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Learning Multiple Maps from Conditional Ordinal Triplets

Dung D. Le and Hady W. Lauw

School of Information Systems, Singapore Management University, Singapore
{ddle.2015, hadywlauw } @smu.edu.sg

Abstract

Ordinal embedding seeks a low-dimensional repre-
sentation of objects based on relative comparisons
of their similarities. This low-dimensional repre-
sentation lends itself to visualization on a Euclidean
map. Classical assumptions admit only one valid
aspect of similarity. However, there are increasing
scenarios involving ordinal comparisons that inher-
ently reflect multiple aspects of similarity, which
would be better represented by multiple maps. We
formulate this problem as conditional ordinal em-
bedding, which learns a distinct low-dimensional
representation conditioned on each aspect, yet al-
lows collaboration across aspects via a shared rep-
resentation. Our geometric approach is novel in its
use of a shared spherical representation and multi-
ple aspect-specific projection maps on tangent hy-
perplanes. Experiments on public datasets show-
case the utility of collaborative learning over base-
lines that learn multiple maps independently.

1 Introduction

Increasingly, there are more scenarios where we know some
relative comparisons — which object is more similar to an-
other, even as their exact similarities are not known. For in-
stance, [Agarwal et al., 2007; Wills et al., 2009] investigated
human perception of “gloss” by studying how human subjects
compared images. It is now commonplace to employ human
intelligence tasks to generate categorization labels for images
[Gomes et al., 2011; Wilber et al., 2014]. [Yue et al., 2014]
modeled how different users organized attractions.

Such observations can be represented as object triplets.
Observing a triplet (i, j, k) indicates the reference (center)
object j’s greater similarity to the first-mentioned ¢ than to
k. The problem of interest is to arrive at object coordinates
in a low-dimensional space — effectively a map as the output,
such that their relative distances would preserve the observed
triplets. This problem is known as ordinal embedding.

The output representation is useful for various applications
such as estimation of relative similarities for unseen triplets
or “features” for other machine learning tasks. Another im-
portant application that we focus on here is visualization on

a scatterplot. Without loss of generality, in the subsequent
discussion, we will assume 2D for ease of illustration.

Previous works [Terada and Luxburg, 2014; Van der
Maaten and Weinberger, 2012] mostly output one visualiza-
tion map, reflecting a singular similarity perception. However
there could be more than one similarity perceptions. For in-
stance, when the triplets have been generated by different hu-
man subjects, there may be natural “disagreements” on some
triplets. Classically, such disagreements are assumed to be
noisy conflicts to be removed in order to uncover the one map.

We postulate that these triplets may be expressing multi-
ple similarity perceptions. The disagreements among triplets
reflect idiosyncratic perceptions of similarity. The varying
perceptions are valid, and should be preserved by the embed-
dings. A single visualization map is insufficient to accom-
modate the different points of view simultaneously. It would
be more appropriate to learn multiple maps, each of which
reflects a particular perception of similarity.

Hence, we are dealing not with ordinal triplets per se,
rather with conditional ordinal triplets of the form (i, j, k),
expressing relative comparison conditioned on an “aspect” t.
We refer to the problem of learning multiple maps from such
conditional ordinal triples as conditional ordinal embedding,
dealing with several ordinal embedding tasks concerning the
same universe of objects. As input, we are given conditional
ordinal triplets where the associations among triplets to as-
pects are known. As output, we seek to learn multiple low-
dimensional Euclidean maps, one for each aspect.

Contributions. As the first contribution, we propose a col-
laborative approach to learning multiple maps from condi-
tional ordinal triplets by considering the aspects jointly via
a shared representation, while still respecting aspect-specific
representations. While the concept of multiple maps has been
introduced in different contexts [Van der Maaten and Hinton,
2012; Amid and Ukkonen, 2015], our framework with shared
representation is novel. As the second contribution, as a con-
crete manifestation of the shared representation, we design
a novel geometric framework Spherical Conditional ORdi-
nal Embedding or SCORE, based on a spherical representa-
tion shared among aspects, while allowing multiple aspect-
specific maps as tangent hyperplanes on the sphere. We also
describe the learning algorithm and validate our hypothesis
via comprehensive experiments on public datasets.



2 Related Work

Existing works in ordinal embedding focus on a single aspect,
e.g., Soft Ordinal Embedding or SOE [Terada and Luxburg,
20141, GNMDS [Agarwal er al., 20071, t-Stochastic Triplet
Embedding or tSTE [Van der Maaten and Weinberger, 2012],
Crowd Kernel Learning [Tamuz et al., 2011]. In contrast, we
focus on multi-aspect, and will compare to the latest models
SOE and tSTE. [Le and Lauw, 2016] derives one map for
multiple types of objects. Riemannian manifold embedding
[Wilson et al., 2010], [Wilson and Hancock, 2010] preserves
the input distances as geodesic distances on the sphere. We
rely on ordinal triplets, not on pairwise distances.

Similarity learning mainly assumes feature vectors are
known [Yang, 20071, while we learn only from triplets. Our
ordinal embedding formulation enables visualization as one
use case. Similarity learning’s use cases are primarily cluster-
ing [Yue et al., 2014] or classification [Weinberger and Saul,
2009]. [McFee and Lanckriet, 2011] uses triplets as side
information, and still primarily relies on features. [Cheng,
2013] considers similarity between two domains of objects.
Conditional Similarity Networks (CSN) [Veit et al., 2017] in-
duces embedding for different similarity notions, but its em-
bedding is learnt from images features, which is unknown to
us. [Le and Lauw, 2018] introduces a multiperspective graph-
theoretic similarity measure, where the inputs are similary
graphs rather than ordinal triplets.

If we broadly interpret embedding for an aspect as a “task”,
our problem is a distinct formulation of multi-task learning
[Caruana, 1997]. Other formulations include metric learn-
ing for nearest neighbor [Parameswaran and Weinberger,
20101,[Yang et al., 2013], feature selection [Argyriou et al.,
20071, and clustering [Yue et al., 2014].

The term “embedding” is also used in contexts of represen-
tation learning such as distributed representation [Bengio et
al., 2013] or distributional representation [Blei et al., 2003].
We do not rely on features; rather we learn from similari-
ties or distances (or ordinal comparisons thereof). Ours are
low-dimensional Euclidean coordinates that directly support
visual analysis, whereas the above works would require a sep-
arate method for visualization.

3 Overview

3.1 Problem Formulation

Input. The set of objects of interest is denoted Z e.g., im-
ages, documents, items, and the set of aspects 7. For gen-
erality, we assume no feature for an object beyond its iden-
tity. An aspect could be a human subject, an attribute, etc.,
whose perception of similarity is to be modeled. Each as-
pect t € T observes conditional ordinal triplets in the form
of (i,j, k), where (i # j # k) € Z. Such a triplet in-
dicates that conditioned on aspect t, j is more similar to i
than to k. The set of observed triplets for an aspect ¢ is:
Ny = {(i,4,k)e]i # j # k € Z}. The input is thus N,
the union of triplets of all aspects.

Output. For each aspect ¢t € 7T, we derive an embedding

map of all objects. For the map associated with aspect ¢, every
object i € Z is associated with a coordinate yf € R, where
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K is the desired dimensionality of the target representation.
For visualization purpose, we assume K = 2 in this paper.
The objective is to satisfy the following condition for as many
triplets in V; specifically, and A generally, as possible:

(i3, k) €N = ly; —will <lly; —will (D
3.2 Proposed Methodology

Fig. 1 outlines two approaches for conditional ordinal em-
bedding problem (Eq. 1). The straightforward approach is
disjoint learning, i.e., deriving a map for each aspect indepen-
dently. Specifically, the map my, is learnt from only aspect
t1’s triplets, and the various maps my, to m;, are not related
(Fig. 1 left).

We believe that the aspects are potentially related as they
concern the same set of objects. Their latent relationships
could render significant advantage when aspects are suffi-
ciently related, and yet each aspect is under-sampled. In prac-
tice, we do not necessarily observe all possible triplets, but a
subset. For sparse data, an aspect may have insufficient infor-
mation. Furthermore, the triplets of any one aspect may not
cover all objects [Agarwal er al., 2007].

We propose a collaborative approach (Fig. 1 right). The
challenge is to design a shared representation that allows
“sharing” across aspects, and yet still allows each aspect to
remain distinct. Here, we adopt a well-known instance of
Riemannian manifold [Gilkey and others, 1975], namely: hy-
persphere. Every aspect has a coordinate on this shared hy-
persphere and its embedding is expressed on the hyperplane
tangent at that aspect’s coordinate. Every object also has a
coordinate on this shared hypersphere. The projection of the
objects’ spherical coordinates onto the tangent hyperplane of
a aspect constructs a map that reveals that aspect’s distinct
“point of view” or perception of similarity. We elaborate this
modeling in the next section.

4 Spherical Conditional Ordinal Embedding

Each aspect t € T and object i € T are respectively as-
sociated with a spherical coordinate x;,7; € S¥, where
SKE = {p € RE+L . ||p|| = 1}. The output coordi-
nate y! € R¥ is the projection of y; onto task-specific K-
dimensional hyperplane defined by x;. The intuition for a
sphere as the shared representation is that it allows greater
flexibility for each aspect to model its own similarity percep-
tion, while still being embedded within the same hyperspace
and sharing the same geometric shared representation.



4.1 Model

To arrive at shared Y = {y; : i € Z}, while accommodating
variances among aspects, we turn to probabilistic modeling.

Generative Process

Let us first consider an individual conditional ordinal triplet
(i,4,k)r € N. We associate an aspect ¢ and three objects 1,
j, and k with a binary-valued random variable cf;;,. When
cfjk = 1, we generate the triplet (i, j, k); € N, i.e., t consid-
ers j to be more similar to ¢ than to k. If ¢! ;1 = 0, opposing
triplet (k, j, i), € N is generated.

There are two views of relative proximity, which deter-
mines the outcome of ¢! ;- First, there is the aspect-specific
view of an aspect ¢, based on the projected coordinates on t’s
tangent hyperplane, for which the probability is Py (ct ik =
Lly;,y5, yi). Second, there is the global view, based on
coordinates on the shared sphere, for which the probability
is Ps(cﬁjk = 1|y, y;,yx). We assume that some triplets
are aspect-specific, generated according to P;, while other
triplets are generic, generated according to P,. The balance
between the two is modeled by parameter ¢; € [0, 1].

Now we describe the generative process for triplets in AV

1. Foreachtaskt € T:
e Draw t’s coordinate: x; ~ VMF (ur, k1)
e Draw t’s parameter 0;: 0; ~ U(0, 1)
2. For each object i € 7:
e Draw ¢’s coordinate: y; ~ VMF (uz, k1)
3. Forobjects i, j,k € Z,i < k, j # i, k:
e If a draw from Bernoulli (d;) turns up 1, then:
¢ijr ~ Bernoulli (Pt(cﬁjk = 10y}, 95, vr.)
Else: ¢} ;. ~ Bernoulli (Ps(cgjk = 1yi, yj, yk)>

o If c;?j » = 1, generate a triplet instance(%, j, k)¢,
Else: generate a triplet instance(k, j, ).

In the above generative process, x; and y; have von Mises-
Fisher (VMF) [Mardia, 1975] priors, parameterized by mean
unit vector p and concentration x. Higher x translates to
greater concentration around p. £ = 0 models the uniform
prior. In this paper, we assume that §; has a uniform prior.

Aspect-Specific Probability Function

Given the shared spherical representation, and the intention
to maintain each aspect’s embedding on a Euclidean space,
a natural choice is to have the aspect-specific representation
lie on the tangent hyperplane of sphere S* at x;, defined as:
T,,S¥ = {v € RE+1 : (2,)"v = 0}. We define the aspect-
specific representation for ¢ to be the projection of objects’
coordinates {y; : ¢ € Z} onto the tangent hyperplane at x;:

yi = Proj,, (yi) = [I - xt(xt)T} Yi- @
where I is (K + 1)—dimensional identity matrix'.

'Though Proj,, (y:) is a (K + 1)-dimensional vector, it still
effectively lies on a K -dimensional tangent hyperplane in the (K +
1)-dimensional space. In the appendix, we describe in detail the
K —dimensional coordinate transformation.

’ '
Vi = Prye, (Vi)

Figure 2: Representations of three objects 4, 7, k, two aspects ¢, ¢’

Fig.2 illustrates an example of the representations y;, y;, Y
of three objects i, j, k (red points) and z;, x of two aspects
t,t’ (blue points) on the unit sphere. The left tangent hyper-
plane T}, S¥ corresponds to the representation map of aspect
t. On this map, y* is closer to y}, than to y; through the pro-

jection Proj, . The right tangent hyperplane 77, S K s the
representation map of aspect t’. There, yj-/ is closer to yf than

to y,tc/. These are “conflicting” ordinal relationships between
t and ¢/, yet they arise from the same spherical coordinates
of objects, indicating the role of aspects’ tangent hyperplanes
in accommodating different similarity perceptions. There are
also triplets which both ¢ and ¢’ agree on.

We now express P; in terms of such projected distances.
Let us denote the distance dﬁj between two objects 7,j on
aspect t’s map, i.e., df; = |[Proj,, (y; — ¥:)||. We express
Pi(cix = 1lyf, 9%, yp) in terms of difference between df,
and df; (Eq. 3). The smaller is df; relative to d’;, the higher
is this probability. « is the scaling factor.

1
t t tot ,t
Oijk t(cz]k |yz7y]7yk) 1+ e,a_(d;k,dt”) 3)
Global Probability Function
We now describe the “global” probability P - the likelihood
of observing the triple (i, j, k); based on the objects’ spher-
ical coordinates. On the unit sphere, the distance between
y; and y; is the geodesic distance [Ferreira et al., 2014]:
gd(yi,y;) = cos™ (v y;)-

Given y;,y;, yr. € S¥, the following relation holds:

gd(vi, v;) < gd(isvj) © vi' yj > Yi' yj )

On one hand, Eq.4 implies that the inner product yields the
same ordering as the geodesic distance. On the other hand,
inner product computation is more computationally efficient
compared to the geodesic distance. Therefore, the global
probability is defined as follows:

1
1+ e~ @Ty—uTy;)’

(&)

oijk = Ps(cljn = Uyi, yj, uk) =



Objective Function

The likelihood of observing the triplet (i, 7, k); is the normal-
ized weighted sum of P; and P,. The formula is described in
Eq. 6 below.

lfjk :5t'0—fjk+(1 _6t)~0ijk (6)
The model’s parameters are learnt to maximize the joint prob-
ability P(N, X, Y|s7, T, k7, uz) of the model across the
observed triplets (Eq. 7), which can be factorized as prod-
uct of P(NG|X,Y) = [1; j sy, ens lijx — the likelihood, and
P(X|kT, pr) and P(Y|kz, pz) - the priors.
argIQaiz(P(Na X3Y|’€7—7M7—7’€17/LI) 7

= argmax [T PWiIX,Y) x P(X|67, pi7) x P(Y |z, i)
oteT
Maximizing the joint probability in Eq. 7 is equivalent to
maximizing its logarithm £ (to simplify the parameters, we
tie k7 = k7 = Kk and pr = Pz = p):

L= WmPWX,Y)+InP(X|k, p) + nP(Y |k, p)

teT
In (lfjk) + Z k-plzy + Z Kty

LDIEDD
teT i€l

teT (i,5,k)tENt

4.2 Parameter Learning

Line Search on Manifold
The learning requires solving an optimization problem on the
spherical manifold. [Absil et al., 2009] presents the line-
search method on a manifold M. The update formula is:
ZTr+1 = R, (tenk)s - Ray,. tk, and € T, M are the re-
traction map at xy, the step size, and the search direction
respectively. Retraction map ensures the update process to be
performed on the manifold. Here, we consider the following
map [Bonnabel, 2013]:
x+n

||z + |

For parameter learning, we adopt the stochastic gradient
descent strategy for functions defined on a Riemannian mani-
fold [Bonnabel, 20131, which requires the computation of the
Riemannian gradient. According to [Ferreira et al., 2014], the

gradient on the sphere of a differentiable function f : Q@ — R
(let € SX be an open set), at = € § is defined by:

gradf(z) = [I — 22|V f(x), ©)
where V f(x) is the usual gradient of f(x) at z € .

Re(n) = argmin||z + 1 —y|| = ®)

yeSK

Learning Algorithm

Algorithm 1 shows that in each iteration, a triplet (4, j, k)¢
is randomly selected, and the parameters are updated using
the line-search optimization technique on the unit sphere.
Specifically, we first compute the partial derivatives with re-
spect to xy, yi, Y, Yx (line 7). The gradients on the spherical
surface are computed through the project map Proj(.). Then
we update the model parameters using the retraction map as
described earlier (line 9). Learning rate € is decayed over
time. The last update in line 10 guarantees that §, € [0, 1].
The complexity is linear to the size of A/-the set of all triplets,
which is bounded by O(|T| x |Z|?).

Algorithm 1 SCORE

1: Initialize z; fort € T and y; fori € Z.
2: While not converged
3: Draw a triplet (i, j, k); randomly from \.
Compute the likelihood:
lgjk = 5t'gfjk + (1 - 6t?0'ijk~
Compute the partial derivatives:
A, % for each z € {x¢, yi, v, yi }
Update the model parameters:
z < R (e.Proj, (A.)), for z € {z¢,yi,yj,ur} :
10: O + 0 + €. (Ufjk, — O'ijk) ;0 = argmin|d; — 4|;
§€[0,1]

R A

11: Return {z;}+e7 and {y; bicz.

5 Experiments

Our objective is primarily to investigate the effectiveness of
multiple maps for conditional or dinal embedding.

5.1 Experimental Setup

Datasets
We experiment with three public datasets that could model
varying perceptions of similarity.

e Zoo? contains 17 attributes of 101 animals (excluding
animal name). We model each attribute as a similarity
aspect. For attribute ¢, we form the triplet (3, j, k), if
and j have the same attribute value, which is different
from k. There are 3.24 x 106 triplets.

o Congressional Voting Records (or HouseVote)® contains
435 instances (congressmen) and 16 attributes (voting
issues). After excluding instances with missing values,
we get 232 fully-observed instances of 16 attributes. We
generate triplets in the same way as we do with Zoo
dataset. That induces totally 2.4 x 107 triplets.

e Paris Attractions* contains 237 users organizing 250
Paris attractions into clusters. With user as aspect, we
induce 3.48 x 10° triplets, each involves two attractions
17 and j that the user puts into the same cluster, and an-
other attraction k in a different cluster. As in [Yue et al.,
2014], we exclude attractions uninteresting to users.

Comparative Methods

We compare SCORE to several baselines. The disjoint
learning approach (Section 3) learns a distinct map from the
triplets of an aspect. We use two recent ordinal embed-
ding methods: SOE’ [Terada and Luxburg, 2014] and tSTE®
[Van der Maaten and Weinberger, 2012].

Multiview Triplet Embedding (MVTE) [Amid and Ukko-
nen, 2015] divides one pool of triplets into clusters. The num-
ber of views is set to the number of aspects, i.e., | T|. Since
the aspect-triplet associations are unknown, we match each

*https://archive.ics.uci.edu/ml/datasets/Zoo

*https://archive.ics.uci.edu/ml/datasets/congressional+voting+records

“http://projects.yisongyue.com/collab_cluster/
Shttps://rdrr.io/cran/loe/
® https://lvdmaaten.github.io/ste/Stochastic_Triplet_Embedding



view with a ground-truth attribute using Hungarian maximum
bipartite matching algorithm, so as to maximize the accuracy.

Multiview Multidimensional Scaling (MVMDS) [Bai et
al., 2017] performs MDS on multi-view data, learns the
weights of these views, and produces one consensus map.
This is akin to learning a single map by consolidating mul-
tiple views. Since MVMDS expects distance matrices, we
feed it feature vectors learnt by SOE from the ordinal triplets.

For visualization purpose, we set the dimensionality of the
embedding space K = 2. We tune the parameters of all
methods for their best performances on the training data. For
SCORE, the setting is kK = 1073 for Paris Attractions, and O
for Zoo and HouseVote, vMF mean vector i = (0,0, 1), the
learning rate ¢ = 0.05, and the scaling factor « = 30. For
SOE, the scaling factor is 0.1 for all the datasets. For tSTE,
the learning rate and regularization parameter are 2 and O re-
spectively for all datasets. For MVTE, the learning rate is 1
for all datasets. For MVMDS, v = 5 for all datasets.

Evaluation Measure

The preservation accuracy for an aspect t is the fraction of its
ordinal triplets NV; for which #’s coordinates reflect the cor-
rect direction. The fewer the violated triplets, the higher is
the accuracy. The overall accuracy is the average of aspects’
preservation accuracies (Eq. 10):

1 M ke € N ot < ok = N
7] 2 7]

-yt Y%, yj, are t’s embedding coordinates of objects 4, j, k.
Since in practice we may not observe all triplets or even
all objects beforehand, we sample a fraction r (split ratio) of
objects for each aspect, then evaluate the coordinates against
the full set of triplets. As the default for this study, we set
r = 0.5, which has a relative balance between the information
that an aspect sees and the information that it could learn from
others. Later we will also investigate the effects of different
values. We average the results across 30 random samples.
The running times are reasonable. For the Paris Attrac-
tions, including all aspects, SCORE takes 5 minutes on a PC
with Intel Core i5 3.2 GHz CPU and 12 GB RAM. The learn-
ing times for the Zoo and HouseVote are less than 10 minutes.

, (10)

5.2 Comparison to Baselines

We vary the number of aspects by randomly sampling as-
pects. Fig. 3 shows the preservation accuracies of all models.

Overall Preservation Accuracy

SCORE shows significantly higher performance than SOE,
tSTE (Fig. 3(a,b,c)). In the latter, an aspect cannot collaborate
with other aspects, leading to poor performance on unseen
triplets. This highlights the benefit of collaborative learn-
ing, as it helps aspects fill in each other’s missing informa-
tion. MVTE and MVMDS show even weaker performances.
For MVTE, the likely reason is the lack of information about
the associations between aspects and triplets. If this informa-
tion is provided, MVTE reduces to tSTE, which is showing
relatively higher performance than MVTE. For MVMDS, the
likely reason is the consolidation into a single map, which,
though learnt from multiple distance matrices, cannot fit con-
flicting triplets.
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Figure 3: Overall and hidden preservation accuracy
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Figure 4: 10-NN classification accuracy at r = 0.5

Performance on Predicting Hidden Triplets

The earlier accuracies are evaluated for the full set of triplets,
which is the combination of the observed subset (from the
r fraction) and the hidden subset (the unseen triplets). To
see how well the models generalize to the unseen data, we
now investigate the preservation accuracy measured on the
hidden alone (Fig. 3(d,e,f)). We observe the same picture as
before but with generally lower accuracies than that for full
sets (Fig. 3(a,b,c)), which are expected as these are unseen
triplets. The reduction is more dramatic for SOE and STE,
which tend to overfit the observed, and generalize poorly to
the hidden triplets. SCORE does commendably well on the
hidden set, showing greater robustness in generalizing to the
unseen triplets.

For an alternative measure of generalization, we test the
learnt coordinates as features to classify the hidden objects
by attribute values associated with the aspect. An object is
assigned the majority label among its 10-nearest neighbors.
Fig. 4 shows the /0-NN classification accuracy, averaged
across aspects. Only Zoo and HouseVote have “labels” and
are involved in this experiment. SCORE has better results
than the baselines (statistically significant at 0.05) in pre-
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dicting the labels of unseen instances. Interestingly, MVTE Median
performs better than disjoint learning baselines in this task. Min Max
Since triplets are learned jointly, some triplets may have been ' . '
assigned to clusters correlated with the class labels, though Zoo (17 tasks)
the clusters may not reflect the aspect-specific view perfectly. Medi
edian
A . . Min Max
Exploration on the Split Ratio |
To better understand the benefits of multi-aspect modeling, HouseVote (16 tasks)
we shows the accuracies with varying r for the complete set " T T "
of aspects in Fig. 5. 0.00 0.20 0.40 0.60
The disjoint learning baselines perform poorly for low Pearson Correlation

value of r. This is expected since the amount of observed
data is insufficient for a single task to learn its own map ef-
fectively. For extremely high r, e.g., 0.7, the disjoint learning
baselines tend to do well. For Zoo, HouseVote, and Paris
Attractions, v = 0.7 respectively corresponds to approxi-
mately 1.1M, 16.1M, and 155K triplets in training, which are
34.23%, 34.17%, and 44.42% of all possible triplets. With
sufficiently large data that cover majority of objects, each as-
pect has more flexibility to specialize, with little risk in miss-
ing out information. Also in Fig. 5, SCORE shows signifi-
cantly better performances than MVTE and MVMDS for the
same reasons that have been discussed in the first experiment.
Importantly, SCORE is robust across values of r. It is the
best around 0.2-0.6, and never the worst. This result has two
implications. First, it reiterates the benefit of collaborative
approach when the data is under-sampled, yet sufficient to
learn the relatedness and specialization of tasks. Second, in
practice it is often unclear whether the data is sufficient. Upon
such ambiguity, multi-aspect modeling ameliorates the risk of
performing badly, while providing reasonable performance.

5.3 Aspect Relatedness

Two similar aspects would be expected to be closer on the
hypersphere than two dissimilar aspects. For Zoo and Hou-
seVote, each aspect corresponds to an attribute, whose val-
ues effectively define a clustering of objects. We define the
attribute-based similarity between two aspects as the Nor-
malized Mutual Information or NMI [Estévez et al., 2009]
between the two clusterings. We also define the proximity
between two aspects on the shared hypersphere as their an-
gular similarity. For each aspect t € T, we measure the

Figure 6: Pearson Correlation of Angular similarities vs. NMIs

Pearson correlation of the NMI scores and angular similar-
ities between ¢ and other aspects in 7. We observe posi-
tive correlations among the NMI scores and the angular sim-
ilarities (Fig. 6). The minimum values for both datasets are
non-negative and the median values are quite positive 0.34
and 0.36 for Zoo and HouseVote respectively, indicating that
SCORE captures aspect relatedness during learning, with
similar aspects more likely to be closer on the hypersphere.

5.4 Multiple Maps vs. Single Map

To better illustrate the need for multiple maps, we consider a
scenario involving three attributes of a dataset (type, #legs,
predator from Zoo, and immigration, education-spending,
crime from HouseVote). We compare SCORE in two modes:
multiple maps when we learns three distinct maps collabora-
tively and single map when we pool triplets from the three
attributes to learn one map. Table 1 compares the preserva-
tion accuracies of the two modes, showing that multiple maps
have significally higher accuracies, indicating its greater ca-
pacity for reflecting multiple aspects than a single map.

As a visual illustration, Fig.7(a, b, ¢) shows the three maps
(corresponding to multiple maps) concerning animals from
Zoo. Each animal is shown as a point, whose color, num-
ber, and shape indicate type, #legs, and predator attributes re-
spectively. Fig. 7(a) visualizes animals based on type (color).
Animals of the same type (color) flock together, e.g., insects
(purple) on the top left, birds (yellow) on the bottom right.
Fig. 7(b) visualizes animals in terms of #/legs. Animals of the



SCORE Zoo | HouseVote
Single Map 0.82 0.70
Multiple Maps | 0.98 0.89

Table 1: Performance of SCORE: multi-maps vs. single-map

(a) Multiple Maps (type) (b) Multiple Maps (#legs)
(indicated by colors) (indicated by numbers)
ﬁ. A,
) A lgo

-~
TA o, 4

(c) Multiple Maps (predator)
(indicated by shapes)

(d) Single Map
(type, #legs, predator)

4

[ ]
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type ® mammal ¢ birds e reptile ® fish ® amphibian * insect ® mollusc & crustacean

predator ® no 4 yes

Figure 7: Visualization maps for type, #legs, predator (Zoo)

same number of legs tend to be found together, e.g., 6 legs on
the top left, 2 legs on the bottom right. Fig. 7(c) visualizes an-
imals based on whether they are predator (shape). The binary
separation of predators (triangles) on the top right and non-
predators (circles) on the lower left is evident. A single map
cannot capture diverse perceptions of similarity. Fig. 7(d) de-
picts the single map mode for the same three attributes. It
could only represent separation by predator (shape), but is
unable to represent type or #legs well.

6 Conclusion

In this work, we formulate the problem of ordinal embed-
ding involving ordinal comparisons from multiple aspects as
conditional ordinal embedding. Our proposed geometric ap-
proach seeks to represent aspects and objects on a shared hy-
persphere, as well as on aspect-specific tangent hyperplanes.
Experiments on public datasets show that the proposed frame-
work is robust, and particularly beneficial when there is vari-
ance across tasks yet insufficient data to learn each task sepa-
rately, thus collaboration across tasks is helpful.
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Figure 8: Tranformation of objects’ coordinates from 3D to 2D

A K-dimensional Coordinate Transformation

A necessary step is to transform the (K + 1)—dimensional
coordinate of objects on t’s tangent hyperplane, i.e.,
{Proj,, (i) }icz. to their corresponding K —dimensional co-
ordinates, i.e., {y!};cz. For the purpose of visualizing the
embedding for an aspect ¢ on a scatterplot, we describe how
to transform the 3D coordinates of objects on ¢’s tangent hy-
perplaneto their corresponding 2D coordinates in the follow-
ing. However, the below analysis is also applicable to high-
dimensional embedding space, i.e., when K > 2.

Since wy, Proj,, (y:), Proj,, (y;), Proj,, (yx) lie on the
tangent hyperplane 7),,S¥ of the task ¢, the three vectors:
u = Proj,, (yi) a0 = Proj,, (y;) —v;w = Proj,, (yx) —
x; are on T}, S as well.

As illustrated in Fig. 8, the cross product z; X u is a vector
on T,,,S¥ and perpendicular to z;, u. Let’s denote:

u Ty X U

€1 = 77,62

Tl [ae x ul|

We can see that e1, e form a basis of T, S¥ (since ||e1 || =
lle2|] = 1,e1Tes = 0). From linear algebra, for each point
y € T,, S, there exists unique Gy, by € R such as:

(y — x¢) = ay.ex + by.ez

Consider the following transformation map where a,, b, €
R are defined as above:

Tr, : T, 8% — R?
y — Tr(y) = (ay, by) (11)
Let (a;,b;) and (ag,by) be the transformation of
Proj,, (y;) and Proj,, (yx) respectively:
[Proi,,(u;) ~ Proi,, ()]
= |lv —wl| = |[(a;.€1 + bj.e2) — (ar.€1 + br.€2)]|
= [I(a; —ar).ex + (b — br)-ea|

= \/(aj —ag)? + (bj — br)?
= [|Tr¢(Proj,, (y;)) — Tri(Proj,, (yx))l- (12)

Equation 12 implies that the Lo-norm between points on
T,,S¥ are preserved through the transformation map Tr;.
Therefore, the ordinal relations between points are also pre-
served through the transformation. Hence, we express y! =
Tr¢(Proj,, (:)), forall i € Z.
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