
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Information
Systems School of Information Systems

5-2019

DynOpVm: VM-based software obfuscation with dynamic opcode DynOpVm: VM-based software obfuscation with dynamic opcode

mapping mapping

Xiaoyang CHENG
Singapore Management University, xycheng@smu.edu.sg

Yan LIN
Singapore Management University, yanlin.2016@phdis.smu.edu.sg

Debin GAO
Singapore Management University, dbgao@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
CHENG, Xiaoyang; LIN, Yan; and GAO, Debin. DynOpVm: VM-based software obfuscation with dynamic
opcode mapping. (2019). Applied Cryptography and Network Security: 17th International Conference,
ACNS 2019, Bogota, Colombia, June 5-7: Proceedings. 11464, 155-174. Research Collection School Of
Information Systems.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4687

This Conference Proceeding Article is brought to you for free and open access by the School of Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email libIR@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4687&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4687&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

DynOpVm: VM-based Software Obfuscation

with Dynamic Opcode Mapping⋆

Xiaoyang Cheng1, Yan Lin2, Debin Gao2, and Chunfu Jia1

1 Nankai University, Tianjin, China
chengxiaoyangcxy@outlook.com, cfjia@nankai.edu.cn

2 Singapore Management University, Singapore
{yanlin.2016, dbgao}@smu.edu.sg

Abstract. VM-based software obfuscation has emerged as an effective
technique for program obfuscation. Despite various attempts in improv-
ing its effectiveness and security, existing VM-based software obfuscators
use potentially multiple but static secret mappings between virtual and
native opcodes to hide the underlying instructions. In this paper, we
present an attack using frequency analysis to effectively recover the se-
cret mapping to compromise the protection, and then propose a novel
VM-based obfuscator in which each basic block uses a dynamic and
control-flow-aware mapping between the virtual and native instructions.
We show that our proposed VM-based obfuscator not only renders the
frequency analysis attack ineffective, but dictates the execution and pro-
gram analysis to follow the original control flow of the program, making
state-of-the-art backward tainting and slicing ineffective. We implement
a prototype of our VM-based obfuscator and show its effectiveness with
experiments on SPEC benchmarking and other real-world applications.

Keywords: Frequency analysis, software obfuscation, virtualization

1 Introduction

Unauthorized code analysis and modification threaten the software industry with
more sophisticated program analysis and reverse engineering techniques in recent
years [5, 8, 35, 36, 38]. Such attacks can lead to undesirable outcomes including
unauthorized use of software, cheating in computer games, or bypassing and redi-
recting payment processes. Program protection and software obfuscation have
been key techniques in fighting against such attacks, in which code virtualization
using a Virtual Machine (VM) embedded inside an executable is emerging as a
promising technique for code obfuscation, e.g., VMProtect3.

VM-based code obfuscation replaces native instructions in an executable with
virtual ones that are uniquely defined by the obfuscator. Such virtual instruc-
tions will then be translated into native ones at runtime for correct execution

⋆ This project is partly supported by the National Natural Science Foundation of
China (No.61772291) and the Science Foundation of Tianjin (No.17JCZDJC30500).

3 VMProtect Software protection. http://vmpsoft.com/

with the original semantics. VM-based obfuscation is effective in hiding two as-
pects of the execution, namely the instructions to be executed (controlled by the
secret mapping between virtual and native bytecodes and the handlers) and the
execution path (controlled by the dispatcher).

In this paper, we first propose a simple yet effective attack exploiting the
static mapping between virtual and native instructions. Our attack is inspired by
the frequency analysis of symbols widely employed in crypto-analysis techniques.
Our observation is that the native and corresponding virtual instructions would
present the same frequency profile with the static mapping, even if the mapping
is unknown and well protected by the VM — analogous to the relation between
plaintext and ciphertext symbols whose mapping could be unknown but their
frequency profiles are identical. We show that our frequency attack enables an
attacker to recover the mapping between virtual and native instructions, which
compromises the handlers in the VM embedded. Note that although more recent
and enhanced VM-based protectors use multiple mappings between virtual and
native instructions, the statically defined (secret and multiple) mappings only
add more complexity to the frequency analysis but do not render it ineffective.

Keeping this effective attack in mind, we propose a novel VM-based soft-
ware protection called DynOpVm, in which the mapping between virtual and
native instructions is dynamic and control-flow aware. The dynamic nature of
the mapping renders frequency attack ineffective since every protected basic
block employs a different mapping between the virtual and native instructions.
The control-flow-aware protection ensures that the correct mapping can only be
recovered by following the correct control flow execution, which dictates the exe-
cution and, more importantly, the analysis of the program, to follow the original
control flow. This further makes program analysis, in particular, backward taint-
ing [2,9,13,20] and slicing techniques [43], difficult as the instructions cannot be
decoded at the middle of any program execution.

We face a number of technical challenges especially in designing the control-
flow-aware mapping between virtual and native instructions. One of them is to
support basic blocks with multiple control flows which could result in multiple

mappings — a conflict since each basic block can only be encoded using a single
mapping. We propose solving this challenge by utilizing the secret sharing algo-
rithm, enabling a single mapping to be derived from multiple control flows. We
also demonstrate the effectiveness of our frequency attack and DynOpVm with
experiments with the SPEC benchmarking and other real-world applications.

2 Background and Related Work

2.1 VM-based program protection

Here we take the example of Rewolf virtualizer4 (due to its available source
code for clear understanding and experimentation) and briefly describe how an
executable protected by it works (with its add-on layer Poly disabled). As shown

4 X86 virtualizer. http://rewolf.pl/

in Fig. 1, when program execution comes to any protected code, a control transfer
directs execution of the program to a dispatcher, which obtains the potential
virtual instruction and checks its prefix. All virtual instructions begin with a
unique prefix (0xFFFF in the case of Rewolf virtualizer) as an indicator to the
VM. After confirming the identity of the virtual instruction, the VM invokes a
corresponding handler (dictated by the virtual opcode that is the next byte in
the virtual instruction) to perform the corresponding operation of the original
native instruction.

Fig. 1: VM in existing obfuscators

Following the idea of code
virtualization, a number of VM-
based code obfuscation approaches
have been proposed. These in-
clude methods in securing the
VM [3, 14, 46] and improving
the obfuscation process [15, 42].
Publicly available tools like VM-
Protect, Code Virtualizer5 and
Themida6 also employ special
protections for runtime environ-
ments, e.g., VOT4CS [4].

Many of these existing VM-
based program obfuscators use a
single mapping between virtual
and native instructions. Kuang et
al. [22] used different ways to interpret the same virtual instructions and ob-
fuscated the atomic handlers. Although the handlers are obfuscated, there still
remains only one mapping between native and virtual instructions. Other VM-
based obfuscators, e.g., VMProtect, maintain multiple mappings between virtual
and native instructions, and randomly choose one of them in each obfuscation
instance; however, the multiple available mappings were statically designed with
limited variations.

2.2 Attacks on VM-protected programs

Rolles proposed to reverse engineer the VM in order to convert virtual bytecode
to native instructions [31]. Based on this idea, Rotalumé [34] was further pro-
posed to detect the mapping between virtual bytecode and handlers. Guillot et
al. [16] automatically search for patterns of obfuscation. Similarly, VMAttack [19]
was presented as an automatic deobfuscation tool to analyze VM structure and
to compress instruction sequences. Coogan et al. [11] applied equational reason-
ing [10] to reconvert the native code. Other proposals [40,45] utilized taint analy-
sis to reveal the dependency of virtual code and the embedded VM. BinSim [26]
attacked the code virtualizer with the help of backward slicing. VMHunt [44]

5 Code virtualizer. https://oreans.com/codevirtualizer.php
6 Themida. https://www.oreans.com/themida.php

tackled the problem using tracing, symbolic execution, and backward slicing.
Our proposed frequency attack works on a different dimension in that it avoids
analyzing the semantics of the VM or its corresponding handlers.

2.3 Instruction-Set Randomization and Control-Flow Carrying
Code

Instruction-Set Randomization (ISR) can also be seen as a VM-based system,
and was proposed as a mitigation against code-injection attacks [6,21,27]. It uses
an execution environment to interpret and execute a randomized instruction set
which is unique for each program. There has also been proposals to use ISR to
enforce CFI [12, 37, 39]. Instead of a unique instruction set for each program,
DynOpVm makes use of a unique instruction set for each basic block by gen-
erating a unique secret from each control transfer. Similar to ISR, Control-flow
Carrying Code (C3) [23] uses a dynamic instrumentation system to assist CFI-
enforced execution of a program. DynOpVm shares the same idea with C3 on
using secret sharing to encode/encrypt binary instructions; however, DynOpVm
and C3 are based on different threat models, are proposed to fight against
different types of attacks, and are implemented in completely different ways.
DynOpVm fights against frequency analysis on VM-based obfuscators, while
C3 is to counter Data-Oriented Programming attacks on traditional CFI sys-
tems. DynOpVm produces self-contained VM-embedded executables which can
execute directly on mainstream Linux systems, whereas C3 requires a dynamic
instrumentation systems for its execution.

3 Frequency attacks on VM-based Program Obfuscation

As discussed in Section 2.1, existing VM-based program obfuscators, including
the original work and subsequent enhancements [3, 14, 15, 22, 31, 42, 46], use a
secret but static mapping (potentially multiple ones) between virtual and native
instructions for obfuscation. Intuitively, such static mappings, although secret
and unknown to an attacker, make frequency analysis possible since native in-
structions present some unique and specific frequency profile in normal programs.

3.1 Frequency profile of native instructions

A prerequisite of our attack is a unique frequency profile exhibited by native
instructions. Related frequency analysis has been conducted on different plat-
forms since the last century [1,17,18,29,30,32], most of which focus on runtime
statistics of the instruction set. On the other hand, the objective of our frequency
analysis is to collect static profile of instructions for program analysis.

We statically analyze the number of occurrences of native instructions in
executables under directory /bin on 64-bit Ubuntu 18.04 and present the 15
instructions with the highest frequencies in Fig. 2. We notice that this frequency
profile is uneven while consistent with low standard deviation among the 128

executables. For example, mov shows up most often with its frequency more than
3 times of the second most frequent instruction call. In addition, mov presents
a frequency of over 30% while many other instructions have frequencies of lower
than 1%. Although these other instructions with low frequency do not stand out
in the profile, we comment that the decoding process usually requires only a few
instructions to be identified as bootstraps, and other instructions could then be
easily recovered by, e.g., frequency analysis of instruction subsequences.

3.2 Frequency analysis as an attack

Fig. 2: Freq. analysis of 128 binaries

We first implement a virtu-
alizer compatible with 64-bit
Linux executables using the
same strategy as Rewolf Vir-
tualizer7, and apply it to pro-
tect selected code pieces in
SPEC CPU2006 benchmark-
ing programs. We note that
other variations of the obfus-
cator may differ in the im-
plementation details, e.g., the
commercial product VMPro-
tect that is closed-source, but
we have not noticed evidences
that such differences render
our frequency attack ineffec-
tive, including the fact that it randomly chooses from multiple static handlers.

We intentionally select small code pieces for protection to see if that renders
the frequency analysis less accurate.We search for the prefix of 0xFFFF to identify
all virtual instructions and their virtual opcode (the byte following the prefix).
Note that other obfuscators may employ more complicated ways of encoding the
virtual opcodes; however, existing work (e.g., VMHunt [44]) has shown that the
beginning of various handlers could be effectively located with analysis of context
switch patterns, which clears another prerequisite of our frequency analysis. Here
we only present results for 3 programs, bzip2 (11182 bytes of code protected),
mcf (3058 bytes of code protected), and sjeng (5510 bytes of code protected).

Fig. 3 shows the analysis result of 20 instructions with the highest frequency
for both the original program and that protected by our virtualizer. It also
shows the ground truth mapping between corresponding virtual and native in-
structions. Results show that frequency analysis attack is accurate even for small
code pieces. For example, the top two instructions are always mapped correctly,
while the overlapping of top 10 instructions between the original and the pro-
tected programs cover 8 instructions or more.

7 We are not aware of any 64-bit VM-based obfuscator that is open source, and there-
fore decide to make one based on the 32-bit Rewolf virtualizer.

(a) Freq. of native instructions in bzip2 (b) Freq. of virtual instructions in bzip2’

(c) Freq. of native instructions in mcf (d) Freq. of virtual instructions in mcf’

(e) Freq. of native instructions in sjeng (f) Freq. of virtual instructions in sjeng’

Fig. 3: Frequency analysis on programs protected by Rewolf virtualizer

When considering a slightly different threat model in which the attacker does
not have any information of the protected program (maybe in the event that
the entire program is protected) and therefore can only compare the frequency
analysis result (Fig. 3(b), Fig. 3(d), and Fig. 3(f)) with the general statistics of
native instructions (Fig. 2), we obtain similar results — we can identify the most
frequent instruction mov with at least 6 overlappings in the top 10 instructions.

While there are other ways of improving this attack, e.g., by analyzing
operands of the instructions and other context information, we believe that the
simple demonstration above is sufficient to reveal this fundamental weakness of
the existing VM-based program obfuscators, in which static mappings (although
secret) are used between virtual and native instructions. To improve the security
and to fight against such frequency attacks, we propose a novel technique that
employs dynamic and control-flow-aware mappings; see Section 4.

3.3 Threat model and assumptions

Our objective is to propose a novel VM-based program obfuscator that renders
the frequency analysis attack and state-of-the-art program analysis methods,
e.g., backward tainting and slicing techniques, ineffective. We assume that the
attacker is aware of the details of our technique and has access to the protected
binary executable. The attack can be Man-At-The-End (MATE) attack and
leverage memory disclosure vulnerabilities in the target application to read and
analyze the memory, including data and the code section of the target program.

4 Design and Implementation of DynOpVm

Section 3 presents a simple yet effective attack on existing VM-based program
obfuscators using frequency analysis. In this section, we present our novel VM-
based obfuscator that is resistant against such attacks. Moreover, to defend
against other attacks as discussed in Section 2.2, we have a second objective
of rendering program analysis techniques, in particular, backward tainting and
slicing techniques, ineffective on the protected program (piece).

4.1 Overview of DynOpVm

Defending against frequency analysis is a well-explored problem in cryptography.
For example, Vigenère cipher was proposed as a poly-alphabetic substitution
system to fight against frequency analysis on English letters [7,24], with the idea
that the same plaintext letters can be encrypted to different ciphertext letters.
Our proposed solution is inspired by this simple idea to construct different and
dynamic mappings between virtual and native instructions for different basic
blocks, even if various basic blocks contain the same native instruction.

Fighting against state-of-the-art program analysis tools like backward taint-
ing and slicing is more challenging. What makes such backward analysis possible
is the “two-way” nature of control-flow information presented in normal executa-
bles, i.e., it is easy to find both the predecessor and successor of an instruction.
Essentially we want to make control-flow information in the protected program
“one-way”, in that even if an attacker manages to decode specific virtual instruc-
tions, we want to make it difficult to reveal the caller8 basic block. We leave it
as future work to make even the forward analysis difficult, since the program
needs to be able to execute in a forward manner absent from analysis.

Our solution is to make the mapping between virtual and native instructions
dependent on control flows, i.e., the addresses of caller and callee instructions.
Since both addresses are available in a forward execution (e.g., in executing
call $0x400460 in Fig. 4, the caller and callee addresses are 0x400450 and
0x400460), reconstructing the mapping between virtual and native instructions
and decoding the callee is easy. On the other hand, backward analysis to figure

8 In the rest of this paper, we use the words “caller” and “callee” to refer to predecessor
and successor basic blocks in a control transfer.

out the caller of call $0x400460 is difficult since it uses a mapping that is
determined by its own caller (address of jmp $0x400450).

Fig. 4: Forward and backward analyses

We design and implement
a prototype of our novel VM-
based program obfuscator called
DynOpVm following this idea.
DynOpVm takes as input the
original binary executable (with-
out source code), statically en-
codes each basic block into vir-
tual instructions with a mapping
uniquely determined by the caller
and callee addresses in the control
transfer, and inserts a VM to de-
code basic blocks. Control transfers are redirected to the VM which dynamically
reconstructs the specific mapping between virtual and native instructions, de-
codes the next basic block “on-the-fly”, and then continues with the valid control
transfer. We present our detailed design and implementation in the next subsec-
tions.

4.2 Control-flow-aware encoding of basic blocks

As discussed in Section 4.1, DynOpVm statically performs binary rewriting.
To stay focused in this paper, we make use of existing tools for static analysis
and rewriting, and consider general challenges (e.g., distinguishing code from
data) out of our scope. At a first glance, such a process isn’t overly complicated;
however, a basic block could have multiple callers, which will result in multiple

mappings between virtual and native instructions derived for the same callee
block. On the other hand, each callee block could only be encoded with one
unique mapping. The challenge here is to derive the same mapping from multiple
control transfers with multiple callers. Our solution is to introduce an additional
layer in deriving the mapping, where each source or destination address of valid
control transfer determines a secret share, and multiple secret shares could be
used to reconstruct the same mapping — a typical application of Shamir’s secret
sharing algorithm [33]. In Fig. 5(a), the callers of control transfers CT1 and CT

2,
both of which target BBA, contribute two different secret shares. Both are used
to compute the same secret together with the secret share generated from callee
address (the address of BBA). The secret is then used to encode BB

A. Note that
at runtime, only one of the secret shares from the two callers is used to derive
the mapping, which is well supported by the secret sharing algorithm.

In applying secret sharing, caller and callee addresses constitute two points
on a secret sharing polynomial. We introduce a third point as a master key
randomly chosen to defend against information disclosure attacks which could
potentially be exploited to reconstruct the mapping. DynOpVm takes a config-
uration with t = 3 (a parabola) to enable reconstruction of the mapping with
(potentially multiple) valid control transfers. Fig. 5(b) shows two parabolas: one

(a) Algorithm (b) Example

Fig. 5: Secret sharing

representing a basic block BB
A with two valid callers, and the other representing

BB
B with three valid callers. The intersection of the parabola with the y-axis is

the secret to determine the mapping between virtual and native instructions for
the corresponding callee. DynOpVm obtains the X and Y coordinates (k bits)
of a point from the lower-order odd- and even-index bits of an address. The
master key (of 2k bits long) is randomly chosen. We discuss the security and
performance implication of the choice of value k in Section 5.

Although this algorithm well supports multiple callers, it introduces con-
straints on the addresses. For example, once the master key, the address of the
callee, and that of one caller are determined, the parabola is fully established
and addresses of the remaining callers have to be on the curve. This results in
constraints in our binary rewriting to redistribute the basic blocks:

– “Call-preceded” basic blocks (those followed by call) cannot be redistributed
freely as they are the targets of ret instructions. Such additional constraints
could result in an unsolvable layout of basic blocks. Our solution is to replace
all call instructions with push followed by jmp to remove such additional
constraints. A similar challenge arises for conditional jumps and their fall-
through instructions, which can be resolved with the same idea.

– Parabolas can have at most two intersections, one of which is the master
key. This means that two different callees may only have up to one common
caller — an invalid assumption in many applications. To handle this, we add
intermediate “stub” blocks to remove the additional common callers.

– Basic blocks with multiple entries would result in multiple mappings derived.
We make copies of them to ensure that each basic block has only one entry.

To redistribute basic blocks, we use a look-ahead depth first search algorithm
to avoid circular constraints, e.g., when two callers of a to-be-redistributed basic
block with fixed addresses make it impossible to find a valid parabola.

DynOpVm encodes and decodes between virtual and native instructions with
a simple XOR operation with the secret derived from the secret sharing algo-

rithm. This design of the mapping between virtual and native instructions is
mainly due to its simplicity and efficiency. After every basic block is redistributed
and encoded with the corresponding mapping, we can then embed the VM and
insert control transfers to it.

4.3 Embedding a VM

Before making a control transfer to the VM, DynOpVm saves the rflag state
and uses registers to pass the necessary information to the VM. Such information
includes the address of the caller and callee (two possible callee addresses in case
of conditional jumps, out of which the VM chooses one depending on the rflag
value) and the type of control transfer instruction.

The main task of the VM is to reconstruct the secret and to decode and
execute the corresponding basic blocks. Our design of the VM consists of three
components — a dispatcher, a decoder, and an actuator — which is slightly
different from existing techniques of VM-based program obfuscation as discussed
in Section 2.1 [3, 6, 15, 25, 46]. Our VM dispatcher makes use of information
passed to the VM to obtain the address of the callee. After that, the decoder
reconstructs the parabola, computes the secret for the callee, and then decodes
the instructions into a buffer dynamically allocated, whose address is stored in a
segment register. In the end, the VM actuator transfers control to the decoded
(native) instructions and executes them. Fig. 6 shows this process. Note that the
VM has two potential control flows from the dispatcher — d-f-g and b-c —
for control transfers to protected and unprotected code, respectively. We discuss
more details of our support of this in Section 4.4.

Fig. 6: VM dispatcher, decoder, and actuator

The unknown length of
the callee basic block makes
it tricky for it to be decoded.
DynOpVm uses an optimiza-
tion to decode a fixed size of
128 bytes at a time and re-
peats the decoding routine in
cases of larger basic blocks.
nop instructions are inserted
for alignment purposes for
efficient execution. Another
challenge is the conflict with
original program code if our
code added and VM execu-
tion use the stack. DynOpVm uses the fs register instead to avoid this conflict.

4.4 Supporting partial protection

The key challenge in supporting partial protection of an executable is to make
control transfers between protected and unprotected code. This can be achieved
by adding control transfers to the VM only in protected basic blocks. However,

such a simple solution may potentially allow dedicated attackers to reconstruct
the parabola for a protected entry block that has multiple unprotected callers,
since these callers are all on the parabola curve. Combining multiple instances
of such attacks could even allow recovery of the secret master key.

We introduce a more secure way to support partial protection to fight against
such attacks. The basic idea is to reduce the number of unprotected callers with
code cloning and inlining. DynOpVm makes a copy of the chosen unprotected
code to be inlined into the protected region to reduce the number of control
transfers between protected and unprotected code. In this way, attackers will
find fewer points on the parabola curve to reconstruct the secret. DynOpVm
also maintains a list of valid exit targets in the VM to allow/disallow transfers
to unprotected code at runtime. We further propose two potential solutions that
could avoid the need of cloning and inlining, since inlining may not be a practical
solution in interfacing with, e.g., system libraries. Assuming that the protected
code Pvt transfers control to a system library function lib with a basic block
BB

call, and control returns to Pvt at basic block BB
ret, the two solutions are:

1. Leaving BB
ret and lib unprotected (with BB

call protected) while adding the
address of BBret as a valid exit target maintained by the VM.

2. Leaving lib unprotected while having BB
ret protected with a parabola that

passes though the origin, which means that BBret is encoded with key 0.

Both solutions allow proper execution of the program with more basic blocks
exposed in plaintext, although it is non-trivial for an attacker to differentiate
them from those encoded with nonzero keys. Solution (1) allows BBret to be the
target of control transfers from any protected basic block. Solution (2) restricts
control transfers to BB

ret, but potentially allows an attacker with the capability
of launching memory disclosure attacks to recover the master secret by recon-
structing the parabola, since an additional point (the origin) and the plaintext
instruction inside BB

ret is given to the attacker.
DynOpVm assumes a strong threat model where memory disclosure attacks

are assumed possible, and therefore uses the solution of code cloning and inlining
for better security. We comment that the above two solutions could be useful
under a different threat model.

4.5 Implementation

We implemented a prototype of DynOpVm for Linux x64 platform. DynOpVm
takes as input a 64-bit ELF binary and outputs a modified binary executable
with selected basic blocks encoded into virtual instructions and VM embedded.
The static instrumentation component is implemented as 8,200 lines of python
code with the help of Capstone [28] for disassembling and Type-armor [41] for
constructing the CFG. The VM interpretation and execution component is im-
plemented as 900 lines of assembly instructions inserted into the executable file.

Besides executing the design presented in earlier subsections, DynOpVm
makes use of gaps among redistributed protected basic blocks to host unpro-
tected functions, and fills the remaining gaps with nop instructions. Finally,

DynOpVm patches the new binary file with the text segment extended and
corresponding addresses (code pointers, function pointers, data pointers, jump
tables and virtual tables) and section information updated.

One challenge is to deal with instructions with PC-relative addressing since
the execution will be in the buffer dynamically allocated and the program counter
(%rip) at runtime is unknown at static instrumentation. Our solution is to re-
move PC-relative addressing mode during binary rewriting. To support multi-
threaded programs, we use a new memory page for decoding basic blocks for each
thread by checking the value in fs:0x158 where we store the buffer address.

5 Evaluation

In this section, we evaluate the security of DynOpVm with regards to frequency
analysis and Shannon entropy, and apply backward slicing attacks presented by
Ming et al. [26, 44] to evaluate its resistance to such analysis. Besides that, we
measure the performance overhead of DynOpVm with real-world applications.

5.1 Security evaluation

Frequency attack As shown in Section 3, existing VM-based program ob-
fuscators like Rewolf virtualizer suffer from frequency analysis which allows an
attacker to easily figure out the mapping between virtual and native instruc-
tions. Intuitively, DynOpVm encodes each basic block with a different mapping
determined by the control transfer, and is resistant to such attacks.

Moreover, the use of XOR operation in encoding instructions effectively re-
moves any obvious patterns as in some existing VM-based program obfuscators,
e.g., 0xFFFF in the Rewolf virtualizer. Lack of the capability of identifying each
virtual instructions, attackers could not even perform the frequency analysis on
them. Here, we want to see how far the frequency analysis could go even if
attackers could identify the start of every virtual instruction, and present the
results of such frequency analysis9 on the same SPEC benchmarking programs
as used in Section3; see Fig. 7.

Comparing graphs in Fig. 7 and those in Fig. 3 reveals two observations.
First, the shape is very different in the sense that the frequency values decay a
lot faster in unprotected programs and those protected by the Rowolf virtual-
izer, while they decay a lot more slowly in programs protected by DynOpVm.
Second, the peak frequency value for unprotected programs and those protected
by Rowolf virtualizer is at 40% or more, while that for programs protected by
DynOpVm is at most one tenth at 4%. This suggests that programs protected
by DynOpVm present a much more even distribution in frequency analysis with
many virtual instructions at a non-negligible frequency, making recovering the
mapping between virtual and native instructions difficult.

9 Our frequency analysis here is on the first byte of the virtual instructions, since the
length of them is unknown to attackers.

(a) Freq. of virtual opcodes in bzip2”

(b) Freq. of virtual opcodes in mcf”

(c) Freq. of virtual opcodes in sjeng”

Fig. 7: Frequency analysis of DynOpVm
virtual code

Entropy and randomness analy-
sis To gain an even more intuitive un-
derstanding and to consider the entire
virtual instruction (as opposed to just
the opcode in the frequency analy-
sis), we calculate the Shannon entropy
of the SPEC CPU2006 benchmarking
programs unprotected, protected by
Rewolf, and protected by DynOpVm,
which is shown in Fig. 8. Shannon
entropy estimates the randomness in
the binary information streams — the
higher the entropy, the more random
the byte stream is.

Fig. 8 shows that programs pro-
tected by DynOpVm have more ran-
dom byte streams and therefore are
harder to analyze in terms of the fre-
quency distribution or differentiation
among virtual instructions. Interest-
ingly, Rewolf virtualizer produces less
random byte streams than the unpro-
tected programs, likely due to the pre-
fix 0xFFFF inserted for every virtual
instruction. Note that in this experi-
ment, DynOpVm uses the smallest se-
cret size that makes redistribution of
basic blocks possible, with k ∈ [8, 10].

Backward tainting/slicing analy-
sis Due to the relatively strong threat
model used (Section 3.3), we admit
that it is not impossible for an at-
tacker to decode a specific basic block
without dynamically executing it. However, an effective attack would require
that sufficient information about predecessors of the basic block be known, e.g.,
addresses of the control transfer instructions of multiple predecessor blocks. It
could be possible to obtain such information for one of the predecessor blocks,
if, e.g., the predecessor block has been successfully decoded or if it is in an
unprotected component; however, obtaining such information for multiple pre-
decessor blocks would require that many protected blocks have been previously
decoded successfully. Not arming with information of predecessor blocks, an at-
tacker would face the decoding task of the basic block that has been XOR’ed
with a key of size k, where k ∈ [8, 10] in our experiments.

Fig. 8: Shannon entropy

We stress that our ob-
jective in DynOpVm is
to make program analysis
starting from the middle
of an execution difficult,
e.g., in backward taint-
ing and slicing analysis,
where information of the
predecessor blocks is typi-
cally unavailable. Here we
perform an experiment to
simulate backward taint-
ing and slicing analysis on
a program protected by
DynOpVm. We assume
that the analysis starts
from a basic block BB

0

fully decoded with K
0 (e.g., one that contains an interesting sink instruction).

We also assume that it is a strong attacker who had previously obtained the
master key used in protecting this binary (probably via some memory disclosure
attack). The objective of the attack is to find the predecessor of BB0, denoted
as BB

−1, and to have it decoded (find K
−1) to reveal its native instructions.

Intuitively, the steps involved are as follows.

1. Reconstruct the parabola for BB
0 with three points on it: the master key,

K
0, the address of the entry point of BB0.

2. For every point on the parabola constructed (a total of 2k−2 points), derive
the corresponding address which is potentially the address of the control
transfer instruction of BB−1.

3. For every potential control transfer instruction of BB−1, and for every pos-
sible block size of BB−1 (we tried all numbers in [50, 150]), reconstruct K−1

by XORing the virtual and native instructions (assuming that DynOpVm
uses a single dedicated native instruction for control transfers).

4. Use the derived K
−1 to decode the other instructions in BB

−1 and see if they
are valid native instructions.

We follow this strategy to analyze the protected program bzip2 with a desk-
top computer with i7-6700 CPU running at 3.40GHz and 16GB of RAM running
Ubuntu 64-bit kernel 4.4. Results show that even if DynOpVm uses a dedicated
jmp instruction for all control transfers, the total number of valid BB

−1 found
per BB0 on average is 437.03; while, in fact, basic blocks in bzip2 have on aver-
age 1.32 predecessor basic blocks. Moreover, the time it takes to try all possible
callers of a single BB

0 is 996.51 seconds on average.
Results show that such an attack is imprecise and inefficient in decoding the

predecessor blocks. We note that the experiment above was performed on bzip2

protected with DynOpVm on a setting of k = 8. When k is 9 or 10, the average

numbers of valid predecessor blocks jump to 2,362.79 and 7,258.40, respectively,
and the average time it takes to try all predecessor blocks of a single BB

0 is
4,415.07 and 18,268.28 seconds, respectively.

5.2 Performance evaluation

In the performance evaluation, we expand the target set of programs from
SPEC benchmarking programs to include an image processing tool convert
from ImageMagicks, two web servers httpd and lighttpd, a distributed mem-
ory caching system Memcached, and an FTP server Pure-FTPd. We randomly
select a few functions in these programs and apply DynOpVm to protect them.
Experiments are performed on a desktop computer with Intel Core2 Duo CPU
at 3.16GHz and 8GB of RAM running Ubuntu 64-bit kernel 4.4.

For the SPEC benchmarking programs and convert, we execute them with
standard input data train and test cases bundled with the source code, respec-
tively. To benchmark the web servers, we configure Apache Benchmark10 to issue
2,000 requests with 100 concurrent connections. To benchmark Memcached, we
use memslap benchmark11 with its default configuration. For the FTP server, we
configure pyftpbench benchmark12 to open 20 connections and request 100 files
per connection with over 100MB of data requested. We run each experiment 10
times, ensure that the CPUs are fully loaded throughout the tests, and report
the median. Table 1 shows the details of these programs where data is collected
dynamically at run time. Note that we intentionally have a program (bzip2)
with more than 99% of the (runtime) instructions protected and other programs
with less than 0.1% instructions protected.

Table 1: Details of programs in our performance evaluation set

of instructions
of instructions

protected by
DynOpVm

Percentage
of code

protected

of context
switches from
unprotected to
protected code

of branching
instructions
protected by
DynOpVm

bzip2 311,200,698 310,963,079 99.92% 12,563 11,632,308

mcf 6,822,420,892 193,631,839 2.84% 118,645 22,755,914

sjeng 27,751,560,742 287,456,204 1.04% 3,169,096 14,012,972

convert 18,875,392 16,967 0.09% 187 2,372

httpd 292,300,296 864,936 0.30% 3,958 80,843

lighttpd 135,150,518 1,825,473 1.35% 16,377 116,225

memcached 1,806,983,275 14,789,569 0.82% 456,924 1,341,456

Pure-ftpd 710,390,558 505,940 0.07% 2,133 27,262

10 Apache benchmark. http://httpd.apache.org/docs/2.0/programs/ab.html
11 Memslap: load testing and benchmarking a server.

http://docs.libmemcached.org/bin/memslap.html
12 Extremely fast and scalable Python FTP server library.

https://github.com/giampaolo/pyftpdlib

Since Rewolf virtualizer has limitations in supporting multi-threaded execu-
tion, we compare performance overhead of DynOpVm with another VM-based
program obfuscator VMProtect13.

To evaluate the overhead in execution time, we use the default key size k = 8
with exception in httpd as the ap_getparents function has a complicated CFG
and requires a key size of 9 for its protection. We expect two main contributing
factors to the performance overhead. First is for the VM to allocate memory
and to free up memory resources. Second is the reconstruction of the secret
and decoding of the target basic blocks. To gain a detailed understanding of
the overhead introduced by either factor, we report the execution time of the
original programs unprotected, programs protected by DynOpVm with encod-
ing/decoding disabled and enabled, and programs protected by VMProtect with
and without packing; see Fig. 9.

Fig. 9: Overhead in execution time

Our first observation
is that programs with
more protected code (i.e.,
the SPEC benchmarking
programs) incur higher
overhead, which is as
expected. Although such
overhead could go up to
10 times for DynOpVm
when almost 100% of
the code is protected,
the overhead is negligi-
ble when only specific
and small amount of code
needs to be protected. We
comment that this makes
DynOpVm practically us-
able in real-world scenar-
ios. Recent studies [44]
also report that most existing VM-based obfuscators target the protection of
a small portion of the code only.

We also notice that the runtime overhead of DynOpVm mainly comes from
the decoding of basic blocks, as evidenced by the substantial difference be-
tween DynOpVm with and without decoding for the three SPEC benchmarking
programs. This is also not surprising as decoding involves reconstructing the
parabola and performing the XOR operation, which are heavy in computation.

Our third observation is that the overhead of DynOpVm is noticeably lower
than that of VMProtect especially when more code needs to be protected, and
this is true even with packing disabled on VMProtect, which makes a fair com-
parison since DynOpVm does not support packing in its current prototype.

13 We could not use VMProtect in our frequency analysis and security evaluation due
to its close-source nature.

Overhead in file size Since DynOpVm needs to redistribute basic blocks
according to the secret sharing function, it may incur considerable overhead in
terms of the file sizes. Moreover, this overhead in space may vary according to the
different settings of k. For example, when k = 12, the address of an instruction
can be any value in the range of (0, 224) as both x and y are 12 bits long.

Fig. 10(a) shows the file sizes of the original programs, programs protected
by DynOpVm (with k = 9 for httpd and k = 8 for all other programs), and the
programs protected by VMProtect (with and without packing enabled). We see
that this default setting of k results in DynOpVm having significantly smaller
overhead in file size compared to VMProtect when packing is disabled. We stress
that the packing option is also potentially possible for DynOpVm, although it
is not implemented in our current prototype.

(a) With default k

7 8 9 10 11 12 13 14 15

Key Size k (bit)

10
-1

10
0

10
1

10
2

10
3

10
4

F
il

e
S

iz
e

(M
B

y
te

s)

bzip2

mcf

sjeng

convert

httpd

lighttpd

memcached

Pure-ftpd

(b) With increasing k

Fig. 10: Overhead of file sizes

When k increases, DynOpVm gains better protection due to the bigger space
in possible mappings between virtual and native instructions. However, it also re-
sults in higher overhead in file sizes; see Fig. 10(b). A closer inspection shows that
it increases exponentially rather than linearly with increase in k. This demon-
strates the trade off in configuring k, and it may favor smaller values in the range
of [8, 12] to avoid excessive disk and memory usage.

6 Limitations and Conclusion

Besides the limitation of code cloning and inlining to support partial program
protection (note our alternative designs discussed in Section 4.4), the current
prototype of DynOpVm stores the master key within the protected executable
for its simplicity of implementation. This can be improved with a networked
component embedded to retrieve the master key during program execution. Our
current prototype also reconstructs the mapping for every basic block at runtime,
which could be improved with a cache mechanism.

In this paper, we first present a simple yet effective attack using frequency
analysis to recover the mapping between virtual and native instructions, and then
design and implement a novel VM-based program obfuscation technique called
DynOpVm which employs dynamic mapping between virtual and native instruc-
tions that is determined by individual control transfers. DynOpVm is resistant
to not only the frequency analysis attack but also state-of-the-art backward
taint and slicing program analysis techniques. Our evaluation with real-world
applications shows that DynOpVm renders frequency attacks ineffective.

References

1. Adams, T.L., Zimmerman, R.E.: An analysis of 8086 instruction set usage in ms dos
programs. ACM SIGARCH Computer Architecture News 17(2), 152–160 (1989)

2. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y.,
Octeau, D., McDaniel, P.: Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. Acm Sigplan Notices 49(6),
259–269 (2014)

3. Averbuch, A., Kiperberg, M., Zaidenberg, N.J.: An efficient vm-based software
protection. In: Proceedings of the 5th International Conference on Network and
System Security (NSS). pp. 121–128. IEEE (2011)

4. Banescu, S., Lucaci, C., Krämer, B., Pretschner, A.: Vot4cs: A virtualization ob-
fuscation tool for c. In: Proceedings of the 2016 ACM Workshop on Software PRO-
tection. pp. 39–49. ACM (2016)

5. Bao, T., Burket, J., Woo, M., Turner, R., Brumley, D.: Byteweight: Learning to
recognize functions in binary code. In: Proceedings of the 23rd USENIX Security
Symposium. pp. 845–860 (2014)

6. Barrantes, E.G., Ackley, D.H., Palmer, T.S., Stefanovic, D., Zovi, D.D.: Random-
ized instruction set emulation to disrupt binary code injection attacks. In: Pro-
ceedings of the 10th ACM conference on Computer and communications security.
pp. 281–289. ACM (2003)

7. Bruen, A.A., Forcinito, M.A.: Cryptography, information theory, and error-
correction: a handbook for the 21st century, vol. 68. John Wiley & Sons (2011)

8. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: Bap: A binary analysis plat-
form. In: Proceedings of the 23rd International Conference on Computer Aided
Verification. pp. 463–469. Springer (2011)

9. Clause, J., Li, W., Orso, A.: Dytan: a generic dynamic taint analysis framework. In:
Proceedings of the 2007 international symposium on Software testing and analysis.
pp. 196–206. ACM (2007)

10. Coogan, K., Debray, S.: Equational reasoning on x86 assembly code. In: Proceed-
ings of the 11th IEEE International Working Conference onSource Code Analysis
and Manipulation (SCAM). pp. 75–84. IEEE (2011)

11. Coogan, K., Lu, G., Debray, S.: Deobfuscation of virtualization-obfuscated soft-
ware: a semantics-based approach. In: Proceedings of the 18th ACM conference on
Computer and communications security. pp. 275–284. ACM (2011)

12. De Clercq, R., De Keulenaer, R., Coppens, B., Yang, B., Maene, P., De Bosschere,
K., Preneel, B., De Sutter, B., Verbauwhede, I.: Sofia: software and control flow
integrity architecture. In: Proceedings of the 2016 Design, Automation & Test in
Europe Conference & Exhibition (DATE). pp. 1172–1177. IEEE (2016)

13. Egele, M., Kruegel, C., Kirda, E., Vigna, G.: Pios: Detecting privacy leaks in ios
applications. In: Proceedings of the 2011 Network and Distributed System Security
Symposium (NDSS). pp. 177–183 (2011)

14. Fang, H., Zhao, Y., Zang, H., Huang, H.H., Song, Y., Sun, Y., Liu, Z.: Vmguard: an
integrity monitoring system for management virtual machines. In: Proceedings of
the 16th International Conference on Parallel and Distributed Systems (ICPADS).
pp. 67–74. IEEE (2010)

15. Fang, H., Wu, Y., Wang, S., Huang, Y.: Multi-stage binary code obfuscation using
improved virtual machine. In: Proceedings of the 14th International Conference on
Information Security. pp. 168–181. Springer (2011)

16. Guillot, Y., Gazet, A.: Automatic binary deobfuscation. Journal in computer vi-
rology 6(3), 261–276 (2010)

17. Huang, J., Peng, T.C.: Analysis of x86 instruction set usage for dos/windows ap-
plications and its implication on superscalar design. IEICE Transactions on Infor-
mation and Systems 85(6), 929–939 (2002)

18. Ibrahim, A.H., Abdelhalim, M., Hussein, H., Fahmy, A.: Analysis of x86 instruction
set usage for windows 7 applications. In: Proceedings of the 2nd International
Conference on Computer Technology and Development (ICCTD). pp. 511–516.
IEEE (2010)

19. Kalysch, A., Götzfried, J., Müller, T.: Vmattack: deobfuscating virtualization-
based packed binaries. In: Proceedings of the 12th International Conference on
Availability, Reliability and Security. p. 2. ACM (2017)

20. Kang, M.G., McCamant, S., Poosankam, P., Song, D.: Dta++: dynamic taint anal-
ysis with targeted control-flow propagation. In: Proceedings of the 2011 Network
and Distributed System Security Symposium (NDSS) (2011)

21. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering code-injection attacks with
instruction-set randomization. In: Proceedings of the 10th ACM conference on
Computer and communications security. pp. 272–280. ACM (2003)

22. Kuang, K., Tang, Z., Gong, X., Fang, D., Chen, X., Zhang, H., Wang, Z.: Exploit
dynamic data flows to protect software against semantic attacks (2017)

23. Lin, Y., Gao, D., Cheng, X.: Control-flow carrying code. In: Proceedings of the 14th
ACM Asia Conference on Information, Computer and Communications Security
(AsiaCCS) (2019)

24. Martin, K.M.: Everyday cryptography. The Australian Mathematical Society
231(6) (2012)

25. Maude, T., Maude, D.: Hardware protection against software piracy. Communica-
tions of the ACM 27(9), 950–959 (1984)

26. Ming, J., Xu, D., Jiang, Y., Wu, D.: Binsim: Trace-based semantic binary diffing
via system call sliced segment equivalence checking. In: Proceedings of the 26th
USENIX Security Symposium (2017)

27. Portokalidis, G., Keromytis, A.D.: Fast and practical instruction-set randomization
for commodity systems. In: Proceedings of the 26th Annual Computer Security
Applications Conference. pp. 41–48. ACM (2010)

28. Quynh, N.A.: Capstone: Next-gen disassembly framework. Black Hat USA (2014)
29. Rico, R.: Proposal of test-bench for the x86 instruction set (16 bits sub-

set). Tech. rep., Technical Report TR-UAH-AUT-GAP-2005-21-en (2005),
http://atc2.aut.uah.es/ gap/

30. Rico, R., Pérez, J.I., Frutos, J.A.: The impact of x86 instruction set architecture
on superscalar processing. Journal of Systems Architecture 51(1), 63–77 (2005)

31. Rolles, R.: Unpacking virtualization obfuscators. In: Proceedings of the 3rd
USENIX Workshop on Offensive Technologies (WOOT) (2009)

32. Schwartz, R.J.: The design and development of a dynamic program behavior mea-
surement tool for the intel 8086/88. ACM SIGARCH Computer Architecture News
17(4), 82–94 (1989)

33. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

34. Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Automatic reverse engineering of malware
emulators. In: Proceedings of the 30th IEEE Symposium on Security and Privacy
(SP). pp. 94–109. IEEE (2009)

35. Shoshitaishvili, Y., Wang, R., Hauser, C., Kruegel, C., Vigna, G.: Firmalice-
automatic detection of authentication bypass vulnerabilities in binary firmware.
In: Proceedings of the 2015 Network and Distributed System Security Symposium
(NDSS) (2015)

36. Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A.,
Grosen, J., Feng, S., Hauser, C., Kruegel, C., et al.: Sok:(state of) the art of war:
Offensive techniques in binary analysis. In: Proceedings of the 37th IEEE Sympo-
sium on Security and Privacy (SP). pp. 138–157. IEEE (2016)

37. Sinha, K., Kemerlis, V.P., Sethumadhavan, S.: Reviving instruction set random-
ization. In: Proceedings of the 2017 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST). pp. 21–28. IEEE (2017)

38. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z.,
Newsome, J., Poosankam, P., Saxena, P.: Bitblaze: A new approach to computer
security via binary analysis. In: Proceedings of the 4th International Conference
on Information Systems Security. pp. 1–25. Springer (2008)

39. Sullivan, D., Arias, O., Gens, D., Davi, L., Sadeghi, A.R., Jin, Y.: Execution in-
tegrity with in-place encryption. arXiv preprint arXiv:1703.02698 (2017)

40. Tang, Z., Kuang, K., Wang, L., Xue, C., Gong, X., Chen, X., Fang, D., Liu,
J., Wang, Z.: Seead: A semantic-based approach for automatic binary code de-
obfuscation. In: Proceedings of the 2017 Trustcom/BigDataSE/ICESS. pp. 261–
268. IEEE (2017)

41. van der Veen, V., Göktas, E., Contag, M., Pawoloski, A., Chen, X., Rawat, S., Bos,
H., Holz, T., Athanasopoulos, E., Giuffrida, C.: A tough call: Mitigating advanced
code-reuse attacks at the binary level. In: Proceedings of the 37th IEEE Symposium
on Security and Privacy (SP). pp. 934–953. IEEE (2016)

42. Wang, H., Fang, D., Li, G., Yin, X., Zhang, B., Gu, Y.: Nislvmp: Improved vir-
tual machine-based software protection. In: Proceedings of the 9th International
Conference on Computational Intelligence and Security (CIS). pp. 479–483. IEEE
(2013)

43. Weiser, M.: Program slicing. In: Proceedings of the 5th international conference
on Software engineering. pp. 439–449. IEEE Press (1981)

44. Xu, D., Ming, J., Fu, Y., Wu, D.: Vmhunt: A verifiable approach to partially-
virtualized binary code simplification. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. pp. 442–458. ACM (2018)

45. Yadegari, B., Johannesmeyer, B., Whitely, B., Debray, S.: A generic approach to
automatic deobfuscation of executable code. In: Proceedings of the 36th IEEE
Symposium on Security and Privacy (SP). pp. 674–691. IEEE (2015)

46. Yang, M., Huang, L.: Software protection scheme via nested virtual machine. Jour-
nal of Chinese Computer Systems 32(2), 237–241 (2011)

	DynOpVm: VM-based software obfuscation with dynamic opcode mapping
	Citation

	Xiaoyang.dvi

