795 3670 6418 14226 16686

N min 528 528 1167 2761 5960 13837 16684

N max 1422 1604 2395 4282 6898 14446 16687

σ(N) 167 196 225 224 191 102 1

Table 8: Results of the naive scheme with ε = 0.01 and δ = 0.01

γ 0.005 0.01 0.02 0.05 0.1 0.3 0.5

Coverage 1 1 0.995 1 0.995 1 0.995

γ̂ min 0 0 0 0.031 0.083 0.282 0.487

γ̂ max 0.013 0.022 0.032 0.065 0.121 0.317 0.521

γ̂ mean 0.004 0.009 0.019 0.05 0.1 0.3 0.5

N mean 320 402 575 1090 1858 3972 4610

N min 243 243 243 779 1599 3842 4608

N max 470 632 804 1335 2133 4079 4612

σ(N) 62 86 108 114 103 48 1

Table 9: Results of Chen’s scheme with ε = 0.02 and δ = 0.05



γ 0.005 0.01 0.02 0.05 0.1 0.3 0.5

Coverage 1 1 1 1 1 1 1

γ̂ min 0 0 0.004 0.034 0.083 0.281 0.484

γ̂ max 0.013 0.02 0.028 0.062 0.113 0.313 0.517

γ̂ mean 0.004 0.009 0.019 0.049 0.1 0.299 0.499

N mean 463 584 828 1560 2664 5691 6621

N min 349 349 461 1188 2305 5500 6619

N max 684 853 1045 1836 2931 5829 6623

σ(N) 84 102 123 124 117 63 1

Table 10: Results of Chen’s scheme with ε = 0.02 and δ = 0.01

γ 0.005 0.01 0.02 0.05 0.1 0.3 0.5

Coverage 1 0.98 1 0.995 1 0.995 0.995

γ̂ min 0 0 0.011 0.04 0.091 0.292 0.492

γ̂ max 0.01 0.017 0.028 0.059 0.107 0.31 0.511

γ̂ mean 0.004 0.009 0.02 0.05 0.1 0.3 0.5

N mean 810 1171 1900 3946 7035 15684 18444

N min 489 489 1278 3257 6509 15448 18442

N max 1206 1706 2436 4503 7436 15976 18445

σ(N) 170 229 237 228 183 99 1

Table 11: Results of Chen’s scheme with ε = 0.01 and δ = 0.05

γ 0.005 0.01 0.02 0.05 0.1 0.3 0.5

Coverage 1 1 1 1 0.995 0.995 0.995

γ̂ min 0 0.004 0.011 0.043 0.092 0.289 0.489

γ̂ max 0.011 0.016 0.027 0.057 0.111 0.309 0.509

γ̂ mean 0.005 0.009 0.019 0.05 0.101 0.3 0.5

N mean 1213 1685 2711 5649 10142 22540 26490

N min 702 1154 1796 5043 9414 22053 26487

N max 1796 2359 3447 6285 10977 22900 26492

σ(N) 201 229 290 248 256 125 1

Table 12: Results of Chen’s scheme with ε = 0.01 and δ = 0.01

γ 0.005 0.01 0.02 0.05 0.1 0.3 0.5

Coverage 1 1 1 0.99 0.995 1 0.99

γ̂ min 0 0 0.003 0.029 0.082 0.281 0.476

γ̂ max 0.016 0.021 0.033 0.065 0.122 0.32 0.514

γ̂ mean 0.004 0.009 0.019 0.049 0.1 0.3 0.5

N mean 321 411 620 1201 2131 4609 4612

N min 243 243 304 818 1819 4504 4612

N max 556 658 885 1511 2509 4612 4612

σ(N) 70 98 110 133 110 14 0

Table 13: Results of our scheme with ε = 0.02 and δ = 0.05



γ 0.005 0.01 0.02 0.05 0.1 0.3 0.5

Coverage 1 1 1 1 1 1 1

γ̂ min 0 0 0.002 0.036 0.084 0.286 0.485

γ̂ max 0.016 0.021 0.032 0.063 0.114 0.313 0.52

γ̂ mean 0.004 0.01 0.019 0.049 0.1 0.3 0.5

N mean 456 596 869 1673 2930 6405 6623

N min 332 332 402 1325 2548 6245 6623

N max 765 909 1215 2036 3244 6543 6623

σ(N) 88 113 137 140 134 65 0

Table 14: Results of our scheme with ε = 0.02 and δ = 0.01

γ 0.005 0.01 0.02 0.05 0.1 0.3 0.5

Coverage 1 0.99 0.995 0.995 0.995 1 1

γ̂ min 0 0 0.01 0.039 0.089 0.291 0.491

γ̂ max 0.011 0.019 0.027 0.059 0.106 0.309 0.51

γ̂ mean 0.004 0.009 0.019 0.05 0.1 0.3 0.5

N mean 831 1229 2064 4474 8161 18434 18445

N min 448 448 1251 3571 7427 18221 188445

N max 1401 2014 2690 5180 8612 18445 18445

σ(N) 194 263 250 278 223 115 0

Table 15: Results of our scheme with ε = 0.01 and δ = 0.05

γ 0.005 0.01 0.02 0.05 0.1 0.3 0.5

Coverage 1 1 1 1 0.995 1 1

γ̂ min 0 0.001 0.013 0.044 0.089 0.292 0.492

γ̂ max 0.01 0.015 0.026 0.057 0.109 0.309 0.508

γ̂ mean 0.005 0.009 0.02 0.05 0.1 0.3 0.5

N mean 1192 1738 2908 6198 11266 25380 26492

N min 667 808 2112 5552 10181 24990 26492

N max 1759 2351 3573 6961 12057 25791 26492

σ(N) 228 260 304 293 289 140 0

Table 16: Results of our scheme with ε = 0.01 and δ = 0.01

E.2 Relative Error schemes



γ 0.9 0.7 0.5 0.3 0.1 0.05 0.01 0.001

Coverage (New) 0.98 0.99 1 1 1 0.99 1 0.99

N mean Dagum 1360 3160 6412 14253 52432 111703 570763 5787456

N mean Watanabe 1353 1738 2439 4048 12207 24362 122029 1218779

N mean New 137 441 991 2204 8208 17356 88838 895496

N min Dagum 1239 2706 4893 10515 38047 82396 402704 3842171

N min Watanabe 1326 1667 2290 3784 11335 22356 112202 1124053

N min New 59 321 773 1931 7387 15992 79697 826619

N max Dagum 1537 3832 8213 19296 71621 153484 919717 8408400

N max Watanabe 1381 1808 2579 4371 12995 27058 131959 1303185

N max New 230 558 1163 2425 8917 18836 97401 976689

σ(N) Dagum 51 220 641 1591 6414 14638 75480 803964

σ(N) Watanabe 11 27 52 102 351 751 3436 31828

σ(N) New 32 41 64 92 301 549 2921 28891

Table 17: Results of the Relative Error schemes with ε = 0.1 and δ = 0.05

γ 0.9 0.7 0.5 0.3 0.1 0.05 0.01 0.001

N mean Dagum 1871 4402 9056 19703 74064 152757 803572 8124356

N mean Watanabe 1942 2498 3501 5836 17479 35006 175092 1746713

N mean New 202 623 1373 3043 11365 23812 122426 1236491

N min Dagum 1749 3784 7344 14442 47525 110121 544802 6765298

N min Watanabe 1900 2404 3356 5525 16320 31990 165058 1630908

N min New 101 474 1188 2777 10549 21975 112569 1144960

N max Dagum 2068 5042 11530 24048 99876 199447 1088138 9218545

N max Watanabe 1989 2602 3682 6244 18857 37443 186327 1871956

N max New 288 752 1593 3398 12513 25644 132023 1334497

σ(N) Dagum 57 267 766 1957 9002 17235 101350 757926

σ(N) Watanabe 16 36 57 125 420 865 4023 47309

σ(N) New 37 54 66 114 338 749 3479 36934

Table 18: Results of the Relative Error schemes with ε = 0.1 and δ = 0.01

γ 0.9 0.7 0.5 0.3 0.1 0.05 0.01 0.001

N mean Dagum 3162 8912 19244 43276 163084 346269 1800585 18208080

N mean Watanabe 5163 6634 9299 15453 46496 92950 465144 4650289

N mean New 476 1631 3737 8473 32175 67850 348706 3515688

N min Dagum 2744 7655 15878 32973 118648 263215 1288876 14979100

N min Watanabe 5093 6490 9019 14991 44740 89176 445042 4418313

N min New 331 1422 3318 7988 30794 64989 341699 3472015

N max Dagum 3617 10336 23284 54222 213356 466642 2348861 21291654

N max Watanabe 5250 6813 9551 15896 48279 97027 481377 4879618

N max New 634 1879 4059 8950 33861 70469 359423 3588372

σ(N) Dagum 156 552 1497 3882 15851 35758 196226 2262304

σ(N) Watanabe 25 50 92 168 645 1383 6796 67340

σ(N) New 61 91 109 195 624 1124 5953 37749

Table 19: Results of the Relative Error schemes with ε = 0.05 and δ = 0.05



γ 0.9 0.7 0.5 0.3 0.1 0.05 0.01 0.001

N mean Dagum 4394 12337 26677 60263 226889 479164 2467430 25300472

N mean Watanabe 7416 9540 13347 22235 66756 133581 665536 6677525

N mean New 669 2266 5151 11675 44346 93236 482998 4871059

N min Dagum 3857 10779 22533 45883 183403 369946 1806323 22380395

N min Watanabe 7352 9350 13024 21692 65096 129667 658412 6507035

N min New 418 1965 4815 11026 42615 89031 461921 4670509

N max Dagum 4925 14566 31594 72762 290120 601099 3148179 27905975

N max Watanabe 7482 9731 13674 22775 68610 139543 675949 6824914

N max New 876 2548 5523 12331 46301 97555 503316 5085098

σ(N) Dagum 190 675 1795 4909 20553 45161 228655 2010892

σ(N) Watanabe 29 68 119 214 748 1573 6733 89540

σ(N) New 68 106 142 245 689 1418 7170 73074

Table 20: Results of the Relative Error schemes with ε = 0.05 and δ = 0.01
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