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ABSTRACT 

Research has indicated the importance of calculus knowledge for undergraduate 

programs in science and technology fields. Unfortunately, one of the main challenges 

faced by students who join science and technology fields is their knowledge of 

calculus concepts. The main purpose of the study is to overcome students‟ difficulties 

in learning calculus concepts by developing a literature informed intervention model. 

A design-based research approach of three phases was conducted. Grade 12 natural 

science stream students in one administrative zone in Ethiopia were used as the 

study population.  

Triangulated themes of students‟ difficulties and common conceptual issues that are 

causes of these synthesized difficulties in calculus were used as a foundation to 

propose an intervention model. Based on the proposed model, an intervention was 

prepared and administered. A pre post-test aimed to asses students‟ conceptual 

knowledge in calculus was used to examine the effect of the model. Quantitative 

analysis of the test revealed that the intervention has a positive effect. The 

experimental group score is better than the controlled group score with independent 

t-statistics, t = 4.195 with alpha =.05. In addition, qualitative analysis of the test 

revealed that students in the experimental group are able to overcome many of the 

difficulties. In particular, many students demonstrated process level conception, 

conceptual reasoning, qualitative justification, a consistency in reasoning, less 

algebraic error, and a proficiency in symbolic manipulation. 

The study concludes with Implications for practice that includes the use of students‟ 

errors and misconceptions as an opportunity for progression. Besides, students 

should be assisted to make sense of concepts through real-life problems, including 

training teachers in problem-solving approaches and mathematical thinking practice.  

Keywords: Calculus concepts; Concept test; Conceptual knowledge; Constructivism; 

Continuity; Derivative; Difficulties in calculus; Level of conceptual knowledge; Limit 

concept; Misconception; Overcoming difficulties; Procedural knowledge; Synthesized 

difficulties. 
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CHAPTER ONE: INTRODUCTION 

This general introductory chapter consists of six parts. The first part (1.1) sets the 

background of the study. While the second part (1.2) presents the problem statement 

of the study, the next part (1.3) presents the purpose of the study, the significance it 

contributes, and the research questions that guide the study. The fourth part (1.4) 

gives an operational definition of terms and concepts used in the study. The fifth part 

(1.5) explains the design-based research approach, description of the organization of 

the study, and key findings of the study. 

1.1. Background of the study  

Calculus is a subdivision of mathematics, which emerged out of a need to be aware 

of continuously changing quantities. It deals with the infinitely small and the infinitely 

large quantities of a function (Muzangwa & Chifamba, 2012). Calculus concepts are a 

precondition for most science, technology, and engineering fields of undergraduate 

programmes. Students‟ conceptual knowledge of calculus concepts affects not only 

their performance and involvement in mathematics but also in these fields. It is a vital 

way to give rise to future scientists, technologists, mathematicians, and engineers 

(Bressoud, Carlson, Mesa & Rasmussen, 2013; Carlson & Oehrtman, 2005; Kinley, 

2016; Roble, 2017; Sadler & Sonnert, 2016). Thus, it is critical that this topic has to 

be understood for helpful and proficient benefit of the good of it, for producing 

citizens who can engage in the production and service sectors with advance 

academic knowledge and vocational skills. As an instrument, calculus allows people 

to realize greater achievements than the mathematics courses that precede it (Kelley, 

2006; Roble, 2017; Sadler & Sonnert, 2016).  

Regardless of the comparative importance of calculus, it is very unsatisfactory that 

students‟ performance in calculus is destitute and there are many difficulties, which 

are previously examined and still take place in a good number of students‟ test 

scripts. Researchers, in different contexts of the world, have shown that students 

have problems in gaining a deep and accurate understanding of the limit concept in 

particular and calculus concepts in general  (For instance, Çetin, 2009; Jordaan, 

2005; Juter, 2006; Moru, 2006; Muzangwa & Chifamba, 2012). In the traditional 
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approach, most mathematics teachers and students‟ centre of attention are rules and 

procedures. Because of this practice, most of the students perform rules and 

procedures without internalization and focusing on the embedded concepts (Berry & 

Nyman, 2003; Bezuidenhout, 2001; Kinley, 2016; Makgakga & Makwakwa, 2016). 

From a constructivist view of knowledge construction, the approaches that students 

make sense in order to visualize concepts and mental images that they form has a 

major contribution to the existing difficulties (Aspinwell & Shaw, 2002). It is well 

recognized that the traditional approach to calculus is not effective in reducing those 

difficulties and misconceptions. Previous studies (For example, Herbert, 2013; Idris, 

2009; Naidoo & Naidoo, 2007) test different approaches in which a good number of 

them are computer integrated. With all those efforts, the challenges of teaching 

calculus are still persistent and students‟ performance is below the expected level 

(Herbert, 2013; Naidoo & Naidoo, 2007; Reinholz, 2015). In the U.S.A., in which all 

students supported by appropriate technology and reform efforts, every fall semester, 

27% of post-secondary students are not successful in calculus courses (Bressoud et 

al., 2013). In Malaysia, the failure rates of college students in consecutive calculus 

courses are above 30% for nearly every semester (Ahmad, Mahadi, Yusri, Yusop, 

Ali, & Heng, 2017). In Ethiopia, each year around 44% of pre-engineering students 

fails to get the pass grades in a refreshment calculus course and 14% drop out of the 

course before sitting for the final exam.  

Besides these observations, students get good marks in teachers made tests and 

classroom evaluations do not mean they have the required conceptual knowledge in 

calculus. Researchers (for items designed to diagnose the existence of systematic 

errors) find evidence of students‟ difficulty and lack of knowledge in calculus. Thus, 

while students‟ performance on teachers made test and examination papers 

demonstrate some evidence of learning and understanding, researchers‟ findings 

confirm misconceptions, rote learning, and lack of conceptual knowledge (Idris, 

2009). This gap is more visible to teachers of non-mathematics courses in which 

mathematics is a pre-requisite for the course that they teach (Bezuidenhout, 2001; 

Idris, 2009). 
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Thus, the extent teachers and researchers are aware, identify and react to students‟ 

difficulties is very important. Accordingly, the demand for an alternative approach to 

overcome the difficulties, especially in the areas where the practice of educational 

technology is not well developed, is compulsory. As Ethiopia is a part of the world, 

the case is not different. Research findings revealed similar results as found 

elsewhere (Areaya & Sidelil, 2012; Denbel, 2015; Walelign, 2014).  

Currently, the country has acknowledged that its growth depends very much on the 

expansion of science and technology personnel, and thus on science and 

mathematics education (MoFED, 2010)1. One of the country‟s strategy states that a 

seventy percent of the university enrolment would be in natural science, engineering, 

and technology fields. This situation demands unique attention to science and 

mathematics at the secondary education level. On the contrary, science and 

mathematics at the secondary level encounter various challenges that seek urgent 

enhancements (Asfaw, Otore, Ayele, & Gebremariam, 2009, p.2). 

An evaluation of students‟ mathematical ability conducted at Dire Dawa University 

revealed that a great number of students have been attending the university with an 

inadequate background of mathematical proficiency (Walelign, 2014) and their point 

of view towards the subject is not positive. In the same study, it has been mentioned 

that only 14.96% of the students accomplished 55% and above in the test prepared 

to assess their mathematical knowledge. The study concluded that at entry-level, a 

large number of students have a poor achievement in mathematics.  

The trend of national learning assessment carried out every four years since 2000 

showed that students‟ performance in science and mathematics was very low 

(Gebrekidan, 2010). It is also believed that failure in cognitive performance and 

psychological disappointment in science and mathematics contributes to repeating 

class years and eventually leads to terminating the academic track. According to the 

2010 national learning assessment, 42.3% of grade 12 students‟ score in 

mathematics was found to be below the pass mark (Gebrekidan, 2010). Besides, the 
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World Bank document disclosed that national averages of the mathematics learning 

assessment scores at grade 12 declined from 2010 to 2014 (World Bank, 2017). 

1.2. Statement of the problem 

The study conducted by Areaya and Sidelil (2012), in calculus at upper secondary 

schools revealed that students have difficulties and misconceptions similar to those 

found in the literature. Moreover, teachers‟ opinion and practice, the focus of contents 

in textbooks, and locally prepared reference books is more procedural than 

conceptual as the duality of mathematics knowledge is concerned. Experience and 

observation also illustrates that besides the nature of the concepts that cause some 

inherent difficulties, the approaches used by the teachers to introduce these calculus 

concepts have an impact on the difficulties that students encounter. Besides, a large 

number of students blameworthy their engagement in the hard science fields of study 

due to the challenges that they face in calculus courses.  

The evidence in the above paragraph together with the discussion in the background 

of the study reveals the gap between what is intended and the inadequate 

approaches employed for developing the required conceptual knowledge of calculus 

for benefiting the goods in it. Besides, acknowledging the nature of students‟ 

difficulties in calculus, it is apparent that such a profound cognitive difficulty will not 

be resolved unless the students get actual support from their guide that will provide 

them with practical tasks which are suitable for the perceptive formation of notions 

(Aspinwall & Shaw, 2002; Keri, Liston, Selden, Salomone, & Zorn, 2010; Tall, 1993). 

Moreover, understanding in general and concept formation, in particular, is context 

laden. It can be affected by the education system, teachers‟ training, school culture, 

and accessibility of technology.  

The beginning of the calculus teaching improvement programme, which started in the 

U.S.A. and later extended to elsewhere in the world, initiated the introduction of 

calculus in high schools. Currently, in many countries, calculus is part of the high 

school curriculum. For example, the work of Brijlall and Ndlovu (2013), Çetin (2009), 

and Idris (2009) where evidence in South Africa, Turkey, and Malaysia respectively. 

One of the objectives of the reform was enabling students to grasp the basic 
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underpinning concepts and to prepare them adequately for higher-level courses 

(Engelbrecht, Harding & Potgieter, 2005). Thus, students entering university are 

expected to join the university-level courses with the basic conceptual knowledge of 

calculus. Contrary to the objective, both theoretical and empirical analysis (For 

instance: Bezuidenhout, 2001; Brijlall & Ndlovu, 2013; Ferrini-Mundy & Gaudard, 

1992; Idris, 2009; Juter, 2006; Kinley, 2016; Muzangwa & Chifamba, 2012) revealed 

that students learning is procedural skill dominated and lack conceptual knowledge. 

However, whether one views mathematical concepts as a foundation for applications 

(as tools for other disciplines) or as pure mathematics, procedural skill is necessary 

but not sufficient for the course (Lauritzen, 2012; Hiebert et al., 2000; Mahir, 2009).  

In Ethiopia too, since the 1994 new education policy, calculus has been taught 

starting from secondary school (grade 12) in addition to university freshman course. 

The topics in calculus at grade twelve include the limit of number sequence, the limit 

of functions, continuity, derivatives, integrals, and their applications in the intuitive 

approach. At first-year in Universities, all science and engineering field students have 

been taking all of these topics as a refreshment course.  

Experience and observation revealed that difficulties in calculus brought from grade 

12 challenge students‟ progress at a university. The literature noted that those 

difficulties are due to teaching-learning practices that focus to a great level with the 

procedural part and neglected a solid ground in the underpinning concepts (Aspinwall 

& Miller, 2001). Thus, the question that remains to be answered is whether there are 

any other alternative strategies to approach calculus so that students gain better 

conceptual knowledge. The researcher thinks that observed difficulties could provide 

valuable learning opportunities for students provided appropriately utilized and this 

study is aimed to take advantage of this potential. Therefore, the claim of the 

researcher is that empirical students‟ learning is more procedure-oriented than 

conceptual. Therefore, to make a balance, the practice should give more attention to 

the deficient one. Of course, associated with this and other expectations of students, 

and what is intended in a curriculum, innovative activities are expected from 

teachers; shifting the perspective of knowledge from memorizing and replicating 

information and procedures into being able to dig and able to use it in any way 
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required. Thus, the issue becomes problematic and needs research to design a 

strategy that will combine the procedural knowledge and the conceptual knowledge 

of those calculus concepts so that students gain knowledge that is adaptable to 

different contexts.   

From the national issue and personal concern raised above, carrying out research by 

analysing the students‟ difficulties at the upper secondary school level in Ethiopia 

may shed light to minimize the problem. Thus, on successful completion, this study 

will be useful to improve the practice in teaching-learning calculus concepts. This, in 

turn, has a benefit to the successful progress of the national agenda, and as a result 

to influence positively the social and economic condition of the country.   

1.3. Purpose of the study 

The purpose of the study is twofold: (1) to explore and synthesize students‟ 

difficulties in learning calculus concepts (2) based on their difficulties, to develop an 

intervention model that enhances students‟ conceptual knowledge of calculus 

concepts. In particular, the study will address the following specific objectives:  

I. To investigate and synthesise students‟ difficulties in calculus from current 

literature.    

II. To investigate common conceptual issues that causes students‟ difficulties in 

calculus. 

III. To identify components of an intervention model that enhances students‟ 

knowledge of calculus concepts. 

IV. To determine the possible effect of the proposed intervention model on 

students‟ level of conceptual knowledge in calculus. 

Although studies of this type have been conducted by other researchers elsewhere, it 

has some differences with respect to the problem outlook, the research approach, 

content covered, the context of the study, methodology, population, and instruments 

used (both for data collection and intervention). In the first place, there is no research 

that integrates a synthesise of the literature on students‟ difficulties, plans an 

intervention, and tests the effect of the intervention in a sequential or developmental 

approach. On the other hand, most currently emerging interventions in calculus are 
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educational technology and related infrastructure demanding. Nevertheless, contrary 

to what Tall and Mejia-Ramos (2004) described, still large parts of the world 

population have no such educational technology at secondary school level including 

this study population. For instance, Çetin (2009) and Naidoo and Naidoo (2007) in 

the study aimed to enhance the conceptual understanding of undergraduate students 

in calculus, computer-assisted interactive teaching was used. The study by Luneta 

and Makonye (2010), Pillay (2008), Przenioslo (2003), and Siyepu (2015) all were 

focused on the inquiry of the existing misconceptions on college students. On the 

other hand, some other researchers (Maharajh, Brijilall & Govender, 2008; Rabadi, 

2015; Roh, 2005) found promising results without the use of such technology.  

A study of this kind has not been conducted in the study area before. The population 

is limited to grade 12 natural science stream students and these students have no 

experience of using educational technology like graphic calculators, or computers in 

mathematics classrooms. Besides, the study integrated exploring of existing 

difficulties, designing of overcoming strategy, and testing of the possible effects of the 

proposed model.  

This study has a potential benefit to practitioners, students, researchers, and as 

reference material in particular as well as to the policymakers in general. Accordingly, 

the information originated from this research study, besides addressing a national 

concern, will contribute to as the source of literature review for the filed. 

1.3.1. Research questions  

With the above objectives, the main question guiding the research is, based on 

students‟ difficulties in learning calculus concepts, what intervention model could be 

developed to overcome the identified difficulties and enhance their conceptual 

knowledge. The specific research questions are formulated as follows. 

I. What does the current literature reveal about students‟ difficulties in learning 

calculus concepts?  

II. What are the common conceptual issues that cause students‟ difficulties in 

calculus? 
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    III. What are the components of an intervention model of learning calculus concepts 

that could be developed to enhance students‟ conceptual knowledge of calculus? 

V. Is there a significant difference in the students‟ level of conceptual knowledge of 

calculus after learning with the proposed model? Explicitly, this question has the 

following null hypotheses:  

i. Ho: There is no significant difference between the mean scores of 

students in the experimental group and the control group during the pre-

test. 

ii. Ho: There is no significant difference between the mean scores of 

students in the experimental group and the control group during the post-

test. 

1.4. Definition of key terms   

Activity- a set of exercises and problems that are designed based on the constructs 

of conceptual knowledge and fairly different from exercises in textbooks and 

reference books (Breen and O‟Shea, 2010). 

Applied mathematics I- is a university refreshment course given to all incoming 

engineering, also called pre-engineering students. Sixty percent of this course 

content is calculus concepts, i.e. limit and continuity, derivatives and application of 

derivatives, integration, and application of integrations (HESC2, 2013). 

Conceptual items- assessment items that are designed based on the constructs of 

conceptual knowledge and aimed to asses‟ presence of conceptual knowledge and 

fairly different from the usual teachers made assessment items or exercises in 

textbooks and reference books. 

Conceptual knowledge- is knowledge of how or why to apply a concept that is 

adaptable, modifiable and applicable to a variety of circumstances (based on 

Engelbrecht et al. (2005)).        

                                            
 

2
 Higher Education Strategy Centre 



 

9 
 

Intervention model- a set of purposeful constructs of conceptual knowledge that 

could be incorporated in the teaching-learning platform and accomplished, including 

the description of how the constructs are labelled and connected. 

Learning difficulties in calculus- deficit in students‟ mathematical knowledge, 

includes the presence of misconceptions, interference of past knowledge or lack of a 

pre-requisite knowledge. For instance: 

i. For the item, “compute       .
    

   
/”. If a student answered 

 

 
, then she/he has a 

misconception that limit is the value of the function at the limit point. Moreover, if 

she/he answered   i.e. if simplify 
 

 
   then this is a lack of the pre-requisite 

knowledge that number over zero is indeterminate form. 

ii. For the item “is  ( )     continuous on [0, 4]? Justify your answer” if she/he 

answered yes the function is continuous because I can draw the graph without 

lifting my pen from     to    . The answer is correct, but the reasoning has 

the difficulty that occurs due to past knowledge interference i.e. confusing 

continuity with connectedness. 

Overcoming difficulties- a group of students is said to be have improved their 

conceptual knowledge (and hence overcome difficulties): 

i. If the mean score of the experimental group students is greater than their 

counterparts in the control group.  

ii. If the experimental group students‟ qualitative performance and justification for 

reasoning level items on the test are better than their counterparts in the control 

group including a correct answer for a correct reason. 

Procedural knowledge- is the ability to compute the solution of a problem 

associated with exploring a set of rules and procedures in a coherent, consistent, and 

flexible mathematical practices. 



 

10 
 

Upper secondary (preparatory) school - a two-year programme (grade 11 and 

grade 12) that the students are expected to attend after they completed grade 10 and 

that prepares them for university (FDRGE3, 1994). 

1.5. Research approach and key findings 

The approach of research emerges out of the purpose and nature of the research 

questions. To deal with the stated purpose and to answer the outlined research 

questions, the study demanded to synthesise literature on students‟ difficulties, 

explore common conceptual issues that cause those difficulties, propose an 

intervention model to overcome those difficulties, prepare an intervention based on 

the proposed model, and evaluate the possible effect. Thus, a design-based 

research approach (Plomp, 2007) was applied. For that reason, the study has been 

organized into three mutually reliant sub-studies (phases) that are in alignment with 

the research questions.  

During the preliminary research phase, using systematic review, students‟ difficulties 

and strengths have been identified and synthesised. Informed by the literature and 

theory, a concept test was prepared and a diagnostic assessment was conducted to 

triangulate students‟ difficulties and to explore the causes of those difficulties. 

At the prototyping phase, based on the difficulties, the causes of those difficulties, 

and the theoretical perspective components of an intervention strategy that could be 

implemented to overcome observed difficulties were identified. Those components 

were classified and structured. The structure is proposed as an intervention model 

that enhances students‟ conceptual knowledge in calculus.  

The third is an assessment phase. An intervention based on the proposed 

intervention model was prepared and implemented on experimental group students. 

A pre-post test was administered to the students who avail themselves in two 

classes. The phase ended up with an analysis of the possible effects of the model. 

Finally, discussion, conclusion, and recommendation of the study were provided in a 

separate chapter. Figure 1 presents the procedure and layout of the study.  
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As discussed above, the study started by sharing synthesis of studies that elicit 

challenges faced and shown by students while learning calculus. The diagnostic 

assessment revealed that students of the study area have difficulties that are not far 

from those in the literature. Triangulated themes of difficulties revealed that students‟ 

learning involves a static view of a dynamic process. Additionally, a lack of describing 

definitions and relationships of terms was investigated as difficulties. Moreover, 

overgeneralization and inconsistent cognitive structure, over-dependence on 

procedural learning, and lack of making a logical connection between conceptual 

aspects were found as students‟ difficulties. Further, a lack of a coherent framework 

of reasoning and lack of computational proficiency were found as students‟ 

difficulties. 

Besides, the diagnostic assessment revealed the way students‟ approach conceptual 

issue and causes of the difficulties. In particular, an arithmetic thinking than algebraic, 

linguistic ambiguity, compartmentalized learning, dependent on concept image than 

concept definition, obtains a correct answer for the wrong reasons, focuses only on 

an algebraic form of representations, and focuses on lower-level cognitive 

demanding exercises and in general surface learning approaches were identified as 

conceptual issues behind the difficulties. Thus, the researcher, guided by all these 

data, i.e. the literature, the empirical evidence, and his experience developed an 

intervention model. The model was intended to enhance conceptual knowledge 

through focusing on mathematical thinking practice conjecturing and convincing, 

reflection and communication via think-pair-share technique, and on the dual nature 

of concepts, reconstructive generalization vis-à-vis cognitive conflict strategies. In 

addition, incorporating reasoning level and real-life problems, widening students 

thinking through counterexamples, and error analysis have included. 
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Figure 1: Approach and layout of the study4 

After the implementation of the model, the post-test result showed that students in 

the experimental group scored (mean=28.10, SD=9.680) better than the controlled 

group (mean=20.26, SD=9.451). The independent t-statistics result indicates t = 

4.195 with alpha = .05. This result suggests that students in the experimental group 

performed significantly better than the control group. The text analysis on students‟ 

test script showed that many students in the experimental group showed a process 

level conception, conceptual reasoning, qualitative justification, a consistency in 
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reasoning, and less algebraic and symbolic manipulation errors. The study concluded 

with recommendations for practitioners. In particular, it is recommended to include 

mathematical thinking practice and problem-solving skills in the curriculum and 

incorporate the Certainty of Response Index (CRI) in tests. Additionally, assessing 

teachers‟ awareness and opinion about the emerging pedagogical and theoretical 

frameworks and incorporating real-life activities in the students‟ tasks are points that 

seek further research. Moreover, replicating the study in a different context to assure 

generalization of the results, checking the retention of knowledge after using the 

model, and comparing the effectiveness of the intervention used in this study with an 

intervention based on computer programs are issues that need further research.  
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CHAPTER TWO: REVIEW OF RELATED LITERATURE 

This chapter accounts for two components of the study. The first section is a 

literature review of students‟ difficulties and strengths in learning calculus of three 

conceptual areas. These conceptual areas are limits (both finite the limit at a point 

and limit involving infinity including the limit of a sequence), continuity, and 

derivatives. The review aims to present a synthesis of the difficulties that students 

demonstrate in the learning of calculus. The difficulties later used as a point of 

reference to prepare a concept test. The concept test, in turn, will be used to examine 

the conceptual knowledge of students in the study area. Besides, the test results will 

be used as an input to design an intervention model that must be implemented so 

that students overcome synthesised difficulties. 

There are various aspects of students‟ difficulties in understanding mathematical 

concepts such as cognitive, epistemological, didactical, and psychological (Moru, 

2006). In this study, however, the term „difficulty‟ is limited to a cognitive aspect of 

learning difficulties.  

In the first section of the chapter, the first part (2.1.1) explains the scope of the 

review, the procedure followed in the searching of the literature and description of the 

literature used for the final analysis. The literature search was conducted iteratively. 

The second part (2.1.2) presents quotations, and initial codes obtained from the 

literature. The third part (2.1.3) presents the formation of descriptive themes and 

details of students‟ difficulties in each descriptive theme. The fourth part (2.1.4) 

presents analytical themes of difficulties on students‟ learning of the calculus 

concepts as analysed from the literature as identified.  

The second section of the chapter presents the theoretical aspect of the study. The 

theoretical analysis presented in this chapter was used to describe the framework 

through which the students‟ activities are analysed, to construct definitions of key 

terms of the study and identify key constructs of conceptual knowledge from a 

different perspective. The theoretical framework of this study is the constructivism 

perspective of learning and its bridge theories. The section begins with (2.2.1) the 

discussion of constructivism learning theory followed by a discussion of its bridging 
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theories as a model of concept formation. The views on conceptual and procedural 

knowledge in mathematics (2.2.2) are then discussed and evaluated with the 

purpose to identify the contextual definition of conceptual knowledge in the study. 

The section ends with (2.2.3) discussion of the basic constructs of conceptual 

knowledge in calculus. 

2.1. Students’ difficulties in understanding calculus concepts 

2.1.1. Scope and procedures of the review  

Scope of the review  

This practical review focused on investigating literature on difficulties and strengths of 

learning calculus concepts among students taking the course at secondary school or 

at first-year university courses. Since the participants of this study are, grade 12 

students, studies on advanced level calculus courses are not appropriate. In this 

study area, a new mathematics curriculum was implemented at all levels of the 

education system following the new education and training policy formulated in 1994. 

The final phase of the secondary school curriculum implementation occurred with 

mathematics in grade 12 in 2002. The new curriculum pulled the introduction of 

calculus from university freshman course to grade 12 (FDRGE, 1994). The review 

considered the starting of the new curriculum implementation year as a benchmark 

for inclusion of studies for the review. Thus, all local and international literature since 

September 2002 constituted the population of the review.  

Thematic review, which is one type of systematic review, is a powerful tool to make 

informed decisions about challenging claims based on a qualitative explanation of the 

existing information about a problem (Thomas & Harden, 2008). The explanatory 

nature does not depend on the number of studies included rather on the depth and 

breadth of the studies selected for the review (ibid). Based on this background, 

relevant studies of the review were selected purposively.  

Sampling of literature 

With purposive sampling, before the individual studies were selected the following 

criteria for inclusion were set, i.e. a study was considered if it:  
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1. It is carried out in any country from around the world, but published/written in 

the English language. 

2. Is non-intervention study on the limit (including the limit of a sequence), 

continuity, derivative or calculus (i.e. Involving more than one concept). 

3. Previous systematic reviews on any one or more than one of the concepts; 

limit, continuity or derivative. 

4. Has a year of publication (from 2002 to 2016).  

5. Has the education level of participants (at upper secondary or first-year 

university).  

6. It has a clear description and an explanation of the research purpose, number 

of participants, data collection instrument used, and source.  

7. Is aimed to describe students‟ difficulty of learning calculus. 

8. It is done in a context where classroom technology is not exhaustively used. 

Procedures of the literature search  

The review was guided by a coding and iterative process as proposed by Miles, 

Huberman, and Saldana (2014). Multiple literature searches were conducted in 

electronic databases. Keyword searches on the website Google, Google Scholar, 

UNISA‟s institutional repository, Education Resources Information Centre (ERIC) 

were used as a primary stage. Initial searching terms like the limit concept, derivative, 

difficulty in calculus, student difficulties in the limit, cognitive obstacles in calculus 

were implemented. Referring to reference lists of pre-accessed literature, by 

contacting the authors of some studies via research gate and academia web pages 

the searching was extended. Subsequent keyword searches were expanded by 

using combinations of alternative terms such as obstacles, misconceptions, 

alternative conceptions, errors in calculus, learning difficulties, calculus, limit, 

continuity, derivative, infinity, and the chain rule. 

The Majority of the articles were identified through searches of electronic databases 

including: UNISA Library e-journals (Educational Studies in Mathematics, The Online 

Journal of Science and Technology, Canadian Journal of Science, Mathematics and 

Technology Education, International Journal of Science and Mathematics Education, 



 

17 
 

Primus, African Journal of Research in SMT Education, Research in Collegiate 

Mathematics Education, Mathematical Association of America, The College 

Mathematics Journal, Journal of Mathematical Behaviour, Mathematical Thinking and 

Learning), Google, Google Scholar, ERIC: Clearinghouse for Science Mathematics 

and Environmental Education, ERIC: Educational Resources Information Centre, 

UNISA‟s institutional repository, EBSCO, Academic Search Premier, research gate, 

and ProQuest Dissertations and Theses.  

To find local literature university web sites such as Addis Ababa University, Jimma 

University, Hawasa University, and electronic databases, Ethiopian Journal of 

Education, Ethiopian Journal of Education & Science, and manual searches by the 

researcher and contact to colleagues were implemented.  

The broad search passed through title and abstract screening, resulted in the 

collection of over 207 studies, including journal articles, conference papers, book 

chapters, master‟s and doctoral dissertations, and unpublished papers. More than 

71% of the materials talk about calculus at university and the remaining about 

calculus at secondary school students. The studies were then organized into groups 

dealing with the same concept (limit, continuity, derivative, or calculus) and then 

within each of the groups by date of publication. While collecting the literature, both 

intervention studies and duplicated works were excluded.   

To screen the collected materials, the parameters that are listed on page 16 that are 

eight in number, were used and figure 2 presents the flow of the literature screening 

where the numbers 1 to 8 refer to the criteria set for inclusion.    
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Figure 2: Flow of the literature search 

After screening the materials through these inclusion criteria, 43 studies, which met 

the inclusion criteria for the final review, were selected. Figure 3 represents the 

percentage of the 43 studies used for the final analysis per each concept area. 
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Figure 3: Percentage of literature used for each concept 

2.1.2. Quotations and initial codes 

To attain a broad narrative of students‟ difficulties in learning calculus concepts, the 

researcher treated each article as a case and explored what is inside in the following 

steps. These are to identify quotations of difficulties (mentioned errors, way of 

thinking or alternative conceptions/misconceptions) from each case and triangulate 

these quotations from each article to build an initial code followed by finding for 

similarity and difference among the initial codes to categorize  them in a more 

general code called second-level codes or “descriptive themes” (Thomas & Harden, 

2008).   

Initial codes are labels used to describe a segment of text or an image (Miles et al., 

2014). The codes used in this study are aimed to address students‟ ways of thinking 

about a specific topic/concept, common errors demonstrated on the given tasks, 

alternative conceptions demonstrated and strategies mentioned in parts of students 

in solving given tasks. In the second stage of coding, the researcher concentrated on 

the similarity and difference of the initial codes so that new code capturing the 

meaning of a group of initial codes can be formed. This leads to less number of 

codes, but each code with span in interpretation.  

At the initial review, the result sections (depending on the format, it can be the result, 

finding, summary, discussion of each study) have been read to capture a holistic 

picture of individual studies. Identification of quotations was started in the second 

round of reading and that was done using highlighting of texts identifies to be 
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quotations. This initial stage of identifying quotes finalized resulting in 237 quotations 

all over the 43 articles included.  

The coding was aimed to reduce the number of quotations to a more manageable 

size without losing meaning but looking similarity and difference of these codes within 

each of the three concepts. For instance, the following three quotations (i.e. students‟ 

were observed to “insert infinity in for  ”, “infinity as one big number” and “plugged in 

infinity as a number”) taken from three different articles were coded as one “image of 

infinity” based on the ground that these conceptions are arising from confusing the 

image of infinity. The process ended reducing the 237 quotations to 36 initial codes 

(see appendix A for the details of the 43 literature, Appendix B for the 237 quotations, 

and Appendix C for the 36 initial codes generated from these 237 quotations).   

2.1.3. Descriptive themes  

After generating the 36 initial codes, the researcher tried to look for different second-

level codes aimed to merge the above mentioned 36 initial codes into meaningful and 

careful units of difficulties or concept image. The researcher has done this 

categorization three different times but all were different. Then after discussing with 

two colleagues (both PhD students one at UNISA and the other at Addis Ababa 

University) and let one of them try to categorize, the researcher got a better picture to 

compress the codes, i.e. decided to follow the sequence of the course flow. Thus, the 

categorization was done in the order of pre-calculus concepts followed by limit, 

continuity, derivative images and a more general topic named “the collective image”. 

Accordingly, the 36 initial codes were reduced to 10 descriptive themes that fall into 

five categories. Table 1 presents the 10 descriptive themes into five categories and 

their corresponding initial codes.  

Before presenting the themes of difficulties that emerge from the literature, the next 

section will present the detail of the second level codes hereafter called descriptive 

themes one by one in the five categories. 
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Table 1: Interrelated descriptive themes 

Category  Descriptive themes Initial codes  

 
Pre-
calculus 
knowledge 

Variable and function 
image 

Co-variational reasoning 

Function image 

Computational ability 

Image of infinity  Infinity image (actual versus potential) 

Infinity, the undefined and indeterminate 
interplay  

 
 
Limit 
image 
 

Concept definition   Concept definition  

Linguistic ambiguity 

 
The dynamic-static 
interplay of limit 

The limit value is not attainable 

The limit value  is a boundary 

The limit value is an approximation 

Conflicting concept image  

A static view of the limit process 

The discrete- 
continuous interplay 
of limit 

The discrete thinking of continuous idea  

Continuous view of discrete idea 

 
Over-generalization 

Alternative conception  

Monotonic- convergence interplay  

Domain-limit interplay  

Limit value means the same as a function value 

Non-existence case of limit 

Point wise thinking of limit 

 
Continuity 
concept 

 
Continuity concept 
image 

Domain- continuity interplay 

Limit-continuity interplay  

Confusing continuity with connectedness 

Continuity concept image  

Continuity-asymptote interplay  

 
Derivative 
concept 

 
Derivative concept 
image 

Definition of terms  

Difficulties in rules and procedures of 
derivatives  

Symbolic interpretation 

Infinity small  

Continuity- differentiability interplay 

 
The 
collective 
image 
 

Procedural 
knowledge and 
routine exercises 

Procedural learning 

Unsynchronized knowledge structure 

Lack of conceptual knowledge 

Representation Algebraic representation  

Visualization  

Problem-solving  
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2.1.3.1. Pre-calculus knowledge 

Variable and function image 

One of the basic pre-calculus underpinning for beginning calculus students is 

conceptual knowledge and reasoning ability of function concept. Carlson, Oehrtman, 

and Engelke (2010) describe the function concept as the main pillar of the 

mathematics curriculum from elementary to advanced concepts like calculus. A 

strong understanding of variables as generalized figures and as sequentially co-

varying objects (Gray, Loud & Sokolowski, 2009), a process view of functions, the 

ability to justify as co-varying and computational abilities (Carlson et al., 2010) are 

identified as essential knowledge that facilitates conceptual learning in calculus.  

Gray et al. (2009) found that the majority of calculus students included in their study 

have faced difficulty in using variables as generalized and changeable quantities. In 

addition, they found that students focus on or influence by arithmetic approach for 

items demanding an algebraic approach, practice “point-by-point or static way” of 

evaluating an independent variable of a function with the real domain. The ability to 

use variables as varying quantities showed a positive correlation with students‟ 

performance in calculus.  

In calculus, it is common to see students evaluate a function “ ” at the first few points 

(usually, integers) close to “ ” to compute        ( ). This sequence based thinking 

of variables (as integers) than the real number domain of functions corresponds to 

“action view of function” (Carlson et al., 2010). But, calculus learning demands 

beyond action level conception. According to APOS theory, computing value of the 

function “ ” at a finitely many successive discrete points should be followed by an 

“interiorization” of these actions to establish a domain process in which the input 

values approaches “ ” and the subsequent output values approaches the limit value 

“ ” (Moru, 2006).  

Students are said to have attained process view of function provided they begin to 

imagine quantities that are potentially changing simultaneously or according to Jones 

(2015) when they use “co-variational reasoning”. The literature (Jones, 2015; 

Oehrtman, 2002; Roh, 2005; Wangle, 2013) has documented that students have 
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difficulty with the limit that originates from lack of the co-variational reasoning or lack 

of having a process view of functions.  

The literature (e.g., Jayakody, 2012; Luneta & Makonye, 2010; Makonye, 2012; 

Takaci, Pesic & Tatar, 2006), has also documented that students Inadequate concept 

image of function challenge their performance in calculus. Most students in those 

studies have demonstrated narrow example space (usually, they do well only on 

polynomials) believe that a function must be in one piece and think that a function as 

“chunky, not smooth”. Especially, simplification of rational functions, the issue of 

continuity and discontinuity of rational functions, issue of the derivative when come to 

compound functions and piecewise or split defined functions were identified 

frequently troublesome.  

Wangle (2013), found that only some students who are considered as strong have 

qualities such as providing real-life examples while learning, have good reasoning 

skills of function, and able to move flexibly among representations. Due to the belief, 

a function must be in one piece, studies (Maharajh et al., 2008; Takaci et al., 2006; 

Wangle, 2013), have found that students face difficulty to compute the limit or to 

demonstrate continuity and discontinuity of split-functions irrespective of forms of 

representation.  

Maharaj (2013) has found that most calculus students face a challenge to learn 

calculus concepts due to a lack of function understanding that is not developed to a 

process level while calculus-learning demand beyond the process level conception. 

In an item that asks to express   
 

    
 as a composition of two functions   and   

such that    , ( )-, Maharaj found that 17.4% of students lack the appropriate 

mental structure of function i.e. the conception of function developed to process level.  

The limit of the number sequence is a base for the discussion and application of 

infinite series in analysis courses. Even though a sequence is a function, the discrete 

nature of number sequence (Jones, 2015) distinguishes the limit of sequences (which 

usually denote by         ) from the limit of real-valued functions at infinity 

(i.e.        ( )). Since the two topics are treated differently, some students even did 

not have an understanding of a sequence as a function (Moru, 2006). Thus, some of 
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the difficulties are overlapping and some others are unique. In this review, it is found 

that (e.g., Moru, 2006) many students consider:  

 A sequence is well defined provided it has a single algebraic representation 

and hence an alternating sequence is two distinct sequences. 

 The same sequence given in different modes of representation stands for 

different sequences. Thus, the function image takes a good share of students‟ 

difficulties.  

The literature (Jordaan, 2005; Juter, 2006; Maharaj, 2010; Pillay, 2008; Siyepu, 

2015), showed that students‟ computational abilities or algebraic manipulation skill 

gap from pre-calculus algebra bound their performance in calculus. Siyepu (2015), 

found that some students manipulate  (   ) as  ( )   ( ), treat     
 

  and 

          as compound functions, convert   
 

  to √  . Siyepu concluded that 

students‟ attention of prior learning, i.e. prior learning “subjected to rote learning of 

familiar exercises” (p.15) are the source of errors and difficulties observed during 

learning calculus.  

Pillay (2008) found that many students demonstrate incorrect algebraic manipulation, 

provide incomplete solution, and have problems with the “symbolism associated with 

calculus”. Accordingly, some of the observed difficulties were:  

 two subjects incorrectly factorized   
       

 
 as   

 (     )

 
. 

 two subjects incorrectly simplified    (   ) as        .  

 two other subjects incorrectly manipulated 
 (   )  ( )

 
 for  ( )       , as 

 (    )     (     )

 
.  

Pillay in her conclusion mentioned that such a “lack of procedural fluency” was an 

obstacle for students in coming to understand calculus concepts. Luneta and 

Makonye (2010) documented that most difficulties of calculus students were due to 

knowledge gaps in basic algebra and unsynchronized conceptual and procedural 

knowledge. Some students demonstrated procedural errors (wrote  ( )   ( ) 

instead of  (   )  to determine the derivative of  ( )    , or incorrectly simplified 
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         and   
√   

√ 
  

  

    
  

 ). They concluded that the observed lack of 

conceptual understanding and skill gaps in computational ability undermined 

students‟ performance in calculus.  

Concept image of infinity 

In calculus, Infinity may appear with real-valued function as a limit point or as a limit 

value, which is called limit at infinity and infinite limit denoted by         ( ) and 

       ( )     respectively. Such a limit involving infinity has many significant 

applications in mathematics and science (Jones, 2015). However, students face 

more difficulties with the limit involving infinity as compared to the limit without infinity 

(Elia, Gagatsis, Panaoura, Zachariades & Zoulinak, 2009; Jaffar & Dindyal, 2011; 

Nair, 2010). 

The literature on infinity describes the dual nature of the notion of infinity- potential 

infinity versus actual infinity (Jones, 2015). Potential infinity refers to an on-going 

process without an end. We do not actually come across in our daily lives; it is 

entirely a mental construct. In contrast, actual infinity refers to the idea of a finite 

entity to this infinite process (Jones, 2015). Jones, states that the mental structure in 

“potential infinity” has a resemblance to a process whereas, the “actual infinity” has 

much in common with an object-level concept formation. This nature of the notion of 

infinity corresponds to the dual nature of the limit, i.e. limit is both a dynamic process 

and a static object (Gray & Tall, 1994). The limit at infinity requires thinking of the 

infinity as a potential process and the infinite limit requires thinking of the infinity as 

an object. 

The literature (Areaya & Sidelil, 2012; Jones, 2015; Moru, 2006; Oehrtman, 2002; 

Parameswaran, 2007; Roh, 2005) has revealed that for limit at infinity, students 

recognize infinity as a number i.e. object conception of infinity. They plugged in 

infinity as a number to calculate the required limit value. According to Jones (2015, 

p.112) students usually approach infinity as an actual value that can be manipulated. 

He further states that “each student applies this approach at least once, whereas 

many students apply the approach so many times during the interview”. 
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Another difficulty related to the notion of infinity is confusing “infinite” with “the limit 

does not exist” and “indeterminate form” in computing limits. The literature (Bergsten, 

2006; Elia et al., 2009; Jaffar & Dindyal, 2011; Juter, 2006; Moru, 2006; Nair, 2010) 

has found that most students are not aware enough when to use these terms. In the 

limit, the term “infinity” is used to express being unbounded and “does not exist” is 

used to mean that the one-sided limits are different. However, the literature revealed 

that students didn‟t differentiate accordingly. Such confusion may emerge from the 

discussion of real numbers (Jaffar & Dindyal, 2011). In real numbers, sometimes 

 

 
 (   ) may be written as   or undefined. Further, they mentioned that pre-

calculus conception of indeterminate forms and individual learning models as 

additional factors for the formation of these confused cognitive structures.  

2.1.3.2. Limit image 

Concept definition  

While calculus is a gateway to advanced science and mathematics (Roble, 2017; 

Sadler & Sonnert, 2016), the limit is a gateway to calculus (Zollman, 2014). Although 

derivatives and integrals make up the majority of calculus, a sound understanding of 

the limit is necessary to learn these major concepts in calculus (Maharaj, 2010; 

Muzangwa & Chifamba, 2012; Rabadi, 2015). One distinction between complex 

mathematics and elementary mathematics is the role of definitions in advanced 

mathematics (Tall, 2002). When introducing a new concept, an ordinary starting point 

is through a definition. This demands relating terms in a mathematical language and 

terms in the medium of instruction.  

The terms „approach to‟, „tends to‟, „reach‟, and „converge‟ are frequently used to 

define or describe the limit. These are not only terms with a technical and formal 

definition in mathematics, but also have everyday uses not connected to their 

mathematical meanings (Fernandez-Plaza, Rico & Ruiz-Hidalgo, 2013). Several 

researchers confirmed that due to the conflicts between formal and colloquial uses of 

these terms, students face the challenge to express accurately the mathematical 

meaning of the concept of the limit (Jaffar & Dindyal, 2011; Moru, 2006; Oehrtman 
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2002). Thus, cognitive structures of the limit of a function formed by the students 

contained a lot of inconsistency and are often stumped (Jordaan, 2005; Moru, 2006).  

The literature (Cetin, 2009; Elia et al., 2009; Jordaan, 2005) has found that students 

lack to state definitions of the limit in their own words. This implies that students lack 

the mental structure that can be translated into word expressions. On an item asking 

students to define the limit of a function in their own words, Jordaan (2005) found that 

students showed a low response rate. In most cases, even better-performing 

students missed items asking definitions and theorems. This indicates that students‟ 

concept image about the limit is incompatible with a concept definition. This gap may 

lead to developing an alternative conception.  

The literature (Denbel, 2015; Jayakody, 2012; Maharajh et al., 2008) mentioned that 

students fail to pay attention to the contextual meaning of terms during problem-

solving in calculus. Areaya and Sidelil (2012) found that most students do not believe 

that a constant sequence is monotonic due to linguistic ambiguity. Fernandez-Plaza 

et al. (2013, p.699) conducted a study aimed to investigate students‟ interpretation of 

terms approach to‟, „tend to‟, „reach to‟, and „to exceed‟ in learning limit at a point. 

The study identified the following difficulties that students encountered due to 

confusion of these terms with their common language use- the limit value cannot be 

reached, the limit value is an upper bound, and the limit is an approximation. Of 

course, these are the most frequently occurring difficulties in the literature of the limit.  

The dynamic-static interplay of the limit  

The intuitive introduction of limit        ( )    is an interpretation of the behaviour 

of the function   as    . In the literature, this is described as the dynamic notion of 

limit (e.g. Jones, 2015). This dynamic nature of thinking demands focusing on the 

behaviour of function values about the point rather than on the function value exactly 

at the limit point. Students with dynamic thinking of limit may then recognize that the 

function being defined does not guarantee the existence of a limit. A good conception 

is then when students distinguish among the dynamic limit process and the resulting 

static limit value.  
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Once students are introduced to the notion of limit, they form their own “concept 

image”. That concept image is then shaped probably by the choice of examples that 

teachers use in the class, examples in textbooks or reference books. At the 

introduction of limit, the selection of simple and continuous functions like  ( )     or 

 ( )       creates the impression that at the limit point both limit value and function 

value are the same or the limit exist provided the function is defined at the limit point. 

This led to the incorrect generalization that the limit process and the computation of 

function value are exactly the same things (Jordaan, 2005). The computation process 

involves only finite specific actions. When students are restricted to treating ordinary 

computations of a function, they are said to have a static view of the limit process 

(Çetin, 2009; Maharaj, 2010; Moru, 2006). Accordingly, a student having a static 

conception of the limit of a function consider        ( )    as either  ( ) or 

evaluate   for a finite number of points close to “ ”. Students with this conception 

may conclude that the limit is the same as the function value. According to Roh 

(2008), “misconceptions” happen when students fail to internalize these infinite 

processes instead demonstrate the static view to compute the limit value. 

Furthermore, the computation of limit value is not limited to a finite sequential and 

discrete step that provides a specific answer. Rather, it involves the imagination to 

get a pattern from continuous and infinite coordination. This is precisely where the 

one at the process level performs better than the one at the action. However, process 

level conception by itself is not an end. Frequently cited students‟ difficulties are that 

they think the limit of a function at a point is not attainable. 

Jones (2015) found that some students focus on what happens at infinity than as   

approaches to infinity to find the limit at infinity, which is an indication of a static view 

of the limit process. Several researchers (Çetin, 2009; Duru, 2011; Elia et al., 2009; 

Jayakody, 2012; Jordaan, 2005; Moru, 2006; Nair, 2010) finding have revealed that 

most students conceive the limit process as static which falls into action level 

conception of the limit. Most students‟ computation of a limit or their expression 

revealed that they understood the limit of a function at a point “ ” as  ( ). 

Belongingness of “ ” to the domain of   is an essential and enough state for the 
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existence of a limit at “ ” (Przenioslo, 2003) and is defined at the point “ ” is essential 

state to compute limit at     (Duru, 2011; Elia et al., 2009; Nair, 2010) were also 

ways used to express a static view of the limit process. 

The literature also revealed students a dynamic view of limit value which frequently 

expressed by the phrases like limit value is “unreachable”, “an approximation” or “a 

boundary”. These difficulties are also mentioned as linguistic ambiguity by several 

researchers. While the work of Fernandez-Plaza et al. (2013), Jordaan (2005), Moru 

(2006), and Roh (2005) documented that most students have the conception of limit 

value as a dynamic object, the work of Elia et al. (2009), Jaffar and Dindyal (2011), 

Oehrtman (2002), and Parameswan (2007) documented that most students 

expressed the limit value as the value being approximated. Others work (Fernandez-

Plaza et al., 2013; Jordaan, 2005; Moru, 2006) documented that students described 

the limit value as an upper bound, as a border, or a boundary that is not surpassed. 

Some studies also showed students have a confused image of the limit, which 

depends on context (Juter, 2005b). Thus, although some students demonstrated a 

clear distinction of limit as a dynamic process and static value, most students have 

trouble with understanding this dual nature of the limit.  

The discrete-continuous interplay of the limit  

According to Ferrini-Mundy and Gaudard (1992), one cause of students‟ difficulties in 

calculus is that they attained a calculus course with a discrete orientation of 

continuous ideas. The review has also revealed that not only discrete thinking of 

continuous idea, but also continuous thinking of discrete ideas affect students‟ 

performance in calculus. Moru (2006) and Roh (2005) documented that students 

think discrete idea as continuous. Particularly, Moru (2006, p. 126) continues saying 

many students join points on the graph of a sequence by a line. On the other hand, 

the literature (Gray et al., 2009; Jones, 2015; Wangle, 2013) documented that 

students have a point-by-point or discreet thinking of continuous ideas.  

Overgeneralization 

At the introduction of a new concept, students learning almost certainly influenced by 

information provided by teachers, textbooks, worksheets, assessment trends, and so 
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on. If the activities on these resources often involve maximal intellectual engagement, 

then it helps students to develop conceptual knowledge that can be further 

manipulated (Konicek-Moran & Keeley, 2015). Learning an advanced concept, like 

limit, engage a construction process. This means that students modify and 

reconstruct their existing cognitive structure based on their current exposure. The 

resulting cognitive structure may vary from the formal concept definition. It is also 

possible for an individual to have more than one cognitive structures of a concept 

that conflict with each other. This leads to the over-generalization of existing 

knowledge or the formation of an alternative conception. 

Several researchers have documented that students develop overgeneralization in 

the learning of calculus concepts in general and limit and continuity in particular. The 

following are the basic overgeneralizations identified in the review:  

 Convergence imlies monotonic (Areaya & Sidelil, 2012; Fernandez-Plaza et 

al., 2013). 

  Being defined at “ ” is an essential condition to compute limit at the point “ ” 

(Duru, 2011; Elia et al., 2009; Nair, 2010;  Przenioslo, 2003).  

 Limit and function values are the same (Bergsten, 2006;  Elia et al., 2009; 

Jayakody, 2012; Juter, 2005b; Maharajh et al., 2008; Moru, 2006; Nair, 2010). 

Some of these overgeneralizations occurred due to the introduction of limit using 

simple and continuous functions in which the limit and the function value is the same 

at any real number. Other overgeneralizations comprise, the limit of a function   does 

not exist at     only when the two side limits are different (Elia et al., 2009), 

divergent means tend to infinity (Moru, 2006), and oscillating behaviour always leads 

to divergence (Roh, 2005). 

The development of alternative conception may lead students to have conflicting 

concept images. In calculus, it is common to see the correct answer for the wrong 

reasons. For instance, students may compute the limit of a continuous function using 

an overgeneralization that the limit is the same as the function value. Some 

researchers used qualitative analysis of students‟ reasoning to examine the true 

nature of students‟ cognitive structure. The literature documented that students‟ 
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performance indicates the correct answers for the wrong reasons and wrong answer 

with high confidence (Çetin, 2009; Juter, 2006; Luneta & Makonye, 2010).  

2.1.3.3. Continuity concept image 

Continuity is the next major concept that plays an important role in calculus. 

Students‟ conception of continuity may be influenced by their knowledge of continuity 

definition in lower secondary schools, knowledge of the graph, algebraic 

manipulation, the concept of asymptote, and one-sided limit (Rabadi, 2015).  

The literature has documented that students have difficulty with domain continuity 

interplay, limit-continuity interplay, and continuity-connectedness confusion. Students 

think that if a function is defined at a given point, then it is necessarily continuous at 

that point (Takaci et al., 2006; Vela, 2011; Wangle, 2013) continuity is an issue only 

for functions defined for all real numbers (Nair, 2010; Wangle, 2013). On the other 

hand, students did not associate continuity with limits; rather associate continuity with 

“connectedness” which is the most frequently mentioned difficulty (Maharajh et al., 

2008; Takaci et al., 2006; Vela, 2011; Wangle, 2013). Due to this thinking and lack of 

linking continuity with limit, most students conclude that a piecewise-defined function 

is discontinuous and they frequently associate continuity with smoothness or 

differentiability (Nair, 2010; Maharajh et al., 2008; Vela, 2011; Wangle, 2013). 

Students also lack the awareness to demonstrate proofs and counterexamples of 

continuity and discontinuity (Ko & Knuth, 2009).  

In addition to a lack of explaining continuity in terms of limit, some students confuse 

the role of limit and continuity, i.e. confuse limit-continuity interplay. Other difficulties 

related to continuity includes the limited conception that if   is discontinuous at  , 

then   is not defined at   (Ko & Knuth, 2009), reversing the limit-continuity interplay 

(Duru, 2011; Jordaan, 2005), and existence of the limit is sufficient for continuity at a 

point (Maharajh et al., 2008; Nair, 2010; Vela, 2011; Wangle, 2013). Moreover, in 

Przenioslo‟s (2003) study it is found that a good number of students think that the 

continuity at a point is necessary for the existence of a limit. 

Another area of difficulty is continuity-asymptote interplay. Wrong understandings 

such as if a function is unqualified to have limit at a point then it should have a 
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vertical asymptote (Areaya & Sidelil, 2012), low response rate to compute limit at 

point of discontinuity, and the understanding that every point of discontinuity is a 

vertical asymptote (Nair, 2010), was documented. Besides, point of discontinuity 

means asymptote (Takaci et al., 2006), difficulty to identify vertical asymptote of a 

rational function, non-existence of vertical asymptote is a sufficient condition for 

continuity (Vela, 2011), and more confused with jump discontinuity (Parameswaran, 

2007) were documented challenges in students‟ progress.  

2.1.3.4. Derivative concept image 

The subject of derivation being an important part of the analysis is a mathematically 

hidden topic in calculus (Herbert, 2013; Orhun, 2012). A derivative has different 

representations. It can be introduced geometrically as the slope of a tangent to a 

curve, symbolically as the limit of the different quotient of a given function or 

numerically using physical problems like distance or velocity data.  

The process of introducing the derivative concept demands using new and familiar 

concepts and notation (algebraic and graphic representation of function, rate, limit, 

continuity, infinitesimal quantities, a scant line, tangent line, and variables), and 

notations ( 
  

  
    ,

  

  
 ) all are incorporated. Thus, students‟ backgrounds on these 

concepts and notations accompany the learning of the derivative concept. According 

to Naidoo and Naidoo (2007), the derivative is one of the concepts at a higher level 

of conceptual hierarchy in calculus. For instance, in the first principles of 

differentiation,   ( )        
 (   )  ( )

 
, which is later denoted by 

  

  
 or 

  

  
, demand 

prerequisite conception of limit, rate, algebraic manipulation, variables, and 

infinitesimal quantities. It can be interpreted as a function   ( ), a number   ( ) if 

evaluated at “ ”, slope of the tangent line as a limited position of secant line (Pillay, 

2008; Siyepu, 2013). Thus, the layers and the parts the derivative concept demands 

not only are making „connections between representations‟ but also „connections 

within representations‟ (Hähkiöniemi, 2006).  

Students‟ difficulties in derivative start from definitions and notations, confusing 

notation or symbol and meaning. In an item asking what is the meaning of the 
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expression”       
 (   )  ( )

 
 “and what this expression is usually used for, Jordaan 

(2005) concluded that many students can use the formula to compute the derivative 

function but they cannot explain the embedded conceptual issues behind the 

procedures. On a similar item, Areaya and Sidelil (2012) found that on average only 

56.8% of participants successfully identified the symbols used to denote the quantity, 

the name of the quantities, and the meaning of the quantity obtained after computing 

the calculation. The literature (Hashemi, Abu, Kashefi & Rahimi, 2014; Makgakga & 

Makwakwa, 2016) argues that students of the derivative come back to learning 

focused on procedural and symbolic aspects more than the embedded conceptual 

issues.  

In a study that aimed at analysing grade 12 students‟ difficulties in calculus, Luneta 

and Makonye (2010) administered a test to 45 participants. They classified errors that 

occur into two as (i) on task (OT) errors that occur when dealing with the embedded 

calculus concept and (ii) not on task errors (NOT) errors that are not directly related 

to the concept. The study indicated that NOT on task errors (which account 40% of 

the errors) mostly occurred due to lack of algebraic manipulation and function 

notation. The following are two examples from NOT errors: 

  
 

   
  

   
  

  (Misapply exponents). 

 wrote  ( )+ ( )  instead of  (   ).  

On task errors (which account for the remaining 60% of the errors) occurred due to 

one or more than one of the following reasons- “stuck thinking on a concept, failure to 

recognize differentiation rules, lack of conceptual bases of differentiation, unbalance  

conceptual and procedural knowledge, and parallel conflicting but calculus 

conceptual knowledge” (p.44). The following are two examples from OT errors: 

 .
 

 
/
 

 
  

  
  thus, .√   

√ 
/
 

 
 

 
 
 
 
 

 

 
 
 
 
 

  .   

 On the first item which asks to apply first principles to show that if  ( )     , 

then   ( )       the following was part of a learners solution: 

             …  (   )                          (instead of  (   ) i.e. – (   ) )  
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                                     (instead of  (   )   ( )       (   )     ) 

                      (     )       (Instead of           (    ) ) 

                  ( )                              (Instead of   ( )     ) 

Based on these observations they comment that, “students do not ask themselves 

why their answers are different from the one given. They only believe that their 

answers are correct, and the one given is wrong‟‟ (p.39). Such a wrong answer with 

high confidence implies the existence of an alternative conception. Thus, some of the 

students also have an alternative conception of derivatives. Their recommendation 

includes attention to equip students with solid algebraic skills at pre-calculus courses, 

to shift the practice of teaching toward a balance between routine and embedded 

ideas, to give attention to the geometric/graphical basis of the derivative. 

With the rules and procedures of derivatives, the literature identified the following 

difficulties:  

 Misinterpret derivative rules and procedures specially confusing composition and 

combination rules (Horvath, 2008; Luneta & Makonye, 2010; Makonye, 2012).  

 Carry out an incorrect algebraic simplification. In particular, unable to manipulate 

trigonometric identities (Pillay, 2008; Usman, 2012).  

 Ignore rule restrictions in algebraic expressions (Luneta & Makonye, 2010). 

 Interference, i.e. misinterpret an object due to an already existing 

overgeneralization (Siyepu, 2013). 

The derivative concept becomes more problematic when applied to the combination 

and composition of functions. Derivation of composition functions is not only 

conceptually but also procedural difficulties for many students (Maharaj, 2013; 

Siyepu, 2013). A common tool to treat the derivative of a composition function is the 

chain rule. Maharaj (2013) in a study aimed to explore natural science university 

students‟ knowledge of derivatives, implement an APOS level of concept formation, 

and his own genetic decomposition as a framework. The study found that only 

42.24% of students demonstrated an adequate schema for the composition function 

item. In parallel to the literature, what Maharaj wrote at the end of the analysis is that 
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“the chain rule is amongst the most difficult concepts to transmit to the students in 

calculus” (p.12). 

In a study on the graph of functions, Orhun (2012) found that many students lack to 

relate conceptual aspects of a function and its derivative graphically. Hashemi et al. 

(2014) documented that many students unable to identify the interplay between 

conceptual aspects and prefer specific and explicit instruction than to dealing with 

generalized conceptual issues. It is certain that students performed was better in 

familiar type exercises, which means they were at an action level of cognitive 

structure. From an interview, Hashemi et al. (2014) found that students might perform 

high in tests, but not have conceptual knowledge. Usually, students confuse the 

interplay between continuity and differentiability of a given function. In particular, 

students use smoothness of the graph as criteria for continuity (Maharajh et al., 2008; 

Nair, 2010).  

2.1.3.5. The collective image  

Procedural learning and routine exercises 

Several researchers confirmed that calculus teaching-learning lacks conceptual 

knowledge. The consequence of this practice is worthwhile when it is at secondary 

school because it may influence students to focus more on the routine aspect of the 

subsequent courses too (Ferrini-Mundy & Gaudard 1992; Naidoo & Naidoo, 2007). 

Calculus difficulties are patterns of error, approach to the concepts, and focuses of 

the learning materials. Several educators argue that most students‟ difficulties in 

calculus emerge from teaching-learning which focuses on procedures and symbolic 

manipulations than the embedded concepts.  

The literature (Abbey, 2008; Bergsten, 2006; Brijlall & Ndlovu, 2013; Makgakga & 

Makwakwa, 2016) documented that calculus teaching-learning focuses on applying 

memorized rules without attention to the context provided by tasks. In particular, the 

articles by Cetin (2009) and Elia et al. (2009) revealed that students fail to apply the 

limit concept to solve unfamiliar problems. Instead, they recognize the limit value of a 

function only as a number rather than a means of computing fairly accurate values of 

the function. Several researchers mention that the reason for such lack of conceptual 
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knowledge is lack of mental structure developed to the required level (process and 

object level) of function, limit, and derivative (Cetin, 2009; Brijlall & Ndlovu, 2013; 

Maharaj, 2013; Siyepu, 2015). In some cases, even the existing conceptual 

knowledge and procedural knowledge lack synchronization (Luneta & Makonye, 

2010). 

The literature has also revealed that most students do not react at all or demonstrate 

low success for the unfamiliar task items and for items demanding higher levels of 

cognitive thinking (Horvath, 2008; Makonye, 2012; Roh, 2005; Usman, 2012). 

Besides, there are signs that students‟ thinking lacks‟ meta-cognition (Makonye, 

2012; Usman, 2012). Several researchers mention basic factors that influence 

students‟ performance on unfamiliar task. Usually, students fail to grasp the concept 

of the problem, lack understanding the language of the problem, lack the knowhow of 

identifying the required, and lack skill to use the given information or modelling tasks, 

and fail to choose appropriate procedures to be used (Abbey, 2008; Brijlall & Ndlovu, 

2013; Maharajh et al., 2008; Siyepu, 2015; Usman, 2012). Thus, the points 

mentioned above are the reasons that many students have difficulty with problem-

solving.   

Representation   

Among others that determine students‟ success in calculus is their conceptual ability 

in visualization and flexibility in the form of representations. Teaching this concept 

using different representations could prevent the formation of “misconceptions” 

(Maharaj, 2010). Research findings of Jaffar and Dindyal (2011) and Moru (2006) 

revealed that some students reacted differently to the same idea given in different 

representations. In addition, the literature (Elia et al., 2009; Wangle, 2013) has 

revealed that most students have difficulty to translate between representations and 

they are very dependent only on the algebraic form of representation. Blaisdell 

(2012) on a study aimed to investigate the Influence of question 

format/representation found that students stimulate different concept images of the 

same idea given in different forms of representations used.  
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Besides addressing learning style preference, multiple representations are tools to 

visualize a given problem from different perspectives or to be able to express one‟s 

idea about a concept in different forms. In students, it is not common to use a 

blended approach to explain their idea through the problem at hand may best explain 

in such a way (Hashemi et al., 2014). Moreover,  the inadequate schema of 

interpreting the graph of the derivative function or challenge to characterize a 

function based on information from a graph (Hashemi et al., 2014; Maharaj, 2013; 

Orhun, 2012), lack to use appropriate mathematical language to describe information 

given in non-algebraic form (Abbey, 2008; Orhun, 2012) was also documented 

difficulties.  

2.1.4. Analytical themes 

The researcher reviewed the literature on three concepts (limit, continuity, and 

derivative) and noticed that across these concepts, some of the difficulties are 

overlapping and some others are unique to a concept. From what has been 

discovered about students‟ difficulties in learning calculus concepts, analytical 

themes are reported as follows:   

Function image lacks process view  

The literature has documented that the ability of co-variational reasoning as a result 

of a process view of functions and computational ability i.e. algebraic thinking than 

arithmetic (Carlson et al., 2010; Maharaj, 2013) are identified as essential knowledge 

that facilitates conceptual learning in calculus. Though some calculus students 

demonstrate this pre-calculus knowledge, most students lack it. Jones (2015), 

Oehrtman (2002), Roh (2005), and Wangle (2013) have found that students‟ 

performance on the limit is largely affected by their action view of function. Students‟ 

computational abilities or algebraic manipulation skill of the functions in limit, 

continuity, or derivative takes the lion‟s share of students‟ difficulties in calculus 

learning (Juter, 2006; Maharaj, 2010; Pillay, 2008; Siyepu, 2015).  

Image of infinity lacks process view 
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Other pre-calculus concepts that influence calculus learning are students‟ image of 

infinity. One difficulty with infinity is object conception of infinity while process 

conception is required; plugged in infinity as a number to calculate the limit at infinity 

(Jones, 2015; Moru, 2006; Oehrtman, 2002; Parameswaran, 2007; Roh, 2005). In 

addition, at one or another time, most students confuse infinity with undefined or 

indeterminate form during computation of limits, in particular, limits of rational 

functions and the limit of different-quotient (Bergsten, 2006; Vandebrouck & 

Leidwanger, 2016). While limits at infinity demand a process view of infinity and most 

students do not understand this view, infinite limit demands an object view of infinity 

and most students satisfy this view (Jones, 2015). Thus, the pre-calculus knowledge 

gap, i.e. function image, infinity image, and computational ability seems to be 

common areas of difficulty for beginning calculus students. 

Depending on concept image than concept definition 

The review noticed that most frequent difficulties in calculus originate from the role of 

definitions in advanced mathematics. Terms like: “a function does not attain its limit”,  

“limit values are unreachable” or “limit is an approximation”, and confusing continuity 

with connectedness are difficulties related with the linguistic ambiguity of terms in 

definition of concepts (Çetin, 2009; Jordaan, 2005; Moru, 2006; Vela, 2011; Wangle, 

2013). A set of articles (Denbel, 2015; Jaffar & Dindyal, 2011; Jayakody, 2012; 

Maharajh et al., 2008) have documented that students ignore the contextual meaning 

of terms in solving problems. Thus, lack of understanding definitions and the role of 

the contextual meaning of terms in problem-solving seems difficulty in calculus 

learning.  

Lack of a consistent mental image of the limit 

The literature has documented that students have trouble with making consistent 

cognitive structure of the limit. While some students conceive the dynamic limit 

process as static (Çetin, 2009; Duru, 2011; Jones, 2015; Moru, 2006; Nair, 2010), 

some others consider the static limit value as dynamic (Oehrtman. 2002; 

Parameswaran, 2007). While some students consider real-valued functions as 

discrete and hence point-by-point thinking of the limit process (Gray et al., 2009; 
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Wangle, 2013), some others consider number sequences as continuous (Moru, 2006; 

Roh, 2005). Thus, lacking a consistent mental image of the limit is a difficulty in 

calculus.  

Overgeneralized and immature conception 

The literature has also documented that learning calculus involves a construction 

process (Çetin, 2009; Wangle, 2013). From a constructivist learning point of view, in 

coming to understand a concept, or when students fail to understand a concept, they 

may develop an alternative conception of overgeneralization (Konicek-Moran & 

Keeley, 2015). Whether it is the limit, continuity or derivative the literature 

documented that most students demonstrated overgeneralizations or immature 

conceptions (Duru, 2011; Jordaan, 2005; Maharajh et al., 2008; Nair, 2010; Vela, 

2011; Wangle, 2013). Due to those overgeneralizations, students sometimes 

demonstrate correct answers for wrong reasons and wrong answers with high 

confidence (Çetin, 2009; Juter, 2006; Luneta & Makonye, 2010). Thus, 

overgeneralized or immature knowledge but not noticed by students accordingly and 

hence conflicting concept images (Juter, 2005a) seems troublesome in learning 

calculus concepts. 

Rote knowledge versus conceptual knowledge 

A feature of advanced mathematics like calculus is the need for conceptual 

knowledge, as its ultimate goal (for non-mathematics major students) is the wide 

application in science, business, engineering, and technology subjects 

(Paramenswaran 2007; Siyepu, 2013). However, empirical research shows that 

students end up with rote and manipulative learning of one or the other concepts in 

calculus without an understanding of the core ideas (Cetin, 2009; Elia et al., 2009; 

Hashemi et al., 2014; Luneta & Makonye, 2010). The literature also revealed that 

most students didn‟t react at all or demonstrate low success for unfamiliar task items 

or items demanding higher levels of cognitive thinking (Horvath, 2008; Juter, 2006; 

Makonye, 2012; Roh, 2005; Usman, 2012).  

There are signs that students‟ thinking lacks meta-cognition (Makonye, 2012; Usman, 

2012). Some students write or speak contradicting answers without being aware that 
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they are contradicting. Though students‟ learning focuses on the procedural aspects, 

they also demonstrate procedural difficulties. Most difficulties in derivative correspond 

to a lack of manipulation of rules and procedures (Horvath, 2008; Luneta & Makonye, 

2010; Makonye, 2012). The literature also revealed that students could not make a 

link among two or more concepts or lack doing the logical link among different 

attributes of the same concept, and they demonstrate unsynchronized approach than 

explore generalized nature of concepts (Hashemi et al., 2014). Thus, although strong 

students are concerned with the embedded idea in their learning and observed 

divergent thinking with their ability to answer problems, most students over depend 

on procedural learning and lack conceptual knowledge.   

Focusing only on the algebraic form of representation 

The literature has also documented the importance of multiple representations i.e. 

the same concepts represented in different ways that provide students an opportunity 

to build abstractions about the concepts and varied viewpoints. The ability to move 

among representations (numerical, algebraic, graphical and description or application 

problems) has been used as a sign of strong conceptual knowledge (Aspinwall & 

Miller, 2001; Lauritzen, 2012; Zollman, 2014). Though some students demonstrate 

the ability to use multiple representations in their answer to problems or demonstrate 

consistent understanding to the same idea in different representations (Wangle, 

2013), most students, however, keep on with only one representation (usually, 

symbolic) and hard to see that these are different illustrations of identical 

mathematical concepts (Blaisdell, 2012; Moru, 2006; Wangle, 2013).  

Specially, Blaisdell (2012) on a study aimed to investigate the Influence of question 

format/representation found that students stimulate different concept images of the 

same idea based on the type of representation. While the teaching of the limit is more 

of algebraic (Hashemi et al., 2014), the study by Blaisdell (2012) and Duru (2011) 

found that higher scores in graphical representation than algebraic representation 

whereas Hashemi et al. (2014), Maharaj (2013), and Orhun (2012) found that 

students have difficulty to characterize a function from its graph. Thus, while multiple 
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representations are an indication of the depth of knowledge and demonstrated by 

only a few students, a lack of it seems troublesome for most students.  

Lacking problem-solving framework  

One way to disclose depth and breadth of getting conceptual knowledge in learning 

calculus concepts is via the extent of using that knowledge in problem-solving 

(Hashemi, Abu, Kashefi & Mokhtar, 2015). Problem-solving by itself might be an 

instrument to overcome conceptual difficulties in calculus (Rabadi, 2015). The 

literature revealed that many students had difficulty to model the concepts in a 

problem (Brijlall & Ndlovu, 2013; Siyepu, 2015). Others documented that students 

lack the ability to integrate information to gain conditions which will satisfy given and 

required in a problem (Brijlall & Ndlovu, 2013; Maharajh et al., 2008), lack making 

network of concepts toward solving a problem (Usman, 2012), and fails to choose 

appropriate procedures to be applied for a given problem (Siyepu, 2013). The 

literature also documented that all the teaching, learning, and textbooks approach 

contribute a share to these difficulties as their focus is largely on manipulation of 

symbolic aspects on routine exercises (Rabadi, 2015). Thus, lack of exposure to non-

routine problems and problem-solving framework is the other dimension of difficulty.  

Overall, the literature has documented the essential knowledge aspects in the 

learning of calculus concepts. Although only some students demonstrate this 

essential knowledge, most students lack this knowledge. The following are the 

identified themes of difficulties. 

 A static view of a dynamic process.  

 Lack of definitions and relationship of terms. 

 Overgeneralizations or immature conceptions.  

 Over-dependence on procedural learning.  

 Lack of multiple representations. 

 Lack of problem-solving framework. 

 Lack of procedural proficiency. 
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2.2. Theoretical Framework 

The purpose of this section is to present the theoretical aspect of the study. The 

theoretical analysis presented will be used to: describe the framework through which 

the students‟ activities are analysed, construct definitions of key terms of the study, 

and establish key constructs of conceptual knowledge from different perspectives. 

The theoretical framework of the study is constructivism perspective of learning and 

its bridge theories. The section begins with the discussion of constructivism learning 

theory followed by a discussion of its bridging theories as a model of concept 

formation. The views on the duality of knowledge (conceptual and procedural) in 

mathematics then discussed and evaluated with the purpose to identify contextual 

definition of conceptual knowledge to the study. The section ends with a discussion 

on basic constructs of conceptual knowledge in calculus.  

2.2.1. Constructivism 

The Constructivist theory of learning is a perspective that focuses on how students 

actively create knowledge based on their existing cognitive framework (Seifert & 

Sutton, 2009). Opposing the argument that students are a tabula rasa, constructivism 

gives great attention to prior knowledge already present in the students and to the 

role of students and relevant information during the knowledge construction process. 

This theory states, “Reality is an individual matter and hence learning is a factor of 

experiences and previous knowledge” (Pritchard & Woollard, 2011, p.4). Pritchard 

and Woollard used this statement as justifications of why two students attend the 

same lesson demonstrate different learning outcomes. Particularly, the prior 

knowledge about the subject, how tasks and instructional activities were interpreted 

(the thinking), and how activities during the lesson were carried out (including 

psychological factors) are factors that determine the output of learning. Thus, the 

individual experience, the thinking, and the environment are central to the learning 

process.  

Constructivism has two different but complementary forms: radical and social (Ernest, 

1994; Liu & Matthews, 2005; Pritchard & Woollard, 2011). While both support the 

active role of the individual in constructing knowledge out of the experience, there is 
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a profound distinction on the role of socio-cultural context and hence on how learning 

takes place (Nair, 2010). 

2.2.1.1. Radical constructivism  

Radical constructivists view knowledge as an entirely individual construct, learning as 

an individual-oriented mental process, and students as independent investigators 

(Von Glasersfeld, 1995). For the radical constructivist Von Glasersfeld, establishing 

knowledge is an independent issue. Thus, knowledge is a reality that an individual 

creates based on her/his experience and it is located in the mind. Students are 

considered as independent investigators of knowledge based on their experience 

with no concern about the knowledge exterior to their coverage (Von Glasersfeld, 

1995). It is also characterized by its emphasis on students and “discovery-oriented” 

knowledge construction. The interactions with the surrounding community serve only 

as motivation for the cognitive argument (Liu & Matthews, 2005). 

Radical constructivism has got recognition due to its contribution to shifting the view 

of learning from teachers‟ centre to student focused and recognizing students‟ 

learning style preferences (Ernest, 1994). As a result, it changed students‟ role from 

being passive receivers to being construct meaning for their own. In this context, 

students are also responsible for construction errors and encountered difficulties 

(ibid). Nevertheless, its idiosyncratic nature exposed it to criticisms. Particularly, its 

ignorance of the cultural components of the world and the social interactions are 

taken as limitations (Ernest, 1994; Thomas, 1994). Thomas in his critics entitled, 

“Abandonment of Knowledge” and “Social Constructivism,” describes that while the 

former refers to ignorance of the knowledge out of the individual and in surrounding 

the later refers to the ignorance of the social interaction and its contribution to the 

sustainability of the constructed knowledge (including parents, friends, and teacher‟s 

role). It is also described as confused due to the attempt to incorporate a social view 

of knowledge into it while it is said to be idiosyncratic (Ernest, 1994).  

2.2.1.2. Social constructivism 

For social constructivist, social and cultural interactions are means for knowledge 

creation. Thus, learning is a social process which is largely context and situation 
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laden (Liu & Matthews, 2005). An individual student is a member of a community of 

students‟ and should have to collaborate among fellow students and appreciate 

different perspectives. Social constructivism views learning as “changes in thinking” 

that takes place because of guidance and interaction with others and the student as 

assisted performer (ibid). Accordingly, learning occurs through appropriate guidance 

and resources from those having the knowledge and experience to do so, teachers in 

the case of formal classroom learning. 

The recognition for the foundation and development of social constructivism, also 

called socio-cultural theory goes to the work of Vygotsky, Piaget, Bruner, and 

Bandura (Pritchard & Woollard, 2011). Specially, Vygotsky‟s idea of “the zone of 

proximal development” describes the gap between an individual‟s potential to learn 

independently and the scale-up of that potential to a higher level when the learning is 

supported by a capable adult or collaborates with peer groups (Seifert & Sutton, 

2009, p.36). Such support to scaffold students‟ potential to a higher level is said to be 

“instructional scaffolding” (ibid). 

Although social constructivism has got popularity since it recognizes both individual 

and private meanings of knowledge and widely implemented in formal and non-

formal classrooms, it is also not free of criticism (Ernest, 1994). From a theoretical 

and practical point of view, its socio-cultural perspective can limit diversity in the 

classroom. In particular, if the assistance provider is not competent, she/he either 

limits the potential to progress or misguide the students. As a result, students 

become dependent on the social environment for performance assessment rather 

than an independent investigator and self-controller (Confrey, 1995).  

From a philosophical point of view, both radical constructivists and social 

constructivists claim that an individual constructs her/his own world-view and can do 

that reconstruct based on pre-existing structure and newly acquired experience. 

However, the construction process for the former it is individual, and for the later it is 

both individual and shared, and hence, culture and context have roles (Pritchard & 

Woollard, 2011). Moreover, social constructivists emphasize that reality cannot 

manifest without the societal argument. Thus, knowledge is a product of social 
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interaction and learning is a socially mediated process for advancing mental 

processes (Ernest, 1994). Regardless of the differences mentioned above, there is a 

significant comparison among most constructivists in both camps with regard to the 

role of students‟ position, individual experience, learning tasks, and social interaction 

for knowledge construction (Liu & Matthews, 2005). 

2.2.2. The constructivist perspective of a classroom environment 

In a constructivist learning context, the students have to attempt to make sense of 

classroom activities, interact with others, reflect based on her/his perception and 

appreciate different perspectives. The teachers‟ role is beyond presenting new 

information. The teacher has to view each student as unique individual with unique 

need and backgrounds, diagnose and acknowledge their prior conceptual 

knowledge, design the teaching-learning environment in a way that facilitates social 

interaction, provide timely support and feedback, and see for contradictions if there is 

any for further actions (Bransford, Brown & Cocking, 2000).   

Constructivism emphasizes the role of pre-existing cognitive structure in the students. 

The prior mental representation is a foundation in which the new information is to be 

built-in. Piaget (as in Pritchard & Woollard, 2011) called each mental representation a 

schema. Thus, “schemas are assimilated net of ideas which are accumulated in long-

term memory and potential source to be reminded whenever necessary (p.11)”. Any 

further new concept is recognized depending on its extent of fitness to the schema. 

Hence, learning can take place only by relating the unknown to what is already 

known. According to Piaget‟s genetic epistemology (as in Pritchard & Woollard, 

2011), the process of constructing knowledge has to undertake three mental 

activities: assimilation, accommodation, and equilibration. Assimilation is an 

awareness of the latest experiences with regard to existing conceptual structure 

(Glasersfeld, 1995). The new information is measured by the degree, which it relates 

to an existing schema, and either it fit well or even maybe contradicting the existing 

one. Despite the apparent contradiction, contradicting information also may be 

assimilated if it seems reasonable from the students‟ perspective. When the 
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contradiction is much more than compromise with the existing structure, 

accommodation will be happen, i.e. accommodation is the modification or alteration 

of pre-existing conceptual structure so that new or contradictory pieces of knowledge 

to be established (Seifert & Sutton, 2009).   

The two stages of knowledge construction are not always smooth. Cognitive 

equilibration is a process of resolving contradictions in students‟ mental structure 

(Glasersfeld, 1995). There are different conditions to be focused on to attain cognitive 

equilibrium. An individual may be satisfied about the link between the existing one 

and the new knowledge and hence being in a state of equilibrium, aware of the 

contradiction in the existing thinking and being in a state of experience cognitive 

conflict. This crossroad differentiates students as successful or unsuccessful in 

learning a given concept. The one that capable to eliminate the contradiction will re-

establish a state of equilibrium and would be successful. The way to regain 

equilibrium even leads the student to a more sophisticated mode of thought (ibid). 

Glasersfeld (1995, p. 68) in his summarized learning theory contribution of Piaget‟s 

work connected the triple stages of concept formation as “cognitive modification and 

learning in an explicit direction occur once a scheme, rather than built-up the 

expected result, results in conflict and cognitive conflict, in turn, link accommodation 

that re-establishes equilibrium”. As a result, cognitive equilibrium is the process of 

making stability between existing mental structures and new knowledge. While 

cognitive conflict is a means for learning, the resulting cognitive equilibrium is an end 

of learning a specific concept. Here, teachers‟ role will be to design activities that 

motivate cognitive conflict (but not societal), follow-up students‟ interpretation and 

provided guidance, design assessment activities that help to make check and 

balance between conflict and equilibrium and to administer accordingly (Bransford et 

at., 2000).  

2.2.3. Models of concept formation in mathematics  

Constructivism outlook on learning has been central to several of the recent empirical 

and theoretical works in mathematics education (Ernest, 1994). Within its inquiry 

approach to learning, constructivism motivates students to be active during learning 
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and acquire knowledge that can be transferred beyond classroom context (ibid). Due 

to this, several educators in mathematics education prefer it.  

Many scholars (For example Bezuidenhout, 2001; Dubinsky, 2002; Ernest, 1994, Tall 

& Mejia-Ramos, 2004) argued that due to the constructive nature of mathematics 

cognition, there is a strong tie among students‟ prior knowledge, concept formation 

process, and mathematical difficulties. Students at formal schools are not free of 

social influences. On the other hand, students within the same context and culture 

demonstrate different knowledge and performance. Thus, learning occurs individually 

and socially. As a result, students make difficulties during the knowledge acquisition 

process by their internal construction and sense-making of their natural thoughts and 

experiences (Ernest, 1994).  

Based on the constructivist perspective of learning, researchers in mathematics 

education have derived frameworks to deal with concept formation in mathematics. 

The most widely used constructivism frameworks are APOS (Cotterill et al., 1996), 

the three worlds of mathematical thinking (Tall & Mejia-Ramos, 2004) and concept 

image and concept definition (Tall & Vinner, 1981). This study uses the first 

framework, and the details will be discussed next.  

2.2.3.1. APOS (Action, Process, Object, and Schema) theory 

APOS is a constructivist framework of learning developed by Dubinsky and his 

colleagues based on Piaget‟s reflective abstraction. The notion of reflective 

abstraction focuses on the actions or operations done by students on physical or 

mental objects. That is, reflective abstraction is a set of mental operations that are 

directly invisible but only be inferred from prolonged observation or qualitative actions 

of students (Dubinsky, 2002; Glasersfeld, 1995).  

Reflective abstraction has three components: (i) expansion of the existing mental 

structure (ii) reconstruction of existing knowledge structures and (iii) a process of 

resolving contradictions in an individual‟s mental structure (Pritchard & Woollard, 

2011). Therefore, reflective abstraction is a progression through construction, and 

Dubinsky (2002) identified five types of construction in reflective abstraction. These 

are interiorization, coordination, encapsulation, generalization, and reversal. 
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Dubinsky in collaboration with other researchers in Research in Undergraduate 

Mathematics Education Community (RMEC) used these five constructs to describe 

how process and object conception are constructed and formulate APOS theory. 

According to Asiala et al. (1997, p. 9) the formation of a mathematical knowledge, 

“initiates through the exploitation of existing mental objects to form actions; actions 

are then interiorized to form processes which are then encapsulated to form objects”. 

The whole cognitive configuration is said to be a schema”. The descriptions of action, 

process, object and schema, and the constructs involved in the formation of such 

knowledge are discussed below. 

Action- is explained as “a repeatable mental or physical manipulation of objects” 

(Moru, 2006, p.49). In this stage, the conversion of an object is thought of as exterior, 

and the student is only conscious about the execution of routine procedures 

(Dubinsky & McDonald, 2001). It is like assembling equipment using a manual or 

according to Moru (2006) the ability to pick a number for a variable and compute the 

value of an algebraic expression. For instance, in the learning of the limit of functions 

for a student at action level,         ( )   ( ) (Cottrill et al., 1996). Although action 

level conception is restricted, it can serve as a foundation for the concept formation 

process. For instance, as in the above example to introduce limit dynamically, one 

can use sequence of such actions (evaluating   at a sufficient number of points both 

from the right and from left close to  ) so that students‟ can predict the result.  

Process- when the student is aware of the actions she/he is performing, the actions, 

then is interiorized to a process (Cottrill et al., 1996). Thus, the process stage is 

relatively internal and involves visualising a conversion of mental or physical objects 

without actually computing but by deduction. At this stage, students can carry out the 

same action without external stimuli (without a manual, a guide, or a teacher). In this 

stage, students can also have a mental representation of a process, turn around the 

process, as well as use it with other processes. Coordination is the creation of a 

process by bringing together two or more processes (Cotrill et al., 1996). The 

computation of the limit involves the coordination of the input process, and the 

corresponding output through the given mapping (ibid). Thus, a student at the 
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process level can evaluate (say        
 

 
  ) without consideration of specific 

values at a time or by computing the first few elements and contemplating the 

remaining. The essential difference between an action and a process is that in action, 

it is external and students need systematic direction to carry out the transformation, 

whereas, in a process, the transformation carried out is internal and conceived with 

regard to relationships among cognitive structures of an individual student (Carlson & 

Oehrtman, 2005). For instance, for the items  

       ( 
    )              and  

 If  ( )  {
          
          

  then        ( )               

A student at action level of computing the limit of a function at a point can answer the 

first, but not the second. She/he possibly answers the second as either five or three. 

Nevertheless, one at the process level of computing the limit most possibly will 

answer both correctly.  

Object- object level concept formation is a level where the student perceives the 

concept as something to which actions and processes may be performed. A student 

in this stage conceives the totality of the process as unit and understands that 

conversions can be performed on it (Cottrill et al., 1996). The construction of a 

cognitive object through awareness of totality of a process, either by manipulation or 

imagination of it as a whole without performing subsequent actions is said to be 

Encapsulation (ibid). A student who encapsulated a process in to an object level of 

the limit, for instance as in the above example, have object view of the limit value so 

can act on it. Thus, given        ( ) and         ( ) then she/he can easily 

compute       (   )( ) . 

Schema- is described as the complete conceptual structure that is a result of 

consistent compilation of actions, processes, and objects (Cottrill et al., 1996). As it is 

compilation of the preceding levels, a student at schema level is competent enough 

to move flexibly back and forth among all the levels. Generalization is the ability to 

extend the acquired schema on a higher level of the phenomenon (Dubinsky, 2002). 

Reversal, on the other hand, is the ability to visualise an existing mental structure in 
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reverse to extend it or make a new mental process. For instance, in calculus, pair of 

processes that are reversal are differentiation and integration. According to Stewart 

(2008, p. 26) the description of the schema in APOS is analogous to Tall and 

Vinner‟s (1981) idea of concept image. 

These basic constructs, the piece of knowledge that could involve in learning a 

concept and the interplay among them is presented in Figure 4 taken from Dubinsky 

(2002, p. 107). 

 

Figure 4: Constructs of mathematical knowledge and their interplay 

            Source: Dubinsky (2002, p.107) 

Asiala et al. (1997, p. 8) outlined that the “genetic decomposition” of a concept is a 

planned mental model that probably will explain cognitive structures of the concept in 

a student‟s mind. Therefore, a genetic decomposition consisting of specific actions, 

processes, or objects that might involve in the cognitive schema to deal with a given 

concept.  

APOS theory has recognised not only as a research framework but also for designing 

mathematical curricula (Dubinsky & McDonald, 2001; Stewart, 2008). Several 

researchers used APOS framework to describe the level of students‟ difficulties and 

use a “genetic decomposition” of a specific topic to prepare an intervention and 

reported positive results (Maharaj, 2010; Stewart, 2008). However, this does not 

mean it is free of limitation (Maharaj, 2010; Pinto & Tall, 2001; Tall, 1999).  
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To begin with, explanations offered by an APOS analysis may not explain what 

actually occurs in an individual‟s mind. On the other hand, an individual may have a 

certain mental structure in the mind but may not apply it in a given learning or 

problem-solving (Maharaj, 2010). According to Pinto and Tall (2001), there is also an 

issue of learning style preferences. There are two forms of learning style 

preferences- formal and natural (ibid). Those labelled as formal attempts to base their 

learning in deductive approach from concept definition. They form their concept 

image by focusing on rules and procedures, and then they deductively build their 

formal theory. For those labelled as natural learners‟, concept formation is based on 

an existing concept image gained from perception (ibid). Pinto and Tall further 

contend that formal thinkers are well-matched with APOS theory, but it does not 

make clear the method of natural thinkers‟ learning.  

Within these limitations, APOS has many applications in algebra and calculus as a 

tool of analysis for researchers. Particularly, APOS has recognition to explain 

students‟ difficulties in calculus and to suggest pedagogical strategies that promote 

conceptual learning. For instance, the work of Çetin (2009), Cottrill et al. (1996), 

Maharaj (2010), and Moru (2006) in limit; Wangle (2013) in continuity; Jojo (2011) 

and Maharaj (2013) in the derivative, and Stewart (2008) in linear algebra were 

evidence.   

2.2.4. Conceptual knowledge in mathematics 

A substantial number of studies regarding students learning of mathematics in 

general and above all calculus concepts involve two dimensions of knowledge- 

conceptual and procedural (See for instance, Engelbrecht et al., 2005; Hiebert & 

Lefevre, 1986; Lauritzen, 2012; Schneider & Stern, 2005; Star, 2005; Star & 

Stylianides, 2013). There are also scholars who use different terms to name the 

duality for instance, relational and instrumental (Skemp, 1976). In the more recent 

literature, the conceptual and procedural terms to name the duality are dominantly 

used (Star & Stylianides, 2013).  
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2.2.4.1. Conceptual knowledge   

Conceptual knowledge is defined as the ability to demonstrate, interpret, and relate 

the verity of mathematical concepts correctly to a variety of problem-solving 

situations (Engelbrecht et al., 2005). Rittle-Johnson, Siegler, and Alibali (2001) define 

conceptual knowledge as a set of pieces of knowledge about a concept and skill of 

interconnecting these pieces into a whole or network. The essentials of these 

networks can be rules or procedures, and even problems given in various 

representations. One with conceptual knowledge in mathematics demonstrates the 

ability to decompose a given mathematical expression into pieces or express the 

network in verbal statements. Built-in to such knowledge is associated network of 

knowledge so that the whole is as important as the individual elements that 

connected to give the whole (Engelbrecht et al., 2005). 

An influential theme that is common among several definitions of conceptual 

knowledge is, “making connection or relation.” The term “relational” has also used by 

Skemp (1976) to name one type of mathematical understanding as will be discussed 

later. This theme originated from the definition of conceptual knowledge given by 

Hiebert and Lefevre, which by itself is seen as a foundation for the subsequent 

definitions of conceptual knowledge (as in Star & Stylianides, 2013). Hiebert and 

Lefevre (1986, p. 3) define conceptual knowledge as “a type of knowledge that is 

loaded in associations”. It can be considered as an associated network of knowledge 

so that the whole is as important as the individual elements that connected to give 

the whole. Its connected nature promotes awareness and the ability to move from 

particular to general and flexibility during task performance.  

According to Tall (2002), mathematical thinking is a cognitive composition that is 

friendly to the “biological structure of the human brain” (p. 16). It is massive store of 

knowledge and inner associations, which systematically deals with various cognitive 

tasks. This definition of mathematical thinking is more like the definition of conceptual 

knowledge by Hiebert and Lefevre (1986). In both definitions, the focus is not only 

the amount of knowledge available, but also the connection and integration among 

those pieces of knowledge. In Konicek-Moran and Keeley (2015) view, a student is 
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said to have conceptual knowledge if she/he is able to- think with it, extend it to 

similar situations, verbalize it, and get a similar or different way of expressing it.  

Students use their conceptual knowledge to identify what and when to use 

definitions, rules, and procedures, and to distinction associated concepts and 

evaluate results (Schneider & Stern, 2005). It is accumulated in some forms of 

relational representations or hierarchies and is not attached to specific problem 

types, rather can be adapted to the different context of problems. It is rich in 

relationships or webs of correlated ideas and allows individuals to distinguish 

between these correlations (Lauritzen, 2012; Mahir, 2009). In addition, it can be 

easily verbalized, flexibly transformed in the course of deduction and reflection 

(Schneider & Stern, 2005).  

2.2.4.2. Procedural knowledge 

Procedural knowledge is commonly associated with knowledge of procedures, and 

the setting where the procedures can be executed (Star & Stylianides, 2013). 

Engelbrecht et al. (2005) define it as the ability to explain the solution to a problem 

via the exploitation of a set of rules and procedures that associated with algorithms 

and symbols. According to Rittle-Johnson et al. (2001), procedural knowledge is the 

ability to perform algorithms quickly and efficiently as a part of problem-solving. This 

knowledge type is attached to a specific problem type and therefore is not easy to 

generalize it to different arrangement of problems in the same domain.  

Hiebert and Lefevre (1986) describe procedural knowledge in mathematics into two 

components. The first component involves being familiar with the language of 

mathematics which is the symbolic representation. The other component is the 

knowledge of rules and procedures of those symbols to solve problems. The main 

quality of the procedural knowledge is to be “executed in a predetermined linear 

sequence” (p. 6). Thus, procedural knowledge as compared to conceptual knowledge 

engages minimal cognitive awareness and a little cognitive resources. It is easy to 

learn, and it allows students to execute possible actions that could be properly 

performed to solve a given problem. Nevertheless, it is less connected and shallow in 

representation and hence hard to reflect and communicate (Schneider & Stern, 
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2005). That is why Hiebert and Lefevre (1986, p. 6) emphasized that procedural 

knowledge is the “narrative of managing mathematical signs and syntaxes”. It 

requires only a consciousness of rules and not interpretations or analysis. However, 

this does not mean that procedural knowledge has no relevance. Rather, students 

must learn to master fundamental concepts and computation of procedures (Mahir, 

2009; Schoenfeld, 1992). Each one is quite limited unless it is connected to the other 

(Lauritzen, 2012; Rittle-Johnson et al., 2001).  

2.2.4.3. Relational understanding  

Skemp‟s relational understanding refers to both the ability to perform procedures and 

to justify why those procedures and rules are used, whereas, instrumental 

understanding represents knowing the rules, and procedures of mathematics. He 

argues that in the short run the later may be more pleasing because learning how to 

do something is usually easier to memorize than learning something with deep 

meaning attached and then relating that to how it works. Moreover, even for 

teachers, instrumental understanding is easier to make assessment than relational 

understanding. In the long run, however, relational understanding is more helpful.  

With regard to retention period of knowledge as mentioned above, Crowley (2000) as 

in Tall (2002, p. 16) comments that even average ability student works in a “cognitive 

kit-bag” that lack connection and perform explicit procedures. Resulting in the spot 

success and satisfaction and possibly, “long-term cognitive load and failure”. 

Instrumental oriented students can be identified from their performance in classroom 

tasks. Those students can perform simple routine exercises very well, but stack for 

items that are different in nature from the usual classroom and textbook items (Gray 

& Tall, 1994). Thus, Skemp strongly argues that teaching should promote relational 

understanding. 

Going back to the conceptual and procedural duality of knowledge, in the more 

recent research literature, Skemp‟s instrumental and relational understanding 

referred to procedural and conceptual knowledge respectively (Wangle, 2013). Thus, 

in this study, too conceptual understanding and relational understanding is 

considered synonymous.  
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2.2.4.4. Contextual definition of conceptual Knowledge 

Star (2005) points out that the term conceptual knowledge includes both what is 

known, and the way that it can be built-in. Likewise, the term procedural knowledge 

specifies knowledge of procedures and the way that procedures can be known. In 

conceptual knowledge, the construction can be deep and rich in the association of 

the networks, whereas, in the procedural knowledge it is shallow and less in 

connection. Thus, Star argues that the description of knowledge dually like this 

encompasses both knowledge types and knowledge quality. These two aspects of 

knowledge and the interplay between them is presented in Table 2 taken from Star 

(2005, p. 408). 

Table 2: Types and qualities of procedural and conceptual knowledge 

Knowledge 

type 

Knowledge quality 

Superficial Deep 

 

Procedural 

Common usage of  procedural 

knowledge 

      ? 

 
 

 

Conceptual 

 

        ? 

 

 

Common usage of conceptual 

knowledge 

Source: Star 2005, p. 408. 

Star further argues that the present practice on the duality of knowledge makes it 

hard to think and denote the knowledge that is deep in quality and procedural in type. 

Duffin and Simpson (2000) describe, “Depth of understanding” as the ability to 

explain and justify each step of a problem-solving in mathematical terms. While the 

surface level procedural knowledge is automated skills on ordinary rules of 

algorithms, the deep level serves the purpose of creating and modifying the 

superficial level. Thus, deep procedural knowledge is as important as conceptual 

knowledge.   

The intention of the researcher in this study is not to claim that conceptual knowledge 

is more essential than procedural knowledge. He strongly believes both are important 

Genuine conceptual 

Knowledge 
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aspects of students‟ knowledge. Therefore, both deserve careful attention. With 

regard to the significance of both types of mathematical expertise, Hiebert and 

Lefevre‟s (1986) comment that: what makes a mathematical knowledge complete is 

not only the existence of both types of knowledge but also the strength of the 

integration among them. When both exist but lack integration, students may show 

interest and initiation to participate in problem-solving but remain unsuccessful. 

In this study, conceptual knowledge refers to knowledge of both concepts and 

procedures, which is integrated and deep in quality. In particular, conceptual 

knowledge about a mathematical concept consists of the knowledge to compute 

procedures and to justify the reasoning employed within relevant representation 

forms together with the ability to communicate in written, in a coherent, consistent, 

and flexible mathematical practice. According to Star, “types and qualities” 

description of the duality, this definition refers to the area where the deep in 

procedural, and deep in conceptual overlaps. Defined in this way, conceptual 

knowledge deserves the description that it is an adequate competence to solve all 

types of problems and tasks. The next section presents constructs that are the 

manifestations of this conceptual knowledge in calculus.  

2.2.5. Basic constructs of conceptual knowledge in calculus   

There are common themes among the different definitions that are given to the term 

conceptual knowledge by different educators and researchers. However, there is no 

objective rule that answers the question „what does it means to have conceptual 

knowledge of a specific topic like the limit or derivative?‟ In this section, the basic 

constructs of conceptual knowledge in calculus based on the definition of conceptual 

knowledge adapted, and the theoretical framework of the study will be presented.  

Consistent concept image/ Schema 

From the constructivist learning theory point of view, students should be active 

participants in constructing knowledge of mathematics. They build on and modify 

their existing cognitive structure based upon new exposure they imposed on. Since 

this construction is not always smooth, it follows that students can and do make 

construction errors of various kinds (Ernest, 1994). Those construction errors may be 



 

57 
 

due to the presence of alternative conception, incorrect generalizations, and 

interference of past knowledge or absence in pre-requisite knowledge. When a 

student makes such a construction error, the cognitive structure or “concept image” 

the individual has, differ in various aspects from the formal mathematical concepts. It 

is also possible for an individual to have more than one cognitive structure or concept 

image of a concept that conflict with each other (Tall & Vinner, 1981).  

Since such concept images consist of all experiences connected to the concept, in 

which there may be quite a lot of such images assembled in diverse contexts, those 

representations perhaps come together as the individual becomes more 

mathematically mature. Otherwise, such concept images can co-exist in multiple 

forms and make an unnecessary cognitive load. Tall and Vinner (1981, p.152) 

employ the term “evoked concept image” to explain the existence of an inconsistent 

concept image. Accordingly, based on context the same concept name may remind 

different concept images from the mind. Thus, if a student has a matured and stable 

concept image, she/he can demonstrate consistency and flexibility during problem-

solving.  

Since the learning of conceptual knowledge is a lot of consciousness and cognitive 

resources demanding (Schneider & Stern, 2005) afterwards it can be characterized 

as reflective and communicable for a variety of contexts. In other words, students 

have to minimize conflicting concept images. According to Siemon (2013), if one has 

conceptual knowledge she/he will be able to- generalise from particular examples, 

expand ideas to new situations, approach problems in different perspectives and 

demonstrate flexibility in the form of representations, interpret and associate ideas, 

and recognize the limitations of an idea. In general, consistency and flexibility are 

constructs of conceptual knowledge that reveal through students‟ concept images. 

Connection between forms of representations 

Hähkiöniemi (2006) describes, “Representation” as a tool to think of something. 

Representations are not only tools to think with but also tools for expressing our 

thoughts. Thus, a representation of a certain concept consists of an invisible internal 

system (concept image) and of a visible external system (a visual, verbal, or symbolic 
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reflection of the concept image) (Goldin & Shteingold, 2001). The internal 

representation of a concept is part of one‟s cognitive structure, maybe a single or 

several computing parts, and serves to interact with the external world, and the 

external system is symbolic and serves to facilitate the interaction (Dreyfus, 2002). 

An individual‟s representation of a concept is said to be strong if it incorporated many 

related aspects of a concept, so that the individual can manipulate it flexibly. 

Otherwise, it is said to be poor (Dreyfus, 2002). One means to do well in 

mathematics is to have such multiple representations of concepts, i.e. able to 

recognize or describe the same concept or idea using a different form of 

representations (Aspinwall & Shaw, 2002).   

Describing a concept using multiple forms of representations has been strongly 

connected with learning advanced concepts. More particularly, with the formation of 

conceptual knowledge in calculus that should be adaptable to the different contexts 

of a problem (Aspinwall & Shaw, 2002; Herbert, 2013). Approaching a concept in 

multiple ways (visually, numerically or algebraically) and able to shift simply among 

forms of representation is one aspect of a having a conceptual knowledge (Aspinwall 

& Miller, 2001; Lauritzen, 2012). Hähkiöniemi (2006) expresses that while procedural 

knowledge often stands for the use of representations, conceptual knowledge is 

described by the flexibility among representations.  

Underlining the significance of multiple representations in calculus Tall and Mejia-

Ramos (2004) mentioned that student‟s exposure to numeric data, symbolic 

manipulation, and graph sketch or interpretation in calculus could have to be 

performed at an advanced level and done that way, it paves the way in for 

progressions. Besides addressing individuals learning style preferences, and 

challenges of linguistic issues, the interaction among multiple representations of the 

same concept helps to obtain better mathematical concept images, which in turn 

improve the depth of conceptual knowledge (Aspinwall & Miller, 2001; Berry & 

Nyman, 2003).  

One of the critics on calculus teaching-learning is that the practice is more focused 

on symbolic manipulations according to given rules than construct mathematical 
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knowledge by solving problems and investigating patterns (Schoenfeld, 1992). When 

students got exposure to multiple representations, they recognize a mathematical 

object in different illustrations and interpret the idea from one form of expression to 

another. Of course if not properly manipulated, the use of multiple representations 

has its own limitations. Taught the same concept with different representations, 

unless they are well aware how to sort out the different forms of the same concept, 

their cognitive load would be Junk (Dreyfus, 2002).   

Abstraction 

One cognitive demand for advanced mathematics like calculus is an abstraction 

(Dreyfus, 2002; Tall, 2002). Tall (2002) discusses “generalization” and “abstraction” 

as a twin mechanism in mathematical thinking which is used to denote both 

processes and products involved in concept formation. As in Dubinsky (2002), Piaget 

distinguished three types of abstraction: 

 Empirical abstraction- occurs when one focuses on the general nature of objects 

obtained through perception. According to Piaget (as in Jojo, 2011) this 

abstraction leads to the mining of common possessions of objects. So, it is the 

means to access the general from the explicit. 

 Pseudo empirical abstraction- is in the middle of empirical and reflective 

abstraction. It serves to extract characteristics that the actions of an individual 

have established into an object (Dubinsky, 2002). 

 Reflexive abstraction- occurs when the focus is on reflection on perceptions or 

actions done by an individual on (mental) objects. Piaget (as in Jojo, 2011) 

emphasizes that reflexive abstraction directs us to a unique type of generalization. 

As described in section 2.2.3.1, reflective abstraction is a progression through 

construction, and Dubinsky (2002) identified five types of construction in reflective 

abstraction. These are interiorization, coordination, encapsulation, generalization, 

and reversal. 

 Interiorization- is a phase where internal processes are constructed as a result of 

perceived phenomena occurred. Here actions are internalized, mentally 

represented, and a student becomes familiar with a process (Jojo, 2011). In 
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finding the limit of sequences (say       
 

 
), a table of values may be constructed 

for exhaustive elements of the domain. Since    , all the computations are not 

actually performed. Thus, the student can conclude not only by computation, but 

also by contemplation, i.e. interiorization of actions in a thinkable process (Moru, 

2006). 

 Coordination- in this phase, two or more processes are coordinated to form a new 

process. In learning the limit of a function, for instance, to determine 

       ( )   , a student at the process level is able to construct the following 

cognitive structures:      

 accumulate input values from the premise   approaches   from either side, 

 accumulate the output values from the premise  ( ) approaches to  , 

 coordinate the two dynamic processes (Cottrill et al., 1996). 

 Encapsulation- this is the stage of knowledge construction where a translation of 

“a process into an object” takes place (Dubinsky, 2002, p. 101). This translation 

demands being aware of the totality of the process, see it as an object such that 

transformations can act on it. Dubinsky comments that this is the stage with 

twofold nature: the most significant but challenging attaining. Students, who 

attained this level of construction in the learning of the limit, can differentiate the 

limit process (which is dynamic) from the limit value (which is a static). Thus, they 

can easily perform operations on the limit. On the other hand, those who lack this 

stage can demonstrate the different form of difficulty including the limit is 

unreachable, an approximation, or can put multiple limit values. 

In the three worlds of mathematics, “procept” is a mode of sophistication in concept 

formation where one can see a symbol both as a process to do, and as a concept to 

think with it (Gray & Tall, 1994). Further, Gray and Tall strongly argue that; this level 

of conception makes the distinction between students. Those who able to manipulate 

symbols as thinkable concepts operate dually as a process and as a concept, and be 

successful, whereas, those who focus more on the actions and perform simple 

routine actions be fail to proceed in higher-level problems. So, one could conclude 

that an action level of concept formation is restricted to procedural knowledge as it is 
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static and less conciseness demanding. The process level conception is dynamic and 

is the beginning of conceptual knowledge formation. In fact, process level 

demonstration is the necessary but not sufficient level for conceptual knowledge 

(Asiala et al., 1997; Cotrill et al., 1996). Thus, an individual who attained this level 

can think about mathematics symbolically and focuses on mental objects (Gray & 

Tall, 1994). Conceptual knowledge is secured when the student is clearly capable of 

encapsulating the process to object mode of conception (Cotrill et al., 1996). 

 Generalization- this is the phase where an individual student is aware and able to 

use an existing mental structure to a wider situation of problem-solving without 

affecting or altering the existing mental structure (Dubinsky, 2002). 

As one of the basic forms of making mental objects in advanced mathematical 

thinking, Tall (2002) classified generalization into three based on the cognitive 

activities required as follows- expansive, reconstructive, and disjunctive 

generalization. Expansive generalization, as the name itself implies is more of 

expanding the existing than constructing a new one. In that sense, it resembles one 

of the constructivism‟s cognitive tools called “assimilation.” On the other hand, 

reconstructive generalization is more similar to “accommodation” in that it involves 

reconstructing the existing knowledge structure to accommodate new information.  

According to Tall (2002), in linear algebra course the general vector space    where 

    for most students is an expansive generalization. Whereas the abstract vector 

space is reconstructive generalization. In calculus for instance, the derivative of    

(where n is a non-negative integer) is      . For an average student, this is an 

expansive generalization whereas anti-derivative, for most students, is a 

reconstructive generalization. In calculus, a reconstructive generalization is 

recommended to overcome students‟ difficulties in relating symbolic and graphical 

aspects (Hashemi et al., 2015; Tall, 2002). 

The third type called disjunctive generalization, although it has less influence relative 

to the previews two forms of generalizations, can be used to solve problems (Tall, 

2002). Disjunctive generalization happens when students operate in difficulties, so 
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that “they simply engaged in memorizing the new information and put aside without 

any effort to incorporate it with the existing one” (Tall, 2002, p.12).  

 Reversal- this construction occurs when a student is able to construct a new 

process based on existing internal processes but thinking conversely (Dubinsky, 

2002).  

Basic Evidence of conceptual knowledge- in this study having conceptual 

knowledge is characterized by an individual‟s ability to (where    refers to construct 

number for the advantage of later reference):  

  : Define or represent a concept in her/his own words,  

  : Make a connection between concepts in calculus. This includes the interplay 

among domain, limit, continuity, and derivative,  

  : Explain and justify the reason for major steps in problem-solving, 

  : Perform computations and interpret the results (perform symbolic and numeric 

computation without major errors)  

  : Demonstrate the construction of coordinated processes. This includes 

coordination of domain and range process during computation of the limit (also 

called thinking ability about co-variation).  

  : Demonstrate the encapsulation of processes into objects. This includes a clear 

distinction between the dynamic process and static value of the limit.  

  : Have multiple representation perspectives: work with concepts given in various 

representations consistently and demonstrated flexibility in the form of 

representations during answering a problem. In this context, representation form 

means either symbolic, graphical, and table or verbal description.   

  : Have a problem-solving framework: transform a real-life problem into a 

mathematical expression and solve it. This includes making connections 

between application problems in business, kinematics, medical, etc., and 

mathematical representations (Limit, derivative . . .). 
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  : Demonstrate coherence and consistency in her/his work and have a consistent 

concept image about a concept. This refers to reliable results to the same idea 

given in different contexts.  

For instance, let us describe the construct required to solve the following problem:  

“Let  ( )  {
                          

            
  be differentiable at    .  

Then determine   and  ” (taken from Areaya & Sidelil, 2012, p.26). The required 

constructs are from    up to   . 

Table 3: Constructs of conceptual knowledge required in finding unknown in a   

piecewise-defined differentiable function  

 Steps     

   &            ( )   ( ) and 

       
 ( )  ( )

   
 exist  

  

A differentiable function is 

continuing,  

For a differentiable function,  the 

limit of the different-question exists 

at the limit point 

          ( )   ( ) and 

       
 ( )  ( )

   
        

 ( )  ( )

   
 

The limit at a point exist provided 

both the one-side limits exist and 

are equal  

   

   &    

        ( )   ( )          
    

   
        

(       )  ( )

   
 

       (  
     )   ( )           

(       ) (   )

   
  

                

    and     

Conclusion: In the first section of this chapter, the literature review of student 

difficulties from prior research was synthesised, and summed up in seven themes 

(See section 2.1.4). In the second section, the theoretical framework that have be 

used to analyse students‟ difficulties in the diagnostic assessment and in identifying 

components of conceptual knowledge to overcome difficulties was discussed. In 
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general, the framework was useful for identifying areas in which students display 

strengths and difficulties. The researcher‟s attempt was to identify basic constructs of 

conceptual knowledge via the bigger perspective of the framework i.e. constructivism. 

To understand properly a topic in mathematics, especially calculus and to work with it 

in diverse areas of its application, students should be able to make an appropriate 

set up of these constructs. However, most students‟ difficulties arise from lack of one 

or more of such constructs or the whole set up. Different learning strategies can be 

designed base on the nature of such constructs to help students overcome their 

learning difficulties of a topic. 
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CHAPTER THREE: RESEARCH METHODOLOGY 

The methodology chapter of this study begins with a discussion on why a designed-

based research approach was selected. Since more than one design is employed, 

first a summary of the design-based research approach and the implementation of 

this approach as per each research question (3.1) were presented followed by the 

detail of the discussion on the description of participants (3.2), data collection 

instruments (3.3), an intervention (3.4), and the data analysis employed (3.5). Finally, 

the context of the study (3.6) and ethical issues (3.7) were presented.  

3.1. The design-based research   

According to Miles et al. (2014), methodology in a research work emanates out of the 

purpose and nature of the problem of the study. In order to get possible answers for 

the research questions of this study, i.e. to synthesize students‟ difficulties, to explore 

common conceptual issues that are causes of those difficulties, to propose an 

intervention model to overcome those difficulties, to prepare an intervention based on 

the proposed model and to evaluate the possible effect, a design-based research 

approach was employed. Plomp (2007), states that a design-based research 

approach is the systematic study of designing, developing, and evaluating 

educational interventions. Plomp (2007) further asserts that design-based research 

contains phases such as preliminary, prototyping, and assessment. 

The design-based research is in line with the research work of Schoenfeld (2007) 

that has educational backgrounds in mathematics and follows preliminary studies and 

designing experiments, studies on context, and validation phases. Design-based 

research is advantageous in overcoming the limitation of research designs. Creswell 

(2012) seems more concerned about the demand of today‟s educational problems for 

a large toolbox of research approaches. He further stated that educators are 

recommended to use design-based research and multiple data collection instruments 

to address today‟s complex educational problems.  

In a design-based research approach, this research work was explained according to 

the aforementioned phases. In the preliminary phase of the study, after conducting a 
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systematic review of relevant literature, a diagnostic assessment was conducted on 

students of sample schools in the study area.  

In the prototyping phase, based on the themes of difficulties, the causes of those 

difficulties and a literature review on suggested strategies to overcome those 

difficulties, an intervention model was designed. After that, a team of professionals 

from high school teachers and university lecturers has tested the qualities of the 

model. 

In the assessment phase, an intervention based on the proposed model had 

prepared and implemented on the experimental group participants. A quantitative 

(pre-test, post-test, non-equivalent group, quasi-experimental) design had applied to 

analyse the quantitative aspect and a text analysis followed to analyse the qualitative 

aspect of this sub-study. This part ended with interpretation of the possible effect of 

the model on students‟ conceptual knowledge and comments for further 

enhancement of the model. In general, the research is mixed-method in a sequential 

paradigm. The research design of each sub-study per research question is 

generalized as in Table 4.     
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Table 4: Research design per research question 

 
Preliminary phase  Prototype phase Assessment 

phase 

1 What does the 

current 

literature reveal 

about students‟ 

difficulties in 

learning 

calculus 

concepts?  

What are the 

common 

conceptual issues 

that cause 

students‟ 

difficulties in 

calculus? 

What are the 

components of an 

intervention model of 

learning calculus 

concepts that could 

be developed to 

enhance students‟ 

conceptual 

knowledge in 

calculus? 

Is there a 

significant 

difference in the 

students‟ level of 

conceptual 

knowledge of 

calculus after 

learning with the 

proposed model? 

2 Literature from 

2002 to 2016 

on students‟ 

difficulties  

238 grade 12 

NSS students   

 
   

Literature, theoretical 

framework of the 

study, and output 

from research 

question 1&2 

105 grade 12 NSS 

students 

3 Literature- 

desktop review 

Diagnostic  test Desktop review  Concept test (pre-

test and post-test) 

4 Synthesis Frequencies  and 

pattern coding 

triangulated with 

literature 

Thematic analysis Independent 

sample t-test and 

text analysis 

5 Thematic 

report of 

students 

difficulties in 

calculus   

Descriptive and 

thematic report on 

conceptual issues 

that are cause of  

students‟ 

difficulties  

Intervention model 

that aimed to nurture 

students‟ conceptual 

knowledge of 

calculus  

Possible effect of 

the proposed 

model 

Where: 1= Research question (RQ), 2= Sample/data source, 3= Data collection 
instrument, 4= Data analysis technique and 5= Expected output  
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3.2. Description of participants 

The study was conducted in one administrative zone5 of Ethiopia. The zone is 

catchment area of a University located in the zone. There are eleven government 

upper secondary schools in the zone, which are located in each of the ten woredas6 

and one town administration, which constitutes the zone. Grade 12 natural science 

stream (NSS) students of these eleven upper secondary schools constituted the 

population of the study. 

In the study, sample selection was based on a purposive approach. Purposeful 

sampling lets the researcher apply her/his decision to choose a sample which she/he 

thinks, based on previous data, would supply the data needed (Fraenkel & Wallen, 

2009). The disadvantage of this approach is that the researcher‟s decision may be 

influenced by the knowledge the researcher possesses regarding the information 

needed. One way to reduce this bias is to predetermine criteria about the level to 

which the chosen respondents could supply to the study. Thus, the researcher has 

used the following criteria for sample selection:  

1. Schools‟ voluntarily to provide conveniences for the researcher,  

2. Teachers‟ voluntariness to participate in both (diagnosis and experimental) 

phase of the study,  

3. Schools which are following the normal teaching-learning process, i.e. not 

participated in an intervention program, and  

4. The availability of students. 

Some schools have funding agencies to support students using tutorial programs. In 

this program, some outstanding students are selected and assisted for one hour per 

week in each of the four science subjects including mathematics. The researcher was 

concerned about this because it could affect the intervention. The third criterion was 

set to address this issue. On the other hand, at the end of grade 12, students sit for 

the national University entrance examination. For this purpose, the National 

                                            
 

5
 The third top-down administrative level 

6
 The fourth top-down administrative level 
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Organization for Examination (NOE) will conduct registration around November of 

each year. Experience revealed that in some schools students do not regularly attend 

classes after the registration. Thus, the fourth criterion was set to address this issue. 

Accordingly, from the eleven schools, four schools were selected.  

Sample for the diagnostic assessment- four intact classroom students one from 

each school was randomly selected. Two hundred sixty-four students attending in 

those four classrooms were taken as a sample for this study. While 11 students were 

missed the test and 15 test papers were inadequate to be included, 238 students test 

scripts, were used for final analysis. 

Sample for the experimental phase- in addition to the four criteria‟s set as in the 

above two additional criteria were added for this phase. These criteria are the 

comparability of teachers‟ profile and schools background history. These are factors, 

which influence the result of an intervention. Accordingly, only two of the schools and 

the two teachers in these two schools were comparable based on all the criteria set. 

In these two schools, there were five intact classrooms of students. A pre-test was 

administered to all these students (they were 295 in number). Based on the result of 

the pre-test (those with comparable mean scores), one from each school, two intact 

classrooms of students (they were 108 in number) were taken as a sample. They 

were assigned as the experimental and control group randomly.   

3.3. Data collection  

The study employed four data sources: literature, diagnostic test, pre-test (pre-

calculus concept test) and post-test (calculus concept tests).  

Desk top literature review: a practical systematic review focused to investigate 

literature on students‟ difficulties and strengths of learning calculus concepts among 

students taking the course at secondary schools or at a first-year University course 

was conducted (The detail was discussed in 2.1.1).  

Diagnostic test: the purpose of this test was to find out how students understand the 

concepts in calculus, what sort of difficulties they form and to investigate conceptual 

issues and approaches that cause students difficulties based on students‟ work and 
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justification they provided. The items were collected based on the content of grade 

12 mathematics syllabuses, minimum learning competency, characteristic of 

conceptual knowledge assessment as suggested in the theoretical framework and 

empirical results from the  literature review. 

Pre-test- the purpose of this test was to compare the level of students in the 

experimental group and control group before the treatment begins. The result 

obtained was used to determine the data analysis tool for the post-test result. Since 

the two groups have no significant difference in the pre-test i.e. they are comparable, 

a simple independent t-test was used.  

Post-test (calculus concept test) - the purpose of this test was twofold: - The first 

was to compare the possible effect of the intervention model based on students‟ 

performance on the test. The second was to examine the extent the model helped to 

reduce observed difficulties in calculus. The test items were prepared based on the 

diagnostic test items with only little modification. Thus, the discussion on test item 

below addresses both tests. Moreover, after analysis of the results in the diagnosis 

assessment, some modification was made on the items, so that it is more reliable 

and valid for the experimental analysis.  

3.3.1. Test items 

With regard to the type of items, both closed-ended (multiple-choices) and open-

ended (or workout) items were included. Both types of items have their own 

advantage and disadvantage. For instance, Cai (1997) describes multiple-choice 

items allowing collecting a large amount of data quickly, administering more items in 

a short period, and score students‟ response quickly and reliably. However, it does 

not allow knowing how students arrived at the answer. Thus, the answer could be 

correct for the wrong reason. Open-ended items, on the other hand, are preferable as 

it tells not only students final answer but also how they get the answer (ibid). 

However, it is challenging administering more items or for large sample size in a 

short period, and score students‟ response quickly and reliably. In this study, a 

combination of both multiple-choice and open-ended items was used with caution to 

minimize their limitation as described below. The work done is influenced by the 
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methods of analysing student succession on a performance task “analysis of 

reasons” and “analysis of errors” as described in Messick (1988, p. 87).  

Each multiple-choice item has two parts to choose the correct answer from the given 

five alternatives and to give justification for the choice of an alternative. In most 

cases, the distractors are designed to inform a specific form of knowledge about a 

concept. For instance, in item 2.1, none of the first four alternatives is correct, and 

they indicate a specific form of conception about the limit at a point. Table 5 presents 

this item and the corresponding interpretation of the distractors. 

Table 5: Interpretation of distractors in item 2.1 

Which one of the following is true?    Interpretation 

limit value is a number beyond which 

a function cannot attain values 

limit is a boundary  

limit is a number that the function 

value approaches but never reaches 

limit is unreachable (and hence, not a 

static object) 

limit value is an approximation that 

can be made as accurate as you wish 

limit is an approximation  

limit of a function is the value of the 

function at the limit point 

limit is a substitution 

none of these is true Good conception. But has to be evaluated 

based on the explanation she/he provided 

Explain why. . . .  

For quantitative interpretation of students‟ performance on the test, only the correct 

choices were counted and have two marks each. Then, triangulation of these choices 

was made with “explain why” part to see the true nature of the conception reflected. 

This is due to the nature of calculus in which correct answers may be obtained for 

wrong reasons.   

The workout part was scored using a rubric developed for this purpose. The items 

were designed to see students‟ conceptual knowledge beyond just regurgitating 

procedures. Most of the items were taken from previously conducted research 

papers, books, and standard exams. But, most of them were modified through the 
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multiple validation process- divided, merged or reshaped as per the feedback 

collected from experts and pilot tests.   

3.3.2. Expert validation and pilot test result 

Initially, 31 items (18 closed-ended, i.e. 11 multiple-choices and seven true or false 

and the remaining 13 open-ended/workout) have been selected. Informed by:  

 literature, 

 comment form panel of experts, and 

 pilot tests the quality of the items was improved.   

A pilot test of the items was conducted with students in a private school in the study 

area. The pilot test was conducted in two rounds. One intact classroom student (they 

were 27 in number.) in the first round and another intact classroom (they were 31 in 

number.) in the second round 58 students participated. The aim of the pilot tests had 

been to get feedback about the items before they were used in the study. The 

changes made on the items based on the feedback from the pilot and experts were 

discussed in the following paragraphs. To present the discussion in a reader-friendly 

format, the following categorizations were used limit of sequences, the limit of 

functions, continuity of functions, and derivative.   

The limit of sequences part initially has six items (thee closed-ended/multiple-choice 

and three open-ended/workout). The three multiple choose items (item1.1-1.3) were 

taken with only little modification on the format and one new item was added. The 

added item (item 1.4) is designed to address the issue of multiple representations. 

Only one of the workouts items (item 1.5) was taken, and the remaining two items 

were removed as the other items address their purpose. For instance, one of the 

removed items was the item asking to find the limit of the sequence    (  (
  

 
) ) 

which was intended to address the issue of alternative sequence. Now, this purpose 

was addressed by item 1.4(c). 

The limit of function part initially has 12 items (three multiple-choices, five true-false, 

and four workouts). Two of the multiple items (item 2.3 & 2.4) were taken with little 

modification, one item is removed, and one new item (item 2.5) was added to 
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address the linguistic issues. As informed by the literature, students confuse the 

terms undefined, does not exist, indeterminate, and infinity. Thus, the new item was 

intended to confirm this.   

The true-false items were converted to two multiple-choices (item 2.1 & 2.2). From 

the four workout items, one item (item 4.5) was modified so that it accommodates the 

purpose of one item from the limit of a function and one item from the application of 

derivatives (see Table 6).   

Table 6: Former description and the two items that were incorporated with item 4.5  

4.5. The percent of concentration of a certain drug in the bloodstream t hours after 

the drug is administered is given by the function  ( )   
  

    
. Then    

4.5a. Evaluate        ( ) and interpret this result.     

4.5b. Find the time (in hours) at which the concentration is a maximum, and  

4.5c. Find the maximum concentration. 

…The concentration   of a drug in a person‟s bloodstream t hours after it was 

injected is given by  ( )   
     

     
 . Then        ( )                                         

Interpret this result  

…       
        

    
              

…What is the maximum value of  ( )            on ,   -? 

 A.                                     D.   

 B.                                       E. has no maximum value 

 C.    

Why do you think so? _________________________________________ 

The continuity part initially has six items (two multiple-choice, two true-false, and two 

workouts). One of the multiple-choice items (item 3.3) was taken as it is. One of the 

observations during the pilot test was that it was hard to analyse students‟ responses 

for open-ended items as their response was too diverse and the sample was large in 

number. Based on this observation instead of open-ended, options were provided so 

that students select the one they think is the right answer. With this consideration, an 

item (item 3.1) replaced one of the open-ended items with the opportunity to choose 
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from in order to ease the process of analysis. Item 3.2 was developed based on the 

two true-false items since the multiple-choice items were observed better to address 

the intended purpose than true-false items. It is observed that the true-false item has 

less discrimination power7. 

One of the workouts items (item 3.4) was modified to accommodate the purpose of 

one remaining multiple-choice item. Table 7 presents the modified item (item 3.4) and 

the former version of this item and the multiple-choice item removed since the 

purpose is incorporated in this item respectively. 

Table 7: Former version and an item incorporated with item 3.4 

3.4 . Consider the function  ( )  
        

   
 

3.4a. Sketch the graph of   (discuss basic steps of the graph). 

3.4b. What can you say about the continuity of the function exactly at    ? 

(say continuous or discontinuous.). 

3.4c. Does the function have a limit value at    ? (yes /no) (underline your 

choice). 

3.4d. If you answered in 3.4c above is yes, what is that limit value? 

3.4e. Compute f at     

… Sketch the graph of the function  ( )   
   

     
 and answer the following 

questions.    

What happens to the graph of  at the point     ? ______________ 

What is the limit of  at     ?  ________________ 

What is the value of the function at      i.e.  (  )? ______________ 

Is the function (continuous/discontinuous) at the pint     ? ________ 

… Let  ( )   
      

  √ 
 then        ( )              

A. 6               B.                 C. -6                D. does not exist          E. -5 

                                            
 

7 See Karelia, Pillai and Vegada (2013) 
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The derivative part initially has seven items (three multiple-choices and four 

workouts). All the multiple items (item 4.1 to 4.3) were taken without any change. 

Based on the pilot test result, one of the workouts items (item 4.4), was modified to 

reduce the number of algebraic operations without affecting the intended purpose to 

be addressed (see Table 8). The item was intended to address the issue of the chain 

rule. The item has a low correct response due to the algebraic manipulation errors.   

Table 8: Item 4.4 and its former description   

Differentiate       (    √    ) 

Differentiate       ( √   ) 

One item (item 4.6), taken with little modification and one other item (item 4.7) was 

completely replaced due to its low discrimination power. Based on the comment from 

the panel of experts, and the literature the newly added item (item 4.7) is given in 

graph to address more multiple representations.  

Finally, 21 items (15 multiple-choices and 6 workouts), were selected for final 

administration (see appendix D). All of the items were adapted from different sources. 

Accordingly, item 1.1 & 2.3 are adapted from (Areaya & Sidelil, 2012). Similarly, 

items 1.2, 1.4, & 2.5 are also adapted from (Moru, 2006). Likewise, items 1.3, 1.5, & 

4.5 are adapted from (Chung, n.d.). In the same way, items 2.1 & 3.4 are adapted 

from (Jordaan, 2005). Alike, items 2.2, 3.1 & 3.2 are adapted from (Wangle, 2013); 

items 2.4 & 4.6 are also adapted from (Bezuidenhout, 2001). Correspondingly, items 

3.3, 4.1 & 4.7 are adapted from (Rabadi, 2015). Again, item 4.4, item 4.2, and  item 

4.3 are adapted from (Jojo, 2011), (GRE, 2008), and  (IER & AAU8, 2015) 

respectively. 

The purpose of item 1.1 was to establish students‟ knowledge of the definition of 

terms and the relations and conditions among these terms. Item 1.2 was aimed to 

determine students‟ computational ability of convergence of different types of 

sequences. The difference between item 1.2 and item 1.4 is form of representations. 
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Triangulation of the two-items result gave an opportunity to establish students‟ 

abilities in multiple representations and how consistent their knowledge is. The 

purpose of item 1.3 was to examine students‟ ability in visualization and coordination 

of processes. 

The purpose of item 2.1 and 2.2 were to examine students‟ concept images of the 

limit of functions. The distractors were designed to accommodate frequently 

occurring alternative conceptions as described in the literature. Item 2.3 was aimed to 

examine students‟ knowledge of the non-existence of a limit at a point. Item 2.4 is 

also aimed to establish students‟ knowledge of the relationship between limit value 

and function value and the existence of the limit and continuity of functions. Item 2.3 

and 2.4 were designed to observe if students are able to interpret the symbolic 

expression of limit. Item 2.5 was aimed to establish students‟ linguistic ambiguity in a 

limit. It also reveals more about students‟ algebraic manipulation skills.  

The purpose of item 3.1 was to establish students‟ concept image of continuity. The 

item was designed to incorporate domain-continuity, limit-continuity, and continuity-

connectedness interplay. Item 3.2 was also designed to establish more on the 

interplay between continuity and the other concepts in calculus differentiation, limit, 

and being defined. The purpose of item 3.3 was to establish how students 

understand continuity in the subject matter of limit. In addition, the item was aimed to 

see students‟ ability to compute the one-sided limits.  

Item 4.1 was aimed to establish students‟ visualization of the derivative. Besides, it 

aimed to see computational ability on procedures of the derivative. Items 4.2 and 4.3 

were designed to see students‟ knowledge of the conceptual level and how it goes 

beyond algebraic manipulation. Moreover, item 4.2 demanded reverse thinking, 

whereas, item 4.3 addressed students‟ ability to form networks of concepts the limit, 

continuity, and derivatives.  

On all these multiple-choice items, besides the purpose in the objective part as 

explained above, was intended to establish students‟ ability to explain and justify the 

reasoning employed together with the ability to communicate in written their 
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mathematical knowledge in a coherent, consistent, and flexible mathematical 

practice. 

The purpose of item 1.5 was to dig students‟ representation of the limit (dynamic-

static interplay), co-variation, and infinity (actual or potential). The main purpose of 

item 3.4 was to see how students treat points of discontinuity both algebraically and 

graphically. On the way to attain this purpose, it also helped to explore students‟ 

ability on algebraic manipulations, the existence of a limit at a point where the 

function is undefined, and how they relate limit and the function values. The purpose 

of item 4.4 was to explore how students‟ understand the chain rule and their 

computational ability on rules and procedures of the derivative.  

The main purpose of item 4.5 was to see how students extend their knowledge on 

limit and derivative to a real-life problem. On the way to attain this purpose, it also 

helped to establish students‟: concept image of infinity, knowledge of coordination of 

processes, the nature of their limit conception, and knowledge on rules and 

procedures of the derivative. Item 4.6 is aimed to see how well students‟ knowledge 

structure is synchronized. It addresses the issue of integration among concepts in 

calculus, i.e. the limit, continuity, and derivatives. It also addresses the issue of 

representation forms and symbolic interpretation. Item 4.7 is designed to address 

three purposes- to see students‟ knowledge on continuity in a closed interval, how 

they interpret the meaning of derivative of a function at a point, and how they relate 

continuity and differentiability at the same point. All the open-ended items were 

labelled as object-level conception demanding of the respective concepts. 

Finally, appropriateness of language, the time frame of the test, and workspace, level 

of difficulty, and discrimination power about each item was addressed based on the 

feedback from both pilot tests and expert‟s comment. While eighteen items were 

used for the diagnostic assessment (see appendix D), twelve items were used for the 

post-test (see appendix F).  
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Similarly, the pre-test items were passed through the same process of a pilot and 

validation. From initially identified 30 items (most of them taken from EUEE9), through 

validation and pilot test 25 items (function, sequence, geometry, algebraic 

computation, and application problems) had been selected and was used for final 

administration (see appendix E).  

3.3.3. Validity and Reliability of the test 

One dimension of research quality is validity and reliability of the instrument used to 

collect data because the conclusions draw is based on inference from the data 

collected. While validity points to whether a research instrument explores what is 

proposed to be examined, validation is the process of assuring whether the 

instrument really supplies such inferences (Fraenkel & Wallen, 2009). Reliability is an 

investigation of how consistent results are. In this study, validity covers the two types: 

content and construct, whereas, issues of reliability cover the two types: inter-rater 

reliability and internal consistency reliability. 

Content validity   

Content validity refers to whether the scores from the instrument show that the test‟s 

content narrates what the test is proposed to assess (Creswell, 2012). The most 

customary method to secure content validity is to apply expert validation (Creswell, 

2012; Fraenkel & Wallen, 2009). In this study, there are two pieces of evidence of 

content validity. The first evidence is that the items were drawn from prior research 

measuring student difficulties and understanding in the limit, continuity, and 

derivative. The second evidence is the judgement of experts. A panel of four experts, 

one grade 12 mathematics teacher who has extensive experience in teaching 

calculus and is also recognized as the best performing mathematics teacher in the 

study area, one university mathematics lecturer who has been a tutor for over four 

years in grade12 mathematics students in a private school, and one mathematics 

education PhD candidate in Addis Ababa University was participated. 
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In addition to the comments from the experts, the pilot test was also used to shape 

content validity concerns such as appropriateness of language, the time frame of the 

test, and the workspace. Furthermore, items were designed to cover all specific 

topics in the scope of the study: limit of sequences, limit of functions at a point, limit 

involving infinity, non-existence case of limit of functions, rational, exponential and 

trigonometric and piecewise-defined functions, continuity at a point, continuous 

functions, derivative of simple, compound and composition functions in different 

forms of representations: symbolic, table, graph and verbal descriptions.    

Construct Validity  

This type of validity stands to check how a test evaluates the construct it intended to 

measure (Fraenkel & Wallen, 2009). A construct is a trait, expertise, ability, or skill 

that exists in the mind of an individual and is defined by recognized theories. In this 

study, the term “construct”, points to any form of students‟ mental image (strong or 

weak), about concepts in calculus. Thus, construct validity is necessary for assuring 

that the instruments used in the study accurately measured the constructs of 

conceptual knowledge so that specific difficulties and strength of students‟ knowledge 

can be identified.  

To address this purpose of the test, first, the construct of conceptual knowledge was 

clearly defined (As described in section 2.2.5), followed by a well-defined rubric (see 

appendix G), that was aligned with the relevant working definitions. The rubric for 

each open-ended item consists of potential student responses that indicated a 

particular level of conceptual knowledge which in line with the working definition. 

Besides the two efforts, the feedback from the panel of experts and pilot test was 

also used to ensure contract aspect of validity.  

Reliability 

Reliability refers to the uniformity of scores from repeated administration of an 

instrument (Fraenkel & Wallen, 2009). Two different types of reliability are relevant to 

the study: Inter-rater reliability and internal consistency reliability. An instrument is 

said to have Inter-rater reliability if two or more independent scorers consistently 
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assign the same scores to the same responses. For this study, a rubric was 

developed to guide rating. The rubric is designed based on the definitions for the 

constructs in this study and the experience obtained from the review of the literature. 

The rubric is also tested during the pilot study. Fifteen test papers from the pilot study 

participants were duplicated and rated by two individuals. The scores were compared 

and inconsistencies were discussed until we reached an agreement. 

Internal consistency reliability stands for whether two or more items on the same 

instrument measuring the same construct give up reliable results. This kind of 

reliability was recognized during the pilot study. Participants tended to answer similar 

questions in the same way during the pilot study, describing that the instruments had 

internal consistency reliability. In addition, the triangulation done by using the items 

within the multiple-choice and between the multiple-choice and the closed-ended 

items during the two-phase pilot revealed a reliable result. Moreover, the internal 

consistency of the pilot test was measured using Cronbach‟s alpha. Accordingly, 

       was obtained which is acceptable (of course less), for the diagnostic 

assessment and        for the pre-test.  

3.4. The intervention 

Based on the proposed model (see section 4.2.2 and figure 32), an intervention was 

designed. The intervention includes arranging the teaching-learning environment 

according to the proposed criteria and working on sets of activities. The activities 

aimed to encourage attaining the constructs of conceptual knowledge specified in the 

proposed model and to lift students‟ knowledge to a higher-level aspect of 

mathematical thinking which in turn reduces observed difficulties and enhances 

conceptual knowledge. The term “activity” refers to an open-ended or closed-ended 

item of a classroom, homework and formative assessment tasks, which the students 

are asked to work on either on their own or in a group at the end of the teachers‟ 

conventional introduction of each concept. The activities are compiled together and 

quoted as an “activity sheet”.  

The activities are designed for these concepts- limit of sequences, the limit of 

functions, continuity, and derivatives. Most of the activities were selected from 
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previous study instruments, national exams, and books and some of them were 

designed by the researcher. Of course, even for those taken from the literature, all of 

them were modified to fit the intended purpose.  

The purpose of the activities was addressing observed difficulties, so that students 

enhance their conceptual knowledge. The items were collected based on the 

required constructs of conceptual knowledge and content of grade 12 mathematics 

syllabuses. With regard to the type of items, the activities consist of both open-ended 

and closed-ended. But the closed-ended items also ask not only selecting the correct 

answer, but justification why a certain alternative is selected. The items also include 

scripts from students‟ work. This is deliberately done so that students exercise how to 

“analyse errors” and think of their own thinking.  

A month before the intervention, three-day training was provided to 21 selected 

upper secondary school mathematics teachers by the researcher, in collaboration 

with the researchers‟ employ University and the zone education department. There 

were 21 participants (18 males and three females). In the training entitled, “error 

analysis: a tool to enhance students conceptual knowledge”, issues like assessment 

practice, common student errors, feedback as a pedagogical tool, constructs of 

conceptual knowledge and mathematical thinking practice, was presented. The 

experimental group teacher was part of the training. Besides the training, an 

individual orientation and subsequent discussions were conducted with the teacher, 

so that the intervention was implemented as intended.   

The intervention was administered for eight weeks, 80 minutes per week running 

parallel to the normal teaching-learning program. In the intervention session, students 

were arranged in mixed ability groups of five to six. After the first, the sessions were 

arranged as group work, presentation, reflection on the presentation and 

stabilization, group discussion and homework for the next class meeting. A week 

after the intervention was terminated; the post-test that aimed to examine students‟ 

conceptual knowledge in calculus was administered. 
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3.4.1. Expert validation and pilot test of the items in the activity sheet  

Initially, 35 activities were selected. Informed by the comments from a panel of 

experts and pilot tests, the qualities of the items in the activities were improved. First, 

a pilot test of the items was conducted with incoming first-year mathematics 

department students at a University. Twenty-eight students (12 males and 14 

females) participated. The purpose of the pilot test had been to obtain feedback 

about the items before they were used in the study. During the pilot, the researcher 

observed students doing the activities to assess the quality of the items in the activity 

sheet. The researcher‟s observation was focused on whether the activities are 

appropriate for the intended method of instruction (individual work, group work, 

qualitative description, quantitative description), encouraging or not, helped to 

construct the intended components of conceptual knowledge (interiorization, 

encapsulation, and coordination), and whether the language of the items and the 

instructions of the activities are clear and understandable. Based on the experience 

gained adjustment was made on the time frame, work-load and level of difficulties on 

each item.  

Besides the pilot test, the judgement of experts was also implemented to improve the 

quality of the activities. A panel of four experts- two grade 12 mathematics teachers, 

who have extensive experience teaching calculus and two university mathematics 

lecturers (who have masters in mathematics education) have participated. Based on 

the feedback collected, some of the activities were modified, some of them were 

removed and some new activities were added. 

Finally, 30 activities were selected for final administration (see appendix H). In the 

development of the activity sheet, different sources were used. Although the present 

description of some items may not be the same as to the description in the sources, 

the beginning sources are the following: Areaya & Sidelil (2012); Bezuidenhout 

(2001); IER and AAU10 (2013, 2014, 2015, & 2016); Jordaan (2005); Maharaj (2010); 

Moru (2006); Rabadi (2015); Wangle (2013). 
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The purpose of activity one to five is to establish students‟ conceptual knowledge in 

the limit of sequences. The activities were focused on overgeneralization, conflicting 

concept image due to linguistic ambiguity, knowledge of the definition of terms, and 

the relations and conditions among these terms. Activity six to 19 aims to address the 

difficulties in limits and continuity. Most items in this section will demand object-level 

concept formation, reconstructive generalization, and reasoning level problem-solving 

skills. Activity 20 to 30 is intended to address difficulties in the derivative. In this 

section too, most items demand object-level conception, reconstructive 

generalization, and multi-step reasoning level problems solving ability. 

3.5. Data analysis 

Desktop literature review- the data analysis technique implemented is “thematic 

synthesis” as suggested by Thomas and Harden (2008, p. 2). After an exhaustive 

and systematic literature search, the researcher treated each article as a case and 

analysed in the following steps: quoting of difficulties this includes mentioned errors, 

ways of thinking or alternative conception/misconception. Then, triangulating the 

quotations from each article to build initial codes followed by finding for similarity and 

difference among the initial codes to categorize them in a more general code called 

second-level codes or “descriptive themes” (ibid). Finally, the difficulties were 

categorized in more general and meaningful groups called analytical themes. The 

detail of the analysis procedure is discussed in section 2.1.2 and 2.1.3.   

Diagnostic assessment- to analyse the test results in the diagnostic assessment: 

first, respondents scripts for each item were categorized as correct, incorrect and no 

response. Second, for each item, the respondent errors were identified by looking for 

the wrong choice or wrong working from the respondent scripts for each item. Since 

these wrong answers constitute ways of difficulties and origins of difficulties and 

approaches that they employed, the data were read repeatedly to get an overall 

picture of the type of difficulties that respondents have and to make themes. The 

result was used to answer the second research question.  

Pre-test: the pre-test was aimed to examine the comparability of the students in the 

experimental group and the control group before the intervention was carried out. To 
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do this, first, respondents scripts for each item was categorized as correct, incorrect, 

and no response. Then, by counting the frequency of correct responses for each 

student, the total score was recorded and an independent t-test was used to 

compare their mean score. The result revealed no significant difference in the pre-

test between the two groups i.e. they are comparable. This result was used to 

determine the option of data analysis for the post-test result. Since the two groups 

have no significant difference in the pre-test, a simple independent t-test was used in 

the post-test. If that were not the case, ANOVA would have been used.  

Post-test: The purpose of the post-test was twofold. The first was to analyse the 

possible effect of the intervention model based on students‟ performance on the test. 

The second was to examine the extent the model helped to reduce observed 

difficulties in calculus. Thus, the analysis involved both quantitative and qualitative 

parts. In the quantitative analysis, after frequencies and pattern coding, correct 

response scores were added for each student. The scores were analysed using the t-

test for independent groups to determine whether there is a significant difference 

between the mean scores of the experimental and the control groups. This analysis 

was aided by SPSS of version 25. 

For the quantitative part, text analysis, in which one glances for the occurrence or 

non-occurrence of themes, was implemented (McKee, 2001). Thematic text analysis 

starts with pre-set themes; in this case, the themes that were identified in the first 

phase of the study were used. 

3.6. Context and limitation of the study 

In the Ethiopian educational structure, secondary education is four years in duration. 

Grade 9 & 10 (general secondary education) enables students to identify their area of 

interest in further education, specific training, and for the world of work. Grade 11 & 

12 (upper secondary or preparatory program), will enable students to choose areas 

of training, which prepare them adequately for higher education and the world of 

work (FDRGE, 1994). In the preparatory program, students will be assigned to 

natural science and social science streams (SSS) according to their preference. 

While those in NS stream are allowed to join medicine, computational science, 
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engineering, and technology fields at University, those in SSS are allowed to join 

social science and humanities fields. NSS students were targate population of the 

study.  

Students‟ difficulties in learning and understanding concepts in calculus can be 

studied from different aspects. This study, however, was limited to the cognitive 

aspect. Grade 12 government schools NSS students were targeted. From the 

researcher‟s experience, the context of NSS and SSS is quite different as far as 

attitude, background, and futurity concerned. With regard to topics in grade 12 

calculus, the study emphasized the limit concept, since the concepts in calculus are 

sequential and the limit concept is basic for the rest concepts in calculus. Specifically, 

the limit of a sequence, limits of functions, continuity, and derivative was included.  

3.7. Ethical issue 

In the study area, secondary schools are under the direct leadership of the Zone 

education department. The top decision-maker at the school level is the school 

director. The researcher has requested and got permission to conduct the study from 

the zone education department (see appendix I). Having the letter of permission, the 

researcher made a visit to all the schools and has contacted school directors and 

discussed the issue. After the directors, the researcher has also discussed with all 

grade12 mathematics teachers in each school at the department level. The 

researcher requested for ethical clearance and obtained approval from UNISA (see 

Appendix J). Then the sampling was preceded with those who volunteered to 

participate. Those teachers, who were selected for the study, have signed a consent 

letter. Students also attained the necessary orientation and have signed the 

approval. To protect the identity of the participants‟, codes (Si) were used instead of 

their actual names and location. The final write-up of the thesis has been checked for 

similarity index using the turn-it-in software (see Appendix K for the first page of the 

report).  
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CHAPTER FOUR: RESULTS 

The main purpose of the study was to synthesize students‟ difficulties and common 

conceptual issues that cause those difficulties and to design an intervention model 

based on those difficulties that will enhance students‟ conceptual knowledge. To 

attain these purpose multi-level studies were performed. 

This chapter presents the results of the study. First, the results of the diagnostic test 

conducted to investigate the common conceptual issue of students‟ difficulties in 

calculus were presented in five sub-sections. Accordingly, the first section (4.1.1) 

presents students‟ level of conceptual knowledge in the limit of sequences followed 

by the limit of functions (4.1.2). While the next two sections present students‟ level of 

conceptual knowledge in continuity (4.1.3) and that of derivatives (4.1.4), the last 

section (4.1.5) presents the concluding remarks drawn from this sub-study. The result 

in this section, besides answering the second research question, paves the path to 

designing a framework of overcoming difficulties in learning calculus concepts.  

Having the conclusion from the first sub-study, the next question to be answered is 

that “what components should be incorporated into the current practice so that 

students overcome observed difficulties and attain better conceptual knowledge?” 

Towards answering this question, the second section of this chapter contains three 

sub-sections. The first sub-section (4.2.1) presents constructs of conceptual 

knowledge that could be performed so that students enhance conceptual knowledge 

and consecutively overcome observed difficulties. While the second sub-section 

(4.2.2) presents the framework as an intervention model, the third sub-section (4.2.3) 

presents an intervention based on the proposed model. Finally, the third section of 

the chapter presents the possible effect of the proposed model in two sub-sections. 

While the first sub-section (4.3.1) presents a comparison of means on the two 

groups, the next sub-section (4.3.2) presents a text analysis of the result in order to 

see the possible effect beyond statistical manipulations.  
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4.1. Students’ Level of Conceptual Knowledge  

4.1.1. Students’ conceptual knowledge of the limit of sequences 

Section one of the test was designed to determine how students conceive the limit of 

sequences. The section composed of four closed-ended items and one open-ended 

item. On the closed-ended items, the choice of each distractor has an implication on 

students‟ concept image and level of conceptual knowledge. Each of the concept 

images that students possess is discussed in more detail below. Table 9 is a 

summary of the response for the first item on the limit of the sequence.  

Table 9: Breakdown of students‟ choices to item 1.1 

Frequency, N=238 A B C D E None-respondent 

N 24 28 116* 35 29 6 

% 10.0 11.8 48.7 14.7 12.2 2.5 

 * correct answer of the item 

In item1.1, the statement in option C is correct, whereas, options A, B, and D are 

distractors that were arrived at due to overgeneralizations or conflicting concept 

images in the limit of the sequence. Referring to Table 9, 116 (48.7%) students got 

the correct answer choice C, while the remaining 116 (48.7%) did not get the correct 

choice of this item. Six (2.5%) of them left the item unanswered. Though the item was 

closed-ended, students were asked to write their reason for the choice. These 

reasons provided students‟ difficulties in understanding and using technical terms 

and how their knowledge is disorganized. Most of them prefer to give an example 

than justification. Accordingly, some of the reasons given to their answer were the 

following:  

Reasons that imply strong conceptual knowledge behind the correct choice:  

 we can‟t find a sequence which is convergent but unbounded (six 

respondents), 

 convergence implies being bounded but being bounded does not imply 

convergence (four respondents), 

 because any sequence that is convergent to a number S is bounded e.g. 

   
 

 
 then   

 

 
   (three respondents), 
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Reasons that imply weak levels of conceptual knowledge behind the correct choice: 

 a convergent sequence converges to its     or     (the limit value is 

necessarily a boundary, five respondents), 

 a divergent sequence may not be bounded (three respondents), 

 a sequence is convergent only if it is bounded and monotonic (nine 

respondents), 

 we have so many examples which show a convergent sequence is bounded 

(seven  respondents; in particular, 11S62:    
 

    
, S09:      

 

 
,  S142:    

  
 

 
, S211:      

 

 
, S37:    

    

    
 ),  

 e.g.    (  )  (six respondents). 

In particular, figure 5 is a direct copy of the students‟ test script from the correct 

choice followed by correct reasoning category: 

 

S58 

 

 

 

 

S11 

 

 

Figure 5: Correct choice of option and reasons for item 1.1 

Only some students have a deep knowledge of the limit of a sequence, large 

example space, and are able to explain in detail (as in S11 in figure 5). The above-
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 Si   where *           + refers to respondents identification code   



 

89 
 

mentioned list of reasons suggests that some other students got correct answers for 

the wrong reasons. For instance, S25 and S05 (see figure 6) show how students 

misinterpreted the “monotonic-bounded theorem”.  

S25  

 

S05  

 

Figure 6: Unrelated reasons for option C of item 1.1 

Besides misinterpretation of this theorem, as seen in the list of reasons, most 

students confused terms such as convergent, divergent, bounded, and unbounded. 

Here also most students preferred to mention a particular sequence instead of 

justifying the general pattern of the given statement. Figure 7 is a list of descriptions 

given by some students who chose option C for item 1.1, as directly taken from 

students‟ script:  

S23  

 

S217  

 

S27 
 

 

Figure 7: Unrelated reasons for option C for item 1.1 

Again using the data in Table 9, the percentage of choice A suggests that 24 (10.0%) 

respondents concluded that a bounded sequence is necessarily converging, whereas 
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they refused to choose C means they think that a convergent sequence may not be 

bounded. While figure 7 is a direct copy of reason from their scripts, most of their 

reasons for the choice are categorized as follows: 

 a bounded sequence converges to its     or     (5 respondents), 

 a bounded sequence is convergent e.g.    
 

 
 then   

 

 
   (three 

respondents). 

S30  

 

S57  

 

S31  

 

Figure 8: Some reasons for option A of item 1.1 

The percentage of choice B suggests that 28 (11.7%) respondents concluded that a 

divergent sequence is necessarily unbounded. Here again, refusing to choose C 

means they think that a convergent sequence may not be bounded. Some of their 

reasons for the choice are categorized as follows: 

 a convergent sequence is bounded (three respondents), 

 there is no sequence which is divergent and bounded (five respondents), 

 e.g. *           + is not convergent because it is unbounded (two 

respondents), 

 all bounded sequences are convergent (three respondents), 

 only a monotonic and bounded sequence is convergent (three respondents). 

The percentage of choice D suggests that 35 (14.7%) respondents concluded that a 

monotone sequence is necessarily converging whereas a convergent sequence may 
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not be bounded. Once again, some of their reasons for the choices are categorized 

as in the following two statements. Figure 9 is a direct copy of reasons from their 

scripts:  

 a monotonic sequence is always convergent (11 respondents), 

 a monotonic sequence is bounded, so, it is convergent (eight respondents).  

Finally, the percentage of choice E suggests that 29 (11.7%) respondents concluded 

all the given four statements are false. 

S203 
 

 

S226 
 

 

S14 
 

 

Figure 9: Reasons for option D of item 1.1 

Generally, students‟ performance in the first item revealed that most of them lack 

conceptual knowledge in the limit of sequences, which largely originates from a 

misinterpretation of the “monotonic-bounded” theorem and lack of having a clear 

distinction between terms. According to this theorem, while a monotonic and 

bounded sequence is necessarily convergent, the converse may not be true. As seen 

from the qualitative aspect of students‟ responses, most students have misinterpreted 

this theorem. Besides, students focus on particular examples rather than a general 

posture of facts about a concept. 

In item 1.2, the sequence in option C is not convergent as it oscillates between   and 

   whereas the three sequences in option A, B, and D are convergent. Those who 

chose the options A, B, and D, fail to interiorize a process into an object. Table 10 is 

a summary of the students‟ answer to item 1.2. 
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Table 10: Breakdown of students‟ choices to item 1.2 

Frequency, 

N=238 

 

A 

 

B 

 

C 

 

D 

 

E 

Two options 

(bad index) 

Non-

respondent 

N 8 18 152* 27 27      3     3 

% 3.4 7.6 63.8 11.3 11.3     1.2     1.2 

  * correct answer of the item 

Referring to Table 10, 152 (63.8%) students got the correct answer choice C while 

the remaining 83 (34.9%) did not get the correct choice and the remaining three 

(1.2%), refused to choose none of the options. Even though the item has a large 

number of correct respondents, the qualitative aspect has an immense implication on 

students‟ nature of conceptual knowledge. Out of the 235 (98.8%) who selected an 

option of the item, 123 (51.7%) of them gave clearly readable reasons for their choice 

of the option, and this is the highest among all the items in the test. Table 11 

summarizes the five options and the corresponding reasons for the choice. 

The data in Table 11 agrees with the conclusion drawn in item 1.1. Even 42 (17.7%) 

students have answered the item correctly with wrong reason as seen in option C. In 

addition, 27 (11.3%) students think that the constant sequence *  +  *        + is 

not convergent. The item also revealed how some students‟ difficulties are robust 

since they give the wrong answers and justification with high confidence. Figure 10 is 

evidence of this as directly taken from one students‟ test script.  

S05  

 

Figure 10: An extract for the wrong answer with high confidence in item 1.2 
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Table 11: Students‟ options and corresponding reasons for item 1.2 

Option Reason Frequency 

A It is increasing, so it is bounded 3 

B The limit does not approach to unique number 3 

It is not bounded 3 

C A convergent sequence must be bounded 3 

It is not bounded number sequence 7 

It oscillates between -1 and 1 26 

Since it is neither increasing nor decreasing 13 

It does not go to a unique number 16 

Only monotonic and bounded sequences converge 16 

D A constant sequence cannot converge 11 

A constant sequence is not bounded 6 

Since the sequence goes uniformly there is no upper and 

lower bound so that it is not convergent 

3 

Because it is not monotonic 2 

E All are convergent because all are bounded 5 

In particular, the sequence in A converges to 0, B 

converges to 0, C bounded and D converges to 3 

2 

They do not go to a unique number 2 

B & C In both cases limit does not approach to a unique number 3 

                Total 123 

In item 1.3, the statement in option B is correct, whereas, options A, C, D, and E are 

distractors that were arrived at due to either overgeneralization or lack of 

encapsulating the process of the limit into an object or lack of visualization beyond 

action level conception. Referring to Table 12, 118 (49.6%) students got the correct 

answer options B while the remaining 110 (46.2%) did not get the correct option, the 

remaining 10 (4.2%) refused to choose any of the options.  
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Table 12: Breakdown of students‟ choices to item 1.3 and 1.4 

Frequency, N=238 A B C D E Non- respondent 

 

1.3 

N 37 118* 30 35 8 10 

% 15.5 49.6 12.6 14.7 3.4 4.2 

 

1.4 

N 55 84* 35 53 3 8 

% 23.1 35.3 14.7 22.2 1.3 3.4 

 * correct answer of the item 

According to the data in Table 12, from option A, 37 (15.5%) students are at the 

action level. From option C, 30 (12.6%) students are at a process level but lack 

encapsulating process into an object, whereas, from option D, 43 (18.1%) students 

even have not attained action level conception of the limit. 

In item 1.4, the sequence in option B (which is option C in item 1.2), has no limit as it 

oscillates between   and    whereas the three sequences in options A, C, and D all 

have limits. Referring to Table 12, 84 (35.3%) students got the correct answer, choice 

B while the remaining 146 (61.3%) did not get the correct choice, the remaining 8 

(3.3%) refused to choose none of the options. In particular, 13% indicated that the 

constant sequence *  +  *        + have no limit. Besides, 14.7% of them have 

developed a generalization that a sequence that involves terms that alternate in the 

sign is not convergent. The difference between students‟ correct response to item 1.2 

and item 1.4 indicated that students have a lack of using multiple forms of 

representation or demonstrate different levels of knowledge based on the 

representation used.  

The last item in this section is open-ended, and students were expected to show all 

the steps to reach the final answer. Table 13 is a summary of the response of this 

item. 

Table 13: Breakdown of students‟ answer to item 1.5  

Frequency, N=238 

Correct Incorrect Incomplete Non-respondent 

N % N % N % N % 

73 30.6 102 42.8 42 17.6 21 8.8 
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As the item is open-ended, there were different forms of response categories. The 

frequency of the correct respondents was counted for those who demonstrated all the 

ideas mentioned in the rubric. Those who demonstrate only partial understanding 

were considered as incorrect. The incomplete one points to those who started the 

procedure but left without clearly identified answers. As in figure 11, while S03 shows 

a correct answer with correct procedure S58 and S125 point to how the correct answer 

may be obtained from wrong working and S14 shows the wrong answers obtained 

from wrong work respectively.  

  

S03 

 

 

 

S58 
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S125 

 

 

 

S14 

 

 

Figure 11: Extracts which demonstrate differs forms of difficulties 

The frequency of occurrences of the incorrect answers was 0 (74 or 31.0%),   (7 or 

2.9%), does not exist (3 or 1.3%), and different Integer values (18 or 7.5%). The 

common types of difficulties observed in this item are the following (see figure 11): 

 lack of symbolic manipulation (like S125, 13 (4.6%) respondents), 

 inappropriate interpretation of the limit rules and indeterminate forms (like S14, 

18 respondents), 

 an action level conception of the limit and infinity (27 respondents).  

In general, students‟ performance in the limit of sequences revealed that only a few 

students had strong conceptual knowledge. The observed difficulties in the limit of 

sequences are summarized as follows: 
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 Evaluate      ,  
 

 
  , and 

 

 
   , and also consider infinity as an actual 

value. 

 Have an action view and a static way of evaluating functions. For instance, as 

in item 1.5, 11.3% of participants evaluated the sequence only at the first few 

natural numbers.  

 Think that limit value is necessarily a boundary. 

 Have inconsistent concept image due to confusing terms like bounded, 

convergent, or divergent.  

 Think that only monotonic and bounded sequences are convergent, 

(misinterpret the monotonic bounded theorem). 

 Think that a bounded sequence is necessarily converging, and a divergent 

sequence is necessarily unbounded. 

 Think that a monotonic sequence is necessarily convergent. 

 Have concept image that a convergent sequence may not be bounded, i.e. 

being bounded is not a necessary condition for convergence if consecutive 

terms of a sequence alternate in the sign the sequence is necessarily 

divergent. 

 Think that a constant sequence is not monotonic and hence not convergent. 

 Provide the correct answer for the wrong reasons (for instance, 17 participants 

in the item 1.1 and 39 participants in item 1.2). 

 A challenge to interiorize actions into processes or to encapsulate processes 

into an object. 

 Demonstrate different performance based on the form of representations and 

display conflicting concept image that is dependent on form of representations. 

 Make algebraic manipulation errors (like 
    

 
  ,

    

 
  ). 

4.1.2. Students’ conceptual knowledge of the limit of functions  

The aim of the second section of the test was to determine how students conceive 

the limit of functions. The section composed of five closed-ended items. The choice 

of each distractor has an implication on the students‟ concept image and level of 

conceptual knowledge. Each of the concept images that students possess are 
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discussed below in more detail. Table 14 is a summary of the response for these five 

items on the limit of functions.  

Referring to Table 14, 69 (29.0%) of the students got the correct answer choice E for 

item 2.1. While 160 (67.2%) did not get the correct choice, the remaining nine (3.8%) 

left the item unanswered. Options A to D are distractors. These are potential to see 

the existence of immature conceptual structure or conflicting concept images in the 

limit of functions.  

Table 14: Breakdown of students‟ choices to the items on the limit of functions  

 

 

Item 

Frequency, N=238 Non-

respondents A B C D E 

N % N % N % N % N % N % 

2.1 12 5.0 67 28.2 32 13.4 49 20.6 69* 29.0 9 3.8 

2.2 22 9.2 29 12.2 19 8.0 67* 28.2 98 41.2 3 1.2 

2.3 10 4.2 71 29.8 37 15.5 45 18.9 69* 29.0 6 2.5 

2.4 47 19.7 110 46.2 8 3.4 59* 24.8 3 1.2 11 4.6 

2.5 28 11.8 73* 30.7 62 26.0 27 11.3 34 14.3 14 5.9 

 * correct answer of the item 

Accordingly, the percentage of choice A to D on item 2.1 suggests that:  

 Twelve (5%) of respondents think that limit is a boundary.  

 Sixty-seven (28.2%) of respondents think that limit is not attainable.  

 Thirty-two (13.4%) of respondents think that limit is an approximation (for 

instance, S03 as in figure 12), and 

 Forty-nine (20.6%) of respondents think that limit at a point is the same as the 

value of the function at the limit point (for instance, S16 as in figure 12). 
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S16 
 

 

S03 
 

 

Figure 12: Students‟ reason for their choice of options in item 2.1 

Two major sources of these difficulties are clear from the students‟ explanations. One 

is common language interference and the other is the way limit is introduced (Jaffar & 

Dindyal, 2011; Tall, 1993). When the introduction of the limit was dominated by 

rational functions at the zero of the denominator (this approach is usually preferred to 

demonstrate the difference between function values and limit value), students, in 

turn, develop that the limit value is not attainable, but rather an approximation. Figure 

13 is an additional explanation of the issue that suggests how the difficulty is 

persistent.  

S06 
 

 

S97 
 

 

S14 
 

 

Figure 13: Extracts showing the limit value as an approximation concept image 

Referring to Table 14, only 67 (28.2%) respondents recognized the dual nature of the 

limit and got the correct choice D for item 2.2. While 22 (9.2%) think that the limit is 

all about an infinite process, 29 (12.2%) think that it has a finite value and has 

nothing to do with the infinite process. 19 (8.0%) of participants confirmed that the 

limit was necessarily a boundary. Figure 14 confirms that the limit is a boundary 

concept image. In this item, option E has the largest response rate. This has many 
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implications for the diversity of students‟ difficulties. To begin with, this misconception 

originates from the conception that every function is monotonic. The other is that 

being monotonic is a necessary condition for convergence. Most of those who select 

option E think that limit means a boundary, i.e. least upper bound if the function is 

increasing and the greatest lower bound if the function is decreasing. Since these 

values are unique (provided the function is monotonic), the limit is also unique or is a 

finite value. Figure 14 is an illustration of the limit value is boundary concept image.  

S06 
 

 

S75 
 

 

Figure 14: Extracts which show the limit value is a boundary concept image 

The aim of item 2.3 was to diagnose students‟ qualitative reasoning ability and 

consistency of reasoning on the non-existence of the limit at a point. Referring to the 

data in Table 14, only 69 (29.0%) of them have a clear symbolic interpretation as far 

as their response to this item is concerned. While 163 (68.5%) of them have one or 

the other form of difficulty, six (2.5%) of them left the item unanswered. In this item, 

options A to D are distractors, which were arrived at due to a lack of knowledge on 

limit of functions.  

The percentage of choice A to D suggests that: 

 Ten (4.2%) think that limit does not exist necessarily imply that the function is 

unbounded, 

 Seventy-one (29.8%) thinks that a function will have no limit only if the two 

sides limits have different values.  

 Thirty-seven (15.5%) think that if        ( ) does not exist, then the graph of 

  should have a vertical asymptote at     (for instance, S30 as in figure 15), 
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 Forty-five (18.9%) confused existence of the limit and being defined. Figure 15 

displays the correct answer with correct reason and wrong answer for the 

wrong reason for this item.  

 

S31 

 

 

S30  

 

Figure 15: Extracts from correct and wrong answers on item 2.3 

Item 2.4 was aimed at examining students‟ knowledge on the relationship between 

the limit value and the function values, the limit and continuity interplay. Regarding 

this, the data in Table 16 revealed that while 59 (24.8%) got the correct choice D, 168 

(70.6%) selected the other options, and the remaining 11 (4.6%) refused to answer 

the item. Only a few students gave a satisfactory explanation and showed strong 

knowledge of this concept. Others got the correct option, but did not support their 

choice of option with an explanation. Figure 16 briefs both strong (S97 & S42) and 

weak (S102 & S74) concept images of the interaction.  

Accordingly, the percentage of choice A to C suggests that: 

 Forty-seven (19.7%) think that the existence of a limit is sufficient for continuity 

of a function at a point. 
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 110 (46.2%) think that limit at a point is the same as the function value at the 

limit point and the existence of a limit is sufficient for being defined,  

 Eight (3.4%) think that the existence of a limit is sufficient for being defined, 

but nothing can be said about the function value based on the limit value. 

 

S97 

 

 

S42 
 

 

S102 
 

 

S74 
 

 

Figure 16: Extracts of strong and weak reasons for item 2.4 

In this item, the option B has the highest respondent. The implication is that either 

many students do not differentiate the limit value from the function value or their 

experience is limited to continuous functions.  

The aim of item 2.5 was to establish students‟ linguistic issues in the limit. It also 

reveals more about students‟ algebraic manipulation skills. All options, except B, are 

distractors that were arrived at due to linguistic ambiguity on the limit of functions. 

Accordingly, 73 (30.7%) of them got the correct answer, and 151 (63.4%) missed it. 
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The remaining 14 (5.9%) left it unanswered and this is the highest non-response rate 

among all the five items in the limit of functions. This may have its own implication on 

how the terms are confusing. The percentage of respondents on these incorrect 

options suggests that:  

 Twenty-eight (11.8%) students think that limit at a point is a substitution, and if 

that substitution results indeterminate form the conclusion is, that limit does not 

exist. 

 Sixty-two (26%) students think that 
 

 
  . 

 Twenty-seven (11.3%) students think that the indeterminate form 
 

 
 is the same 

as undefined and hence the limit value does not exist. 

 Thirty-four (14.3%) students think that the indeterminate form 
 

 
 entails the limit 

is infinity. 

Besides, students have an incorrect interpretation of symbolic notations. Figure 17 

displays, how some of them incorrectly interpreted the one side limit notation.  
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S74 

 

 

Figure 17: An extract displaying a wrong interpretation of the symbolic notation 

In addition to the five items in section two of the test, item 3.4c and item 4.5a in 

section three and four have the potential to diagnose students‟ algebraic 

manipulation skills, and how they extend their knowledge of the limit to a real-life 

problem. In particular, item 4.5a helped to establish students‟ concept images of 

infinity and the knowledge of coordination of processes into objects. Students‟ 

response to this item is summarized as in Table 15.  

Table 15: Breakdown of students‟ response to item 4.5a 

Frequency, N=238 

Correct Incorrect Incomplete Non-respondent 

N % N % N % N % 

69 28.9 84 35.5 45 18.9 40 16.5 

According to the data in Table 15, 40 (16.5%) students did not have an answer. 

While 69 (28.9%) of them described it correctly, 84 (35.5%) of them gave complete 

and meaning full procedures but incorrect conclusion, whereas, the remaining 45 
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(19%) started the procedure but interrupted without a meaningful conclusion. Some 

difficulties observed in the incorrect responses were summarized as follows: wrong 

interpretation of the limit rules, confusing limit and other concepts in calculus, treating 

infinity as a number and errors in symbolic manipulation (see figure 18). 

 

 

S22 

 

 

 

S232 

 

 

Figure 18: An extract that revealed the wrong working of the limit  
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In item 3.4c and 3.4d (see table 18), 118 (49.5%) of them correctly answered that the 

functions‟ limit exists at    , but only 57 (24.0%) of them computed the correct limit 

value. Many students missed the result due to an algebraic manipulation errors and 

knowledge of indeterminate forms (see figure 19).  

S144 
 

 

S181 
 

 

Figure 19: An extract of limited knowledge of the limit 

In general, students‟ performance in the limit test items revealed that many students‟ 

knowledge on limit is limited and suitable for continuous functions. The following is a 

list of observed difficulties: 

 Influenced by an arithmetic approach for items demanding an algebraic 

approach. For instance, evaluate the function just at     instead of simplifying 

the rational expression to find the limit as    . 

 Hard to find the limit of a rational function at the zero of the denominator, and 

understand the indeterminate form 
 

 
  as undefined.   

 Think that the limit is not attainable, but is an approximation. 

 While some student‟s think the limit is all about an infinite process and has 

nothing to do with finite value, others think that limit is all about a finite value 

and has nothing to do with an infinite process. 

 Think that the non-existence of a limit necessarily implies the function is 

unbounded; a function will have no limit only when the two side limits have 

different values. 

 Think that if        ( ) does not exist, then the graph of   should have a 

vertical asymptote at    . 
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 Think that the limit at a point is the same as the function value at the limit 

point; also confuse the existence of a limit and being defined. 

 Think that the existence of the limit is sufficient for being defined, the limit at a 

point is a substitution, and if that substitution results in indeterminate form, the 

conclusion is that limit does not exist. 

 Misinterpret symbolic notations and make algebraic manipulation errors. 

 Misinterpret limit rules and indeterminate forms. 

 Confuse the limit and other concepts in calculus. 

 Treat infinity as a number. 

 Have difficulty to compute the limit of piecewise-defined functions. 

4.1.3. Students’ conceptual knowledge of continuity 

The purpose of section three of the test was to diagnose students‟ difficulties with 

continuity. The section consists of three closed-ended items and one open-ended 

item. In particular, the purpose of item 3.1 is to establish students‟ concept images of 

continuity. The item is designed to incorporate domain-continuity, limit-continuity, and 

continuity-connectedness interplay. Accordingly, students are expected, first, to 

decide whether the piecewise-defined algebraic form of the given function is 

continuous or not, then to choose a justification from the given options in one of the 

two categories. Surprisingly, this is the only item attempted by all the participants. 

While 207 (86.9%) of them correctly identified it as continuous, 25 (10.5%) of them 

said it is discontinuous and the remaining six (2.5%) selected an option from both 

categories‟, so that they are grouped as “bad indexed.” Table 16 presents a summary 

of respondents in two categories.   

Table 16: Breakdown of students‟ choices to item 3.1 

 

 

 N=238 

The function is continuous  on 

its domain because, N=207 

The function is not continuous 

on its domain because, N=25 

 Bad- 

index,                   

N=6 A B C D E F G H I J 

N 28 9 156* 5 9 0 2 23 0 0 6 

        %   11.7 3.8 65.5 2.1 3.8 0 0.8 9.7 0 0 2.5 

* correct answer of the item 
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Among the 25 (10.5%) respondents, who said the function is not continuous in its 

domain, 92% (23 out of 25) said that the function is not continuous on its domain 

because “there is a number “ ” in the domain for which        ( ) does not exist, 

or        ( )   ( )” and the remaining two (0.8%) said that, “the function is not 

defined for every real number”.  

Generally, 179 (75.2%) respondents described continuity in the subject of limit. This 

is the good opportunity for progression. As observed in the literature, most students‟ 

difficulties with continuity originate from lack of describing continuity in the subject of 

limit. Additionally, few numbers of students have a problem of confusing continuity 

with the pencil metaphor. They think the existence of limit as sufficient for being 

continuous, which according to the literature, is a common problem for most 

students. On the other hand, 28 (11.7%) of the students have confused continuity 

with being defined. However, 156 (65.5%) of them clearly displayed a good 

understanding of continuity as far as their response on this item is concerned.  

While item 3.2 was also designed to establish more on the interplay between 

continuity and the other concepts: differentiation, limit, and domain or being defined, 

item 3.3 is designed to discover more about how students‟ understand continuity in 

the subject of limit. In addition, the items aimed to see the students‟ ability to compute 

the one-sided limit. Table 17 presents the result of these two items. 

Table 17: Breakdown of students‟ choices to item 3.2 and 3.3 

 

 

 

Item 

Frequency, N=238 Non-                
respondent 

A B C D E 

N % N % N % N % N % N % 

3.2 42 17.7 22 9.3 72* 30.2 14 5.9 83 34.8 5 2.1 

3.3 52 21.8 122* 51.3 13 5.4 21 8.8 19 8.0 11 4.6 

 * correct answer of the item 

The data in Table 17 revealed that 72 (30.2%) of students answered item 3.2 

correctly. 161 (67.6%) of them selected the wrong options and the remaining five 

(2.1%) left the item unanswered. Among the alternatives, option C is correct and the 

remaining are distractors that were arrived at due to immature formation of the 
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continuity concept and lack of recognizing the relation among concepts. Accordingly, 

161 (67.6%) of students demonstrated such difficulty. Particularly, most students 

complicate properties of continuity with properties of derivatives of a function. Even 

those who know the correct definition of continuity in the subject of limit, misinterpret 

it when they come to a specific case. Figure 20 shows how two students 

misinterpreted continuity properties. 

 

S38 

 

 

S82  

 

Figure 20: An extract that revealed a wrong interpretation of continuity properties 

Again referring to Table 17 for item 3.3, 122 (51.3%) students answered it correctly 

and 105 (44.1%) of them answered it incorrectly. The remaining 11 (4.6%) left the 

item unanswered. While option B is the correct answer, the remaining alternatives 

are distractors arrived at due to either lack of knowledge or algebraic manipulation 

errors. As in figure 21, S06 is evidence for correct answer with correct reasoning and 

S79 and S14 are evidence for  
 

 
   and 

 

 
   misinterpretations. This suggests that 

students lack the necessary pre-calculus skill, and this, in turn, affects their 

performance in calculus. 
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S06 

 

 

S79 
 

 

S14 
 

 

Figure 21: Some difficulties observed in continuity at a point 

The main purpose of item 3.4 was to see how students treat the point of discontinuity 

of a function, both algebraically and graphically. The way to attain this purpose also 

helped to explore students‟ ability on algebraic manipulation, the existence of a limit 

at a point where the function is undefined, and how they relate a limit value and a 

function value. Table 18 is a summary of the response to item 3.4. 

On item 3.4a, the instruction was to draw the graph of 
3

152
)(

2






x

xx
xf  and to 

answer the question that follows using the information from the graph. Referring to 

Table 18, only 49 (20.5%) of them sketched it correctly. While 108 (45.4%) sketched 

an incorrect graph, 81 (34.0%) left the item unanswered. Examples of correct (S211) 

and incorrect (S14) graphs respectively from students‟ scripts are shown in figure 22.  
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S211 

 

 

 

S14 

 

 

Figure 22: Extracts that show a correct and an incorrect graph respectively 
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The major reasons that lead them to sketch incorrect graphs were considering every 

point of discontinuity as an asymptote. It is also observed that many students try to 

draw the graph without considering sufficient points that lay on the graph. Even those 

who correctly specified properties of the graph, such as domain, intercepts, and point 

of discontinuity sketched an incorrect curve due to lack of considering sufficient 

points that show the pattern.        

Table 18: Breakdown of students‟ choices to item 3.4 

 

 

Sub-items 

Frequency, N=238 

Correct Incorrect Non-respondent 

N % N % N % 

3.4a 49 20.5 108 45.4 81 34.0 

3.4b 138 58.0 63 26.4 37 15.5 

3.4c 118 49.5 85 35.7 35 14.8 

3.4d12 57 24.0 31 13.0 30 12.6 

3.4e 95 39.9 102 42.8 41 17.2 

Referring to item 3.4b, 138 (58.0%) of students said the given function is 

discontinuous at    , while 63 (26.4%) of them said it is continuous and 37 (15.5%) 

of them left the item unanswered. Even some students, who draw a smooth 

continuous line near    , answered this item as discontinuous correctly. This 

shows that these students have conflicting concept images that are dependent on 

forms of representation. Some of them said that the given function was rational, and 

a rational function has a vertical asymptote at the zero of the denominator. This is a 

good indication of how students‟ conception is unsynchronized and dominated by 

symbolic manipulation (Luneta & Makonye, 2010).  

Referring to Table 18 for item 3.4c, 118 (49.5%) students correctly answered that the 

function‟s limit exists at     but only 57 (24.0%) computed the correct limit value, 

which is 11. 31 (13%) of them have incorrect values which include  , 0, 1 and the 

                                            
 

12
 based on correct respondents of 3.4C 
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remaining 30 (12.6%) left blank. This shows that almost 75% of students face 

challenges either to compute the limit of rational functions, manipulate algebraic 

notations, or interpret indeterminate forms. Only those who said the limit exists were 

expected to compute the value and answer item 3.4d. What is observed was that 17 

(7.1%) among these who said the function has no limit in 3.4c also computed the 

value in which six (2.5%) is the correct limit value. This shows that some students 

also lack attention to what they are thinking and doing, i.e. making connection.  

With regard to 3.4e, while 95 (39.9%) of them correctly said that, the function has no 

value at    , 102 (42.8%) said the function has a value. The remaining 41 (17.2%) 

said nothing about the function value. Some of the incorrect values and the reasons 

behind these incorrect conclusions are summarized as in Table 19 (these errors are 

also observed in 3.4d). 

Table 19: Reasons behind the incorrect responses to item 3.4e 

No. Response  Frequency Reason 

 

1 

 

11 

 

24 

Ignore the restriction on the domain after 

simplification, i.e. they consider  

52
3

152 2





x

x

xx
,      

2 0 19 Most of them think that 
 

 
   

3 3 9 As in 1 above and manipulation errors, i.e. simplify

3

152 2





x

xx
 as     , (   )(   ), .  

 

 
/  4 1 4 

5 -1 3 

6   6 Think that 
 

 
   

7 Others (9, 

45, 4.5, 
 

 
 

so on) 

37 Different reasons  

Generally, students‟ result in item 3.4 is a good indication of their knowledge on 

functions. Besides, their responses indicate that how students understand points of 

discontinuity as an asymptote has something to do with their misunderstanding of the 

concept of function. It is also observed that some students confuse terms specific to 
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different ways of representing a function (graphic or algebraic). Their difficulties also 

include the belief that the existence of limit is sufficient for continuity of a function at a 

point and considering every point of discontinuity as an asymptote. 

4.1.4. Students’ conceptual knowledge of the derivatives 

Section four of the test is designed to assess students‟ knowledge of the derivative 

concept. The section consists of three closed-ended and four open-ended items. 

Accordingly, Item 4.1 is aimed to establish students‟ visualization of derivative. 

Besides, it aimed to see computational ability on procedures of the derivative. Item 

4.1 and 4.2 are also designed to see students‟ knowledge of conceptual level and 

how it goes beyond algebraic manipulation. In addition, item 4.1 demands reverse 

thinking, whereas; item 4.3 demands having a network of concepts: limit, continuity, 

and derivative. Table 20 is a summary of students‟ responses on these three items.   

Table 20: Breakdown of students‟ response to item 4.1 to 4.3 

 

 

Items 

Frequency, N=238 Non-                        

respondent A B C D E 

N % N % N % N % N % N % 

4.1 40 16.8 25 10.5 46 19.3 40 16.8 75* 31.5 12 5.0 

4.2 45 18.9 21 8.8 16 6.7 129* 54.2 18 7.6  9 3.8 

4.3 28 11.7 101* 42.4 57 23.9 33 13.9 15 6.3  4 1.7 

                                              

Referring to the data in Table 20, 75 (31.5%) of them correctly answered item 4.1. 

While 151 (63.4%) missed it, the remaining 12 (5.0%) left the item unanswered. 

Option E is the correct answer, whereas, options A to D are distractors arrived at due 

to lack of knowledge or lack of visualizing the network of concepts beyond 

computational purposes. One major difficulty observed was that misinterpretations of 

the quotient rule, i.e. almost 19% students think that since  ( )  
 ( )

 ( )
 

  ( )

  ( )
 

then  ( )    . The other difficulty is that they think if   ( )    ( ) then 

necessarily ( )   ( ). Figure 23 displays incorrect reasons for both a correct (S17) 

and incorrect (S42) answers respectively; S198 is a correct justification for the correct 

answer. 
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S17 

 

 

S42  

 

S198  

 

Figure 23: Varied form of response in item 4.1 

Item 4.2 is one of the items with a low-level of difficulty, but it is potential in the 

subject of displaying students‟ difficulty. Referring to the data in Table 20, 129 

(54.2%) of them correctly answered it. While 90 (37.8%) of them missed it, the 

remaining nine (3.8%) left the item unanswered. Option D is correct, whereas A to C 

and E are distractors arrived at due to failure to interpret the first derivative test for 

extreme values graphically. One of the observed difficulties is that even those who 

know the statements of the first derivative test to find extreme values of a function, 

they do not give attention to direction, i.e. the theorem holds true when one moves 

from left to right along the x-axis on the graph of the given function. However, 45 

(18.9%) students move from right to left. That is why the option A has a higher 

response rate than the other distractors. Even those who are good at finding the 

derivative of a function, consider the properties of the graph of the derivative function 

the same as properties of the graphs of the function. This shows that students lack 

reverse thinking. Figure 24 displays justifications given to the correct answer and an 

incorrect response respectively. 
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S198  

 

S57  

 

Figure 24: Justification given to the correct answer and an incorrect response 
respectively 

Referring to the data in Table 20 again, 101 (42.4%) of students correctly answered 

item 4.3. While 133 (55.9%) missed it, the remaining four (1.7%) left the item 

unanswered. Option B is the correct answer, whereas alternative A, C, D, and E are 

distractors arrived at due to a lack of organizing the required schema of the derivative 

concept (Maharaj, 2012). In particular, the item demands information on the one-

sided limit, being aware that a differentiable function is continuous and algebraic 

manipulation skills as well. It was observed that most students‟ difficulties originate 

from being unaware that the function is differentiable implies both the one-sided limits 

of the different-quotient exist and are equal. They write             ( )     

and stuck. Possibly that is why the option C has the highest response rate. Some 

students also have made algebraic manipulation errors. Only a few students showed 

clear and neat steps on their paper. In general, the item revealed that almost 40% of 

the students could find the derivative of the two formulas separately but lack to 

coordinate them. Figure 25 presents two students‟ scripts in which one is labelled as 

strong (S42) and the other with difficulties and categorised as weak (S69) respectively.  
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S42 

 

 

S69  

 

Figure 25: Strong and weak students‟ scripts respectively on item 4.3 

The purpose of item 4.4 is to explore how students‟ understand chain rule and their 

computational ability on rules and procedures of the derivative. The item requires a 

derivative schema, which includes a process of repeated actions and an object 

conception, which enables the bearing in mind of strings of processes as a totality. 

Table 21 summarizes the response to this item. 

           Table 21: Breakdown of students‟ response to item 4.4 

Frequency, N=238 

Correct Incorrect Non-respondent 

N % N % N % 

89 37.4 107 45.0 42 17.6 

According to the data in Table 21, 89 (37.4%) got the correct answer and this shows 

that they have the appropriate schema for the derivative of composition functions. 

However, the script from the remaining 107 (45%) who missed the answer, suggest 

that they are at action level conception of differentiating composition functions. 

Confuse rules of differentiation, like (  )      (as S54 in figure 26), interchanging 

derivative of combination function, and composition function rules (for instance, S70 

as in figure 26), were some of the observed difficulties. 

The main purpose of item 4.5 is to see how students extend their knowledge on the 

limit and derivative to solve optimization problems. On the way to attain this purpose, 

it also helps to establish students‟: concept image of infinity, knowledge of 
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coordination of processes, the nature of their limit conception, and knowledge of rules 

and procedures of the derivative. The item demands to be aware of techniques of 

differentiating rational functions, application of the first derivative test, and algebraic 

manipulation. Table 22 presents a summary of responses to items 4.5b and 4.5c (see 

Table 15 for a response rate of 4.5a). 

 

S54 

 

 

S70  

 

Figure 26: Weak students‟ script on item 4.4 

Referring to Table 22 for item 4.5b, 78 (32.7%) of them got the correct answer. While 

123 (51.7%) used incorrect methods or left it incomplete, the remaining 37 (15.5%) 

left the item unanswered. Generally, from this item the following difficulties of 

understanding are observed: 

 Begin the process of solving the problem correctly and end with an incorrect 

result. This is due to a problem with algebraic manipulation. 

 Confuse critical numbers with extreme value. 

 Fails to recognize restrictions (whereas the domain    , they consider both 

     as critical points).  
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Table 22: Breakdown of students‟ choices to item 4.5b and 4.5c 

 

 

Item 

Frequency, N=238 

Correct Incorrect Non- respondent 

N % N % N % 

4.5B 78 32.7 123 44.9 37 22.3 

4.5C 59 24.8 129 55.0 48 20.1 

Even those who answered the item correctly demonstrated some sort of deficiency in 

their conceptual knowledge. As in figure 27, S22 did not recognize the functions‟ 

domain so he computed the value of the function at both      

and then compared which is unnecessary.  

 

S22 

 

 

Figure 27: Scripts that display difficulty in item 4.5b 

Referring to Table 22 again for item 4.5c, 59 (24.8%) of the students obtained the 

right response. While 129 (55.0%) used incorrect methods or left incomplete, the 

remaining 48 (20.1%) left the item unanswered. Most of the students who got the 
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correct answer for item 4.5b procedurally done. The problem is a lack of recognizing 

the domain of the given function. Thus, the item suggests that most students‟ 

knowledge is procedural and more rigid than conceptual and flexible. Figure 28 is a 

display of an extract to demonstrate how students answer deviate from the one 

expected due to this lack of being aware of what they are doing or over-dependence 

on the procedural knowledge.   

 

S164 

 

 

Figure 28: Scripts showing the diversity of response on item 4.5c 

Item 4.6 is aimed to see how well students‟ knowledge structure is synchronized. 

Table 23 presented a summary of the response to this item. 
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Table 23: Breakdown of students‟ response to item 4.6 

 

 

Sub-items 

Frequency, N=238 

Correct Incorrect Non-respondent 

N % N % N % 

4.6a 67 28.1 136 57.1 35 14.7 

4.6b13 51 21.4 13 5.4 3 1.3 

4.6c 59 24.8 144 60.5 35 14.7 

The item demands a relational understanding of the limit, continuity, and derivative 

concepts. Besides, the information is given numerically in tabular form. This is done 

deliberately to address the issue of representation. To answer this item, a student 

has to know that a differentiable function is continuous but for a continuous 

function        ( )   ( ). Now, given that   ( )     and  ( )   , then one can 

conclude that        ( )   . Accordingly, the item requires to determine, if 

possible,        ( ), from the given information and to justify the reason why. 141 

(59.2%) students said, “Yes” but only 67 (28.1%) tried to justify why and among them 

51 (21.4%) gave correct justification and have computed the correct value. Thus, the 

item suggests that many students are over-dependent on the symbolic 

representation. Some of the observed difficulties were (see figure 29): because the 

two sides limits are not equal (e.g. S174), use the concept of slope of a straight line 

(e.g. S137). 

 

 

 

 

 

 

                                            
 

13
  Based on correct respondents of 4.6a 
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S174  

 

 

S137 

 

 

Figure 29: Scripts showing the diversity of response on item 4.6b 

With regard to item 4.6c, only 59 (24.8%) of them were aware that the required value 

is   (  ) and identified the correct value. While 144 (64.7%) tried, but in the wrong 

ways and 35 (14.7%) of them refused to answer the item. Figure 30 displays the 

correct answers (S174) and wrong answers (S22 & S106). After all students‟ 

performance in this item suggests their knowledge is dominated by the action view of 

the limit of functions (like S106) and lack of understanding definitions (like S22). 

 

S174 

 

 

 

S22 

 

 

 

S106 

 

 

Figure 30: Scripts showing the diversity of response on item 4.6c 
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Item 4.7 is designed to address three purposes: to see students‟ knowledge of 

continuity in a closed interval, how they interpret the meaning of derivative of a 

function at a point, and how they relate continuity and differentiability at a point. The 

student response to this item is summarized as in Table 24. 

Table 24: Breakdown of students‟ response to item 4.7 

 

 

Sub-items 

Frequency, N=238 

Correct Incorrect Non-respondent 

N % N % N % 

4.7A 72 30.2 130 54.6 36 15.1 

4.7B 64 26.9 133 55.9 41 17.2 

4.7C 59 24.8 132 55.4 47 19.7 

Referring to Table 24 for item 4.7a, 72 (30.2%) of them got the correct answer. While 

130 (54.6%) used incorrect methods or left incomplete, the remaining 36 (15.1%) left 

the item unanswered. For those who said the function is discontinuous, the three 

most frequently occurring reasons were- the graph has a sharp corner, the domain is 

not all real numbers, and the function has a point of discontinuity respectively.  

Referring to Table 24 for item 4.7b, 64 (26.9%) of them got the correct answer. While 

133 (55.9%) used incorrect methods or left incomplete, the remaining 41 (17.2%) left 

the item unanswered. The item requires knowing that the derivative at a point can be 

computed as the slope of a line tangent to the graph of the function at the given 

point. This value can be obtained from the limit of the difference-quotient. When the 

graph is a straight line, the limit of the difference-quotient (slope of the tangent) 

becomes the same as the value of difference-quotient (slope of secant). Students‟ 

test scripts revealed that most of them lacked a geometric interpretation of the 

derivative value.  

Referring to Table 24 for item 4.7c, 59 (24.8%) students got the correct answer. 

While 132 (55.4%) used incorrect methods or left incomplete, the remaining 47 

(19.7%) left the item unanswered. Of course, this is the highest non-response rate 

among all the items in the test. While 22, 7 and 24 students pointed out       and   

respectively as points where the function is continuous but not differentiable, the 
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remaining 6 indicated two of these three points. That most students challenge was 

confusing continuity implies differentiability than differentiability implies continuity. 

In general, students‟ performance on derivative items revealed that many students‟ 

are at action level conception. Besides, their response indicates that students lack 

reverse thinking, perform diverse algebraic manipulation errors, confusing rules of 

differentiation, and confuse critical numbers with extreme value. Most students‟ 

knowledge is procedural and ridged than conceptual and flexible. They think that a 

function is discontinuous if the graph has a sharp corner, or the domain is not all real 

numbers. Seventy percent of the students‟ failed to interpret derivative values as a 

slope of the line tangent to the graph of the given function. In particular, the following 

was the most frequently observed difficulties in dealing with the derivative concept: 

 Misinterpreting the derivative rules.  

 Overgeneralize that if   ( )    ( ) then necessarily  ( )   ( ). 

 Hard to interpret properties of a function from the graph or reverse thinking. 

 Hard to interpret results obtained from computations.    

 Failure to coordinate two processes. 

 Interchange derivative of combination and composition function rules. 

 Confuse the critical numbers with extreme value. 

 Fail to recognize restrictions of domain values. 

 Over-dependence on procedural knowledge.  

 Over-dependence on symbolic representation than another form of 

representation 

4.1.5. Conclusion  

Based on the analysis made on the data gathered through the test in the specified 

area, students approach to those conceptual issues and observed difficulties were 

summarized as follows: 

 Many students  thinking is influence by an arithmetic approach for items 

demanding an algebraic approach (for instance, in item 3.4d, 11.7% students 

evaluate the function just at     instead of simplifying the rational expression), 

whereas, in item 1.5, 11.3% students evaluate the sequence at the first three or 
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four integers. This practice of “point-by-point or a static way”  of evaluating an 

independent variable of a function is termed as “an action view of function” 

(Carlson et al., 2010) and this action view of a function than a process-based view 

is the main challenge to progress in calculus (Maharaj, 2013).  

 Most students (11.3% and 9.6% as observed in item 1.5 and 4.5a respectively), 

have an actual value image of infinity than potential. Nevertheless, the potential 

infinity conception has to do more to compute the limit at infinity. According to 

Jones (2015, p.108), “potential infinity is more in line with a process, so valuable 

to limit at infinity (       ( )), but actual infinity has more in common with an 

object”, so valuable for the infinite limit. 

 Different types of algebraic manipulation errors, which rooted from a lack of 

conceptual knowledge of pre-calculus algebra. It is common to see errors such 

as 
    

 
  ,

    

 
  , simplifying 52
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152 2





x

x

xx
   , or 

3

152 2


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x

xx
 as    

 ,(   )(   ), .  
 

 
/. The literature (For instance, Siyepu, 2015; Maharaj, 

2010; Pillay, 2008; Juter, 2006; Jordaan, 2005), has also documented that most 

students‟ gap in computational abilities or algebraic manipulation skill from pre-

calculus algebra restrict their performance in calculus concepts. According to 

Siyepu (2015, p.15), the difficulty roots from focus of prior learning, i.e. “prior 

learning subject to surface learning of familiar exercises.” 

 Besides, some students lack proper handling of symbolic notation (for instance, 

         , or        
 

 
  ), which display their knowledge is based on 

symbolic manipulations that do not give attention to imbedded concepts.   

 Thirty-five percent of participants demonstrated misinterpretation of the 

indeterminate form (Evaluate      , 
 

 
  , and 

 

 
  ). This agrees with the 

finding in the literature (Elia et al., 2009; Jaffar & Dindyal, 2011; Jordaan, 2005; 

Moru, 2006; Nair, 2010). The literature has found that most students are not 

aware of when to use these terms. According to Jaffar and Dindyal (2011), these 

difficulties rooted in the introduction of operations on real numbers. These 

misinterpretations together action views of the function are the main sources of 
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difficulties, in particular, to the limit of rational functions. Because, as students‟ 

test scripts revealed, after substitution when they get in indeterminate form 
 

 
, they 

conclude that, either the limit is zero or the limit does not exist.  

 Students also face challenges due to linguistic ambiguity in the contextual 

meaning of terms and their common language use: inconsistent concept image 

due to confusing terms like bounded and convergent, convergent and has a limit, 

bounded and monotonic, convergent or has a limit and monotonic.  

 As noted from the students‟ qualitative description, besides the linguistic issue, 

misinterpretation of the monotonic-convergence theorem has its own share of 

blame the formation of these misconceptions. According to this theorem, while a 

sequence which is both monotonic and bounded, is necessarily convergent, the 

converse may not be true. What was observed is that most students interpret the 

converse as true. Because of this, many of them conclude that only monotonic 

and bounded sequences are convergent. It is also observed that 22% of 

participants think (as in item 1.3D) a constant sequence is not bounded; a 

constant sequence is not monotonic and hence not convergent. This difficulty is 

also observed in the literature, but the difference is the percentage, i.e. 22% is too 

much as compared to the figures in the literature. It has also been noted that 

those who interiorized actions into processes and able to coordinate processes 

have less of these linguistics concerning difficulties. Within the linguistic issue in 

the limit of functions: a limit is a boundary, a limit is never attainable, and a limit is 

approximation generalization was also observed. In particular, a limit is a 

boundary, and a limit does not exist necessarily imply that the function is 

unbounded were noticed from students‟ qualitative description.  

 Most students have no coherence and consistency in their work and have 

conflicting concept images about a concept. They have a limited concept image of 

the limit of functions, as a result, their concept image of limit fails in to either all 

about an infinite process and nothing to do with finite value, or limit is all about a 

finite value and nothing to do with an infinite process. Only 28.2% of participants 
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recognize the dual nature of the limit, i.e. limit involves an infinite process and has 

a finite value, provided it exists.  

 Most students overgeneralize that the limit at a point is a substitution. If 

   
   

 ( ) does not exist, then the graph of   should have a vertical asymptote 

at    . A function will have no limit only if when the two-side limits have different 

values, the existence of the limit is sufficient for continuity of a function at a point, 

and every point of discontinuity is an asymptote. Most students‟ knowledge is 

limited and seems fair only for continuous functions. Most of these 

overgeneralizations rooted in the introduction of the limit (Tall, 1993). When the 

introduction of the limit was dominated by continuous functions, students, in turn, 

develop that limit is nothing but the same as the function‟s value at the limit point.  

 Most students can compute a limit or differentiate a function, but they face a 

challenge to attach a meaning to the calculated value. For instance, in item 4.5a, 

only 5% of participants interpret the result of the computation of limit. Of course, 

some students also fail to demonstrate correct symbolic manipulation and 

computations. Some of the observed difficulties are misinterpretation of the limit 

rules and indeterminate forms, confusing properties of continuity with properties of 

derivatives, and confusing continuity and differentiability relationship. Besides, 

misinterpretation of the quotient rule for the derivative, over generalize like 

if   ( )    ( ) then necessarily  ( )   ( ), and low response rate for an item 

demanding  interpretation of properties of a function from the graph or reverse 

thinking were observed. Moreover, confuse critical number with extreme value, 

unconscious about restrictions on domain values and low response rate for 

application problems and items in non-algebraic representation were observed. 

Almost certainly, students lack consistency, flexibility, and framework to solve a 

problem. Only a few participants demonstrated consistent beyond an action level 

conception and coordination of processes on the limit, continuity, and the 

derivative.   

 Most students lack knowledge of representing function using different methods, 

lack knowledge of algebraic manipulation and their mental image of functions is 
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restricted. Most students‟ knowledge is dominated by the symbolic world. Even for 

the same concept represented graphically and algebraically, the response is 

different in favour of the algebraic one. They have faced more challenges due to 

the lack of a problem-solving framework, to convert a given problem into a 

mathematical expression and solve. Thus, students‟ focus can be generalized as 

over dependence on procedural knowledge and over dependence on symbolic 

representation than another form of representation. 

 Students seem more convinced procedurally explaining their ideas and giving 

particular examples than explaining quantitatively and justifying reasons. This 

may be that they are unfamiliar with such type of reasoning in their exercise and 

assessment. Even those who had some conceptual knowledge could lack a 

making connection between concepts. Students‟ knowledge is procedural and 

ridged than conceptual and flexible. Rational functions, pricewise-defined 

functions, and composition functions are more areas of attention. Students got the 

correct answer for a wrong reason. This shows that some of these difficulties may 

be persistent to overcome.   

In general, the data obtained revealed that most students‟ level of conceptual 

knowledge is less than expected and their mean score on the test is below 50% of 

the total. Even those, who are classified as average in their performance, are good at 

symbolic manipulation and their knowledge is procedure dominated. Some students, 

who are classified as active, these are not more than 3.8% of all the participants, 

demonstrate: large example space, express continuity in the subject of limit, 

consistent concept image (including multiple representations), interiorize actions into 

processes, construct coordinated processes; and encapsulate processes into 

objects, have a problem-solving framework and a coherent framework of reasoning. 

These observed difficulties are categorised into themes as follows: a static view of 

the dynamic process, lack of describing definitions and relationship of terms, 

overgeneralization and inconsistent cognitive structure, over-dependence on 

procedural learning, lack of making a logical connection between conceptual aspects, 

a lack of a coherent and a flexible way of reasoning, and lack of procedural fluency 

and wrong interpretation of symbolic notations. Ways of thinking and approaches that 
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caused these difficulties are also synthesized as: arithmetic thinking rather than 

algebraic, linguistic ambiguity, compartmentalized learning, a dependence on 

concept image than concept definition, obtain correct answers for wrong reasons, 

focuses only on the algebraic form of representation, and focuses on lower-level 

cognitive demanding exercises.  

4.2. A Framework to Overcome Difficulties 

This section encompasses the attempt made to answer the third research question. 

The components of an intervention model of learning calculus concepts that could be 

developed to enhance students‟ conceptual knowledge in calculus were extracted 

from the result of the literature in chapter two and the diagnostic assessment results 

in the preceding sections of this chapter.  

The synthesis from literature and the diagnostic assessment revealed that students in 

the study area have difficulties that are not far from those in the literature with regard 

to analytical themes. In general, triangulated themes of difficulties and the approach 

or conceptual issues that are causes of these synthesized difficulties are summarized 

as in Table 25.  
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Table 25: Observed difficulties and their causes  

 Synthesized difficulties  Causes of these difficulties 

 a static view of the dynamic process  

 lack of describing definitions and 

relationship of terms  

 overgeneralization and inconsistent 

cognitive structure  

 over-dependence on procedural 

learning  

 lack of making a logical connection 

between conceptual  aspects  

 lack of a coherent framework of 

reasoning  

 lack of computational ability 

 arithmetic thinking rather  than 

algebraic  

 linguistic ambiguity 

 compartmentalized and surface 

learning 

 dependence on concept image, 

rather than concept  definition  

 obtain the correct answer for the 

wrong reasons  

 focus only on the algebraic form of 

representation  

 focus on lower-level cognitive 

demanding  exercises 

4.2.1. Basic constructs of conceptual knowledge that should be addressed 

It is true that teaching-learning occurs in a multifaceted system of interaction. Many 

educators use the triangle of interaction to describe a particular classroom culture. In 

this interaction, the students, the teacher, and the subject matter are the players and 

the classroom environment is the play-station. In this interaction, the traditional 

teaching-learning process of calculus is in general characterized as: 

 The subject matter is just action on objects, algebraic manipulation (less on a 

graph), quantitative and objective description, dominated by familiar and routine 

type exercises. 

 The teacher emphasizes how much knowledge has been acquired, focuses on 

the quantitative part of doing exercise, symbolic manipulations according to 

given rules, and first skill then concepts approaches. 

 The classroom environment focuses on teachers‟ idea and whole-class lecture; 

as a result, students focus on memorizing rules and procedures, spot success 

and satisfaction, stack for items that are different from the textbook and 
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teachers made items (Hähkiöniemi, 2006; Aspinwall & Miller, 2001; Ferrini-

Mundy & Gaudard, 1992).  

The output of this process is characterized as rule-based thinking and procedural 

knowledge. Students learn the symbolic manipulations, but lack a sound conceptual 

knowledge of calculus (Bezuidenhout, 2001; Kinley, 2016; Lauritzen, 2012; Abbey, 

2008). Figure 31 is pictorial design of this current practice. Now, the identified 

difficulties have occurred due to the limitation of this model, thus all the parts of the 

interaction are potentials for intervention.  

 

Figure 31: Model of traditional calculus classroom components 

Nature and role of classroom tasks 

The role of tasks presented by classroom teachers, textbooks, and reference books 

has an important influence on the resulting nature of students‟ knowledge (Aspinwall 

& Shaw, 2002; Berry & Nyman, 2003, Roble, 2017). Conventional teachers made 

exercises, test items, and textbook items are mostly lower-level (action level) 

cognitive demanding. In particular, for calculus, the literature revealed that current 

assessment tasks are procedural demanding than conceptual knowledge demanding 
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(ibid). Teachers, students, and the textbook approaches contribute a share to the 

observed difficulties as their focus are largely on the manipulation of symbolic aspect 

on routine exercises as compared to problems or reasoning level exercises (Breen & 

O'Shea, 2010; Cangelosi, 2003; Keri et al., 2010; Kinely, 2016). Teachers in the 

usual approach do not prepare multi-step problems or activities that enhance such a 

conceptual knowledge and preparing such kind of activities are opportunities for 

intervention (Bransford et at., 2000; Bezuidenhout, 2001; Hiebert et al., 2000). In 

particular, if tasks are designed to meet the constructs of conceptual knowledge, it 

will be appropriate to overcome the identified difficulties. Now, if tasks have to be 

designed in such ways that incorporate the components of conceptual knowledge 

identified as above, the next question is what should the teachers‟ role be? 

Factors related to the teacher’s role 

Mostly teachers‟ knowledge can be categorised as content-knowledge (the content 

that the teacher knows about a specific subject) and pedagogical knowledge (the 

knowledge of teachers about teaching). With regard to classroom action, however, 

there is a very important third type. Shulman (1986 as cited in Bransford et al., 2000) 

describes the three categories of teachers‟ knowledge as follows: subject matter 

content knowledge, pedagogical content knowledge, and curricular knowledge which 

are intertwined in practice. According to Shulman, pedagogical content knowledge 

comprises- the ability to present a specific concept in an uncomplicated approach 

and the awareness about students‟ hypothetical concept image of a specific concept. 

If those supposed concept images are difficulties, teachers need an understanding of 

an alternative approach to enhance students‟ learning. Specifically, this pedagogical 

content knowledge of teachers is influential in calculus. Currently, there is also a 

fourth component of these teachers‟ knowledge known as educational-technological 

knowledge (Koehler, Mishra, Kereluik, Shin, Graham, 2014).  

Teachers with an integrated knowledge of these components of teachers‟ knowledge 

have the tendency to arrange their teaching platform and learning activities, so that 

their students initiate and cooperate to focus on the conceptual and embedded 

aspects of learning mathematics. From a pedagogical content knowledge 
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perspective, the responsibility of the teacher is to be aware of students‟ difficulties, 

and to think of how to derive students differently towards conceptual knowledge 

approach. From the subject matter-content knowledge perspective, the teacher is 

responsible to established tasks that are genuine for students to reflect and 

communicate about the content they are learning including selecting and sequencing 

those tasks. From a curricular knowledge perspective, she/he has to know the 

prerequisites of the current topic, integration of topics within a subject, integration 

among subjects and real-life. From an educational technology perspective, if it is 

available, (s)he has to know how to handle the technology, how to integrate the topic 

to the technology and how to introduce it to the students without adding extra 

cognitive load to them.  

Factors related to nature of the classroom environment 

One of the constructs of conceptual knowledge is to reflect and communicate. To 

make a reflection and communication effect, the classroom culture should be the 

social constructive in nature. In particular, the classroom should be student-centred 

so that their preconception could be revealed and their voice is heard. They have to 

think, pair and share their thinking so that they convince themselves, convince friends 

and their concept image should be revealed and to be adjusted if necessary.  

From all these parts of classroom interaction, observed difficulties, and causes of 

difficulties as identified in the previous sub-study, the following components of 

conceptual knowledge were significant to overcome observed difficulties and 

enhance students‟ conceptual knowledge. 

4.2.1.1. Dual nature of concept development 

Some of the difficulties in learning calculus emanate from a lack of mental structure 

developed to the required cognitive level of function and limit (Brijlall & Ndlovu, 2013; 

Çetin, 2009; Luneta & Makonye, 2010; Maharaj, 2013; Siyepu, 2015). The empirical 

study also revealed that most difficulties rooted due to the action view of functions, 

infinity, and limit. Thus, supporting the process-object development in general and 

providing students with activities that give them exposure to the interiorization of 

actions into process, coordination of processes, and the encapsulation of a process 
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into an object would be valuable (Hähkiöniemi, 2006; Maharaj, 2010). Interiorization, 

encapsulation, and coordination are among the constructs in reflective abstraction 

used to describe how process and object-level conception are constructed and 

formulate APOS theory (Dubnisky, 2010). The detail of APOS theory is given in 

section 2.2.3.1. Thus, one room for intervention is to prepare activities that demand 

cognitive gymnastic on the duality of concepts.  

4.2.1.2. Connection between forms of representations 

Most researchers mentioned that lack of relationships among concepts and making 

logical connections between conceptual aspects and representations occurs due to 

“compartmentalized learning” and set as one of the major blocks for the construction 

of conceptual knowledge (Berry & Nyman, 2003; Kinely, 2016; Lauritzen, 2012). 

Hähkiöniemi (2006), describes, “Representation” as a tool to think of something. 

Representations are not only tools to think with but also tools for expressing our 

thoughts. Thus, a representation of a certain concept consists of an invisible internal 

system (concept image), and of a visible external system (a visual, verbal or symbolic 

reflection of the concept image) (Goldin & Shteingold, 2001). The internal 

representation of a concept is part of students‟ cognitive structure, maybe a single or 

several computing parts, and serves to interact with the external world and the 

external system is symbolic and serves to facilitate the interaction (Dreyfus, 2002).  

An individual‟s representation about a concept is said to be rich if it includes various 

related features of the concept so that she/he demonstrates flexibility in solving a 

problem, otherwise it is said to be poor (Dreyfus, 2002). Such a rich mental 

representation, i.e. able to recognize or describing the same concept or idea using 

different forms of representation is necessary to be successful in mathematics (Tall & 

Mejia-Ramos, 2004).   

Describing a concept using multiple forms of representations have been strongly 

connected with learning advanced concepts (Herbert, 2013), and more particularly, 

with the formation of conceptual knowledge in calculus that should be adaptable to a 

different context of a problem (Aspinwall & Shaw, 2002). Approaching a concept in 

multiple ways (visually, numerically, or algebraically) and convert easily from one 
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form of representation to another is one aspect of having a conceptual knowledge 

(Lauritzen, 2012; Aspinwall & Miller, 2001; Zollman, 2014). Hähkiöniemi (2006) 

expresses that while procedural knowledge often stands for the ability to use 

representations; conceptual knowledge is described by the flexibility among 

representations.  

One of the critics on the traditional calculus teaching-learning is that the practice is 

more focused on symbolic manipulations according to given rules than construct 

mathematical knowledge by solving problems and investigating patterns (Kinely, 

2016; Schoenfeld, 1992). The advantage of being familiar with multiple forms of 

representation of a concept is that students turn out to be confident with a variety of 

algebraic, graph, table, numeric, and word descriptions of data.  

4.2.1.3. Solve reasoning level problems 

As calculus is a prerequisite to learn other concepts, the quality of students benefit 

from this course depends on their ability to solve problems beyond the calculus 

classroom. Conceptual knowledge, on the other hand, is characterized by students‟ 

ability to make logical connections between concepts, concepts, and procedures, 

flexibly solve problems given in various representations (Rittle-Johnson et al., 2001). 

Thus, conceptual knowledge and problem-solving are inseparable components of the 

learning processes. Problem-solving can be used as a tool to enhance students‟ level 

of conceptual knowledge and conceptual knowledge, in return, is a tool to be 

successful in problem-solving (Tall et al., 2000).  

To consider problem-solving ability as a construct of conceptual knowledge, the 

context in which the term “problem” has defined is very important. An item is said to 

be a problem if it is non-routine in the sense that it is different from exercises in the 

textbook or used in the classroom by the teachers. It should be conceptual and 

subjective in nature rather than procedural and objective, open-ended, and 

qualitative rather than closed-ended and quantitative.  

Incorporation of problem-solving in calculus teaching-learning assist students to 

move from routine exercises that most frequently focus on algorithmic skills, to non-

routine exercises or problems that encourage conceptual thinking and demonstration 
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of underpinning concepts and their connection in different ways. Thus, students‟ 

ability that they demonstrate- in a new situation beyond classroom exercises, in 

making connections among concepts in a variety of representations, and flexibility 

that lets them adapt adequately concepts, via problem-solving are basic constructs to 

attain conceptual knowledge.    

Over-dependence on procedural learning and lack of recalling previous knowledge 

are the other aspects of difficulties. However, these difficulties are supposed to 

overcome through a shift of attention to reasoning level problems (Cangelosi, 2003) 

or non-routine exercises. Set of such reasoning level activities (include realistic 

problems combining more than one concept at a time) supposed to be valuable.  

4.2.1.4. Mathematical thinking practice 

Mathematical thinking is a thinking practice in learning mathematics developed based 

on the belief that students at all levels of schooling should be pass-through a 

situation that is similar to that of mathematicians are involved (Cuoco, Goldenberg & 

Mark, 1996). Cuoco et al, (1996 p.376) further mentioned, “The goal is not to train all 

students as a mathematician rather, to assist students to be trained and if possible 

adapt, the problem-solving approach and techniques that mathematicians used.” 

For Stacey (2006), mathematical thought often proceeds via two pair of processes: 

specializing and generalizing; conjecturing and convincing. On the other hand, based 

on an exhaustive literature exploration, Breen and O‟Shea (2010) suggested five 

strands of mathematical thinking. These are conjecturing, reasoning and proving, 

abstraction, generalization, and specialization. 

According to Stacey‟s investigation, the four aspects of mathematical thinking are 

defined as follows:  specializing - trying special cases of a given condition, glance at 

specific examples; generalizing - searching for relationships and patterns; 

conjecturing - predicting relationships and results; and convincing - finding and 

communicating reasons why something is true. 

Specializing is the process of learning through particular examples of a more general 

situation (Mason et al., 2010). Generalizing, on the other hand, is the process of 
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extending a pattern from specific and a few cases to wide and vague cases (ibid). 

Thus, specializing can be considered as the foundation of generalization. Organizing 

the model that has been figured yields a conjecture. Additional specializing can 

maintain or disproof the created model or pattern. The process of validating the 

conjecture requires not only added generalization but also redirects in attention from 

supposition what might hold true, to looking why might it supposed to be true (ibid, p. 

9). 

While specialization refers to working on a number of specific illustrations which are 

particular instances of a broad situation in the concept to be taught (Mason et al., 

2010), conjecturing facilitate the learning by anticipating relationships among 

elements of these instances (Hashemi, et al., 2015). However, these two aspects are 

not an end, rather they are a means to an end, which is the generalization drawn 

about the learned concept. That is why Hashemi et al. (2015, p. 233) wrote, 

“Specialization and conjecturing are pre-processing of generalization.” Mason et al. 

(2010) also mentioned that successful specialization followed by constructive 

conjecturing facilitates generalization. They further mentioned that while 

“generalizations are the life-blood of mathematics” (p. 8), the whole development is 

“the essence of mathematical thinking” (p. 21). 

Most students‟ difficulties in calculus emanate from a lack of generalization or making 

overgeneralization (Tall, 2002). For instance, the most common difficulty in calculus 

is that limit at a point is the value of the function at the limit point, providing the 

function is defined at that point, otherwise limit does not exist (Çiten, 2009). Thus, 

learning strategies‟ for calculus that aimed to improve generalization was suggested 

as being helpful (Tall, 2002; Mason et al., 2010; Hashemi et al., 2015).  

The other important aspect of mathematical thinking, according to Mason et al. 

(2010) is justifying and convincing, which corresponds to what Breen and O‟Shea 

(2010), called reasoning and proving. This aspect of mathematical thinking 

corresponds to the task of “finding and communicating reasons why something is 

true.” It is conceptual than procedural, deeper than the surface in that it requires one 

to think beyond ones‟ self-perspective. Reasoning and proving should pass through 

the three levels of convincing: convince self, convince a friend, and convince an 
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enemy (Mason et al., 2010). To attain this kind of thinking level, the teaching-learning 

environment should incorporate activities that lead to such practice including 

“questioning, challenging, and reflecting with ample space and time” (Mason et al., 

2010, p.144). 

4.2.1.5. Reflection and communication via cooperative learning  

The conventional teaching-learning is one-way communication and students have no 

chance to notice conflicting concept images. They even ignore the contextual 

meaning of a term, which is different from the common language use as they work on 

their concept images that may be different from the required concept definition (Juter, 

2006). Thus, giving students a chance to communicate with their classmates in some 

sort of cooperative learning and allow them to reflect on reasoning level problems 

(Cangelosi, 2003), were supposed to be valuable to overcome these difficulties.  

While reflection facilitates the cognitive aspect, communication will facilitate the 

affective aspect of learning (Hiebert et al., 2000). Experience revealed student‟s 

communication in a small mixed ability group trouble their concept images. This is the 

starting point for progression. Thus, let students think of their conflicting concept 

images, give them exposure to comment most commonly occurring algebraic errors, 

misinterpretation of symbolic notations, and letting them comment on their own work. 

This supposed to be valuable to adjust conflicting concept images and overcome 

algebraic manipulation errors that they form intentionally or unintentionally.  

In addition, the wrong answers for wrong reasons and wrong answers with high 

confidence often observed on students‟ performance. One way to avoid this is 

through students‟ exposure to thinking about their own thinking or “meta-cognition” 

(Schoenfeld, 1992). It is taught that through students‟ group work and allow reflection 

and reaction to their own answers or to others wrong answers and wrong workings, 

negotiate meaning to technical words and symbols, reason and justify to major steps 

in problem-solving are good scaffolding tool to overcome difficulties (Keri et al., 

2010). Thus, designing activities that possess these constructs and implementing it in 

a social constructivism-learning environment was suggested. On the other hand, lack 

of computational ability that emanates from arithmetic thinking while algebraic 
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thinking is demand was also observed. One tool to avoid this is using an inquiry 

approach (analysis of errors) and providing feedback accordingly.  

4.2.1.6. Reconstructive generalization vis-à-vis cognitive conflict strategies 

Overgeneralization occurs due to surface learning and the way concepts are 

introduced. This is one of the hidden difficulties of students because students or 

teachers in the usual ways of assessment do not notice it. Thus, most researchers 

suggest a qualitative analysis of students‟ answers and reasoning to analyse the true 

nature of students‟ knowledge. In particular, the literature (For instance, Luneta & 

Makonye, 2010) documented that students‟ performance indicates correct answers 

for wrong reasons and wrong answer with high confidence. This is noticed in the 

empirical study too.  

As discussed in the theoretical part of the study, different types of improvement may 

take place in the cognitive structure of students‟ when they develop more experience 

about a concept. Such mental improvements are not always smooth, and some of 

them may cause cognitive conflict. Cognitive equilibrium is a process of resolving 

contradictions in once mental structure (Glasersfeld, 1995). Learning occurs when 

such conflicts are resolved through some sort of strategy. One of such a strategy is 

concept change or reconstructive strategy (Tall, 1993; Tall, 2002; Berry & Nyman, 

2003). 

A conceptual change strategy is based on the constructivist perspective of learning 

that learners have an active role in building and restructuring their cognitive structure 

and error and alternative conceptions are expected as part of the construction 

process. Thus, through activities allowing students to test special cases, identify 

examples and non-examples that contradict their overgeneralization and look for a 

pattern is a potential strategy to overcome these difficulties or to make an adjustment 

on their concept images.  

In general, if the above-mentioned components are integrated into the present 

practice, it will be what it should have to be and allows students to overcome 

observed difficulties and enhance their conceptual knowledge. In particular, activities 

that demand “proceptual thinking” should be prepared. Additionally, students have to 
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be assisted to make a connection between representations, provide qualitative and 

subjective descriptions, and develop skills and concepts parallel. Moreover, they 

have to focus on- how to use their knowledge (quality of knowledge), conceptual 

learning, and their own ideas. Further, they should have to be familiar with open 

problem-solving practices, exposed to unfamiliar and non-routine type problems. This 

all together gives students the opportunity to gain the batter level of conceptual 

knowledge and hence conceptual knowledge that can be extended beyond success 

in teachers made test items. 

4.2.2. The proposed intervention model 

Students‟ difficulties and the causes of these difficulties can be expressed in terms of 

an integrated theoretical background than a single theory. Thus, the overcoming 

framework is also best expressed in terms of a combined theoretical framework than 

a single theory. Accordingly, the constructs to overcome students‟ difficulties can be 

picked from different theoretical frameworks, and a combined intervention model 

could be designed. In particular, observed difficulties, causes of these difficulties and 

the identified components to overcome the difficulties are summarized as in Table 26.  
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Table 26: Observed difficulties, causes of these difficulties, and identified 
components to overcome the difficulties 

 

Synthesized difficulties 

Causes of these 

difficulties 

Components for an 

intervention model 

 a static view of the 

dynamic process  

 Lack of describing 

definitions & relationship 

of terms  

 Over-generalization and 

inconsistent cognitive 

structure  

 Over depend on 

procedural learning  

 Lack of making a logical 

connection between 

conceptual  aspects  

 Lack of a coherent 

framework of reasoning  

 Lack of computational 

ability  

 Arithmetic thinking than 

algebraic  

 Linguistic ambiguity 

 Compartmentalized and 

surface learning 

 Dependence on 

concept image than 

concept  definition  

 Obtain correct answers 

for the wrong reasons  

 Focus only on the 

algebraic form of 

representation  

 Focus on lower-level 

cognitive demanding  

exercises  

 Mathematical thinking 

practice: conjecturing and 

convincing  

 Reflection and 

communication via think-

pair-share technique  

 Error analysis and 

reconstructive 

generalization vis-à-vis 

cognitive conflict strategies  

 Duality of concepts  

 Reasoning level and real-life  

problems  

 Widened their thinking 

through counterexamples      

and items that demand to 

conjecturing and convincing  

 

Finally, to overcome students‟ difficulties in calculus, the study proposed an 

intervention that infuses a set of activities (hereafter called activity sheet) based on 

the identified components and adaption of the classroom environment accordingly. 

The infusion of activities (both for the class presentation and assessment) gives an 

opportunity to students, so that, they get exposure to: dual nature (proceptual) of 

thinking, make connections between representations, qualitative and subjective 

description as part of response to items, focus on quality of knowledge and 

conceptual learning, open problem-solving, making skill and concept parallel, and 

exposure to unfamiliar and non-routine type problems. 
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On the other hand, the classroom environment should be reform-oriented and 

characterized by: student-centred, effective communication, constructive approach, 

involving real-life, and reasoning level problems, students are allowed to explore and 

verbalize their mathematical ideas. Figure 32 illustrates the suggested intervention 

model.  

 

Figure 32: The intervention model 

4.2.3. Intervention based on the proposed model 

Based on the proposed model, an intervention was designed. The intervention 

includes arranging the teaching-learning environment according to the proposed 

criteria and working on the set of activities that aim to encourage attaining the 

constructs of conceptual knowledge specified in the proposed model and to lift 

students‟ knowledge to a higher-level aspect of mathematical thinking, which in turn 

reduce observed difficulties and enhance conceptual knowledge. The term “activity” 

refers to an open-ended or closed-ended item of classrooms, homework and 

formative assessment tasks that the students are asked to work on either on their 
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own or in a group at the end of teachers‟ conventional introduction of each concept. 

The activities are compiled together and quoted as “activity sheet”.  

The activities are designed for the concepts: limit of sequences, the limit of functions, 

continuity, and derivatives. Most of the activities were selected from previous studies 

instruments, national exams, books, and the researcher designed some of them. Of 

course, even for those taken from the literature, all of them were modified to fit the 

intended purpose. The activities were pilot tested and some modifications were made 

based on the feedback collected. Finally, 30 items in which eight from the limit of 

sequences, 12 from the limit of functions and continuity, and 10 from the derivatives 

were selected (see appendix H).  

The purpose of the activities is addressing observed difficulties, so that, students 

enhance their conceptual knowledge. The activities were collected based on the 

required constructs of conceptual knowledge and content of the grade12 

mathematics syllabi. With regard to the type of items, the activities consist of both 

open-ended and closed-ended. Nevertheless, the closed-ended items also ask not 

only selecting the correct answer, but justification why a certain alternative is 

selected. The items also include scripts from students‟ work. This is deliberately done 

to give students an opportunity on how to “analyse errors” and think of their own 

thinking (see section 3.4 for the detail of the intervention activities). 

4.3. Possible Effect of the Proposed Model  

The section is aimed to answer the fourth research question that states:  

Is there a significant difference in the students‟ conceptual knowledge of 

calculus concepts after learning with the proposed model?  

The experimental design tried to examine the cause-effect relationship between the 

use of the model and students‟ test scores on the concept test. Explicitly, the 

equation has the following null hypothesis:  

I. Ho: There is no significant difference between the mean scores of students in 

the experimental group and the control group during the pre-test. 

II. Ho: There is no significant difference between the mean scores of students in 

the experimental group and the control group during the post-test. 
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While the students‟ exposure to the proposed intervention model is the cause, the 

students' scores on the test is the effect. The proposed analysis technique was an 

independent t-test using SPSS version 25. But this technique has four assumptions 

(Field, 2009). Data distribution (it should be normal), measurement scale (at least 

interval level), homogeneity of variance and scores are independent. Accordingly, all 

the assumptions are assured based on the following facts: 

1. The sample size is big enough to tolerate the violation of normality (Field, 

2009). 

2. Data is measured at a ratio scale. 

3. The Levine's test (see Tables 27 & 28), assured that the variance has no 

significant difference hence the distribution is homogeneous. 

4. The scores are independent as the two groups are different.  

4.3.1. Comparison of mean scores  

To determine the level of students‟ knowledge in the control group, and the 

experimental group before the intervention, a statistical test was computed for the 

pre-test results. The statistical test computed is a t-test analysis for an independent 

group using SPSS version 25 and it indicates that the 53 in the experimental group 

have a mean score of 32.19 and the 55 in the control group have a mean of 31.29. 

The two-tailed significance test indicates a t = 0.502 with 106 degrees of freedom, 

resulting in a two-tailed p- value of 0 .617. This p -value is not statistically significant 

because it is greater than alpha = .05. The result indicated that there was no 

statistically significant difference between the control group and the experimental 

group with respect to the pre-test scores. Accordingly, the null hypothesis is 

accepted, and the researcher concluded that the two groups were comparable before 

the intervention. See Table 27 for the display from SPSS version 25.  
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Table 27: Independent t-test statistics for pre-test result 

 Score 

Equal 

variances 

assumed 

Equal 

variances not 

assumed 

Levene's Test 

for Equality of 

Variances 

F 3.498  

Sig. .064  

 

t-test for 

Equality of 

Means 

t .502 .504 

df 106 104.439 

Sig. (2-tailed) .617 .616 

Mean Difference .898 .898 

Std. Error Difference 1.788 1.782 

95% Confidence 

Interval of the 

Difference 

Lower -2.647  -2.637  

Upper 4.442 4.432 

During the post-test, the 52 in the experimental group have a mean score of 28.10 

with a standard deviation of 9.680 and the 53 in the control group have a mean of 

20.26 with a standard deviation of 9.451. It has to be noted that three missed values 

were obtained. The two-tailed significance test indicates a t = 4.195 with 103 degrees 

of freedom, resulting in a two-tailed p -value of 0 .000. This p- value is statistically 

significant because it is less than alpha = .05 (see Table 2 for the display from SPSS 

version 25). Hence, the null hypothesis is rejected. The use of the proposed model 

had a significant effect on students‟ performances on conceptual items. Thus, it was 

found that those students in the experimental group had developed a more 

conceptual knowledge of calculus concepts as a result of the intervention.  
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Table 28: Independent t-test statistics for the post-test result 

 Score 

Equal 

variances 

assumed 

Equal 

variances not 

assumed 

Levene's Test 

for Equality of 

Variances 

F .382  

Sig. .538  

 

t-test for 

Equality of 

Means 

t 4.195 4.194 

df 103 102.808 

Sig. (2-tailed) .000 .000 

Mean Difference 7.832 7.832 

Std. Error Difference 1.867 1.867 

95% Confidence 

Interval of the 

Difference 

Lower 4.129 4.128 

Upper 11.535 11.536 

Effect size 

In quantitative research, after testing a hypothesis, it is advisable to support the result 

by the magnitude of the effect (Green & Salkind, 2005). Accordingly, the Effect size 

was determined using the formula:   

   √
     

     
  Where    and    are number of participants in the two groups (Green & 

Salkind, 2005). For         (as in the data in Table 28 from the SPSS),       

and      ,        √
     

     
     . This value indicates the effect is influential 

(Cohen et al., 2007). Nevertheless, is suggested to examine prior relevant research 

magnitude obtained on similar types of intervention so that current findings can be 

placed into an appropriate context about its practical value. Accordingly, on a study 

aimed to increase students‟ achievement in a calculus course, Pilgrim (2010) 

administered an intervention. The result was analysed into two different categories 

and found an effect size of 0.909 and 0.776 respectively. On the other hand, 
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Fayowski (2005) in a study aimed to evaluate the effect of supplementary 

instructional programmes in first-year calculus found an effect size of 0.48. Thus, the 

comparison shows that this effect has practical significance.  

4.3.2. Text analysis   

The purpose of this section is to present the possible effects of the proposed 

intervention model on students‟ conceptual knowledge of calculus concepts and to 

examine whether students overcome their difficulties in a calculus. Since the 

quantitative analysis is necessary but not sufficient to conclude whether students 

overcome their difficulties, ways of thinking, justifications, and steps were analysed 

as per the considered concepts (the limit of sequences, the limit of functions, 

continuity, and derivative) qualitatively. The analysis is a form of text analysis via 

frequency coding and pattern analysis of the items to see whether the statistical 

significance has an implication for practical significance. It has to be noted that a 

result is statistical significance (not by chance) that does not mean that it has 

practical or educational significance (Fraenkel & Wallen, 2009). Actually, the practical 

significance is supported by the effect size. The attempt here is to make things more 

tangible by looking at the detailed effect of the students‟ test script. The following 

sections present the respective differences in the reasoning and procedures used to 

answer the given items in the two groups.  

4.3.2.1. Students’ conceptual knowledge of the limit of sequences 

Among the items designed to assess students‟ knowledge of the limit of sequences, 

the average difficulty level of the items in the experimental group is 64.23% and that 

of the control group is 45.28%. The experimental group‟s mean score (6.98), is 

greater than that of the control group (5.13). Table 29 presents the first four items in 

the limit of a sequence and the compared results of the two groups.  
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Table 29: Breakdown of students‟ choices to item 1 to 4  

 

Item 

A B C D E NR14 

N % N % N % N % N % N % 

Exp. 

(N=52) 

1 5 9.6 2 3.8 42* 80.8 2 3.8 1 1.9 0 0 

2 3 5.8 1 2 41* 78.8 5 9.6 2 3.8 0 0 

3   9 17.3 27* 51.9 2 3.8 8 15.4 6 11.5 0 0 

4  1   1.9 41* 78.8 6 11.5 2 3.8 1 1.9 1 1.9 

Con. 

(N=53) 

1 9 17 4 7.5 34* 64.1 3 5.7 2 3.8 1 1.9 

2 3 5.7 2 3.8 28* 52.8 6 11.3 12 22.6 2 3.8 

3 19 35.9 20* 37.7 7 13.2 6 11.3 0 0 1 1.9 

4  7 13.2 25* 47.1 2 3.8 16 30.2 0 0 3  5.7 

 * correct answer of the item 

The data in Table 29, together with students‟ test script revealed that besides the 

difference in the correct answer the experimental group has developed better 

reasoning and justification habits. For instance, in item one in the experimental 

group, while 30 students provided reasons for their choice in which only 6 are wrong, 

23 of them in the control group provided reasons in which 14 of them are wrong. 

From these wrong reasons, the following two difficulties were extracted:  

Experimental group- a divergent sequence is neither increasing nor decreasing (2 

respondents); a divergent sequence never bounded (2 respondents) and unrelated 

reasons (2 respondents). 

Control group- only convergent sequence is bounded (4 respondents), a bounded 

sequence is necessarily convergent (3 respondents), a sequence is convergent only 

if it is bounded and monotonic (2 respondents), a divergent sequence is neither 

increasing nor decreasing (2 respondents), and unrelated reason (3 respondents). 

These reasons also revealed that students in the experimental group are able to 

overcome some of the difficulties in the interplay between terms.  

                                            
 

14
 Non-respondents 
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In item 2, the students in the experimental group were able to overcome confusing 

the monotonic and bounded sequence theorem. In item 4, a similar difference in 

results was observed. In item 3, a significant gap was observed among those at 

action view and those reached a process level of concept formation.  

In item 10, from incorrect workouts in the experimental group, the following two 

difficulties were observed:           
 

 
           ( )    (three respondents) 

and       (two respondents). Whereas in the control group from the 13 incorrect 

workouts, the following difficulties were observed (comparison of the result is given in 

Table 30):  

 Symbolic manipulation problems (for instance,     .
 

 
/          ) (two 

respondents). 

 An action view of the limit and infinity, i.e. just substituting infinity instead of n 

(three respondents), 

 limit as a boundary (three respondents), 

           
 

 
           ( )    (three respondents), 

           
 

 
           .

 

 
/    (two respondents). 

Table 30: Breakdown of students‟ choices to item 10 

 

Group 

Correct Partially correct Incorrect Non-respondent 

N % N % N % N % 

Experimental (N=52) 16 30.7 15 28.8 11 21.1 10 19.2 

Control (N=53) 13 24.5 13 24.5 11 20.7 16 30.1 

Figure 33 presents one student script from the control group that shows an action 

view of the limit. 
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CS66 

 

 

Figure 33:  An extract of a student at action view of the limit from the control group 

In general, the result in the limit of sequences revealed that the model had a practical 

significance in students‟ conceptual knowledge. In particular, above 51% of students 

in the experimental group attained- process view of the limit of sequences, potential 

view of infinity, able to qualitatively justify their answer, and overcome confusing 

definitions of terms. For some others, although the difficulties are not completely 

prevailed, the model is helpful in narrowing the diversity of the difficulties as 

compared to their counterparts in the control group.  

4.3.2.2. Students’ conceptual knowledge of the limit of functions  

Among the items designed to assess students‟ knowledge of the limit of functions, 

the average difficulty level in the experimental group is 58.84% and that of the control 

group is 38.11%. The experimental group‟s mean score (5.88), is greater than that of 

the control group (3.81). Table 31 presents the five items in the limit of functions and 

compared results of the two groups. 

The data in Table 31 revealed that the experimental group students performed higher 

than the control group students in all the five items did. From the reason for correct 

answers, the experimental group students have demonstrated fewer difficulties than 

the control group. For instance, in item 5 of the experimental group, from the 19 

correct respondents, 16 of them provided reasons in which 10 of them are correct, 
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and the three are unrelated. In contrast, in the control group out of the 16 correct 

respondents, only 10 of them provided reasons in which only four of them are correct.   

Table 31: Breakdown of students‟ choices to items in the limit of functions  

 

Item 

Experimental (N=52) Control (N=53) 

A B C D E NR A B C D E NR 

5 N 6 14 3 6 23* 0 6 11 3 14 16* 3 

% 11.5 26.9 5.8 11.5 44.2 0 11.3 20.7 5.7 26.4 30.2 5.7 

6 N 2 6 28* 2 12 2 3 5 26* 4 14 1 

% 3.8 11.5 53.8 3.8 23.1 3.8 5.7 9.4 49.1 7.5 26.4 1.9 

7 N 2 6 2 4 36* 2 2 21 2 8 20* 0 

% 3.8 11.5 3.8 7.7 69.2 3.8 3.8 39.6 3.8 15.1 37.7 0 

8 N 6 8 2 34* 1 1 8 11 4 23* 4 3 

%  11.5 15.4 3.8 65.4 1.9 1.8 15.1 20.8 7.5 43.4 7.5 5.7 

9 N 2 32* 5 10 3 0 4 16* 11 12 9 1 

% 3.8 61.5 9.6 19.3 5.8 0 7.5 30.2 20.8 22.6 17 1.9 

From item 6, it is observed that in terms of the correct choice, the difficulty is 

persistent, but the reasons revealed that students in the experimental group has 

developed a process view of function, but still lack to consider it as an object. In the 

control group, most of them explained it as an action. In item 7, students in the 

experimental groups clearly able to differentiate the case where limit fails to exist but 

in the control group, most of them still lack clarity. In particular, 21 (39.6%) of the 

students in the control group think that limit fails to exist only at the point of 

discontinuity and that is why alternative B got the high response rate. 

In item 8, similar types of difficulties were observed in both groups, but very different 

in frequency. The difficulties were- we do not know the function (since the algebraic 

expression is not given), the limit value is the same as the function value, and limit is 

sufficient for continuity. In item 9, while 
 

 
   is mentioned only by one student in the 

experimental group it is mentioned by three students in the control group. While 
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is not mentioned in the experimental group it is mentioned by three students in the 

control group.  

In general, the model has a significant effect on the experimental group in that it 

helps to overcome most of the difficulties in limit of functions. In particular, the 

experimental group students were better in terms of going beyond the action view of 

the limit of functions (reached a process view, but still lack to encapsulate the 

process into object/there is a limitation), differentiate the meaning of terms (limit does 

not exist, indeterminate, and infinity), able to manage overgeneralizations, identifying 

cases where limit of a function fails to exist, i.e. it may fail to exist due to discontinuity 

or being an unbounded. In addition, the frequency of correct answer for the wrong 

reason was reduced in the experimental group students as compared to those in the 

control group.  

4.3.2.3. Students’ conceptual knowledge of continuity  

As seen in the diagnostic assessment, the interplay between the existence of the 

limit, continuity, and derivative was controversial for most students. The data in Table 

32 revealed that students in the experimental group are able to overcome their 

confusion. It is observed that many students in this group, reason out by writing the 

statement, and the backwards implication on the interplay between the limits and 

continuity. In item 11, even if 23 (43.3%) of students in the control group got the 

correct answer, no one qualitatively explains the reason behind the procedures used 

to arrive at the solution.  

Table 32: Breakdown of students‟ choices to item 11 and 12 

 

Item 

Experimental (N=52) Control (N=53) 

A B C D E NR A B C D E NR 

11 N 11 3 34* 2 1 1 3 2 23* 2 21 2 

% 21.2 5.8 65.4 3.8 1.9 1.9 5.7 3.8 43.3 3.8 39.6 3.8 

12 N 4 40* 3 1 1 3 22 24* 2 1 2 2 

% 7.7 76.9 5.8 1.9 1.9 5.8 41.5 45.2 3.8 1.9 3.8 3.8 

In item 16a, there is a big difference between non-respondents in the two groups. 

While in the experimental group only five (9.6%) students left blank in the control 
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group 15 (28.3%) left the item unanswered. This indicates that the model somehow 

has a positive effect on students‟ motivation to think of alternative representations. 

Table 33 presents the breakdown of students‟ choices to item 16. 

Table 33: Breakdown of students‟ choices to item 16 

 

Item 

Experimental (N=52) Control (N=53) 

Correct PC15 Incorrect NR Correct PC Incorrect NR 

16a N 17 6 24 5 14 2 22 15 

% 32.7 11.5 46.1 9.6 26.4 3.7 41.6 28.3 

16b N 38 0 12 2 30 0 16 7 

% 73 0 23 3.8 56.6 0 30.2 13.2 

16c N 29 5 13 5 21 5 18 9 

% 55.7 9.6 25 9.6 39.6 9.4 34 17 

In general, on these items of continuity, the mean score in the experimental group is 

5.84 and that of the control group is 4.05. While the average difficulty level of the 

experimental group is 69.23% that of the control group is 42.26%. Thus, students in 

the experimental group have improved their level of conceptual knowledge in the 

continuity of functions. In particular, their pre-calculus misconception (confusing 

continuity and connectedness), algebraic manipulation of rational functions and limit 

continuity interplay were improved.  

4.3.2.4. Students’ Conceptual Knowledge of Derivatives 

In the derivative items, the mean score of students in the experimental group is 9.67 

and that of the control group is 6.96. While the average difficulty level of students in 

the experimental group is 43.58% that of the control group is 33.75%. Table 34 

presents the first three items in the derivative of functions and compared results in 

the two groups. The data in the table and students‟ test script revealed that the 

number of students in the experimental group who able to overcome their difficulties 

in the derivative is more than those who are able to overcome their difficulties in the 

control group. Moreover, it is observed that students in the experimental group 

                                            
 

15
 Partially correct  
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familiarized themselves with writing a sequence of statements that justify the reasons 

behind the procedures. For instance, in item 14, many students noticed that since the 

function is differentiable the limit of the different-quotient exists both from the right 

and from the left of the limit point, i.e. two, which is a very short method to compute 

one of the required. Figure 34 is one of these students‟ scripts from the experimental 

group. 

 

ES35 

 

 

Figure 34:  An extract of correct answer with correct procedure and reasoning 

Table 34: Breakdown of students‟ choices to item 13 to 15 

 

Item  

Experimental (N=52) Control (N=53) 

A B C D E NR A B C D E NR 

13 N 6 2 11 8 25* 0 9 6 20 2 13* 3 

% 11.5 3.8 21.2 15.4 48.1 0 17 11.3 37.7 3.8 24.5 5.7 

14 N 0 41* 6 2 2 1 7 29* 3 5 6 3 

% 0 78.8 11.5 3.8 3.8 1.9 13.2 54.7 5.7 9.4 11.3 5.7 

15 N 5 2 3 42* 0 0 8 2 5 32* 4 2 

% 9.6 3.8 5.7 80.7 0 0 15.1 3.8 9.4 60.4 7.5 3.8 

In item 13, misinterpretation of the quotient rule is still a source of confusion for most 

students in both group i.e. many students had thought that since  ( )  
 ( )

 ( )
 

  ( )

  ( )
 

.
 ( )

 ( )
/
 

 then  ( )    . That is why choice C has a high response rate in both groups 

as compared to the other distractors. Figure 35 is one of the students test script from 

the control group. 
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Figure 35:  An extract of the misinterpretation of the quotient rule  

In item 17, while both groups are ignorant of the mathematical procedure, and the 

contextual restriction (whereas the domain    , they consider both      as 

critical points), the experimental group is better in terms of algebraic manipulation, 

confuse a critical number with an extreme value, and in terms of infinity image. In 

item 17a, only a few students from the experimental group gave an interpretation for 

the given quantity, and one is as shown in figure 36.  

Figure 36:  An extract of reasoning ability from the experimental group students 

Table 35 summarises both group students‟ responses to items 17 and 18. The result 

obtained from item 18a and 18b revealed that in making the connection among 

concepts, both groups have a comparable result, but the difference is the 

interpretation of the result.  
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Table 35: Breakdown of students‟ response to item 17 and 18 

 

Item 

Experimental (N=52) Control (N=53) 

Correct PC Incorrect NR Correct PC Incorrect NR 

17a N 21 10 13 8 12 13 13 15 

% 40.3 19.2 25 15.3 22.6 24.5 24.5 28.3 

17b N 22 8 16 6 20 12 12 9 

% 42.3 15.3 30.7 11.5 37.7 22.6 22.6 17 

17c N 22 0 26 4 22 0 17 14 

% 42.3 0 50 7.7 41.5 0 32 26.4 

17d N 28 0 14 10 20 2 15 16 

% 53.8 0 26.9 19.2 37.7 3.7 28.3 30.2 

18a N 16 8 17 11 15 0 22 16 

% 30.7 15.3 32.7 21.1 28.3 0 41.5 30.2 

18b N 11 0 27 14 7 0 28 18 

% 21.1 0 51.9 26.9 13.2 0 52.8 34 

From what is presented above it is enough to conclude that students in the 

experimental group performed better than the students in the control group on the 

test items. Their ways of thinking, reasoning, and justification are also improved. 

Their concept images were adjusted, and they were able to even answer items that 

were left blank in by all students in the control group. Thus, the model was helpful to 

overcome most of the difficulties, and even to narrow the diversity of difficulties that 

are persistent. In general, the average difficulty level of the items in the experimental 

group is 56.41% and that of the control group is 38.83%. The experimental group 

mean score (mean=28.10, and SD=9.680), is greater than that of the control group 

(mean=20.26 and SD=9.451).  

4.3.3 The possible effect of the model via the theme of difficulties  

Since the theme of difficulties are the major areas of concern, the result of the 

intervention for each theme of difficulty is described as follows.  

A static view of the dynamic process:  In the intervention activities 4, 5, 7, 17, 18, 

and 19 aimed to address this theme of difficulty. At the end (in particular as revealed 
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by the result from post-test items 3, 5, 6 and 17a) 50% of students attained process 

view of limit. Moreover, the result from item10 and 17a revealed that many students 

(44.2%) avoided plugging infinity as a number to calculate limit at infinity, minimized 

confusing terms like undefined, indeterminate, and infinity.  

Lack of describing definitions and relationships of terms: In the intervention, this 

difficulty was addressed in two ways. The first is allowing students to work on 

activities 1, 8, 21, 22 and 27. The second is to use reflection and communication via 

think-pair-share technique. After students work individually for a few minutes, they 

were allowed to work in pairs and share what they thought individually and comment 

to each other. As revealed from the result in the post-test (Item 1, 5, 8, 9 and 11), 

above 60% of students were able to overcome such difficulties related to definitions 

and terms. In particular, the number of correct answers for wrong the reasons was 

significantly different on these items. As the discussion proceeded, students got the 

chance to notice conflicting concept images and even some of them were able to 

notice that their working is correct answers for wrong the reasons. That helped them 

a lot in terms of developing meta-cognition.  

Overgeneralization and inconsistent cognitive structure: This theme of difficulty 

was also addressed through activities that evoke concept change (conflict teaching), 

including items that ask conjecturing and convincing, reconstructive generalization 

vis-à-vis cognitive conflict strategies. For this purpose, activities 1, 2, 3, 7, 8, 9, 13, 

16, 17, 22 and 27 were included. These resources were proposed to create cognitive 

trouble of students‟ concept images. Group discussions and questions asked during 

the discussions have promoted students to analyse and reflect on their methods and 

reconfigure their conceptions.  

It is observed that (in particular from post-test item 1, 2, 3, 5, 7) many of the students 

are able to defeat the formation of such overgeneralizations. In addition, the number 

of students who got correct answers for wrong reasons in the experimental group is 

relatively less than that of the control group per each item. For instance, in item 5, in 

the experimental group from the 19 correct respondents, 16 of them provided reason 

in which 10 of them are correct and the three are unrelated. On the other hand, in the 
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control group out of the 16 correct respondents, only 10 of them provided reasons in 

which only four of them are correct. The result from both the distractors and the 

justification provided by the students for the multiple-choice items revealed that the 

model helped them to narrow the diversity of their inconsistency.  

Lack of making a logical connection between conceptual aspects, and a 

coherent framework of reasoning: Most of the activities in the intervention (3, 9, 

10, 11, 12, 13, 14, 15, 16, 17, 22, 27, and 28) address this theme of difficulty. The 

result of the post-test (item 9, 11, 12, 13, 14, and 18) revealed that many students 

were able to defeat difficulties of making connections between conceptual aspects 

(domain, limit, continuity, and derivative) and qualitatively describing their knowledge.  

Although some students‟ ability to solve problems in different representations (as 

observed in items 2, 4, 16, 15, 17 and 18), most of them keep on using only one 

representation, and find it hard to include multiple representation in their reason and 

justification. For instance, only two students try to demonstrate item 17 using a graph. 

In particular, item 18 is unique in that students are not familiar in terms of such 

representation and only active students are able to interpret the given data from the 

table.  

Over-dependence on procedural learning: In the intervention, activity 5, 7, 15, 16, 

17, 18, 19, 24, 25, 26, 29, and 30 were planned to address this difficulty. In item 17 

from the post-test, the experimental group has 44.71% and the control group has 

34.90% correct response rate. Although the experimental group students‟ score is 

better than those in the control group, the problem still persists and needs attention. 

Some studies which report positive effects of an intervention lack to assure whether 

that positive effect is due to the presence of conceptual knowledge or memorization 

of procedures (Çetin, 2009). According to the literature, some studies found success 

to enhance conceptual knowledge using APOS and computer programs (ibid). 

However, in this study area, students at grade 12 level have no access to this 

educational technology.  
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Poor computational ability and algebraic errors: In the activities, attention was 

given to incorporate most frequently occurring algebraic errors (as in activity 6, 20, 

and 23). In the reflection, and error analysis part, most students start revising their 

own procedures, and able to notice and correct their algebraic errors. In particular, in 

items 10, 16, and 17 both in the diagnostic assessment, and in the control group, 

many students‟ were observed who start the procedure correctly and got a wrong 

answer due to algebraic manipulation errors. In the contrary, in the experimental 

group, many of them able to notice the errors and tried to correct it. The challenge 

still is that most of these algebraic difficulties originate from pre-calculus and need 

time to be avoided.  

In general, both the quantitative and qualitative result in section 4.3 has shown that 

the proposed model was valuable to overcome observed difficulties.   
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CHAPTER FIVE: DISCUSSION, CONCLUSIONS, AND 

RECOMMENDATIONS 

The main purpose of the study was to explore how to enhance students‟ conceptual 

knowledge of calculus concepts by developing a literature informed intervention 

model. To meet this purpose, three sub-studies were accomplished. This chapter 

presents a summary of the study (5.1), discussion of the results (5.2) followed by a 

conclusion of the study (5.3). The chapter ends with recommendations for practice 

and further study (5.4).  

5.1. Summary of the study 

The study begins with a systematic review of existing literature on students‟ 

difficulties in understanding calculus concepts. A literature search from international 

and local sources was conducted. Using eight set criteria 43 articles that range from 

2002 to 2016 were selected for the last analysis. The review concluded with seven 

themes of difficulties.  

A diagnostic assessment aimed to explore students‟ difficulties in calculus and the 

causes of those difficulties in the study area was also conducted. For this, a 

diagnostic assessment (a concept test of 18 items) was prepared. Informed by the 

literature and experience, the items were selected, piloted, and evaluated to improve 

the validity and reliability of the test. Finally, the test was administered to 238 grade 

12 natural science stream students selected purposefully from four different schools 

in one administrative zone of Ethiopia. To analyse the test results, first respondent 

scripts for each item were categorized as correct, incorrect and no response. 

Second, for each item, the respondents‟ errors were identified by looking for the 

wrong choice or wrong working from the respondents‟ scripts. Since these wrong 

answers constitute difficulties, ways of thinking, and origins of difficulties that 

students have, the data was read over and over to get an overall picture of the type 

of difficulties students have and to look at how they approach these conceptual 

issues. Finally, from the test scripts, components of students‟ difficulties and 

supposed causes of those difficulties were identified.  
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A desktop review of those identified difficulties and the supposed causes of those 

from different perspectives were analysed. By comparing the limitation of the 

traditional approach and by incorporating those with basic constructs of conceptual 

knowledge (as identified in the theoretical framework), components of an intervention 

model was identified and a new model of intervention was proposed. 

Based on the model an intervention was developed and administered. The 

intervention was a set of activities that aimed to enhance students‟ conceptual 

knowledge in calculus. The activities compiled together and named the activity sheet. 

The experimental group teacher had received training and orientation on how to carry 

out the proposed model. A copy of the activity sheet was given to students in the 

experimental group. The classroom environment was also adjusted as specified in 

the model that includes students‟ active participation, group work, error analysis, and 

reflection. For the intervention, two intact classrooms (108 in number) were selected 

and assigned randomly to control and experimental groups. Earlier to the 

intervention, a pre-test of 25 items from pre-calculus concepts (sequence, 

polynomial, rational, exponential, and trigonometric functions, the graph of functions 

and coordinate geometry) aimed to assess the students‟ level of knowledge was 

administered. Then, the intervention was administered for eight weeks, 80 minutes 

per week parallel to the normal teaching-learning program for the experimental group 

students. In the intervention session, the students were arranged in a mixed ability 

group of five to six.  

A week after the intervention was terminated, a post-test that aimed to examine the 

students‟ conceptual knowledge in calculus was administered. The test items were 

selected from the items in the diagnostic assessment. The result was analysed using 

a t-test for an independent sample with the help of SPSS version 25. A textual 

analysis of the test result also made to see the possible effect of the intervention.  

5.2. Discussion of the results  

The main purpose of the study was to overcome students‟ difficulties and enhance 

their conceptual knowledge of calculus by developing a literature informed 
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intervention model. The discussion is presented in the order in which the research 

questions were asked and listed under separate subheadings. 

5.2.1. What does the current literature reveal about students’ difficulties in 

learning calculus concepts?  

The results from forty-three systematically selected articles (see appendix A for the 

list of articles) indicated that students‟ knowledge gap is manifested in the following 

ways.  

 a static view of the dynamic process,  

 lack of describing definitions and relationship of terms,  

 overgeneralization and inconsistent cognitive structure,  

 over depending on procedural learning,  

 failure to make a logical connection between conceptual aspects,  

 lack of a coherent framework of reasoning,  

 a lack of computational ability. 

The literature also revealed that only a few students demonstrated strength in 

calculus that evidences through avoidance of these synthesized difficulties. In 

addition, the strength can be manifested through large example space, consistency 

in concept images (including multiple representations), express continuity in terms of 

the limit, interiorize actions into processes, construct coordinated processes; 

encapsulate processes into objects, have a problem-solving framework and having a 

coherent framework of reasoning.  

5.2.2. What are the common conceptual issues that cause students’ difficulties 

in calculus? 

The diagnostic assessment revealed that students of the study area have difficulties 

that are not far from those in the literature in terms of analytical themes. Besides, the 

diagnosis assessment revealed the causes of these difficulties in terms of the 

following points. 

 arithmetic thinking than algebraic, 

 linguistic ambiguity, 

 compartmentalized and surface learning, 
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 more dependence on concept image than concept definition, 

 get the correct answer for the wrong reasons. 

 focuses only on an algebraic form of representation, 

 focuses on lower-level cognitive demanding exercises were explored as 

causes of those difficulties from students‟ part whereas, the focus of attention 

(activities, tasks and assessment items) in which all are more procedural than 

conceptual and lack of working on real-life problems were identified as factors 

that contribute to those difficulties from the curriculum and teachers part.  

The finding of the study stated under the research question that reads, what are 

common conceptual issues that cause students‟ difficulties in calculus, are in line with 

some other studies (Blaisdell, 2012; Çetin, 2009; Duru, 2011; Jaffar & Dindyal, 2011; 

Jones, 2015). As Çetin (2009) and Duru (2011), teachers focus on information 

transition and surface learning while the subject demands deep approach to learning. 

Moreover, students view calculus as a collection of procedures to memorize. As 

Blaisdell (2012) said, representation and question formats influence students‟ 

concept images. Likewise, Maharj (2010) and Jaffar and Dindyal (2011) argue that 

students‟ difficulties are an effect of not having the proper mental structure. While 

Jones (2015) and Elia et al. (2009) suggest the infusion of realistic problems as 

opposed to routine and lower-level cognitive ability demanding to overcome the 

difficulties, Jayakody (2012) suggest the inclusion of the cognitive conflict strategy. 

Generally, major attention of researchers to enhance students‟ conceptual 

knowledge is to do well on the nature of activities used in teaching-learning. 

5.2.3. What are the components of an intervention model of learning calculus 

concepts that could be developed to enhance students’ conceptual 

knowledge in calculus? 

The third research question focuses on intervention. Thus, the researcher guided by 

all these data (i.e. the literature, the empirical evidence, and his experience) 

developed an intervention model (see figure 32). The model was intended to 

enhance conceptual knowledge by focusing on:  

 the duality of concepts, 
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 reasoning level and real-life problems, 

 error analysis, 

 mathematical thinking practice: conjecturing and convincing, 

 reflection and communication via think-pair-share technique, 

 reconstructive generalization vis-à-vis cognitive conflict strategies, 

 widening students‟ thinking and example space through counter-examples & 

items that demand to conjecture and convincing, include activities that demand 

make a connection between forms of representations. 

Finally, these identified components and the description of their interaction is 

pictorially presented as in see figure 32.  

5.2.4. Is there a significant difference in the students’ level of conceptual 

knowledge of calculus after learning with the proposed model? 

After the implementation of the model, a post-test was administered to both 

experimental and control group students and the result was analysed both 

quantitatively and qualitatively. The quantitative analysis revealed that the 

intervention had a positive effect. The experimental group score (mean=28.10, 

SD=9.680) is better than the controlled group score (mean=20.26, SD=9.451) with 

independent t-statistics, t = 4.195 with alpha =.05. This result suggests that students 

in the experimental group performed significantly better than the control group. This 

result has also practical significance (Effect size .818). The qualitative analysis 

revealed that students in the experimental group are able to overcome many of the 

difficulties and misconceptions observed in the literature and the diagnostic 

assessment.  

The result of the study provided an understanding and insight of the stipulated 

research questions. Some of the difficulties in learning calculus emanate from lack of 

mental structure developed to the required cognitive level (process and object level) 

of function and limit. In particular, the result revealed that most difficulties rooted due 

to an action view of function, infinity, and the limit process. It is claimed that, 

arithmetic thinking than algebraic is the cause of these difficulties and supporting the 

process-object development in general and providing students with activities that give 
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them exposure to interiorization of actions into a process, coordination of processes, 

and encapsulation of the process into an object is valuable to overcome the 

difficulties (Hähkiöniemi, 2006; Maharaj, 2010). The result from the intervention 

showed that 50% of students are able to attain the process view of the limit. Likewise, 

the work of Maharaj (2010) asserts that attaining the process level is the most 

challenging in the process of concept formation. Besides, the result revealed that 

44.2% of students avoided plugging infinity as a number to calculate the limit value at 

infinity, minimized confusing terms like undefined, indeterminate, and infinity.  

The literature is full of evidence that confirms most students‟ reasoning lacks process 

view of the limit (Wangle, 2013; Jones, 2015; Oehrtman, 2002; Roh, 2005; Takaci et 

al., 2006). One difficulty with the concept "infinity" is considering it as an object or 

plugged in infinity as a number to calculate the limit at infinity while process view is 

required (Jones, 2015; Moru, 2006; Oehrtman, 2002; Parameswaran, 2007; Roh, 

2005). The model seems adequate in terms of assisting students to attain a process 

view, dynamic reasoning and process view of infinity. However, still many students 

lack to encapsulate the process as an object. Thus, more time needs to be devoted 

to plan more activities and help students develop the required mental structure.   

Failure to describe definitions and the interplay of concepts was one of the themes of 

difficulties identified. Others mentioned that failure to make a logical connection 

between conceptual aspects occurs due to compartmentalize and surface learning 

and set it as one of the major blocks for students‟ progression (Berry & Nyman, 2003; 

Kinely, 2016; Lauritzen, 2012). The empirical data also revealed that students face a 

challenge due to linguistic ambiguity in a contextual meaning of terms and their 

common language uses inconsistent concept image due to confusing terms like 

bounded and convergent, convergent and has a limit, bounded and monotonic, 

convergent or has a limit and monotonic. Due to the linguistic ambiguity, most 

students show difficulties in the limit of sequences. Like the limit value is necessarily 

a boundary, a bounded sequence is necessarily convergent, a divergent sequence is 

necessarily unbounded, a monotonic sequence is necessarily convergent, a 

convergent sequence may not be bounded, and if consecutive terms of a sequence 

alternate in sign then the sequence is necessarily divergent are the difficulties.  
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 The researcher supposed that incorporating reflection and communication via think-

pair-share technique in the learning process reduces such problems related to 

linguistic ambiguity, compartmentalized and surface learning. In the intervention, after 

students had worked individually for few minutes, they allowed working in a group, 

share what they thought individually, and comment with each other. The result 

revealed that 60% of students were able to overcome such difficulties related to 

definitions and terms. As the discussion proceeded, students got a chance to notice 

conflicting concept images and even some of them were able to notice that their 

working is correct answers for wrong reasons so that the discussion helped them a 

lot in terms of developing meta-cognition. In fact, the difficulties in calculus are 

systematic and hidden to students. In the usual teaching and assessments practice, 

students have no chance to notice conflicting concept images, even if it is a common 

practice that they give a correct answer for an incorrect reason. Thus, giving students 

a chance to communicate with their classmates in some sorts of cooperative learning 

and allow them to reflect on reasoning level problems (Cangelosi, 2003), were 

supposed to be valuable to overcome these difficulties.  

From a constructivist-learning point of view, learning is an adaptive activity; learning 

depends on a context where it occurs. Meaningful learning occurs when students are 

in a context where it occurs and builds up ways to come out of a difficult situation. 

Such circumstances encourage the students, as it is an exposure to hardship, 

pleasure, and satisfaction inherent in solving problems. Problem-solving ability 

helped students to extend what they learned in the classroom to situations that they 

meet in real-life (keri et al., 2010).  

The set of articles (Such as Jaffar & Dindyal, 2011; Jayakody, 2012; Maharajh et al., 

2008; Denbel, 2015) documented that students do not pay attention to the contextual 

meaning of terms in problem-solving; that is, the calculation is based on their concept 

image and not the concept definition. As a result, most students conclude that a 

function does not attain its limit value, the limit value is unreachable or the limit is an 

approximation and confuses continuity with connectedness (Cetin, 2009; Jordaan, 

2005; Vela, 2011; Wangle, 2013). The result in the intervention has shown 
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improvement as compared to the result of the study by Denbel (2015). Besides, in 

terms of the application problems, the result is in line with the finding of Cetin (2009).  

The experiences gained during the pilot test of the concept test revealed that the type 

of items provided to students affect their orientation and performance. The 

observation was that students appreciated the existence of such type of conceptual 

items in calculus. The researcher strongly believes that one of the ways to come out 

of the current practice, which is characterized as procedure oriented teaching-

learning, is to use the component of mathematical thinking, i.e. providing students 

with the exposure to justify, reason, interpret or prove what they are manipulating. In 

mathematical thinking, this is termed as “convincing” (Mason, Burton & Stacey, 

2010). However, to do so the teachers have to provide such activities to the teaching-

learning environment. In particular, problem-solving change students‟ focus from 

purely computational in nature to computation correlated to real-life (Kelley, 2006). 

Above all, the construct of mathematical thinking: convincing, also called reasoning 

and proving (Mason et al., 2010) is supposed to be good as it encourages students 

to explore and to visualize their mathematical ideas. 

Irrespective of whether it is the limit, continuity or derivative, both the literature and 

the empirical data documented that the majority of students demonstrated over 

generalisation or immature conception (Duru, 2011; Jordaan, 2005; Maharajh et al., 

2008; Nair, 2010; Vela, 2011; Wangle, 2013). Due to overgeneralisations, students 

sometimes show correct answers for wrong reasons and wrong answers with high 

confidence (Çetin, 2009; Luneta & Makonye, 2010; Moru, 2006; Przenioslo, 2003). 

Thus, overgeneralised or immature conceptions, but not noticed by students 

accordingly hence conflicting concept images (Juter, 2006) seems troublesome when 

learning calculus concepts. In the intervention, such difficulties were addressed by 

incorporating activities that evoke a concept change (conflict teaching), including 

items that ask conjecturing and convincing, reconstructive generalization vis-à-vis 

cognitive conflict strategies. The resources were planned to create cognitive trouble 

in students‟ concept images. Group discussions and questions asked during the 

discussions have promoted students to analyse and reflect on the methods they are 

using and reconfigure their conceptions and hence able to adjust their difficulties.  
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It is observed that many of the students are able to defeat the formation of such 

overgeneralizations. In addition, the number of students who got a correct answer for 

the wrong reasons in the experimental group is relatively less than that of the control 

group per each item. For instance, in item 5, in the experimental group from the 19 

correct respondents, 16 of them provided reasons in which 10 of them are correct, 

and three are unrelated. On the other hand, in the control group out of 16 correct 

respondents, only 10 of them provided reasons in which only four of them are correct. 

The result from both the distractors and the justifications provided by the students for 

the multiple-choice items revealed that the model helped them to narrow the diversity 

of their inconsistency. Students build generalization inductively through time from 

their learning experience. Nevertheless, when solving a problem, they use deductive 

reasoning (Cangelosi, 2003). This argument implies that students‟ achievement in 

problem-solving depends on their generalization schema. Thus, working on the 

students‟ ability to decrease their overgeneralization will improve problem-solving 

ability.    

The literature has also revealed that most students either do not respond at all, or 

they show low success for unfamiliar items or items demanding higher levels of 

cognitive thinking (Horvath, 2008; Juter, 2006; Makonye, 2012; Roh, 2005; Usman, 

2012). In item 17 from post-test, the experimental group has 44.71%, and the control 

group has a 34.90% correct response rate. Although the result seems promising, the 

ability to extend or apply their knowledge to unfamiliar items still persistent and needs 

attention. 

One other construct of conceptual knowledge in calculus is being familiar with 

multiple forms of representation of a concept. When students develop multiple form 

of representing a concept, i.e. algebraic, graph, table, numeric, and word descriptions 

of data they turn out to be confident and flexible in their reasoning. Of course, if not 

properly manipulated, the use of multiple representations has its own limitations. 

Taught the same concept with different representations, unless they master sorting 

out the different forms of the same concept their cognitive load would be junk 

(Dreyfus, 2002).   
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Although some students are able to solve problems in different representations, most 

of them keep on using only one representation and find it is hard to include multiple 

representations in their reason and justification. For instance, only two students try to 

show item 17 using a graph. In particular, item 18 is unique in that students are not 

familiar in terms of such representation and only active students are able to interpret 

the given data from the table. This finding aligns with what Blaisdell (2012), Moru 

(2006), and Wangle (2013) documented. Likewise, Abbey (2008) found that students‟ 

knowledge and attitude to graphical form in calculus is deficient for different reasons. 

The literature has strong evidence that the use of technology allows multiple 

representation perspectives. In addition, some others reported success in improving 

students‟ conceptual knowledge in calculus using APOS and computer programs 

(e.g. Çetin, 2009). Thus, incorporating the model with technology may avoid the 

limitation. However, the problem is that in this study area student at grade 12 level 

have no access to educational technology.  

In general, the model has a practical significance in terms of enhancing many 

students to attain process view and dynamic reasoning, reducing difficulties related to 

definitions and terms, reduces a correct answer for wrong reasons, narrowing the 

diversity of inconsistent concept images, facilitate making a connection between 

conceptual aspects, and reducing algebraic errors. On the other hand, the model has 

limitations in terms of contributing to attain encapsulation, apply multiple 

representations, and establish a strong problem-solving framework. 

Still, the proposed model needs modification. Initially, the model was developed for 

the context where the practice of educational technology is absent. Nevertheless, if 

available it is possible to integrate with the proposed model, as it is generic. One 

weakness of the model is that many of the students still lack to encapsulate the 

process into an object and lack to focus on embedded concepts. However, by adding 

activities that can be done through computer programs, the weakness may be 

resolved. Thus, the model with all its strength and its limitation, if integrated with 

computer-assisted activities, students can be better equipped with the required 
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conceptual knowledge. After all, to keep its strengths and avoid its weaknesses, the 

researcher suggests the modified version of the model (see figure 37).   

 

Figure 37: The modified intervention model 

5.3. Conclusions 

Calculus concepts are the preconditions for most science, engineering, and 

technology fields of undergraduate programs. Students‟ understanding of these 

concepts affects not only their performance and involvement in mathematics but also 

in these fields. Thus, it is critical that this topic has to be learned carefully for the 

goods of it. Despite the consequences of comparative importance, it is very 

unsatisfactory that students‟ performance in calculus is deprived and there are many 

difficulties that were investigated in the past and are still today. It is well recognized 

that the traditional approach to calculus is not effective in reducing these difficulties 

and misconceptions. Thus, the main purpose of the study was to overcome students‟ 
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difficulties and enhance their conceptual knowledge of calculus by developing a 

literature informed intervention model.  

One of the most important findings of this study is the synthesized difficulties that 

students encounter in coming to understand calculus concepts. Accordingly, one of 

the most distinguishing features of the traditional approach to calculus is that 

procedural approach, surface learning, and lack of feasibility dominate it. The 

diagnosis assessment revealed that students of the study area have difficulties that 

are not far from those in the literature. Triangulated themes of difficulties revealed 

that students‟ learning involves a static view of the dynamic process. Additionally, a 

lack of describing definitions and relationships of terms was investigated as 

difficulties. Moreover, overgeneralization and inconsistent cognitive structure, over-

dependence on procedural learning, and lack of making a logical connection between 

conceptual aspects were found as students‟ difficulties. Further, the lack of a 

coherent framework of reasoning and lack of computational skill were found as 

students‟ difficulties. 

This study showed that even active students (according to a teacher-made test), 

knowledge is questionable when screened through items that are designed to identify 

those misconceptions (systematic errors). Many students get the correct answer for 

the wrong reason and a wrong answer with high confidence.  

Besides, the diagnosis assessment revealed student‟s approaches to the conceptual 

issues and causes of those difficulties. In particular, arithmetic thinking than 

algebraic, linguistic ambiguity, compartmentalized learning, dependence on concept 

image than concept definition, obtain a correct answer for a wrong reason, focuses 

only on an algebraic form of representations, and focuses on lower-level cognitive 

demanding exercises and in general surface learning approaches were identified as 

conceptual issues behind the difficulties. Thus, the researcher guided by all these 

data developed on an intervention model. The model was intended to enhance 

conceptual knowledge through focusing on mathematical thinking practice: 

conjecturing and convincing, reflection and communication via think-pair-share 

technique and on the dual nature of concepts, reconstructive generalization vis-à-vis 



 

172 
 

cognitive conflict strategies. In addition, incorporating reasoning level and real-life 

problems, widening students thinking through counterexamples, and error analyses 

were included. 

The result suggests that students in the experimental group performed significantly 

better than the control group. The text analysis on the students‟ test script showed 

that many students in the experimental group were able to overcome most of the 

observed difficulties. In particular, most students demonstrated process level 

conception, conceptual reasoning, qualitative justification, consistency in reasoning, 

and less algebraic and symbolic manipulation errors.  

Another prominent finding is the error analyses by itself have an implication on how 

to design an alternative approach to the teaching-learning of calculus and the 

beginning level of learning calculus is the best junction for an intervention. By 

properly designing activities and shifting the classroom approach to student-centred, 

it is possible to reduce the incidence of those difficulties and change students‟ focus 

of attention to conceptual issues than rules and procedures. In particular, 

assessment items are potential areas of attention in terms of exploring existing 

difficulties and indicating point of intervention so that students focus the required 

conceptual knowledge.  

One of the main challenges faced by students who join the science and technology 

fields of study is their knowledge of calculus concepts. To understand calculus 

properly, and to work with it in diverse areas of its application, students should be 

able to make a proper set up of conceptual constructs. However, most students‟ 

difficulties arise from lack of one or more of such constructs or the whole set up. 

Different learning strategies can be designed based on the nature of such constructs 

to help students overcome their learning difficulties of a topic. In the proposed model, 

many of such constructs are incorporated. Perhaps students may need more time to 

let go of their difficulties.  

One limitation of the study is the scope of the literature search for the systematic 

review. The review considered the starting of the new curriculum implementation year 
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in the study area as a benchmark for the inclusion of studies for the review. It would 

have had an effect on the themes of difficulties if it had been extended beyond the 

side period. The diagnosis assessment and the experimental phase was also bound 

to the assumption that students written scripts are genuine enough to reveal the 

knowledge and understanding that students possess about a learned mathematical 

concept. It would be better if an interview had been incorporated. Moreover, the 

students‟ in the experimental phase are intact classroom students to be ethical and to 

resolve the administrative issues. The intervention time, to significantly change 

students‟ understanding is not much enough. 

5.4. Recommendation 

The purpose of the study was to assist students at the early stage of learning 

calculus (grade 12 in this context) overcome difficulties and get better conceptual 

knowledge. The assumption is that if students overcome their difficulties and develop 

a better conceptual knowledge and understanding then they better perform in the 

university entrance examination and will join university courses with the prerequisite. 

The result indicated that the study had accomplished as intended. The study is 

valuable to policymakers, researchers, teachers, and students. In particular, the 

themes of difficulties, the assessment items, the proposed model, and the activity 

sheet are valuable for practitioners as they can be used as a springboard for further 

inquiry and progression.   

First of all, practitioners (particularly university lecturers), have to be aware of those 

difficulties that the students bearing into a University. This is valuable to come from 

an expectation crisis. Besides, they can take those themes of difficulties into 

consideration during planning a lesson. They can also plan alternative intervention 

model or implement the suggested model. They can also do more on designing of 

further activities for assessment or for practices. It is time to shift the trend of 

teaching-learning from procedural and algebraic manipulation of exercises to 

conceptual and reasoning level problems.  

Practitioners also could make use of the synthesized difficulties as a springboard for 

further inquiry. They have to shift their practice of providing feedback to assessment 
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items. Instead of simply making right or wrong of students test scripts, making error 

analysis (looking for patterns of error in interpreting, approaching to conceptual 

issues and ways of thinking and applying the concepts in problem-solving), then use 

the result as feedback to prepare subsequent lessons or intervention in the form of 

tutorials.  

Practitioners also have to take into consideration that a correct answer does not 

guarantee the required conceptual knowledge. Thus, they have to think of their 

assessment habit, i.e. the nature of items and feedback providing strategies. Due to 

the constructive nature of knowledge formation, most difficulties emanate from early 

definitions and introductions of a concept. Therefore, in the early stage, teachers‟ 

awareness about students‟ difficulties and the subsequent effect could be valuable to 

students learning. Teachers also should have to open their eyes and look around to 

generate a practical example, so that the students make sense of the concepts 

instead of the dogmatic approach that stick within a textbook and reference book 

exercises. Since a correct answer for a wrong reason and a wrong answer with high 

confidence are also frequently occur as the part of challenges in calculus, it is 

recommended to incorporate the Certainty of Response Index (CRI) in a diagnostic 

test or continuous assessment items. 

Last, but not least is the implication of the study for policymakers about the issue of 

teachers‟ training. One focus of the proposed model is to incorporate activities that 

are somewhat different from the usual teachers made or those in textbooks. 

However, the question remains to be raised is whether teachers‟ themselves are 

competent enough to prepare such activities or manage their classes in a problem-

solving approach. One suggestion to overcome the problem may be to include 

“problem-solving and mathematical thinking practice” in teachers‟ training or to 

provide it as on job training. The observation made during the training provided to 

teachers revealed that most teachers are naive to the practices like “error analysis,” 

“using feedback as a pedagogical tool” and are unaware of how to prepare real-life 

and context-laden problems, so that students make sense about calculus. For 

instance, piece-wise defined function is one of the concepts that are abstract and 

ideal to students. During the training, the researcher gave the participants to describe 
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their monthly salary tax or monthly water bill in an algebraic expression. Most of them 

were surprised that it was as simple as this to make students “make sense” of what 

they are learning. Thus, policymakers have to do well in teachers‟ competence and 

awareness of the emerging approaches. Refreshing teachers may include how to 

reflect on their own thinking, meta-cognition, and reflection on others‟ work (most 

probably their students), think about realistic mathematics and using errors as a 

springboard for further progression. Additionally, assessing teachers‟ awareness and 

opinions about emerging pedagogical and theoretical frameworks are points that 

seek further attention and research.  

Based on the result of the study, the researcher suggested the following 

recommendations for further study: 

 Assess the attitude of students‟ towards calculus after learning with the model.  

 Investigate students‟ retention of conceptual knowledge after learning with the 

model. 

 Replicate the study in a different context to assure generalization of the 

results.  

 Compare the effectiveness of the intervention used in this study with an 

intervention based on computer programs.  

  



 

176 
 

REFERENCE 

Abbey, K. D. (2008). Students' understanding of deriving properties of a function's 

graph from the sign chart of the first derivative. Master‟s thesis, university of 

Maine. Retrieved from http://citeseerx.ist.psu.edu 

Ahmad, S. N., Mahadi, S., Yusri, M. Y., Yusop, H., Ali, M. N., & Heng, C. H. (2017). 

Factors related to students‟ performance in calculus. Journal of Applied 

Environmental and Biological Science, 7(6S), 51-56. 

Areaya, S. & Sidelil, A. (2012). Students‟ difficulties and misconceptions in learning 

concepts of limit, continuity and derivative. The Ethiopian Journal of 

Education, 32(2), 1-38. 

Asfaw, E., Otore, D., Ayele, T., & Gebremariam, Z. (2009, January). Science and 

mathematics secondary education in Ethiopia. An Option Paper Presented at 

the Technical Workshop on Science and Mathematics Secondary Education in 

Africa (SEIA) Follow-up Program. Retrieved from http://info.worldbank.org 

Asiala, M., Brown, A., DeVries, D. J., Dubinsky, E., Mathews, D., & Thomas, K. 

(1997). A framework for research and curriculum development in 

undergraduate mathematics education. Retrieved from          

https://www.researchgate.net 

Aspinwall, L., & Miller, L. D. (2001). Diagnosing conflict factors in calculus through 

students' writings: One teacher's reflections. The Journal of Mathematical 

Behavior, 20(1), 89-107. 

Aspinwall, L., & Shaw, K. L. (2002). Representations in calculus: Two contrasting 

cases. The Mathematics Teacher, 95(6), 434-439. 

Bergsten, C. (2006). Trying to reach the limit. The role of algebra in mathematical 

reasoning. In Novotna, J., Moraova, H., Kratka, M. & Stehlíkova, N. (Eds.) 

Proceedings of the 30th conference of the international group for the 

psychology of mathematics education (PME), 2, 153-160. Retrieved from 

http://files.eric.ed.gov 

http://citeseerx.ist.psu.edu/
http://info.worldbank.org/
https://www.researchgate.net/
http://files.eric.ed.gov/


 

177 
 

Berry, J. S., & Nyman, M. A. (2003). Promoting students‟ graphical understanding of 

the calculus. The Journal of Mathematical Behavior, 22(4), 481-497. 

Bezuidenhout, J. (2001). Limits and continuity: Some conceptions of first-year 

students. International Journal of Mathematical Education in Science and 

Technology, 32(4), 487-500. 

Blaisdell, R. (2012, February). Student understanding in the concept of limit in 

calculus: How student responses vary. In 15th Annual Conference on 

Research in Undergraduate Mathematics Education, 32(4), 487-500. 

Retrieved from http://umaine.edu 

Bransford, J. D., Brown, A. L., & Cocking, R. R. (Ed.). (2000). How people learn: 

Brain, mind, experience and school (expanded ed.). Washington, DC: National 

Academy Press. 

Breen, S., & O'Shea, A. (2010). Mathematical thinking and task design. Irish 

Mathematical Society Bulletin, 66, 39-49. 

Bressoud, D. M., Carlson, M. P., Mesa, V., & Rasmussen, C. (2013). The calculus 

student: insights from the Mathematical Association of America national 

study. International Journal of Mathematical Education in Science and 

Technology, 44(5), 685-698. 

Brijlall, D., & Ndlovu, Z. (2013). High school learners' mental construction during 

solving optimization problems in calculus: a South African case study. South 

African Journal of Education, 33(2), 1-18. 

Cai, J. (1997). Beyond computation and correctness: contributions of open‐ended 

tasks in examining U.S. and Chinese students‟ mathematical 

performance. Educational Measurement: Issues and Practice, 16(1), 5-11. 

Cangelosi, J. S. (2003). Teaching mathematics in secondary and middle school: An 

interactive approach (3rd  ed.). New Jersey: Prentice Hill. 

Carlson, M., & Oehrtman, M. (2005). Key aspects of knowing and learning the 

concept of function. Mathematical Association of America Research Sampler, 

(9). Retrieved from https://www.maa.org 

http://umaine.edu/
https://www.maa.org/


 

178 
 

Carlson, M., Oehrtman, M., & Engelke, N. (2010). The precalculus concept 

assessment: A tool for assessing students‟ reasoning abilities and 

understandings. Cognition and Instruction, 28(2), 113-145. 

Çetin, I. (2009). Students’ understanding of limit concept: An APOS perspective. 

Doctoral dissertation, Middle East Technical University. Retrieved from 

https://etd.lib.metu.edu.tr 

Cetin, N. (2009). The performance of undergraduate students in the limit 

concept. International Journal of Mathematical Education in Science and 

Technology, 40(3), 323-330. 

Chung, S. (n. d.). Understanding basic calculus. Retrieved from  

          http://www.math.nagoya-u.ac.jp 

Confrey, J. (1995). How compatible are radical constructivism, socio cultural 

approaches, and social constructivism? In L. P. Steffe & J. E. Gale 

(Eds.), Constructivism in education (pp. 185-225). Hillsdale, NJ, US: 

Lawrence Erlbaum Associates, Inc. Retrieved from http://psycnet.apa.org 

Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K., & Vidakovic, D. 

(1996). Understanding the limit concept: beginning with a coordinated process 

scheme. Journal of Mathematical Behavior, 15(2), 167-192. 

Creswell, J. W. (2012). Educational research: Planning, conducting, and evaluating 

quantitative and qualitative research (4th ed.). Boston: Pearson. 

Cuoco, A., Goldenberg, E.P., & Mark, J. (1996). Habits of mind: an organising 

principle for mathematics curricula. Journal of Mathematical Behaviour, 15, 

375-402. 

Denbel, D. G. (2015). Some conceptual difficulties of students on derivation. Journal 

of Educational and Management Studies, 5(4), 211-214. 

Dreyfus, T. (2002). Advanced mathematical thinking process. In D. Tall (Ed.), 

Advanced mathematical thinking (11th ed., pp. 25-41). London: Kluwer 

Academic Publisher.  

https://etd.lib.metu.edu.tr/
http://www.math.nagoya-u.ac.jp/
http://psycnet.apa.org/


 

179 
 

Dubinsky, E. (2002). Reflective abstraction in advanced mathematical thinking. In D. 

Tall (Ed.), Advanced mathematical thinking (11th ed., pp. 95-123). London: 

Kluwer Academic Publisher.  

Dubinsky, E., & McDonald, M. A. (2001). APOS: A constructivist theory of learning in 

undergraduate mathematics education research. In The teaching and learning 

of mathematics at university level (pp. 275-282). Springer, Dordrecht. 

Retrieved from http://www.math.kent.edu 

Duffin, J. M., & Simpson, A. P. (2000). A search for understanding. The Journal of 

Mathematical Behavior, 18(4), 415-427. 

Duru, A. (2011). Pre-service teachers' perception about the concept of 

limit. Educational Sciences: Theory and Practice, 11(3), 1710-1715. 

Elia, I., Gagatsis, A., Panaoura, A., Zachariades, T., & Zoulinaki, F. (2009). 

Geometric and algebraic approaches in the concept of “limit” and the impact of 

the “didactic contract”. International Journal of Science and Mathematics 

Education, 7(4), 765-790. 

Engelbrecht, J., Harding, A., & Potgieter, M. (2005). Undergraduate students‟ 

performance and confidence in procedural and conceptual 

mathematics. International Journal of Mathematical Education in Science and 

Technology, 36(7), 701-712. 

Ernest, P. (1994). Social constructivism and the psychology of mathematics 

education. In P. Ernest (Ed.), Constructing mathematical knowledge: 

epistemology and mathematical education (pp. 68-79). London: The Falmer 

Press. 

Fernández-Plaza, J. A., Rico, L., & Ruiz-Hidalgo, J. F. (2013). Concept of finite limit 

of a function at a point: Meanings and specific terms. International Journal of 

Mathematical Education in Science and Technology, 44(5), 699-710. 

Ferrini-Mundy, J., & Gaudard, M. (1992). Secondary school calculus: Preparation or 

pitfall in the study of college calculus? Journal for Research in Mathematics 

Education, 23(1), 56-71. 

http://www.math.kent.edu/


 

180 
 

Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London: Sage 

Publications Ltd.  

Fraenkel, J. R., & Wallen, N. E. (2009). The nature of qualitative research. How to 

design and evaluate research in education (7th ed.). Boston: McGraw-Hill. 

Gebrekidan, Z. (2010). Ethiopian first national learning assessment of grades 10 &12 

students. Addis Ababa: National Agency for Examinations. 

Glasersfeld, V. E. (1995). Radical constructivism: A way of learning and knowing. 

London: The Falmer Press. 

Goldin, G., & Shteingold, N. (2001). Systems of representations and the development 

of mathematical concepts. The Roles of Representation in School 

Mathematics, 2001, 1-23. 

Gray, E. M., & Tall, D. O. (1994). Duality, ambiguity, and flexibility: A" proceptual" 

view of simple arithmetic. Journal for Research in Mathematics Education, 

26(2), 115-141. 

Gray, S. S., Loud, B. J., & Sokolowski, C. P. (2009). Calculus students' use and 

interpretation of variables: Algebraic vs. arithmetic thinking. Canadian Journal 

of Science, Mathematics and Technology Education, 9(2), 59-72. 

GRE (2008). Graduate record examinations: mathematics test practice book. USA, 

Educational testing service. Retrieved from https://www.ets.org 

Green, S., & Salkind, N. (2005). Using SPSS for Windows and Macintosh: 

Understanding and analyzing data. Boston: Prentice Hall. 

Hähkiöniemi, M. (2006). The role of representations in learning the derivative. 

University of Jyväskylä. Retrieved from https://jyx.jyu.fi 

Hashemi, N., Abu, M. S., Kashefi, H., & Rahimi, K. (2014). Undergraduate students‟ 

difficulties in conceptual understanding of derivation. Procedia-Social and 

Behavioral Sciences, 143, 358-366.  

Hashemi, N., Abu, M. S., Kashefi, H., & Mokhtar, M. (2015). Designing learning 

strategies to improve undergraduate students‟ problem solving in derivative 

https://www.ets.org/
https://jyx.jyu.fi/


 

181 
 

and integrals: a conceptual framework. Eurasia Journal of Mathematics, 

Science & Technology Education, 11(2), 227-238.  

Herbert, S. (2013). Challenging the traditional sequence of teaching introductory 

calculus. Computers in the Schools, 30(1-2), 172-190. 

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in 

mathematics: An introductory analysis. In J. Hiebert (Ed.), Conceptual and 

procedural knowledge: The case of mathematics (pp. 1-27). London: 

Lawrence Erlbaum Associates, Inc., Publishers.  

HESC. (2013). Harmonized modular curriculum for B. Sc degree program in 

mathematics, Addis Ababa, Ethiopia (unpublished). 

Horvath, A. (2008). Looking at calculus students‟ understanding from the inside-out: 

The relationship between the chain rule and function composition. In 11th  

Annual Conference on Research in Undergraduate Mathematics Education, 

San Diego, CA. Retrieved from http://sigmaa.maa.org 

IER & AAU. (2013). Ethiopian university etrance examination (EUEE). Mathematics 

for natural sience stream. 

_________. (2014). Ethiopian university etrance examination (EUEE). Mathematics 

for natural sience stream. 

_________. (2015). Ethiopian university etrance examination (EUEE). Mathematics 

for natural sience stream. 

_________. (2016). Ethiopian university etrance examination (EUEE). Mathematics 

for natural sience stream. 

Idris, N. (2009). Enhancing students‟ understanding in calculus trough writing. 

International Electronic Journal of Mathematics Education, 4(1), 36-55. 

Jaffar, S. & Dindyal, J. (2011). Language-related misconceptions in the study of 

limits. Mathematics: Traditions and [New] Practices, 390-397. Retrieved from  

         https://www.merga.net.au 

http://sigmaa.maa.org/
https://www.merga.net.au/


 

182 
 

Jayakody, G. (2012). Interplay between concept image & concept definition: 

Definition of continuity. Plenary Session, 72. Retrieved from  

          http://peterliljedahl.com 

Jojo, Z. M. M. (2011). An APOS exploration of conceptual understanding of the chain 

rule in calculus by first year engineering students. Doctoral dissertation, 

University of KwaZulu-Natal, Edgewood. Retrieved from 

https://researchspace.ukzn.ac.za 

Jones, S. R. (2015). Calculus limits involving infinity: the role of students‟ informal 

dynamic reasoning. International Journal of Mathematical Education in 

Science and Technology, 46(1), 105-126.   

Jordaan, T. (2009). Misconceptions of the limit concept in a mathematics course for 

engineering students. Master‟s thesis, University of South Africa. Retrieved 

from http://uir.unisa.ac.za 

Juter, K. (2005a). Limits of functions-How do students handle 

them? Pythagoras, 2005 (61), 11-20. Retrieved from 

          https://www.researchgate.net  

Juter, K. (2005b). Limits of functions: Traces of students' concept images. Nordisk 

matematikkdidaktikk, 10(3-4), 65-82. Retrieved from http://ncm.gu.se  

Juter, K. (2006). Limits of functions-students solving tasks. Australian Senior 

Mathematics Journal, 20(1), 15-30. Retrieved from UNISA e-journal Database: 

Education Source 

Karelia, B., Pillai, A. & Vegada, B. (2013). The levels of difficulty and discrimination 

indices and relationship between them in four-response type multiple choice 

questions of pharmacology summative tests of Year II M.B.B.S students. 

International e-Journal of Science, Medicine & Education, 7(2). 41-46. 

Retrieved from https://zapdoc.tips 

Kelley, W. M. (2006).The complete idiot’s guide to calculus (2nd ed.). New York: 

Marie Butler-Knight. 

http://peterliljedahl.com/
https://researchspace.ukzn.ac.za/
http://uir.unisa.ac.za/
https://www.researchgate.net/
http://ncm.gu.se/
https://zapdoc.tips/


 

183 
 

Keri, A., Liston, J., Selden, J., Salomone, S., & Zorn, P. (2010, March). Problem 

solving. IM&E Workshop (p. 1-5). Retrieved from http://ime.math.arizona.edu 

Kinley, M. (2016). Grade Twelve Students Establishing the Relationship Between 

Differentiation and Integration in Calculus Using graphs. IEJME-Mathematics 

Education, 11(9), 3371-3385. 

Ko, Y. Y., & Knuth, E. (2009). Undergraduate mathematics majors‟ writing 

performance producing proofs and counterexamples about continuous 

functions. The Journal of Mathematical Behavior, 28(1), 68-77. 

Koehler, M. J., Mishra, P., Kereluik, K., Shin, T. S., & Graham, C. R. (2014). The 

technological pedagogical content knowledge framework. In J.M. Spector,  M. 

D. Merrill, J. Elen, & M.J. Bishop (ed.), Handbook of research on educational 

communications and technology (pp. 101-111). New York: Springer.  

Konicek-Moran, R., & Keeley, P. (2015). Teaching for conceptual understanding in 

science. NSTA Press, National Science Teachers Association. Retrieved from 

https://s3.amazonaws.com 

Lauritzen, P. (2012). Conceptual and procedural knowledge of mathematical 

functions. Doctoral dissertation, University of Eastern Finland. Retrieved from 

http://epublications.uef.fi 

Liu, C. H., & Matthews, R. (2005). Vygotsky's Philosophy: Constructivism and Its 

criticisms examined. International Education Journal, 6(3), 386-399. 

Luneta, K., & Makonye, P. J. (2010). Learner errors and misconceptions in 

elementary analysis: A case study of a grade 12 class in South Africa. Acta 

Didactica Napocensia, 3(3), 35-46. 

Maharaj, A. (2010). An APOS analysis of students' understanding of the concept of a 

limit of a function. Pythagoras, 71, 41-52. 

Maharaj, A. (2013). An APOS analysis of natural science students' understanding of 

derivatives. South African Journal of Education, 33(1), 1-19. 

http://ime.math.arizona.edu/
https://s3.amazonaws.com/
http://epublications.uef.fi/


 

184 
 

Maharajh, N., Brijlall, D., & Govender, N. (2008). Pre-service mathematics students' 

notions of the concept definition of continuity in calculus through collaborative 

instructional design worksheets. African Journal of Research in Mathematics, 

Science and Technology Education, 12(sup1), 93-106. 

Mahir, N. (2009). Conceptual and procedural performance of undergraduate students 

in integration. International Journal of Mathematical Education in Science and 

Technology, 40(2), 201-211. 

Makgakga, S., & Makwakwa, E. G. (2016, October). Exploring learners‟ difficulties in 

solving grade 12 differential calculus: a case study of one secondary school in 

polokwane district (pp. 13-25). Limpopo, South Africa. Retrieved from 

http://uir.unisa.ac.za 

Makonye, J. P. (2012). Learner errors on calculus tasks in the NSC examinations: 

Towards an analytical protocol for learner perturbable concepts in introductory 

differentiation. International Journal of Learning, 18(6), 339-357. 

Mason, J., Burton, L., & Stacey, K. (2011). Thinking mathematically (2nd ed.). 

Edinburgh: Pearson.  

McKee, A. (2001). A beginner‟s guide to text analysis. Metro Magazine, pp. 138-149. 

Retrieved from https://www.researchgate.net 

Messick, S. (1988). Validity. In R. L. Linn (Ed.), Educational measurement (3rd ed.). 

13–104, New York: Macmillan. 

Miles, M. B., Huberman, A. M., & Saldana, J. (2014). Qualitative data analysis: A 

method sourcebook. CA, US: Sage Publications. 

FDRGE. (1994). Education and training policy. Addis Ababa: St. George Print‟s 

Press. 

MoFED. (2010). The Federal Democratic Republic of Ethiopia. Growth and 

tranaformation plan 2010/11 - 2014/15. Retrieved from  

Moru, E. K. (2006). Epistemological obstacles in coming to understand the limit 

concept at undergraduate level: a case of the National University of Lesotho. 

http://uir.unisa.ac.za/
https://www.researchgate.net/


 

185 
 

Doctoral dissertation, University of the Western Cape. Retrieved from 

http://etd.uwc.ac.za 

Muzangwa, J., & Chifamba, P. (2012). Analysis of errors and misconceptions in the 

learning of calculus by undergraduate students. Educational Studies in 

Mathematics, 80(3), 389-412.  

Naidoo, K. & Naidoo, R. (2007). First year students understanding of elementary 

concepts in differential calculus in a computer laboratory teaching 

environment. Journal of College Teaching & Learning, 4(9), 55-70. 

Nair, G. S. (2010). College students’ concept images of asymptotes, limits, and 

continuity of rational functions. Doctoral dissertation, The Ohio State 

University. Retrieved from http://rave.ohiolink.edu 

Oehrtman, M. C. (2002). Collapsing dimensions, physical limitation, and other 

student metaphors for limit concepts: An instrumentalist investigation into 

calculus students' spontaneous reasoning. Doctoral dissertation, The 

University of Texas at Austin. Retrieved from   

          https://repositories.lib.utexas.edu 

Orhun, N. (2012). Graphical understanding in mathematics education: Derivative 

functions and students‟ difficulties. Procedia-Social and Behavioral 

Sciences, 55, 679-684. 

Parameswaran, R. (2007). On understanding the notion of limits and infinitesimal 

quantities. International Journal of Science and Mathematics Education, 5(2), 

193–216.  

Pillay, E. (2008). Grade twelve learners' understanding of the concept of derivative. 

Masters dissertation, University of KwaZulu-Natal. Retrieved from 

https://researchspace.ukzn.ac.za 

Pinto, M. M. F., & Tall, D. (2001). Following students' development in a traditional 

university analysis course. In PME Conference, 4, 4-57. Retrieved from  

http://citeseerx.ist.psu.edu 

http://etd.uwc.ac.za/
http://rave.ohiolink.edu/
https://repositories.lib.utexas.edu/
https://researchspace.ukzn.ac.za/
http://citeseerx.ist.psu.edu/


 

186 
 

Plomp,T. (2007). Educational design research: an introduction. In, T. Plomp, & N 

Nieveen (2007, November). An introduction to educational design research. 

In Proceedings of the seminar conducted at the East China Normal University, 

Shanghai (PR China) (pp. 9-36).Retrieved from www.slo.nl  

Pritchard, A. & Woollard, J. (2010). Psychology for the classroom: Constructivism 

and social learning. New York: Routledge.  

Przeniosło, M. (2003). Perceiving the concept of limit by secondary school 

pupils. Disputationes Scientificae Universitatis Catholicae in Ružomberok, 3, 

75-84. 

Rabadi, N. (2015). Overcoming difficulties and misconceptions in calculus (Doctoral 

dissertation, Teachers College, Columbia University). Available from ProQuest 

dissertations and theses. (UMI 3683397). 

Reinholz, D. L. (2015). Peer-assisted reflection: A design-based intervention for 

improving success in calculus. International Journal of Research in 

Undergraduate Mathematics Education, 1(2), 234-267. 

Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual 

understanding and procedural skill in mathematics: An iterative 

process. Journal of Educational Psychology, 93(2), 346-362. 

Roble, D. B. (2017). Communicating and valuing students‟ productive struggle and 

creativity in calculus. Turkish Online Journal of Design Art and 

Communication, 7(2), 255-263. 

Roh, K. H. (2005). College students’ intuitive understanding of the concept of limit 

and their level of reverse thinking. Doctoral dissertation, The Ohio State 

University. Retrieved from https://etd.ohiolink.edu   

Sadler, P. M., & Sonnert, G. (2017). Factors influencing success in introductory 

college calculus. The role of calculus in the transition from high school to 

college mathematics. Retrieved from https://www.maa.org 

Schneider, M. & Stern, E. (2005). Conceptual and procedural knowledge of a 

mathematics problem: Their measurement and their causal interrelations. In 

http://www.slo.nl/
https://etd.ohiolink.edu/
https://www.maa.org/


 

187 
 

Schoner, G., & Wilimzig, C. (2005, January) Proceedings of the Annual 

Meeting of the Cognitive Science Society, 27(27).  Retrieved from 

          https://cloudfront.escholarship.org 

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, 

metacognition, and sense-making in mathematics. In D. Grouws (Ed.), 

Handbook for research on mathematics teaching and learning (pp. 334–370). 

New York: MacMillan. 

Schoenfeld, A. H. (2007). Problem solving in the United States, 1970–2008: research 

and theory, practice and politics. ZDM, 39 (5-6), 537-551. 

Seifert, K., & Sutton, R. (2009). Educational psychology. (2nd ed.). Zurich, 

Switzerland: The Saylor Foundation. 

Shulman, L. (1986). The paradigms and research programs in the study of 

teaching. Handbook of research on teaching, 3-36. 

Siemon, D. (2013). Launching mathematical futures: The key role of multiplicative 

thinking. In Mathematics: Launching Futures, Proceedings of the 24th Biennial 

Conference of the Australian Association of Mathematics Teachers (pp. 36-

52). Retrieved from http://www.aamt.edu.au 

Siyepu, S. W. (2013). Students‟ interpretations in learning derivatives in a University 

mathematics classroom. In Proceedings of the 19th Annual Congress of the 

Association for Mathematics Education of South Africa, 1, 183-193. 

Siyepu, S. W. (2015). Analysis of errors in derivatives of trigonometric 

functions. International Journal of STEM Education, 2(1), 1-16. 

Skemp, R. R. (1976). Relational understanding and instrumental 

understanding. Mathematics Teaching, 77(1), 20-26. 

Stacey, K. (2006). What is mathematical thinking and why is it important. Progress 

report of the APEC project: collaborative studies on innovations for teaching 

and learning mathematics in different cultures (II)—Lesson study focusing on 

mathematical thinking. Retrieved from http://e-archives.criced.tsukuba.ac.jp 

https://cloudfront.escholarship.org/
http://www.aamt.edu.au/
http://e-archives.criced.tsukuba.ac.jp/


 

188 
 

Star, J. R. (2005). Reconceptualizing procedural knowledge. Journal for Research in 

Mathematics Education, 36(5), 404-411. Retrieved from http://www.jstor.org 

Star, J. R., & Stylianides, G. J. (2013). Procedural and conceptual knowledge: 

exploring the gap between knowledge type and knowledge quality. Canadian 

Journal of Science, Mathematics and Technology Education, 13(2), 169-181. 

Stewart, S. (2008). Understanding linear algebra concepts through the embodied, 

symbolic and formal worlds of mathematical thinking. Doctoral dissertation, 

The University of Auckland. Retrieved from 

https://researchspace.auckland.ac.nz 

Takači, D., Pešić, D., & Tatar, J. (2006). On the continuity of functions. International 

Journal of Mathematical Education in Science and Technology, 37(7), 783-

791. 

 Tall, D. (1999). Reflections on APOS theory in elementary and advanced 

mathematical thinking. In O. Zaslavsky (Ed.) Proceedings of the 23rd 

conference of the international group for the psychology of mathematics 

education (PME), 1, 111-118.  

Tall, D. (1993). Students ‟ difficulties in calculus. Proceedings of Working Group 3 on 

Students’ Difficulties in Calculus, (August 1992), 3,13–28. 

Tall, D. (2002). The psychology of advanced mathematical thinking. In D. Tall (Ed.), 

Advanced mathematical thinking (11th ed., pp. 3-21). London: Kluwer 

Academic Publisher.  

Tall, D., Gray, E., Bin Ali, M., Crowley, L., DeMarois, P., McGowen, M., Pitta, D., 

Pinto, M., Thomas, M., & Yusof, Y. (2000). Symbols and the bifurcation 

between procedural and conceptual thinking, Canadian Journal of Science, 

Mathematics and Technology Education 1(1), 81–104.  

Tall, D. & Mejia-Ramos, J.P. (2004). Reflecting on post-calculus reform. Retrieved 

from https://homepages.warwick.ac.uk  

Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics 

with particular reference to limits and continuity. Educational studies in 

Mathematics, 12(2), 151-169. 

http://www.jstor.org/
https://researchspace.auckland.ac.nz/
https://homepages.warwick.ac.uk/


 

189 
 

Thomas, R. S. D. (1994). Radical constructive criticisms of von Glasersfeld‟s radical 

constructivism. In P. Ernest (Ed.), Constructing mathematical knowledge: 

Epistemology and mathematical education (36-43). London: The Falmer 

Press. 

Thomas, J., & Harden, A. (2008). Methods for the thematic synthesis of qualitative 

research in systematic reviews. Retrieved from  

             http://www.biomedcentral.com 

Usman, A. I. (2012, July). Analysis of algebraic errors in applied calculus problem 

solving. In 12th International Congress on Mathematical Education, COEX, 

Seoul, Korea. Retrieved from https://www.researchgate.net 

Vandebrouck, F., & Leidwanger, S. (2016, March). Students' vizualisation of 

functions from secondary to tertiary level. In First conference of International 

Network for Didactic Research in University Mathematics. Montpellier, 

France. Retrieved from https://hal.archives-ouvertes.fr 

Vela, M. J. (2011). A snapshot of advanced high school students' understanding of 

continuity. Master‟s Thesis, The University of Texas at Arlington.         

Retrieved from https://uta-ir.tdl.org 

Walelign, T. (2014). Assessment of students ‟ mathematical competency, a case 

study in Dire-Dawa University. Ethiopan Journal of Education & Science, 

9(2), 1-15. 

Wangle, J. L. (2013). Calculus student understanding of continuity. Doctoral 

dissertation, Northern Illinois University. Available from ProQuest 

dissertations and theses (UMI Number: 3611389). 

World Bank (2017). Program-for-results information document (PID) concept stage. 

Retrieved from http://documents.worldbank.org 

Zollman, A. (2014). University students‟ limited knowledge of limits from calculus 

through differential equations. The mathematics education for the future 

project: Proceedings of the 12th International Conference, (pp. 693-698).      

Retrieved from https://www.researchgate.net 

http://www.biomedcentral.com/
https://www.researchgate.net/
https://hal.archives-ouvertes.fr/
https://uta-ir.tdl.org/
http://documents.worldbank.org/
https://www.researchgate.net/


 

190 
 

Appendix A: Detail of the studies used for the systematic review 

Author  Country Level Focused area Data collection16  Sample17 Type 

Abbey (2008) USA 1st  year 

University 

Derivative Test, interview- 235,11(not 

mentioned) 

Master‟s 

Thesis 

Areaya and 

Sidelil (2012) 

Ethiopia Secondar

y school 

Limit, 

continuity, and 

derivative 

Test-adapted, 

prepared 

135-random Journal 

article 

Bergsten 

(2006) 

Spain 1st  year 

University  

Limit of 

functions 

Observation-

interview 

6-convenient Conference 

Proceeding 

Blaisdell 

(2012) 

USA 1st  year 

university 

Limit  Questionnaire-

adapted & prepared   

111-purposive Journal 

article 

Brijlall and 

Ndlovu (2013) 

South 

Africa 

Grade 12 Optimization 

problems 

Questionnaire, 

interview-  

10,3-availability Journal 

article 

Çetin, I. 

(2009) 

Turkey  Limit of 

functions 

Questionnaire, 

interview-adopted 

25-convenient Doctoral 

thesis 

Cetin, N. 

(2009) 

Turkey 1st  year 

University 

Limit of 

functions 

Test-prepared 63-availability Journal 

article  

Denbel (2015) Ethiopia 1st  year 

University  

Derivative Questionnaire-

adapted 

60-availability  Journal 

article 

                                            
 

16
 Data collection instrument and source of the instrument  

17
 Number of participants and sampling method implemented to select the sample  
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Duru (2011) Turkey 1st  year 

University 

Limit  Test, interview-

adapted 

95,8-

convenient 

Journal 

article  

Elia 

et.al.,(2009 

Greece Grade 12 Limit of 

functions 

Questionnaire- 222(not 

mentioned) 

Journal 

article 

Fernandez-

Plaza et al. 

(2013) 

Spain 2nd ed. 

Level 

Finite limit at a 

point 

Questionnaire-

adapted 

36-purposive Journal 

article  

Gray et al. 

(2009) 

New 

England 

1st  year 

University 

Variables Test-adopted 174-(not 

mentioned) 

Journal 

article 

Hashemi et 

al. (2014) 

Iran 1st  year 

University  

Derivative Questionnaire-

designed  

63-availability Journal 

article 

Horvath 

(2008) 

USA 1st  year 

University 

Chain rule Interview, 

observation 

18 (not 

mentioned) 

Journal 

article 

Jaffar and 

Dindyal 

(2011) 

Singapore 1st  year 

University 

Limit at a point Test, interview-

adopted  

50, 10-  

convenient 

Journal 

article  

Jayakody 

2012 

Canada 1st  year 

University  

Continuity Test- 37- convenient Journal 

article 

Jones (2015) USA 1styear 

university  

Limit involving 

infinity 

Interview-prepared 7-purposive Journal 

article  

Jordaan 

(2005) 

South 

Africa 

 1st  year 

University  

Limit of 

functions 

Questionnaire-

interview 

47, 6-

availability 

Master‟s 

thesis 
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Juter (2005a) Sweden 1st  year 

University  

Limit of 

functions 

Questionnaire, 

interview-prepared, 

adapted 

112,15-

availability  

Journal 

article 

Juter (2005b) Sweden 1st  year 

University  

Limit of 

functions 

Questionnaire, 

interview-prepared, 

adapted 

112,15-

availability 

Journal 

article 

Juter (2006) Sweden 1st  year 

University  

Limit of 

functions 

Questionnaire, 

interview-adopted  

111,15-

availability 

Journal 

article 

Ko and  Knuth 

(2009) 

Taiwan 1st  year 

University 

Continuity  Test, interview-

adapted 

11, convenient Journal 

article  

Luneta and 

Makonye 

(2012) 

South 

Africa 

Grade 12 Derivatives  Test, selective 

interviewed 

45 (not 

mentioned) 

Journal 

article 

Maharaj 

(2010) 

South 

Africa 

1st  year 

University 

Limit of 

functions 

Test-adopted  891 Journal 

article  

Maharaj 

(2013) 

South 

Africa 

1st  year 

University 

Derivatives Test-designed  857-convenient Journal 

article 

Maharajh et 

al. (2008) 

South 

Africa 

Second 

year 

Continuity  Questionnaire, 

interview- 

12-(not 

mentioned) 

Journal 

article 

Makgakga & 

Makwakwa 

(2016) 

South 

Africa 

Grade 12 Derivatives Test, interview 37-convenient Conference 

Proceeding 
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Makonye 

(2012) 

South 

Africa 

Grade 12 Derivatives Exam 1000 (not 

mentioned) 

Journal 

article 

Moru (2006) Lesotho First & 

sec. year 

Limit of 

functions 

Questionnaire-

interview 

307,33-

convenient 

Doctoral 

thesis 

Nair (2010) USA 1st  year 

University  

Limit of 

rational 

functions 

Interview-  19- convenient PhD thesis 

Oehrtman 

(2002) 

USA 1st  year 

University  

Limit of 

functions 

Interview, 

questionnaire-

prepared, adapted 

9,120- PhD Thesis 

Orhun (2012) not 

mentioned 

Grade 12 Graph of 

derivative 

functions 

Test-designed  102 (not 

mentioned) 

Journal 

article 

Parameswan 

(2007) 

India Grade 12 Limit of 

functions 

Test, interview- 79,16-

availability 

Journal 

article 

Pillay (2008) South 

Africa 

Grade 12 Derivatives Exam, interview  27,4-

convenient  

Journal 

article 

Przenioslo 

(2003) 

Poland Secondar

y school 

Limit of 

functions 

Test, observation, 

interview-prepared 

512-  Journal 

article 

Roh (2005) USA 1st  year 

University  

Limit of 

sequences 

Interview-prepared   12-purposive  PhD 

dissertation 

Siyepu (2013) South 1st  year Derivatives  Observations 30-purposive Proceeding  
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Africa University  

Siyepu (2015) South 

Africa 

1st  year 

University  

Derivatives  Test- 30-purposive Journal 

article 

Takaci et al. 

(2006) 

not 

mentioned 

Grade 12 Continuity Questionnaire-

adapted 

41-availability Journal 

article 

Usman (2012) Nigeria 1st  year 

University 

Optimization 

problems 

Test-designed 156-convenient Conference 

Proceeding 

Vandebrouck  

& Leidwanger 

(2016) 

France  1st  year 

University 

Limit of 

functions 

Test, interview 513-availability Conference 

Proceeding 

Vela (2011) USA Grade 12, 

first year 

Continuity  Test-adapted 23- convenient Master‟s 

thesis 

Wangle 

(2013) 

USA 1st  year 

University  

Continuity Test, interview- 19- convenient Doctoral 

dissertation 
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Appendix B: Quotations 

No. Item  Identified students conceptions  

1 Abbey (2008) 

 

Lack to interpret critical points  

Focus on surface learning and memorized rules  

Manage procedures inappropriately   

2 Areaya and 

Sidelil (2012) 

Belief that a constant sequence is not monotonic 

Correct answer for wrong reason 

Infinity as a number 

Limit is a substitution 

Being monotonic is sufficient for limit of a sequence 

Over generalize limit procedures 

Limit is unreachable  

Limit is an approximation 

Limit is a value which exist at any point  

Confusing notation or symbol and meaning or definition  

Being defined is necessary for existence of limit  

If a function  has no limit at a point then it must have a vertical 

asymptote 

Confusing critical points and extreme values  

Face additional difficulty to deal with split half functions  

Belief that rationalization is a must to do when a radical is involved 

in a limit 

3 Bergsten 

(2006) 

Have wrong image of infinity 

More focused on random algebraic manipulations than conceptual 

understanding 

Lack of establishing link between calculus concepts and 

procedures and pre-calculus concepts and procedures  

4 Blaisdell 

(2012) 

Stimulate different concept images of the same idea based on type 

of representation 

Less difficulty in graphical form of limit  
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5 Brijlall and 

Ndlovu 

(2013) 

Not understand the importance of dimensions in problems 

Apply memorized rules without attention to the context provided by 

the task 

Limited understanding of algebraic expressions  

Relied mostly on procedural thinking 

Unsynchronized knowledge structure of derivative 

Instrumental understanding of the notation   /   

Do well with routine type questions i.e. functioning at an action 

level 

Hard to model problems in to mathematical expression  

6 Çetin, I. 

(2009) 

Limit of   at   is  ( ) 

Lack coordinated process schema of limit  

Correct answer for wrong reasons 

7 Cetin, N. 

(2009) 

Lack the meaning of the limit concept 

Unable to apply limit concept to solve unfamiliar exercises 

Recognize limit value only  as a number and lack to interpret 

results  

8 Denbel 

(2015) 

Unable to make connection between meaning of terms in common 

language use and interpretations in  calculus 

Problem of visual /graphical representation of concept like turning 

point 

Restricted mental image of derivative  

Do not pay attention to contextual meaning of terms 

9 Duru (2011) Confusing limit and continuity definitions 

Being defined at a is necessary condition to compute limit at     

Algebraic manipulation errors 

Limit and function values are the same 

10 Elia et al.  

(2009) 

Hard to describe what limit is  

Limit as a point that cannot be attained 

Limit of   at a is  ( ) 
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Being defined at a is necessary to compute limit at     

Non-existence of limit at a point occurs only when the limits from 

both sides is different  

Lack of flexibility among different modes of representation 

Great difficulties in non-routine problems of limit 

More difficulty of tasks involving infinity 

11 Fernandez-

Plaza et al. 

(2013) 

Limit value is unreachable 

Limit is an upper bound 

Limit value is an approximation 

Limit is non-exceedable 

Convergence is strictly monotone 

12 Gray et al. 

(2009) 

 

 

 

 

 

Lack to recognize variables as generalized numbers and varying 

quantities 

Unsuccessfully used symbolic manipulation,  inappropriate use of 

the inequality sign 

Sequentially based thinking of variables than real number domain 

of equations and inequalities   

Inability to recognize  co-variation among variables  

Arithmetic approach for items demanding an algebraic approach 

13 Hashemi et 

al. (2014) 

Challenge  to characterize a function based on information from 

graph 

Lack to use both geometric and algebraic aspects together  

Influenced by algebraic notation more than geometric form of 

derivatives 

14 Horvath 

(2008) 

Unsuccessful on problems involving unfamiliar functions 

Confusing function composition and combination 

15 Jaffar and 

Dindyal 

(2011) 

Confusing terms- infinite, not exist, and indeterminate in computing 

limit 

Confusing infinity and undefined  

Limit value is an approximation 
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16 Jayakody 

(2012) 

 

Limit as plugging a value into the function 

To be continuous, a  function should be in one piece 

Concept image different from concept definition  

17 

 

Jones (2015) 

 

Insert infinity in for  ,  

Inappropriate use of L‟Hopital‟s rule 

Focused on what happens at the point infinity than as   
approaches to infinity 

Point-by-point or static image of change  

18 Jordaan  

(2005) 

Limit as a boundary 

Limit of   at a is  ( )   

Limit as unreachable 

Limit is an approximation 

There should be a limit value of a function at any given point   

Lack to describe what limit is in their own words  

Limit as a substitution process 

Continuous is necessary for existence of  limit  

Being defined is necessary for existence of  limit 

Difficulty in sketching the graph of rational functions 

Difficulty of indeterminate forms  

19 Juter (2005a) Hard to describe limit in their own words 

Limit is never attained 

20 Juter (2005b) Functions cannot attain limit values 

Limit as approximation of function values 

Limit as border 

Limit value as function value 

Function value as limit value 

Difficulty to compute limit at point of discontinuity 

Perceive limit as object and as process, as unreachable or 

reachable based on context 

21 Juter (2006) Algebraic manipulation errors 
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Wrong concept image of indeterminate form  

Low success for unfamiliar task items 

Difficulty with image of infinity 

Correct answer for wrong reason 

22 Ko and Knuth 

(2009) 

If   is discontinuous at  , then   is not defined at   

Incomplete mental image of limit notations  

Hard to producing proofs and counterexamples of continuity and 

discontinuity  

23 Luneta and 

Makonye 

(2010) 

Difficulty in using the functional notation 

Error of limit notation 

Ignorance of rule restrictions in algebraic expressions 

Incomplete application of differentiation rules  

Wrong answer with high confidence 

False concepts hypothesized to form new concepts 

Unsynchronized conceptual and procedural knowledge in calculus 

24 Maharaj 

(2010) 

Limit as one of the one-sided limits only 

Algebraic manipulation errors of rational expressions 

25 Maharaj 

(2013) 

Difficulty in applying the rules for derivatives 

Not having appropriate mental structures of derivative 

Inadequate schema for composition of functions 

Difficulty of decomposing a compound function  

Inadequate schema for graph of the derivative function 

Difficult to relate function and its derivative geometrically  

26 Maharajh et 

al. (2008) 

Lack ability to integrate given and required that satisfy the 

conditions In a problem /problem-solving framework  

A piecewise defined function is not one function 

Existence of limit is an essential  premise to compute continuity  

Confusing limit value and function value/ inadequate generalization 

Confusing continuity with connectedness  

Language issue/linguistic ambiguity  
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Confuse connectedness of graph with smoothness of graph 

27 Makgakga 

and 

Makwakwa 

(2016) 

Incorrect substitution into a function to compute derivative  

Difficulties in relating symbols and the use of variables  

Difficulties in mathematical operations 

Procedural knowledge which is suitable for simple functions 

28 Makonye 

(2012) 

Inadequate concept image of functions 

Misinterpret derivative rules 

Overgeneralization of rules  

Confusing terms 

Lack of meta-cognition 

Low response rate for problems demanding higher levels of 

cognitive thinking  

29 Moru (2006) Limit of   at a is  ( ) 

The limit value is the function value  

Correct answer using  inappropriate method  

Infinity as one big number 

Limit value is unreachable 

Limit is a boundary 

Limit value is an approximation 

Being defined at a is necessary to compute limit at     

Difficulty to translate among representations 

Lack of symbolic interpretation 

A piece-wise defined function has two limits 

Shortage of co-variational reasoning 

Limit values are whole numbers 

The limit value is a dynamic object  

A well-defined sequence should be monotonic 

Divergent means tends to infinity 

Improper simplification 

Problem with the chain rule 
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Problem with indeterminate form  

An alternating sequence is not one but two sequences 

A well-defined sequence has a single formula 

Different modes of representation represent different sequences 

30 Nair (2010) Being defined is necessary condition for existence of limit  

Inability to discriminate between indeterminate and undefined 

forms 

Belief that a function could not be continuous at cusps or sharp 

corners 

Difficulty to identify vertical asymptote of a rational function 

The believe that every point of discontinuity  is a vertical asymptote  

Being defined is necessary for limit 

Limit is the same as function value 

Face more challenge to compute limit involving infinity  

If a functions domain is all real numbers, then it is necessarily 

continuous 

Existence of limit is sufficient for continuity at a point 

31 Oehrtman 

(2002) 

Limit exist if the terms collapse to zero 

Limit as the value being approximated  

Plugged infinity as a number 

Interpretation of “approaches” as chunky images of change 

32 Orhun (2012) 

 

Difficult to make connections between function and its derivative  

Lack to use correct terms to describe graph of derived function 

Unable to interpret function properties from graph of the derivative 

function  

33 Parameswan 

(2007) 

 

Confused by jump discontinuity 

Recognize limit computation as an approximation 

Equating quantities that  they perceive as small to zero 

Infinity as a large number 

34 Pillay (2008) Used inappropriate algorithms 
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Carried out incorrect algebraic simplification 

Present partial solution of derivatives 

Incorrect representation of limit notation 

Incorrect use of derivative notation 

35 Przenioslo 

(2003) 

Being defined is necessary to compute limit 

Continuous at a point is necessary to compute limit at that point 

If  a is in the domain of  ( ) then        ( ) must exist 

36 Roh (2005) 

 

A number sequence continue endlessly, hence no limit/ associating 

convergence with only the index process 

Limit value is unreachable 

Lack of recognizing constant sequences as sequences 

Oscillating behavior always leads to divergence 

Graph of a sequence is continuous 

Lack of recognizing uniqueness of limit value/multiple value  

No reaction to unfamiliar sequences 

Plugged in infinity for n 

Limit value is unreachable 

37 Siyepu 

(2013) 

 

Confusing rules of differentiations  

Inadequate interpretation of the derivative concepts 

Fall to choose appropriate procedures to a given problem  

Interference i.e. incorrect understanding of a concept because of 

an existing overgeneralization 

38 Siyepu 

(2015) 

 

Lack to capture set of  idea in a given problem   

Lack of a well-developed composite function schema 

Perform algebraic manipulation errors 

39 Takaci et al. 

(2006) 

Being defined is sufficient for continuity 

Confusing continuity with connectedness  

Point of discontinuity  means asymptote 

A piecewise defined function is discontinuous 

40 Usman Low response rate for problems demanding higher levels of 
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(2012) cognitive thinking  

Shortage of making network of concepts toward solving a problem  

Lack of meta-cognition 

Inability to manipulate trigonometric fractions 

Unable to manipulate  trigonometric identity, 

41 Vandebrouck  

& Leidwanger 

(2016) 

Poor skills about algebraic rules of limit 

Inconsistency in computing limit value   

Think that x always takes positive value to compute limit 

Evaluate 
 

 
   or  

 

 
   

Difficult to identify the kind of indeterminate form    

Indifferently use “it is” and “it tends” 

Focus on qualitative rules of limit   

42 Vela (2011) 

 

Being defined is sufficient for continuity  

Existence of limit is sufficient for continuity at a point 

Confusing continuity with connectedness  

Confusing the relation between continuity and differentiability 

Hard to identify point of discontinuity  

point of discontinuity means asymptote 

Look only for breaks, holes, cusps or corners on the graph than 

limit  

43 Wangle 

(2013) 

 

Limited conception of functions as chunky, not smooth 

Very dependent only one form of representation 

Confuse the notion of continuity and differentiability i.e. 

connectedness vs. smoothness  

Being defined is sufficient for continuity 

Confusing continuity with connectedness 

The believe that continuity meant smoothness 

Did not associate limit with continuity 

Continuity is an issue only for functions defined for all real numbers 

Existence of limit is sufficient for continuity at a point 
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Appendix C: Initial codes 

No.  Initial Code Quotations  

1 Co-variational 

reasoning 

Lack of co-variational reasoning 

Inability to recognize  co-variation among variables  

Hard to handle variables as generalized numbers and varying 

quantities 

A number sequence continue endlessly, hence no limit i.e. 

associating convergence with only the index process 

Arithmetic approach for items demanding an algebraic approach 

Limit exist if the terms collapse to zero 

2 Function image 

 

Difficulty in using the functional notation 

Difficulty with split half function  

A piecewise defined function is not one function (2) 

Inadequate concept image of functions 

Inadequate schema for composition of functions 

Difficulty of decomposing a compound function  

A well-defined sequence should be monotonic 

Lack of recognizing constant sequence as a sequence 

An alternating sequence is not one but two sequences 

A well-defined sequence has a single formula 

Different modes of representation represent different sequences 

3 Algebraic 

manipulation 

errors 

(computational 

and 

manipulation 

skill) 

Algebraic manipulation errors (3) 

Algebraic manipulation errors of rational expressions 

The believe that rationalization is a must to do when a radical is 

involved in a limit 

Unsuccessfully used symbolic manipulation,  inappropriate use of 

the inequality sign 

Incorrect substitution into a function to compute derivative 

Fail to carry out manipulations or algorithms 

Improper simplification 

Poor skills about algebraic rules of limit 
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Think that x always takes positive value to compute limit 

4 Infinity image Insert infinity in for    

Infinity as one big number 

Plugged in Infinity as a number (2) 

Infinity as a large number (2) 

Face additional difficulty in limit involving infinity (3) 

5 Infinity, 

undefined and 

indeterminate 

interplay  

Confuse use of terms infinite, non-existence of limit, and 

indeterminate  

Confusing infinity and undefined, difficult to identify the kind of 

indeterminate form    

Evaluate 
 

 
   or  

 

 
   

Wrong concept image of indeterminate form (3) 

Inability to discriminate between indeterminate and undefined 

forms 

6 Concept 

definition  

Lack the meaning of the limit concept 

Hard to state definition of limit of a function (3) 

Focus on qualitative rules of limit   

Inadequate interpretation of the derivative concepts 

7 Linguistic 

ambiguity 

Unable to make connection between the meaning of terms in 

common language use & interpretations in  calculus (3) 

Do not pay attention to contextual meaning of terms 

The belief that a constant sequence is not monotonic 

8 

 

 

Limit as 

unreachable 

The limit value is a dynamic object  

Limit value as/is  unreachable (8) 

Lack of recognizing uniqueness of limit value/multiple value  

Functions cannot attain limit value 

Limit as a number that cannot be reached  

9 Limit value  is a 

boundary 

Limit is an upper bound 

Limit is non-exceedable 

Limit as a boundary (2) 
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Limit as border 

10 Limit value is 

an 

approximation 

Limit value is an approximation (6) 

Limit as the value being approximated 

View limiting as a process of approximation 

11 Conflicting 

concept image  

Perceive limit as objects and as process, as unreachable, 

reachable based on context 

Concept image different from concept definition  

Indifferently use “it is” and “it tends” 

Inconsistency in computing limit value   

12 A static view of 

the limit 

process 

Focused on what happens at the point infinity than as x 

approaches to infinity 

13 Discrete 

thinking of 

continuous 

idea  

Point-by-point or static image of change  

Limited conception of functions as chunky, not smooth 

Sequentially based thinking of variables than real number domain 

of equations and inequalities   

Limit values are whole numbers 

Interpretations of “approaches” as chunky images of change, 

motion on the graph, static closeness 

14 Continuous 

view of discrete 

idea 

Graph of a sequence is continuous  

15 Alternative 

conception  

Correct answer for wrong reasons (3) 

Wrong answer with high confidence 

False concepts hypothesized to form new concepts 

Correct answer using  inappropriate method 

16 Monotonic- 

convergence 

interplay  

Convergence is strictly monotone 

Being monotonic is sufficient for limit of a sequence 

17 Domain-limit Being defined at a is essential to compute limit at     (4) 
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interplay  Being defined is essential for existence of limit (4) 

Belongingness of a to the domain of f is an essential and enough  

to compute limit at a 

18 

 

 

 

Limit and 

function values 

are the same 

Limit of   at a is  ( ) (4) 

Limit and function value are the same (4) 

Limit is a substitution (2) 

Function value as limit value 

Confusing limit value and function value/ Inadequate 

generalization 

Limit as plugging a value into the function 

19 Non-existence 

case of limit 

Non-existence of limit at a point occurs only when the limits from 

both sides are different 

Limit as one of the one-sided limits only 

Divergent means tends to infinity 

Oscillating behaviour always leads to divergence 

20 Point wise 

thinking of limit  

There should be a limit value of a function at any given point   

Limit is a value which exist at any point  

21 Domain- 

continuity 

interplay 

Being defined is sufficient for continuity (3) 

Continuity is an issue only for functions defined for all real 

numbers 

22 Limit-continuity 

interplay  

Continuity is necessary to compute limit at a point 

Continuous at a point is necessary for existence of limit at that 

point 

Confusing limit and continuity definitions 

Existence of limit is sufficient for continuity at a point (3) 

If   is discontinuous at a, then   is not defined at   

23 Confusing 

continuity with 

connectedness 

Confusing continuity with connectedness (4) 

A piecewise defined function is discontinuous 

Did not associate limit with continuity 

To be continuous, a  function should be in one piece 
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If a functions‟ domain is all real numbers, then it is necessarily 

continuous 

24 Continuity 

concept image  

Difficulty producing proofs and counter examples of continuity 

and discontinuity  

Hard to identify point of discontinuity  

25 Continuity-

asymptote 

interplay  

If a function has no limit at a point then it must have a vertical 

asymptote 

Difficult to compute limit at point of discontinuity 

Confused by jump discontinuity 

Point of discontinuity  means asymptote 

Non-existence of vertical asymptote is sufficient condition for 

continuity /point of discontinuity means asymptote 

Difficulty to identify vertical asymptote of a rational function 

The believe that every point of discontinuity is a vertical 

asymptote  

26 Definition of 

terminology 

Confusing notation or symbol, name and meaning or definition  

Confusing critical points and extreme values  

27 Difficulties with 

rules and 

procedures of 

derivatives  

Inappropriate use of l‟Hopital‟s rule 

Confusing rules of differentiations (2) 

Interference i.e. incorrect understanding of a concept because of 

an existing overgeneralization 

Problem with the chain rule 

Ignorance of rule restrictions in algebraic expressions 

Incomplete application of differentiation rules  

Used inappropriate algorithms 

Carried out incorrect algebraic simplification 

Difficulties in relating symbols and the use of variables 

Confusing function composition and combination 

Misinterpret derivative rules 

Overgeneralization of rules and procedures (2) 
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Inability to manipulate trigonometric fractions 

Unable to manipulate trigonometric identity 

28 Symbolic 

interpretation 

Lack of symbolic interpretation 

Incomplete mental image of limit notations and absolute values 

associated to continuous functions 

Instrumental understanding of the notation   /   

Error of limit notation 

Incorrect representation of limit notation (2) 

Incorrect use of derivative notation 

29 Infinity small  Equating quantities that  they perceive as small to zero 

30 Continuity- 

differentiability 

interplay 

Confuse connectedness of graph with smoothness of graph 

Look only for breaks, holes, cusps or corners on the graph than 

using limit  

The believe that continuity meant smoothness 

Belief that a function could not be continuous at cusps or sharp 

corners 

Confusing the relation between continuity and differentiability 

Confused the notion of continuity and differentiability-

connectedness-smoothness  

31 Procedural 

learning 

Apply memorized rules without attention to the context provided 

by the task 

Rely mostly on procedural thinking 

More focused on random algebraic manipulations than 

conceptual understanding 

Focusing on memorized procedures  

Failed in using limit concept to solve unfamiliar problems  

Great difficulties in non-routine problems of limit 

Recognize limit value only  as a number and lack to interpret 

results 

Procedural knowledge which is suitable for simple functions 
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32 

Unsynchronize

d knowledge 

structure 

Lack coordinated process schema of limit  

Lack of a matured composite function mental structure 

Unsynchronized knowledge structure of derivative 

Not having appropriate mental structures of derivative (2) 

Unsynchronized conceptual and procedural knowledge in 

calculus 

Present partial solution of derivatives 

Lack of establishing link between calculus concepts and 

procedures and pre-calculus concepts and procedures  

33 Lack of 

conceptual 

learning  

No reaction to unfamiliar sequences 

Low success for unfamiliar task items 

Do well with routine-type questions i.e. functioning at an action 

level 

Unsuccessful on problems involving unfamiliar functions 

Low response rate for problems demanding higher levels of 

cognitive thinking “non-isolated tasks” (2) 

Lack of meta-cognition (2) 

34 Representation  Difficulty to translate among representations 

Conflicting concept images of sequence that evoked based on 

representation forms  

Problem of visual /graphical representation of concept like turning 

point 

Very dependent only one form of representation 

Difficulty in sketching the graph of rational functions 

Stimulate different concept images of the same idea based on 

type of representation 

Less difficulty in graphical form of limit 

35 Visualization  Challenge  to characterize a function based on information from 

graph 

Lack to use geometric and algebraic representation together   
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Influenced by algebraic form more than geometric 

Inadequate schema of interpreting  the graph of the derivative 

function 

Difficult to describe derivative represented geometrically  

Difficult to make connection between function and its derivative 

geometrically  

Lack to use correct mathematical terms to describe graph of 

derived function 

Unable to interpret function properties from the graph of the 

derivative function  

Difficulty interpreting critical points of  a function‟s graph 

36 Problem-

solving  

Lack ability to integrate given and required that satisfy the 

conditions In a problem /problem-solving framework 

Failure to choose appropriate procedures to be applied for a 

given problem involving derivative  

Lack to capture the set of ideas in a given problem   

Not understand the importance of dimensions in problems 

Hard to model problems in mathematical form 

Try to manage procedure inappropriately   

Shortage of making network of concepts toward solving a 

problem  
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Appendix D: Diagnostic test items 

Section I: Limit of Sequences  

Part I: Item 1.1 – 1.4 are multiple-choice items. From the given alternatives 

choose the best answer and circle the letter of your choice. Then explain 

how you arrived at your answer.  

1.1 . Which one of the followings is true? 

A. A bounded sequence is necessarily converging. 

B. A divergent sequence is necessarily unbounded.    

C. A convergent sequence is necessarily bounded.      

D. A monotone sequence is necessarily converging.  

E. None of them is true. 

Explain how you obtained your answer (you may use counter examples to do so) 

___________________________________________________________________

___________________________________________________________________ 

1.2 . Which one of the followings sequence is not convergent? 

A. *  +  {
 

 
 
 

 
 
 

 
           }                                           B.  *  +  {   

 

 
 
  

 
 
 

 
  

  

 
         } 

C. *  +  *                       +                           D.  *  +  *                + 

E. All are convergent  

Why do you think so? __________________________________________________ 

___________________________________________________________________ 

1.3 . Suppose *  + is a sequence of positive terms (i.e.      for all n) and 

                 . . . . Does          exist? What can you tell about the 

limit?  

A. Yes, limit exists and the value is zero. 

B. Yes, limit exists and the value is non-negative. 

C. Yes, limit exists but nothing can be said  about the value. 

D. No, limit does not exist. 

E. It is not possible to decide.  

Explain your answer __________________________________________________ 
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___________________________________________________________________ 

1.4 . Which one of the followings sequence has no limit?  

 

.  

Explain your answer ___________________________________________________ 

___________________________________________________________________ 

 

Part II: Item 1.5 is a workout. Answer the item by showing all the necessary 

steps clearly and neatly.  

1.5.            (
 

 
) =__________        
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Section II: limit of functions  

Part I: Item 2.1 – 2.5 are multiple-choice items. From the given alternatives 

choose the best answer and circle the letter of your choice. Then explain 

how you arrived at your answer.  

2.1 . Which one of the following is true? 

A. Limit value is a number beyond which a function cannot attain values.  

B. Limit value is a number that the function value approaches but never reaches.  

C. Limit is an approximation that can be made as accurate as you wish. 

D. Limit of a function is value of the function at the limit point.  

E. None of these is true. 

Explain why _________________________________________________________ 

___________________________________________________________________ 

2.2 . Which one of the following is true about the notation        ( ), provided the 

value is a real number?  

A. It represents an infinite process. 

B. It represents a finite value. 

C. It is necessarily an upper boundary or a lower boundary on the range of the 

function  . 

D. Both A & B are true. 

E. Both B & C are true. 

Explain why _________________________________________________________ 

___________________________________________________________________ 

2.3 . Let f be a function and c  IR. If        ( ) does not exist, which one must be 

true?            

A.  ( ) becomes large enough when   gets closer and closer to  . 

B.         ( ) exists but different from         ( ).  

C. The function has a vertical asymptote at    .                 

D.  ( ) is not defined at    .                                                            

E. None of these is true. 
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Explain why _________________________________________________________ 

___________________________________________________________________ 

2.4 . Which one of the following must be true if   is a function for which    

       ( )     

A.   is continuous at the point    .    

B.     is defined at     and  ( ) exactly 5. 

C.   is defined at     but nothing can be said about the value. 

D. It is not grant to decide about  (3) from the given information.  

E. None of these is true. 

Explain why _________________________________________________________ 

___________________________________________________________________ 

2.5 . Consider       (
    

    
). In finding this limit the number 3 is substituted for   in the 

functional part and the result obtained becomes 0/0. What conclusions can you 

draw from this result?  

A. The limit does not exist. B. It is an indeterminate form. 

C. The limit is 0. D. It is undefined. 

E. The limit is ∞.  

If any other, please specify ______________________________________________ 

___________________________________________________________________ 
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Section III: Continuity  

Part I: Item 3.1 – 3.3 are multiple-choice items. From the given alternatives 

choose the best answer and circle the letter of your choice. Then explain 

how you arrived at your answer.  

3.1 . Think about the function   given algebraically as follows-  

   ( )  {

 

 
                              

 
  

 
                   

 . Is the function continuous? Why? 

The function is continuous on its domain because- 

A. The function is defined for every real number. 

B. The limit exists for every real number. 

C. For every real number “a” in the domain,         ( )   ( ). 

D. I can draw the graph without lifting my pencil. 

E. The graph is smooth. 

The function is not continuous on its domain because: 

F. The function is given by more than one formula. 

G. The function is not defined for every real number. 

H. There is a number “a” in the domain for which        ( ) does not exist, or 

       ( )   ( ). 

I. I cannot sketch the graph of the function without lifting my pencil. 

J. The graph contains a cusp or corner. 

 

3.2 . Which one of the following is true statement? 

A. A function f (x) is discontinuous if its graph contains a sharp “corner.” 

B. If a function is continuous at a point then it is necessarily differentiable at that 

point. 

C. If a function is continuous at a point then the limit necessarily exists at that 

point. 

D. Continuous functions must have domain all real numbers. 

E. All of these are true. 

Explain why _________________________________________________________ 
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___________________________________________________________________ 

3.3 . If  ( )  {
√     √   

   
        

                                   
 and if   is continuous at    , then           

A. 0                      B.
 

 
                           C.

 

 
                        D.1                      E.

 

 
 

Explain why _________________________________________________________ 

___________________________________________________________________ 

Part II: Item 3.4 is workout item. Answer the items (3.4a to 3.4e) by showing all 

the necessary steps clearly and neatly.  

3.4 . Consider the function  ( )  
        

   
 

3.4a. Sketch the graph of   (discuss basic steps of graph). 

3.4b. What can you say about the continuity of the function exactly at    ? 

(Say continuous or discontinuous). 

3.4c. Does the function have limit value at    ? (yes / no) (Underline your 

choice). 

3.4d. If your answer in 3.4c above is yes, what is that limit value? 

3.4e. Compute f at     

 

 

 

 

 

 

 

 

 

 



 

218 
 

Section IV: Derivatives  

Part I: Item 4.1 – 4.3 are multiple-choice items. From the given alternatives 

choose the best answer and circle the letter of your choice. Then explain 

how you arrived at your answer.  

4.1 . Let   and    be differentiable functions with the following properties: 

i.  ( )    for all                ii.  ( )    

ii.  ( )   ( ) ( )  and   ( )   ( )  ( )  then  ( )                 

A.   ( )                  B.  ( )                 C.                        D. 0                   E. 1 

Why do you think so? __________________________________________________ 

___________________________________________________________________ 

4.2 . Let   be a function whose derivative     is graphically given below. Which one of 

the following values is a local maximum value of  ?  

 

A.  ( )    

 

B.  ( )             

C.  ( )             

D.  ( )            

E.  ( ) 

 

Discuss your choice in detail ____________________________________________ 

___________________________________________________________________ 
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4.3 . For what values of   and   is the function   ( )  {
                 

                      
  

differentiable at    . 

A.      and     B.       and       

C.       and                           D.      and        

E. the function is not differentiable at     

   Why do you think so? ________________________________________________ 

___________________________________________________________________ 

Part II: Item 4.4- 4.7 are workout. Answer the items by showing all the 

necessary steps clearly and neatly.  

4.4 . Differentiate      ( √   ) 

4.5 . The percent of concentration of a certain drug in the bloodstream t hours after 

the drug is administered is given by  ( )  
  

    
. Then  

4.5a. Evaluate         ( ) and interpret this result,     

4.5b. Find the time at which the concentration is a maximum, and  

4.5c. Compute the maximum concentration. 

4.6 . The following table shows some   values and the corresponding function values 

of a function   and its derivative     

  -1.4 -1 -0.8 -0.4 0 0.8 1 1.4 2 2.8 

 ( ) 1.9044 0.25 0.0144 0.2704 1 2.1904 2.25 2.0164 1 0.0144 

  ( ) -6.624 -2 -0.432 1.456 2 0.592 0 -1.136 -2 0.432 

Answer the following questions based on the information given in the table. 

4.6a. Is it possible to find the value of        ( ) from the given information 

(yes/no). Underline your choice and justify why. 

4.6b. If you have answered yes in 4.6a, what is the value of        ( ) ?  

4.6c. What is the value of        
 ( )  (  )

   
? Explain your answer. 
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4.7 . Let   be a function defined on [-4, 3] whose graph consisting of three-line 

segments and a semicircle centred at the origin as given below. Answer 4.7a to 

4.7c based on the information on the graph.  

 

 

 

4.7a. The function is (continuous / discontinuous) in its domain. Underline your 

choice and explain why. 

4.7b. Is it possible to find the value of   ( )? (yes/ no). Underline your choice 

and if yes find the value otherwise explain why not. 

4.7c. Identify at least one point where the function is continuous but not 

differentiable and explain why. 
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Appendix E: Pre-test items 

Part I: Item 1-18 are multiple-choice items. From the given alternatives choose 

the best answer and circle the letter of your choice.  

1. Which one of the followings relation holds for the sequence:                

A.                                  B.                   

C.                                  D.                                              E. None  

2. Let *  +   
  be defined recursively by      and      .

 

 
  /    for    .                                                     

Then    =____ 

A. 465               B. 930                      C. 
   

                       D. 
  

  
                  E. 

   

     
 

3. If  ( )  
    

    
 then  (   )  _________ 

A. 
 

 
                   B. 

    

    
                 C. 

    

    
               D. 

    

    
                  E. None 

 

4. The solution set of the inequality 
    

   
   is _________ 

A. [-4, 3]                                       B. [–    ] (   )       

C. (     ) (  ∞)                      D. (    )                                           E.(    - 

 

5. For       , which one of the followings is true? 

A. 
 

   
 

 

 
 

 

 
                                B. (   )                    

    C. √(     )  (   )                 D. 
 

 
 

 
 

 

 

 
 

   
                           E.  

    

 
     

6. What is the solution set of  
  

 

 

  
 

  

      
 

  
 

 

 ? 

A. *   
 

 
 +              B. {

 

 
}               C. {  

  

 
}               D. {

  

 
}          E. None  

 

7. If  ( )     and  ( )       , what is the composition (   )( )? 

A.                B. (     )           C.               D. 
     

  
          E. None  

8.  If  ( )  √   and (   )( )  √ 
 

, then what is the value of  ( )? 

A. √ 
 

                  B.                         C. √                 D.  √             E. None  
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9.  Which one of the followings is a one-to-one correspondence function from 

  ,   - to  ,   -? 

A.  ( )                        B.   ( )                

C.   ( )                         D.   ( )                     E. None  

10. If  ( )      and  ( )      , then what is the solution set of 
 ( )

  ( )
 

 

 
 

 

 ( )
? 

A. *    +                            B. * +                     

C. *    +                            D.*  +                              E. None 

11. Which one of the followings is true? 

A. A polynomial can have infinitely many vertical asymptotes.  

B. The graph of a rational function can never cross its horizontal asymptote. 

C. The graph of  ( )  
    

   
 has no horizontal asymptote.  

D. The graph of  ( )  
    

    
 has no vertical asymptote. 

E. None  

12. If  ( )    .
 

   
  /  for    , then which one of the followings is the inverse of 

 ? 

A.  ( )  
    

    
                       B.  ( )  

    

    
             

C.  ( )  
  

    
                  D.  ( )   

 

                    E. None  

13. Which one of the followings is a simplified from of    .
 

 
  /           ? 

A.                                     B.                  

C.                                     D.                                   E. None  

14. Which one of the following is true about the graph of  ( )  
    

  (   )
? 

A. The vertical asymptotes of the graph are     and    . 

B. A horizontal asymptote of the graph is    . 

C. The graph intersects its horizontal asymptote at the point (    ). 

D. The graph intersects the vertical line at the point (   ). 

E. None  
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15.  Which of the followings functions could most likely be drawn as in the figure 

below? 

A. 
   

   
 

 

B. 
     

    
 

 

   C. 
       

    
 

 

D. 
      

    
 

 

E. None 

 

 

16. The graph of which of the followings equation has     as an asymptote? 

A.                                   B.   
 

   
           

C.                                 D.   
  

   
                         E.       

17. The point of intersection of the lines              and                 

is: 

A. .  
 

 
/                              B. (   )              

C. (
 

 
  )                              D. (    )                          E. None  

18. Which of the followings formula defines the area,  , of a circle as a function of its 

circumference,  ? 

  
  

  
                                      B.   

  

 
          

C.   (   )                           D.                            E.    (
 

 
  ) 
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Part II: Item 19- 22 are multiple-choice items. From the given alternatives 

choose the best answer and circle the letter of your choice. Then 

explain how you arrived at your answer. 

19.  Which one of the followings is a convergent sequence? 

A.{.
 

 
/
 

}              B. {
  

   
}              C. {

  

   
}             D. {

(  ) 

 
}              E. None       

Why do you think so? _________________________________________________ 

_________________________________________________________________       

20. Which one of the followings relation is a function? 

A.   *(    ) (    ) (   )+                        B.                         

    C.      {
             
              

                              D.                                E. All 

Why do you think so? __________________________________________________ 

_________________________________________________________________        

21.  Suppose  ( )  
 ( )

 (    )
where  ( ) a quadratic function. Which one of the 

followings is necessarily true about the graph of  ? 

A.    ,    , and      are the vertical asymptote of the graph of  .  

B. the graph of   does not intersect with its horizontal asymptote. 

C. the vertical asymptote of the graph of   is only      if  ( )           

D. the vertical asymptote of the graph of   is only     if  ( )     

Why do you think so? _________________________________________________ 

________________________________________________________________ 
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22. A ladder that is leaning against a wall is adjusted so that the distance of the top of 

the ladder from the floor is twice as high as it was before it was adjusted. The 

slope of the adjusted ladder is:   

 

Before After 

A. Exactly twice what it was 

B. Less than twice what it was  

C. More than twice what it was 

D. The same as what it was before 

E. There is not enough information to determine if any of the alternatives A 

through D is correct. 

Why do you think so? _________________________________________________ 

___________________________________________________________________ 
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Part III: Item 23-25 are workouts. Answer the items by showing all the 

necessary steps clearly and neatly.      

23. If  ( )       then what is the value of 
 

  
 (   ( ))? 

 

 

 

 

24. What is the area of the rectangle shown in the figure below? (Note that the figure 

is not drawn to scale) 

 

25. Let   be a function given by  ( )  
  

√    
 then 

a. find the domain of   

b. write the equation for each vertical asymptote to the graph of   

c. write an equation for each horizontal asymptote to the graph   

d. sketch a graph of the function 

 (Show all the necessary steps clearly on the next paper) 
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Appendix F: Post- test items 

Part I: Item 1-9 are multiple-choices. From the given alternatives choose the best 

answer and circle the letter of your choice. Then explain how you arrived at 

your answer.  

1. Which one of the followings is true? 

A. A bounded sequence is necessarily converging. 

B. A divergent sequence is necessarily unbounded.    

C. A convergent sequence is necessarily bounded.      

D. A monotone sequence is necessarily converging.  

E. None of them is true. 

Explain how you obtained your answer _______________________________________ 

______________________________________________________________________ 

2. Which one of the followings sequence is not convergent? 

A. *  +  {
 

 
 
 

 
 
 

 
           }                  B. *  +  {   

 

 
 
  

 
 
 

 
  

  

 
         } 

C. *  +  *                       + D. *  +  *                +  

E. All are convergent   

Why do you think so? ____________________________________________________ 

_____________________________________________________________________ 

3. Suppose *  + is a sequence of positive terms (i.e.      for all n) and 

                 . . . . Does          exist? What can you tell about the limit?  

A. Yes, limit exists and the value is zero. 

B. Yes, limit exists and the value is non-negative. 

C. Yes, limit exists but nothing can be said about the value. 

D. No, limit does not exist. 

E. It is not possible to decide.  

Explain your answer: __________________________________________________ 

___________________________________________________________________ 

 

 



 

228 
 

 

4. Which one of the followings graph of sequence has no limits?  

 

.  

Explain how you obtained your answer ______________________________________ 

______________________________________________________________________ 

5. Which one of the followings is true? 

A. A limit value is a number beyond which a function cannot attain values.  

B. A limit is a number that the function value approaches but never reaches.  

C. Limit is an approximation that can be made as accurate as you wish. 

D. Limit of a function is value of the function at the limit point.  

E. None of these is true. 

Explain why ____________________________________________________________ 

______________________________________________________________________ 
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6. Which one of the followings is true about the notation        ( ), provided the value 

is a real number?  

A. It represents an infinite process. 

B. It represents a finite value.  

C. Both A & B are true. 

D. It is necessarily an upper or lower boundary on the range of the function  . 

E. Both B & D are true. 

Explain why ___________________________________________________________

______________________________________________________________________ 

7. Let f be a function and    . If        ( ) does not exist, which one must be true?            

A.  ( ) becomes large enough when   gets closer and closer to  . 

B.         ( ) exists but different from         ( ).  

C. The function has a vertical asymptote at    .                 

D.  ( ) is not defined at    .                                                            

E. None of these is true. 

Explain why _________________________________________________________ 

___________________________________________________________________ 

8. Which of the followings must be true if   is a function for which        ( )     

A.   is continuous at the point    .    

B.     is defined at     and  ( ) exactly  . 

C.   is defined at     but nothing can be said about the value. 

D. It is not grant to decide about  ( ) from the given information.  

E. None of these is true. 

Explain why _________________________________________________________ 

___________________________________________________________________ 
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9. Consider       (
    

    
). In finding this limit the number   is substituted for   in the 

functional part and the result obtained becomes 
 

 
. What conclusions can you 

draw from this result? Choose the option(s) that best describes your answer. 

A. The limit does not exist. 

B. It is an indeterminate form. 

C. The limit is  . 

D. It is undefined. 

E. The limit is  . 

If any other, please specify ______________________________________________ 

___________________________________________________________________ 

Part II: Item 10 is workouts. Answer the item by showing all the necessary 

steps clearly and neatly.  

10.           (
 

 
) =__________   
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Part III: Item 11- 15 are multiple-choice items. From the given alternatives 

choose the best answer and circle the letter of your choice. Then explain 

how you arrived at your answer.  

11. Which one of the followings is true statement? 

A. A function  ( ) is discontinuous if its graph contains a sharp “corner”. 

B. If a function is continuous at a point then it is necessarily differentiable at that 

point. 

C. If a function is continuous at a point then the limit necessarily exists at that 

point. 

D. Continuous functions must have domain all real numbers. 

E. All of them are true. 

Explain why ________________________________________________________ 

___________________________________________________________________ 

12. If  ( )  {
√     √   

   
        

                                   
 and if   is continuous at    , then         

A. 0                        B.
 

 
                         C.

 

 
                     D.1                    E.

 

 
 

Explain why _________________________________________________________ 

___________________________________________________________________ 

13. Let   and   be differentiable functions with the following properties: 

iii.  ( )    for all                 ii.  ( )    

iv.  ( )   ( ) ( )  and   ( )   ( )  ( )  then  ( )                 

    ( )                  B.  ( )                 C.                        D. 0                   E. 1 

Why do you think so? __________________________________________________ 

___________________________________________________________________ 
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14. For what values of   and   is the function   ( )  {
                   
                      

  

differentiable at    . 

A.      and     B.       and       

C.       and       D.      and      

E. the function is not differentiable at      

Why do you think so? __________________________________________________ 

___________________________________________________________________ 

15.  Let   be a function whose derivative     is graphically given below. Which one of 

the following values is a local maximum value of  ?  

 

A.  ( )    

 

B.   ( )             

C.  ( )             

D.  ( )            

E.  ( ) 

 

Discuss your choice in detail ____________________________________________ 

___________________________________________________________________ 
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Part IV: Item 16-18 are workouts. Answer the items by showing all the 

necessary steps clearly and neatly.  

16. Consider the function  ( )  
        

   
 

a. Sketch the graph of  . 

b. The function is (continuous / discontinuous) at the point    . (Underline your 

choice). 

c. Does the limit of  ( ) exist at    ? (yes / no) (Underline your choice) and 

explain how.  

 

17. The percent of concentration of a certain drug in the bloodstream   hours after the 

drug is administered is given by  ( )  
  

    
. Then:  

a. Evaluate         ( ) and interpret this result.     

b. Find the time at which the concentration is a maximum, and  

c. Find the maximum concentration. 

d. On what intervals is the concentration increasing?  Explain why.  

 

18. The following table shows some x-values and the corresponding function values 

of a function f and its derivative     

x -1.4 -1 -0.8 -0.4 0 0.8 1 1.4 2 2.8 

 ( ) 1.9044 0.25 0.0144 0.2704 1 2.1904 2.25 2.0164 1 0.0144 

  ( ) -6.624 -2 -0.432 1.456 2 0.592 0 -1.136 -2 0.432 

Based on the information given in the table, compute the following values:  

a.          ( )  

b.         
 ( )  (  )

   
?  
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Appendix G: Scoring rubric for open-ended/ workout items 

Item Description of response Score 

1.5/ 

10 

If she/he is   

 aware that as    , 
 

 
   

     .
 

 
/  

   .
 

 
/

 

 

 and hence 

           .
 

 
/    

3 

 aware that as    , 
 

 
   but the other steps are missed or 

not correct 

2 

 insert infinity as a number 1 

otherwise (i.e. no answer,  incorrect answer or the correct 
answer for the wrong reason) 

0 

3.4a/ 
16a 

If she/he aware that  

 for     the function is equal to the linear function     , 

 the graph has a whole at     and plotted the graph 
correctly 

3 

 aware of the conditions but plotted the graph incorrectly 2 

 a correct graph without saying nothing  1 

 otherwise (i.e. no graph or incorrect graph) 0 

3.4b/ 
16b 

If she/he  

 underlined discontinuous 

1 

 underlined continuous or not responded 0 

3.4c/ 
16c 

If she/he  

 answered yes 

1 

 answered no or left unanswered 0 

3.4d If she/he  

 answered 11 

1 

 answered any other number or left unanswered 0 

3.4e If she/he  

 answered does not have value/undefined/ 

1 

 any other number or left unanswered 0 
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4.4 If she/he demonstrate the correct application of  

 chain rule,  

 the derivative of a trigonometric function,  

 the derivative of an exponential function,  

 procedure of combination function and found an 

expression equivalent to 
 

 √   
   . √   /  √    

3 

 a minor error such as sign the errors; or applied chain rule 
but an error with the derivative rules,  

2 

 no evidence of considering chain rule or the correct 
answer without showing the necessary steps, 

1 

 Otherwise (i.e. no answer, incorrect answer or the correct 
answer for wrong rules or procedures). 

0 

4.5a/ 
17a 

If she/he demonstrate  

 focuses on what happens to   as   tends to infinity,  

 wrote        ( )    and explained that the concentration is 
null, 

3 

 found        ( )    correctly and explained that the 
concentration is null but lack justification, 

2 

 found        ( )    using a wrong method, like replacing 

infinity instead of   and not interpret the result, 

1 

 otherwise (i.e. no answer or incorrect answer). 0 

4.5b 
& 
4.5c/ 
17b 
& 
17c 

If she/he demonstrate   

 application of the first derivative test to find extreme value 

and  found that     and,  

 correctly evaluate   at     and found 
 

 
, 

3 

 application of the first derivative test to find extreme value 
but one or both values are not correct due to some 
algebraic errors,  

2 

 both answers are correct but lack justification or clarity or 
only one answer is given, 

1 

 Otherwise (i.e. no answer, both incorrect answer or one 

or both correct answer for the wrong reason). 

0 

17d/  If she/he used the first derivative test for monotonic  and stated 

the intervals where the function is  

3 
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 increasing on (   ) , 

 used the first derivative test to monotonic but the value is 
not correct due to some algebraic errors, 

2 

 the answers is correct but lack justification or clarity, 1 

 otherwise (i.e. no answer,  correct answer for wrong 
reason). 

0 

4.6a 
(b)/ 
18a 

If she/he aware that  

 a differentiable function is continued,  

 continuity implies the limit exist and hence        ( )  
 ( )    , 

3 

 a differentiable function is continues, continuity imply limit 

exist but interpret        ( ) as a number    , 

2 

 got        ( )     but gave no reason or justification, 1 

 no or impossible to find. 0 

4.6c/ 
18b 

If she/he aware that 

        
 ( )  (  )

   
   (  ) and picked   (  )     

1 

 otherwise (i.e. no answer,  incorrect answer or the correct 
answer for wrong rules or procedures ) 

0 

4.7a If she/he answered  

 yes and justified continuity in terms of limit  

1 

 otherwise (i.e. no answer,  incorrect answer or correct 
answer for wrong reason) 

0 

4.7b If she/he recognizes derivative as the slope of the tangent line to 

the graph  of f and found find   ( )  
  

 
 

2 

If she/he recognizes derivative as the slope of the tangent line 

but failed to found find   ( )  
  

 
 

1 

otherwise (i.e. no answer or the correct answer for the wrong 
reason) 

0 

4.7c If she/he identified one point correctly and explained why  1 

otherwise (i.e. no answer,  incorrect answer or the correct 
answer for the wrong reason) 

0 

17d  If she/he used the first derivative test for monotonic  and stated 
the intervals where the function is  

3 
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 increasing on (   ), 

 used the first derivative test to monotonic but the value is 
not correct due to some algebraic errors, 

2 

 the answer is correct but lack justification or clarity, 1 

 Otherwise (i.e. no answer, incorrect answer or the correct 
answer for the wrong reason). 

0 
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Appendix H: Intervention activities 

Activity 1 

1.1 . Sort the following sequences as bounded, unbounded, monotonic, convergent or 

divergent 

a.    (  )  

b. *  
 

 
   

 

 
   

 

 
             } 

c.    {
               

  
 

 
             

 

d. {
 

  
}
   

 

 

e.    {
               
 

 
             

 

f. {.
 

 
/
 

}
   

 

    

g.    
 

 
 

h.  {
(  ) 

  
}
   

 

 

1.2 . Based on the sequences in 1.1, which one of the followings is true: 

a. one can find a sequence which is bounded and convergent,  

b. one can find a sequence which is bounded and divergent, 

c. one can find a sequence which is bounded and monotonic, 

d. one can find a sequence which is unbounded and monotonic,  

e. one can find a sequence which is monotonic and convergent, 

f. one can find a sequence which is monotonic and divergent, 

g. one can find a sequence which is unbounded and convergent. 

Activity 2 

2.1. What is the main property of a sequence that is convergent i.e.  

a. what is the necessary condition to say a sequence is convergent? 

b. what is the sufficient condition to say a sequence is convergent?  

2.2 . Classify each of the following statements as being true or being false. Give a 

counter example for those which are false to justify why it is false. 

________ a. Every bounded sequence is convergent.  

________ b. Every convergent sequence is bounded. 

________ c. Every increasing sequence is convergent. 

________ d. Every divergent sequence is unbounded. 

________ e. Every unbounded sequence is divergent.  
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Activity 3  

3.1 Each of the following sequences has no limit. State the reason why not the limit 

exists. 

a. {
(  ) 

 
},                                      

b.  {.
 

 
/
 

}  {
 

 
 
 

 
 
  

 
 
  

  
           } 

c.      (  )  
 

 
 

d. the sequence whose graph is 

given below 

 

 
      

3.2 Each of the following sequences, as given in figure 1 and figure 2 below, has limit. 

a. In each case identify the limit value and explain why the limit exists. 

b. In each case, how many of the terms are at: 

 |    |  
 

 
   

 |    |  
 

  
, 

  |    |  
 

   
, 

  |    |  
 

    , 

  |    |  
 

   . 
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c. Write an algebraic formula that describes each of the two given sequence.  

 
 

Figure 1 

 

 

Figure 2 
  

Activity 4 

Look at the following exercise, and their solution given by someone. Is the solution 

correct? If you say it is wrong, identify the wrong working and  give correction. 

a.       (  ( 

 
)
 
)      
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Because-       (  ( 

 
)
 
)  .  

( )

 

 

/  .  
 

 
/  (   )     

b.       (
  √ 

    
)    

 

 
 

Because-        (
  √ 

    
)        .

  √ 

    
/ (

 

 
 

 

)  
 

 
 

c.       (
     

               
)       

Since 

       (
     

               
)  .

     

               
/

 

  
 

  

   

Activity 5 

For each of the following, choose the letter of the correct answer and write the reason 

of your choice on the space provided. 

5.1 .  Which of the following is equal to       
 √      

    
?  

A.  
  

 
                    B. 

  

 
                     C. 

 

 
                    D. 

 

 
                    E.    

Why do you think so? __________________________________________________ 

___________________________________________________________________ 

5.2 . The sequence  {
(   )(    )

    }
   

 

 converges to: 

A.                      B. – 2                 C. 0                      D. 
  

 
                 E. None   

Why do you think so? __________________________________________________ 

___________________________________________________________________ 

5.3 .  If    .
   

   
/
 

, then the limit of the sequence *  +   
  is equal to:  

A. 1                      B. 
 

 
                   C.                      D.                E. None   

Why do you think so? __________________________________________________ 

___________________________________________________________________ 
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5.4  . Which one of the following sequences is a convergent sequence? 

A. *  
 

 
   

 

 
   

 

 
             }                       

B.  *(  ) +   
           

C.  {     
 

   
 }

   

 

                         

D.   {    (
 

 
)}

   

 

 

Why do you think so? _________________________________________________ 

___________________________________________________________________ 

5.5 . Which one of the followings is a convergent sequence? 

A. {.
 

 
/
 

}                                     

B.  {
  

   
}                 

C. {
(  ) 

 
} 

D.    {
                                  

 

 
                               

 

Why do you think so? __________________________________________________ 

___________________________________________________________________ 

Activity 6  

6.1. Compute the limit of the following functions at the given value of the domain.  

a.  ( )  
√     

 
 at     and 

    

b.  ( )  
       

    
 at     

c.  ( )  
√      

    at      

d.  ( )  
   ⁄   

   
 at     

e.  ( )        at              

f.    ( )  
(   ) 

   
  at     and 

     for      

g.  ( )  
    

 
  at      

h.  ( )  
    

|   |
 at     

6.2 . Compute the limit of the following functions at infinity (write the notation and 

compute the value) 

a.  ( )  √    √    

b.  ( )  
   

  
  

c.  ( )  .  
 

   
/  

d.  ( )  
    ( )
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Activity 7 

7.1 . Justify that        .  
 

 
/
 

             Well, if you try to use direct 

substitution, what will happen? 

7.2 . Consider the function  ( )   
    

 
 . How can you find the limit of   at    

 

 
 ? 

Well, if you try to use direct substitution, what will happen? 

7.3 . Notice that, in finding the limit, the three most common methods are 

substitution, rationalization and conjugate. Now, if any of these methods do not 

work what will be your conclusion? Could it be necessarily the limit does not 

exist? (What you did in c and g in activity 6.1?). 

Activity 8 

8.1 . When you use words like “approach to” and “tends to”, what do you actually 

mean? Do you think they seem to imply actual value or do you think of 

something in a process? Justify your answer. 

8.2 . Given a function   and a number  . Describe in your own words what it means 

to say that the limit of the function   as     is some number  ?  

8.3 . Describe cases where limit of functions at a point fails to exist? Discuss all the 

cases exhaustively.  

8.4 . Explain the procedure to find the limit,        ( ), where  ( ) is a split-function 

given in symbolic or algebraic form. 

Activity 9 

Consider the function  ( )  
    

   
   

a. what is domain of  ? 

b. what is limit of   at    ?  

c. the only place where 
    

   
 and        differ is     . Why is it acceptable 

to interchange these two functions even though we are trying to find limit 

at    ? 
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Activity 10 

  Let  ( )  {
                 

                            
then       

a. is   continuous at     (explain it using the given algebraic formula) 

b. sketch the graph of   and describe  continuity of   at      

Activity 11 

 Let  ( )  
      

  √ 
 then   

a.        ( ) = _______    

b.        ( ) = _______  

c. Is   continuous at    ? If yes, justify how it is continuous. Otherwise define 

 ( ) to make f continuous at 1.  

Activity 12 

A function   behaves in the following way near    :  

As   approaches 3 from the left,  ( ) approaches 2.  

As   approaches 3 from the right,  ( ) approaches 1. 

 For the above situation you are required to: 

a. Draw a sketch to illustrate the behaviour of   near    . 

b. write the two sentences in symbolic form. 

c. determine with reasons if        ( ) exists. 

Activity 13 

Consider the split function  ( )  {
          
          

.  

For this function you are required to: 

a. Use the symbolic form to explain in your own words the behaviour of   

near    . 

b. Use the algebraic form to draw the graph of  . 

c. Evaluate         ( )and         ( ). 

d. Determine with reason if        ( )  exists. 
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Activity 14 

14.1 . Consider the function  ( )  {

 

    
       

   

√   
        

  

           If   is continuous at    , then what should be the value of    ? 

14.2 . Find a and b that will make the function   continuous in (    ) if  

 ( )  {
         
            

                 
 

Activity 15 

Let  ( )  {
 

    

  | |
               

                
  

You are told that the function    is continuous at    . The question remains to be 

answered is value of  . The following steps are part of the procedure to answer this 

question. Give reason why each of these steps is logical. 

Step Reason 

   
    

     

  | |
    

    
(        ) 

 

   
    

     

  | |
    

    

     

  
 

 

   
    

     

  
 

 

 
 

 

   
    

(        )     

Hence,     
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Activity 16 

The following three figures are graphs of a function drawn by three different students 

as a response to the question “draw graph of  ( )  
    

    
 ” identify the one which is 

correct and give your comment on the wrong ones.  
 

a)  

 

 

                         b) 

 

 

                                 c) 
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Activity 17 

 A glasshouse in horticulture has a height of two meters. The progress of a flower 

days after its half-life of growth was recorded. The height as a function of days is 

given by the function  ( )   (  
 

  
).  

a. Does the height of the flower have a limit? If yes, what is the limit? 

b. Will the flower reach the ceiling of the glasshouse? Justify your answer.  

Activity 18 

18.1. Consider the function whose graph is given below 

a. Find a function (algebraic expression) that would be pictured by this graph. 

b. Is this function continues in its domain? 

 

 

18.2.  Describe properties of a continuous function that should be observed on its 

graph i.e. based on the shape of graph of a function, how can you say that a 

function is continuous or discontinuous?  
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Activity 19 

For each of the following items, choose the letter of the correct answer and write the 

reason of your choice on the space provided. 

19.1 . What is between        (The nines repeat.) and 1? 

A. Nothing because         . 

B. An infinitely small distance because          . 

C.      . 

D. You cannot really answer as        keeps on going forever and never 

finishes.  

If you do not agree with any of the above, give your own answer and justify why? 

___________________________________________________________________

___________________________________________________________________ 

19.2 . If  ( )        , then        
 ( )  ( )

   
 is equal to  ______________. 

A. 1                         B. -1                             C. 3                         D.   

Why do you think so? _________________________________________________ 

___________________________________________________________________ 

19.3 . Which one of the following is equal to       .
  

    
/
   

? 

A.                         B.                             C.                              D.    

Why do you think so? __________________________________________________ 

___________________________________________________________________ 

19.4 . If   is continuous at     and  ( )  √ (  ( )  
 

√
) for all    , then what is  

the value of         ( )? 

A. 0                   B. 2                               C. 3                             D. 5 

Why do you think so? __________________________________________________ 

___________________________________________________________________ 
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19.5 . Given that        ( )    and        ( )   , what is the value of 

      .
( ( )  ( ))( ( ))   ( ))

 ( )   ( ) 
/   

A.  
  

 
                   B.  

 

 
                          C. 0                        D. does not exist 

Why do you think so? __________________________________________________ 

___________________________________________________________________ 

19.6. What is the value of   so that  ( )  {
     

 
    

         
 is continuous at    ? 

A. 2                        B. 3                            C. 1                             D. 0 

Why do you think so? __________________________________________________ 

__________________________________________________________________ 

19.7. The left hand limit       
    | |

 
 is equal to _________________. 

A. 0                   B. 2                                C. 1                            D. does not exist 

Why do you think so? __________________________________________________ 

__________________________________________________________________ 

19.8.           
 

 
 is equal to: 

A. 0                   B. 1                               C.                              D. -1        

 Why do you think so? _________________________________________________ 

___________________________________________________________________ 

19.9. Given an arbitrary function f, if        ( )    what is ƒ(3)? 

A. 4                                                        B. it must be closed to 4                

C. 3                                                        D. it is not defined          

 E. not enough information is given to determine  ( ) 

Why do you think so? __________________________________________________ 

___________________________________________________________________ 
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19.10. Let f be a continuous real-valued function defined on the closed 

interval ,    -. Which of the following is NOT necessarily true? 

A.  f is bounded. 

B. For each c between  (  ) and ( ), there is an     ,    - such that ( )   . 

C.       
 ( )  ( )

 
  exists. 

D. There exist a number   between  (  ) and  ( ) which is maximum of   

on ,    -. 

E. None.  

Why do you think so? __________________________________________________ 

___________________________________________________________________ 

Activity 20 

 Compute derivative of each of the following functions 

a.  ( )     

b.  ( )  
 

 
   

 

 
          

c.  ( )  (   )(   )  

d.  ( )    (√    )    

e.  ( )           (  )  

f.  ( )  √      
  

g.  ( )  
      

    
 

h.  ( )       

 

Activity 21 

Given a function   and a number   in the domain of  . Consider the expression  

      
 ( )  ( )

   
  , provide the limit exist.            

a. What symbol we use to represent this quantity?  

b. What is the name of the symbol we use to represent this quantity?  

c. What is the meaning of this quantity?  

d. What do you really think about the terms “symbol”, “name”, and “meaning” of 

mathematical notions? Discuss with the help of examples.  

e.        
 ( )  ( )

   
 and        

 ( )  ( )

   
 do they the same value or different ? 

Explain. 
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Activity 22 

From the following list of statements, choose those which are false and justify why 

they are false. 

a. If a function is not continuous at a certain point, then that function is not 

differentiable there.  

b. Let       be a continuous function where   ,   -. Then there exists a 

point   ,   - such that  ( )   .  

c. If   is differentiable function then       
 ( )  ( )

   
 exists    in the domain of  .  

d. If   is differentiable function then        ( ) exists    in the domain of  . 

 

Activity 23 

23.1 Let   be differentiable function with  ( )     and   ( )   .   

        If  ( )  , (    )   -   then what is the value of   ( )? 

23.2 Find   if  ( )  {
              
           

  is differentiable at    .  

23.3 A student is asked to answer the problem “For what values of a and b is the 

function  ( )  {
                             

                 
 differentiable at     ” 

The following steps are part of the procedure to answer this problem. Give 

reason why each of these steps is logical 

Step Reason 

         
 ( )  ( )

   
        

 ( )  ( )

   
  

          

         ( )   ( )  

         

Hence,      and      
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Activity 24 

A farmer claims that the productivity (P) of the coffee stem in his fixed size farmland 

is given by  ( )  
  

         
 where   represent the number of coffee stem planted. 

Calculate: 

a. The rate of change of production when he plants 30 pieces of the coffee 

stem?  

b. Was the production increasing or decreasing at     ?     

c. Find the number of coffee stem that should be planted to maximize the 

production, and compute the maximum product. 

d. For what values of   is the production increasing? 

e. For what values of   is the production decreasing? Explain why.  

f. Evaluate         ( ) and interpret this result 

Activity 25 

Water is poured into a cylindrical tanker of radius 5 meters at a rate of 10 meter 

cube/min. what is the rate of change of the height of the level of water when it rises to 

3 meters? 

Activity 26 

The Hosanna municipality has a plan to fix the damp plot for the town residents. 

However, one of the identified rectangular areas is a plot of land, which is surrounded 

by privet landowner. The city needs to maximize the area at the same time to 

minimize the cost that will be paid to the landowner surrounding the area. If the plot 

has the following diamension:              

 

a. Write down the formula for finding the area of the land. 
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b. Discuss the possible value of   to get maximum area with minimum cost. 

Activity 27 

Let  be a continuous function defined on [-4, 3] which graph is shown below: 

 

a. Find the value of   ( ). 

b. At what x-values (if any), is the function continuous, but not differentiable? 

Use the definition of derivative to justify your answer. 

c. On what intervals is the function increasing?  

d. On what interval is the function decreasing? Explain.  

 

Activity 28 

 Let  ( )  {

               
                    

(   )             

  

28.1.  The function is (continuous / discontinuous) in its domain? Underline your 

choice and and explain why. 

28.2. Is it possible to find the value of   ( ) ? (yes or no). Underline your choice and 

if yes find the value otherwise explain why not. 
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28.3. Identify at least one point where the function continuous but not differentiable 

and explain why.  

Activity 29 

A rectangular field of length   and width   meters, where    , has perimeter 400 

meters. If a circular region of area    is to be reserved for office purpose, what 

should be the length of the field so that the area of the remaining region is 

maximum? 

Activity 30 

For each of the following items, choose the correct answer. Discussed how you 

attained your choice.  

30.1. Let  ( )  
  

   
 . for what value of   is   ( )    

A. 
 

 
                       B. 

 

 
                             C. 

 

 
                            D. 3 

30.2. Which one of the followings is necessarily true about a function  ( )? 

A. If    is continuous at    , then   is differentiable at    . 

B. If   is not differentiable at    , then         ( )          ( ). 

C. If   is differentiable at    , then         ( )   ( )          ( ). 

D. If the derivative   ( )   , then   attains its maximum value at    . 

30.3. If  ( )  
 ( )

   
 ( ( )) ,  ( )    and   ( )   , then   ( ) is equal to:  

A.  36                        B. 31                              C. 25                      D.16 

30.4. If  ( )  
  

    ( )
,  ( )    and   ( )    , then which one of the following is 

equal to   ( )? 

A.                           B.  
 

 
                      C. 

 

 
                         D. 

 

 
 

30.5. Which one of the followings is the set of all critical numbers of  ( )  
 

 
   

|    |? 

A. *
 

 
  +                  B. *   

 

 
  +                C. *    +               D. *

 

 
+ 
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30.6. If  ( )    √     , what is the slope of the tangent line to the graph of   

at    ?  

A. -4                       B. 2                           C. 18                        D. 17                      

30.7. What is the equation of the tangent line to the graph of  ( )           at 

(   )? 

A.                                           C.               

B.                                        D.           

30.8. If  ( )   (    )  (    ), with  ( )    ,   ( )   ,  ( )    , and   ( )   , 

then what is the actual value of   ( )? 

A. -40                    B. -20                       C. 0                              D. 19 

30.9. If  ( )          
   

    
, then    ( ) is equal to ______________. 

A.   
 

 
                            B. 

 

 
                          C. 

 

 
                                   D. 

 

 
                                                         

30.10. If  ( )    |   | for all x, then the value of the derivative   ( ) at     is 

____. 

A. -1                        B. does not exist         C. 1                        D. 2 
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