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Abstract

This paper studies the axial load transfer along the drill-strings in deviated wells by developing a finite
element model based on the Euler beam theory and the augmentation Lagrangian contact algorithms.
The model can simulate the entire drill-strings showing nonlinear contact model between drill-strings
and casing. Special attention is given to the axial load loss, the pipe-casing contact force distribution
and the slender pipe deformation. The efficacy of the proposed model is validated experimentally using
a packer releasing procedure. Various drill-string factors, such as deviation angle, dogleg severity, hook
load magnitude and buckling configurations, are considered for evaluating the efficiency of axial load
transfer. Our analysis shows that the dogleg severity has a significant influence on the transfer, and the
helical buckling of the drill-strings due to excessive loading could make it worse. This study provides a
theoretical understanding of the variation of the contact force and the axial load transfer for the drill-
strings in deviated wells. It can be used to better understand the working condition of downhole and
guide field drilling.
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1. Introduction

The aim of deviated well drilling as shown in Fig. 1 is to keep a well in a reservoir for a longer
distance and maximise its productivity (Aadnoy and Andersen, 1998). One of the major challenges of
deviated well drilling is to manage the mechanical loads on the drill-strings, namely, the so-called axial
load transfer. In the phase of well development, effective weight-on-bit (WOB) is significant to keep
drilling at a rate of penetration. In order to achieve this, the axial loads on the drill-strings and well
trajectory should be optimised. But in the drilling operation of deviated wells, excessive drag makes the
efficiency of axial load transfer low. Here, drag is the incremental force required for lifting up or down
of the drill-strings. Large drag is problematic in the deviated wells due to the increased well horizontal
length, especially for the less thick and stiff drill-strings. So, this problem has attracted great attention in
the past few years, see e.g. (Duman et al., 2003; Menand et al., 2009; Miska et al., 1996; Omojuwa et al.,
2012; Zhu et al., 2015).

In order to improve the efficiency of axial load transfer, a great deal of theoretical and experimental
works focusing on drill-strings’ drag force have been carried out (Mirhajmohammadabadi et al., 2010). In
the conventional approach (Johancsik et al., 1984), drill-strings were considered as a cable under tension,
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Figure 1: (Colour online) Schematics of a horizontal well drilling rig. Deviation angle is the angle between the tangential
direction of well trajectory and the vertical direction. Dogleg severity is a measure of the amount of change in the direction
of a borehole, usually expressed in degrees per 30 m length.

the so-called soft-string model, which can be mathematically expressed as

{

Fn =
√

[(Ft∆α sin θ)2 + (Ft∆θ +W sin θ)2]
∆Ft = W cos θ ± µFn

(1)

where Fn and ∆Ft are the magnitudes of the normal force and tension increment, respectively. According
to the analytical models studied in Aadnoy and Andersen (1998); Brett et al. (1987); Miska et al. (1996);
Sheppard et al. (1987), well trajectory can be considered in straight, arc, and inclined straight sections.
Considering the limitation of the soft-string model, Ho (Ho, 1988) proposed a stiff-string model to study
the influence of string stiffness on string-borehole contacts. Opeyemi and Pham (Adewuya and Pham,
1998) developed a novel torque and drag analysis approach for well planning and drill-string design.
Based on the Euler beam theory, many researchers (Aadnoy and Andersen, 1998; Maehs et al., 2010;
Miska et al., 1996) investigated the possibility of pipe buckling under the condition of drill-string com-
pression. With the development of finite element method, numerical methods, e.g. (Kuang et al., 2016;
Meier et al., 2014; Omojuwa et al., 2012; Tikhonov and Safronov, 2008), were proposed to solve drill-
string dynamics for complex trajectory. In (Cebeci and Kök, 2019; Hill and Chandler, 1998; Huang and Gao,
2019; Mitchell and Miska, 2006; Qin et al., 2019), numerical models were developed to study drill-string
buckling and axial load transfer in different buckling configurations. Lubinski (Lubinski, 1950) analysed
the stress and deformation of a buckled drill-string, and the helical buckling of tubing sealed in pack-
ers (Lubinski and Althouse, 1962) based on the theory of elastic stability. According to these works, a
series of models were established. The buckling equation and natural boundary conditions were derived
with the aid of calculus of variations by Gao and Miska (2010). They found that the pipe can be consid-
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ered as if its dimensionless length is greater than 5π, and thus, the effect of boundary conditions at both
end can be ignored. Based on the experimental study, Duman et al. (2003) found that the tool joints
increase the critical load of the helical buckling about 20%, and drill string rotation was benefit for the
axial load transfer even it exceeds the buckling criteria load (Menand et al., 2009). Mitchell (1996) and
Miller et al. (2015) studied the criteria of buckling load and axial load transfer by considering various
friction coefficients, pipe connectors, and annular clearances. In addition. Kapitaniak et al. (2015, 2016,
2018a,b) proposed a finite element model for the buckled configuration of a drill-string, which allows
them to observe the effect of winding and unwinding of the helical deformation during complex vibration.
In these cases, because of the simplification of actual well trajectory and neglect of the contact model,
it is not possible to predict axial load transfer. Therefore, the actual well trajectory and contact model
should be performed to analyse axial load transfer for entire drill-strings.

The present work will study a finite element model of the drill-strings interacting with borehole
which takes into account the actual well trajectory during the procedure of packer releasing by using
ANSYS/APDL. Experimental verification will be carried out in an oil field, which has an accurate mea-
surement of the axial load at the different locations of the well. A comparison of the axial load transfer
during a packer releasing procedure between the field experimental and the simulation data yields a good
agreement. Based on the proposed model, the influences of the deviation angle and the overall angle
change rate will be studied, and the results manifest that the change rate of overall angle has a signif-
icant influence on the transfer efficiency of the axial load and the distribution of the contact force. In
addition, the investigation on the buckling of the horizontal drill-strings will be carried out at different
deformation configurations. Our results show that the transfer efficiency is approximately linear with the
increase of the axial displacement, when the configuration of the drill-strings is straight and sinusoidal,
while it is fluctuated dramatically when the configuration is helical. The main contributions of the current
work are (1) a FEM is proposed by taking into account the actual well trajectory and by studying the
contact force distribution; (2) the overall angle change rate has a significant influence on the axial load
transfer; (3) the axial load transfer is sensitive to the buckling configurations of the drill-strings.

The rest of the paper is organized as follows. In Section 2, the FEM and its corresponding theory
will be studied. The effectiveness of the proposed FEM will be validated using field data in Section 3. In
Section 4, the influences of parametric sensitivity and buckling configurations in horizontal well on the
axial load transfer will be investigated. Finally, some concluding remarks are drawn in Section 5.

2. Finite element model

Based on the finite element method, the nonlinear model of the entire drill-string and casing/wellbore
is developed by using the ANSYS/APDL platform. Input parameters and data, including the well
trajectory, drill-string physical and geometrical parameters and tripping parameters, are considered. The
procedure of the simulation study is shown in Fig. 2. For the entire drill-string model, it is easy to
simplify the clear boundary at the wellhead. Thus, the proposed FEM can be used to simulate the actual
state of the axial force transfer for the entire drill-strings. However, due to the slenderness ratio and
the lengthy drill-strings, especially when considering the contact between the drill-strings and the casing,
the number of the elements in the FEM is numerous, and the computation of the nonlinear model is
time-consuming so inefficient. Therefore, it needs to find appropriate level of details in modeling in order
to gain a balance between accurate model and fast computation. To achieve this balance, the following
hypothesis must be satisfied:

(a) Only small deformation is considered;

(b) The existence and influence of pipe connectors are neglected;

(c) Casing wall and well bore are rigid;

(d) Viscous force on the drill pipe due to the drilling mud is neglected.

2.1. Element description and string-casing contact model

The Euler beam element shown in Fig. 3 is used to model the drill-string by taking into account
tension-compression, torsion, and bending. The element has six degrees of freedom at each node, namely
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Figure 2: The flowchart of the simulation study of the drill-strings.
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Figure 3: (a) Euler beam element with two nodes, and each node has three rotational and three translational degrees of
freedom. (b) Two types of the contact between the drill-string and the well bore. Right panels show the cross-section of
the contact. F is the axial interactive force between each element, Fn is the contact force between the drill pipe and the
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the translations in the nodal x, y, and z directions and the rotations about the nodal x, y, and z axes.
The loads applied on this element include the hydrodynamic and buoyant effects of the drilling mud and
the element mass including the added mass of the drilling mud and the pipe internals. For analysing the
drill-string dynamics, the nodal displacement, which can be written as

{δe} = {ui, vi, wi, θxi, θyi, θzi, uj, vj , wj , θxj, θyj , θzj}, (2)

is changing with the element force, where ui, vi, and wi represent the displacements of node i in x,
y, and z direction, respectively, θxi, θyi, and θzi are the angular displacements about x, y, and z axes,
respectively, and the variables with the subscript j represent the corresponding displacements of node j.
Then the shape function (Shooshtari and Khajavi, 2010) can be expressed as

[N ] =









N1 0 0 0 0 0 N2 0 0 0 0 0
0 N2 0 0 0 N4 0 N5 0 0 0 N6

0 0 N3 0 −N4 0 0 0 N5 0 −N6 0
0 0 0 N1 0 0 0 0 0 N2 0 0









, (3)

where N1 = (1 − s)/2, N2 = (1 + s)/2, N3 = 1/s − s(3 − s2)/4, N4 = L(1 − s2)(1 − s)/8, N5 =
1/2 + s(3− s2)/4, N6 = L(1− s2)(1 + s)/8. L is the element length, s = (2q/L− 1) ∈ [−1, 1], on node i
(q = 0), s = −1, on node j (q = L), s = 1, q is the node coordinate in the nodal coordinate system.

For the nonlinear contact between the drill-string and the casing (borehole), it is highly nonlinear
contact and friction. The augmented Lagrange method (Hestenes, 1969; Simo and Laursen, 1992), which
is less sensitive to the magnitude of the contact stiffness, was used in this work. This method consists of a
special combination of the penalty and Lagrange multiplier method, which converges to the solution for a
finite penalty coefficient and provides an unconstrained minimization problem with a smooth functional.
In the FEM, the contact force can be written as

Fn =

{

0 if un ≥ 0,
knun + λ if un < 0,

(4)

where kn is the contact stiffness, un is the penetration of drill-string into the casing, and λ is the extra
term determined by the penetration tolerance ǫ, which can be updated as

λi+1 =

{

λi +Knun if |un| ≥ ǫ,
λi if |un| < ǫ.

(5)

The augmented Lagrange formulation (Yastrebov, 2013) can be written as

La(x, λi) = L(x, λi) +
1

2
ǫg(x)2 (6)

This method is a constrained minimization problems, and the augmented Lagrangian algorithm
for frictional contact is presented in Table 1, where the parameters in the table can be found from
Simo and Laursen (1992).

2.2. Fluid-string interaction

The fluid inside the hollow pipe induces inertial force on the drilling assembly, which was implemented
by adding the extra mass in our model. The effects of the fluid between the drill-string and the casing are
characterized as inertial and drag forces. Since the influence of the fluid flow in axial direction is neglected,
the inertial force, i.e. the hydrodynamic load, can be calculated using the Morison equation (Wheeler,
1970) as

{F/L} = ρwA{v̈}+ CaρwA{v̈ − ü}+ 1
2ρwCdDe|{v̇ − u̇}|{v̇ − u̇}, (7)

where {F/L} is the vector of loads per-unit length due to hydrodynamic effects, ρw is the water density,
A is the cross-section area, v̇ and v̈ represent the velocity and the acceleration of the drilling mud, u̇ and
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Table 1: The augmented Lagrangian algorithm for frictional contact (Simo and Laursen, 1992).

1. Initialization

set λ0 = 〈λN + ǫNg〉 from last time step

∆λ
(k)
T = 0

Γ
(0)
stick = Γ

k = 0

2. Solving (using a nonlinear solution strategy) for u
(k)
n+1

G(uk
n+1, δu) +

∫

Γ
[
〈

λ
(k)
N + ǫNg(u

(k)
n+1)

〉

δu · n+ tT (u
(k)
n+1) · δuT ]dΓ = 0

where

tT (u
(k)
n+1) =

{

tTn
+∆λ

(k)
T + ǫT∆u

(k)
T if x ∈ Γ

(k)
stick

∆λ
(k)
T + tTn

otherwise

3. Check for constraint satisfaction.

IF g(uk
n+1) ≤ TOL1 for all x ∈ Γ AND ‖uTn+1 − uTn

‖ ≤ TOL2

for all x ∈ Γ such that ‖tT‖ < µ
〈

ǫNg + λ
(k)
N

〉

AND

‖tT‖ 6 (1 + TOL3)µ
〈

ǫNg + λ
(k)
N

〉

for all x ∈ Γ THEN

Converge, EXIT.

ELSE

Augment and update Γstick (for all x ∈ Γ):

λk+1
N =

〈

λ
(k)
N + ǫNg(u

(k)
n+1)

〉

IF (‖tTn
+∆λ

(k)
T + ǫT∆u

(k)
T ‖ ≤ µλ

(k+1)
N ) THEN

∆λ
(k+1)
T = ∆λ

(k)
T + ǫT∆u

(k)
T ,

x ∈ Γ
(k+1)
stcik

ELSE

∆λ
(k+1)
T =

tTn
+∆λ

(k)
T

=ǫT∆u
(k)
T

‖tTn
+∆λ

(k)
T

+ǫT∆u
(k)
T

‖
µλ

(k+1)
N − tTn

x /∈ Γ
(k+1)
stick

k ← k + 1

GO TO 2.

ENDIF

ü represent the velocity and the acceleration of the drill-string, Ca and Cd are the added mass and drag
coefficients, respectively, and De indicates the outer diameter of the drill-string.

2.3. Dynamic theory

To study the axial load transfer, most of the previous works have focused on the motion of the drill-
strings in static state and the derivation of its analytical solution after the well trajectory was simplified
to straight, build-up and incline-straight sections in a two-dimensional plane only. Limitation of these
works is that the dynamical behaviour and the local geometrical characteristics of the well trajectory, such
as dogleg severity, which are crucial for evaluating the efficiency of axial load transfer, were not included
in the model. So, a comprehensive model of axial load transfer should always take these complex factors
into account. According to the Hamilton principle (Leigh and Kunz, 2007; Thompson et al., 2012), the
kinetic energy, the potential energy and the work done by the non-potential forces, must satisfy the
following energy conservation equation,

δ

∫

∆t

(T − V ) +

∫

∆t

δW = 0, (8)
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where T is the kinetic energy, V is the potential energy, and W is the work done by the non-potential
forces. For a continuous system, T , V , and W can be expressed by using the displacement variables
(u, θ) and the velocity variables (u̇, θ̇). For our proposed model, T , V , and W can be obtained via the
integration method by using the shape function (3). Then by substituting Ui into Eq. (8), we can obtain
the following non-potential equation,

∫

∆t

[

−
d

dt

( ∂L

∂U̇i

)

+
∂L

∂Ui

+ Fi

]

δUi = 0, (9)

where L = T − V is the Lagrange function, which can be expressed as L = T − V . Since δUi is an
arbitrary variable, Eq. (9) can be rewritten as (Chen et al., 2018; Zhu et al., 2015)

−
d

dt

( ∂L

∂U̇i

)

+
∂L

∂Ui

+ Fi = 0, (10)

Substituting L = T − V into Eq. (10), it gives

d

dt

( ∂T

∂U̇i

)

−
∂T

∂Ui

−
∂V

∂Ui

= Fi. (11)

Considering collecting all the elements together, the dynamic equation of the drill-strings can be written
as

Mü+ Cu̇+Ku = F, (12)

where M , C and K are the mass, the damping and the stiffness matrices, respectively. ü, u̇, and u
represent the acceleration, the velocity, and the displacement of the rotation and the translation of the
node, respectively. F represents the external generalized forces.

In the present work, the transfer efficiency of the axial load can be calculated as

β =
∣

∣F in − F out
∣

∣/∆L, (13)

where β donates the axial load loss per 100 m. F in and F out are the input and the output of the axial
force, respectively, and ∆L is the length of the considered string. When β = 0, there is no axial load
loss, and the larger β, the more axial force loses.

3. Model validation

A packer releasing process was measured in the field by using five dynamical measurement subs in
a down-flow well. This practical well is a deviated well with the ’straight-buildup-straight’ section in
Eastern China, which has a measured depth of over 3600 m as shown in Fig. 4(a). With the maximal
deviation angle of 45 degrees, the true vertical depth and the horizontal length are 2856 m and 2000 m,
respectively. The starting point of the build-up section locates at 300 m, and the incline straight section
begins at 800 m. According to the logging data, it has the maximum overall angle of 3.8 degrees per 30
m near 2800 m and the overall angle change rate is presented in Fig. 4(b).

3.1. Field experimental set-up and procedure

In order to study the change rule for the axial load in directional well, five measurement subs, placed
at the well-head (10 m), the kick off point (300 m), the starting point of the incline straight section (800
m), the point at the incline straight section (1000 m), and the point near the packer (3000 m), were
employed to record the axial load, torque, and internal pressure. All the subs record field data at every
four seconds, and only the axial load data was used in this paper. An overview schematic of the drill
pipes and the measurement subs is presented in Fig. 5, where all of the corresponding parameters are
given in Table 2. During the process of packer releasing, pulling out and tripping in were carried out
alternately to keep the drill pipe safe.
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Figure 4: (Colour online) (a) Well trajectory, and (b) the deviation angle and the change rate of overall angle.
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Figure 5: (Colour online) Schematic of the measurement subs and the drill pipe components.

Table 2: Physical parameters of the drill pipe in the test well

Parameters Value

Borehole diameter 121 mm

Pipe external diameter 73 mm

Pipe internal diameter 62 mm

Pipe mass density 7800 kg/m3

Pipe Young’s modulus 2×1011 Pa

Pipe-casing friction coefficient 0.3

Fluid mass density 1000 kg/m3
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3.2. Field testing results

According to the measurement data recorded in the driller system, the hook load has a significant
change from 363 kN to 168 kN at 200 s indicating that the packer releasing has completed. The axial
load data from the five measurement subs was collected and presented in Fig. 6, where the segments A,
C and E show the procedure of pulling out, and the segments B and D show the change of the axial
load during the procedure of tripping in. As can be seen from the figure, in segment A, the axial loads
measured by the subs increase linearly as the measurement goes deeper. At about 50 s, in segment B,
driller decreased the hook load to prevent the drill pipes from damage. Both axial loads measured at 10
m and 300 m were reduced, while the axial loads measured at 800 m, 1000 m, and 3000 m were kept the
same. Thereafter, driller pulled out the drill pipes in segment C, where the increases of the axial loads
at 10 m and 300 m were much greater than the increases at 800 m, 1000 m and 3000 m. Segment D and
E repeated the same procedures as the segments B and C. As the axial force increased gradually, the
packer releasing occurred in segment F when the axial load measured at 3000 m achieved 123 kN, and
the axial load measured at 10 m at that moment was 365 kN.
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Figure 6: (Colour online) Field data of the axial load during a packer releasing process at the measured depth: 10 m, 300
m, 800 m, 1000 m, and 3000 m, where the segments A, C, E, and F indicate the procedure of pulling out, and the segments
B and D show the procedure of tripping in.

3.3. Model analysis and validation

Numerical simulation based on the proposed FEM was carried out by using the physical parameters of
the test well given in Table 2. Since the entire well bore is steel-oil casing, we used the general steel-steel
friction coefficient which is 0.2 in our simulation. The boundary at the top of the drill pipes was restricted
to the axial direction only, so the hook load can be recorded when the pipe was tripped-in to different
measured depths. Fig. 7 compares the hook loads between our simulation and field testing results during
the tripping-in procedure which shows a good agreement.

In order to simulate the packer releasing procedure, the node at the bottom was fixed when the axial
force was less than the releasing force 123 kN, and the axial displacement was applied to the node at the
wellhead once the axial force is greater than this releasing force. Fig. 8 illustrates the simulation results
at the releasing moment. As shown in Fig. 8(a), the width of the colour map, which is perpendicular to
the element axial direction, is used to indicate the magnitude of the axial load. Since the displacement
step was set as 0.01 m, our simulation will stop if the axial load at the bottom is greater than the axial
load for packer releasing. Our calculation shows that, once the axial load measured at 3000 m achieved
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122.8 kN, i.e. the releasing load, the axial load measured at 10 m was recorded at 364.6 kN. This result
is consistent with our field testing observation presented in Fig. 6. On the other hand, the contact forces
between the drill pipes and the casing are presented in Fig. 8(b). The contact forces recorded at the
build-up section are much greater than the other two sections, and the forces in the middle of the build-up
section are the greatest. Furthermore, a small segment near 2800 m has greater contact forces, since the
angle of the dogleg in this segment is the greatest as indicated in Fig. 4(b).

The axial forces along the entire drill pipes subjected to the loading and unloading phases at different
depths are shown in Fig. 9, where the maximum displacement applied to the wellhead was implemented
at 2.5 m, 3.0 m, and 3.5 m. As shown in Fig. 9(a), the axial loads at 300 m are linear with the loads
at 10 m, and the axial loads in the loading and unloading phases were kept the same. As presented in
Fig. 5, the drill pipes at 10 m and 300 m are both in the vertical section, so their contact forces with the
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casing are small. As can be seen from Fig. 9(b-d), the axial forces at 800 m, 1000 m, and 3000 m for the
loading and unloading phases are different. With the increase of the axial load at 10 m, the loads in the
loading phase (red arrows) are less than the ones in the unloading phase (green arrows).
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Figure 9: (Colour online) The comparison between the field testing and the simulation data is presented. Blue triangles
represent field testing data, and black, red, and purple squares stand for the loading (pulling out) and unloading (tripping
in) phases with the maximum displacement of 2.5 m, 3.0 m, and 3.5 m at the wellhead, respectively. Red and green arrows
indicate the loading and unloading phases, respectively.

It is obvious that the distribution of the contact forces along the drill pipe has significant influence
on the axial load transfer. Fig. 10 presents the contact forces along the drill pipes recorded in our FEM,
which shows the maximum displacement of 3.5 m in both loading (Fig. 10(a)) and unloading (Fig. 10(b))
phases, where x-axis is the axial displacement, y-axis is the measured depth, the colour represents the
magnitude of the contact force, and the yellow squares indicate the neutral points at where the axial
load is zero. As can be seen from Fig. 10(a), when the axial displacement is greater than 0.8 m, the
entire drill pipes are in extension, and the contact force increases as the axial displacement increases.
In the build-up section, the contact forces are greater than the forces in the other two sections. At the
measured depth of 2800 m, where the maximum overall angle change rate is encountered, larger contact
forces were recorded again. Similar force distribution can be observed from the unloading phase as shown
in Fig. 10(b). However, comparing the corners below the neutral points in both figures, when the pipes
are in compression in loading phase, the contact force increases immediately, while in unloading phase,
the contact force decreases rapidly.

Fig. 11 compares the contact forces of the loading (blue) and unloading (red) phases for different axial
displacements. When the axial displacement is 0.05 m, the drill pipes below 1600 m are in compression,
and the contact forces near the bottom fluctuate in both phases as indicated by the grey area in Fig. 11.
As the axial displacement increases, the contact forces at the build-up section in loading phase become
greater than the ones in the unloading phase. In addition, another important observation is that the
contact forces have the same variation trend as the overall angle change rate varies.
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Figure 10: (Colour online) The map of the contact forces between the drill pipes and the casing calculated by using the
model 12: (a) loading phase with the maximum displacement of 3.5 m, and the pipes are in extension after 0.8 m; (b)
unloading phase with the axial displacement indicating partial pipes are in compression when the axial displacement is less
than 1.3 m. Yellow squares represent the neutral points at where the axial load is zero.
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Figure 11: (Colour online) The contact forces of the entire drill-strings in the loading and the unloading phases with different
axial displacements. Blue lines denote the contact forces in the loading process, and red lines indicate the contact forces in
the unloading process.

4. Parametric analysis

This section studies the factors that may influence the axial load transfer in the build-up section and
the buckling in horizontal section, such as deviation angle, overall angle change rate, tripping velocity,
buckling configurations and drill-string components.

Four deviated well trajectories were modelled with the vertical length of 300 m, the inclined straight
length of 1000 m, and the curvature radius of 500 m. Our calculations are shown in Fig. 12(a), where the
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loss of axial load is plotted as a function of the hook load. It can be seen from the figure that, the losses
of axial load for the four wells increase linearly as the hook load increases. When the deviation angle is
20◦, it has the largest loss of the axial load. Although the pulling forces at the wellhead are the same,
the contact forces for the deviation angle of 20◦ are larger than the other cases. The loss of the axial load
for different overall angle change rates are presented in Fig. 12(b). It can be observed from the figure
that the loss of axial load increases linearly with the change rate of the overall angle, and the change rate
is more sensitive than the deviation angle. When the hook load is more than 250 kN, the loss increases
significantly. When the change rate of the overall angle is 80◦ per 30 m, the loss of the axial load is the
largest. It can prove that when the overall angle change rate is the same, the slope factor is consistent,
as is shown in figure 12(a).
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Figure 12: (Colour online) Axial load loss as a function of the hook load under (a) different deviation angles and (b) different
overall angle change rates.

In field operation, the velocities of tripping in and pulling out have influence on the axial load transfer,
particularly when the horizontal section is lengthy. Fig. 13 shows the axial loads calculated by using
the proposed FEM for different pulling-out and tripping-in velocity configurations. It can be see from
Fig. 13(a) that, the pulling-out force increases with the tripping velocity, and this increase is significant
in the build-up section at the measured depth between 300 m and 1000 m. On the other hand, as shown
in Fig. 13(b), the tripping velocity does not affect the axial load too much for tripping in operation.
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Figure 13: (Colour online) The axial load for (a) pulling-out and (b) tripping-in operations under different tripping velocities.

When the drill-strings are in compression, it could be in buckling due to excessive axial load, and this
may significantly reduce the efficiency of the axial load transfer. Next, a 300 m long drill-strings with
73 mm outer diameter and 62 mm inner diameter was simulated in a horizontal well. The dead end was
fixed, and the axial displacement was applied to the loading end of the drill-strings. Fig. 14 presents the
buckling configurations of the drill-strings under different axial displacements. As can be seen from the
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figure, when the axial displacement is 0.1 m, the drill-strings are straight. Sinusoidal and helical buckling
configurations can be observed at the loading end when the axial displacement is increased to 0.11 m. As
the axial displacement increases, such buckling is transferred to the dead end along the drill-strings. The
coexistence of the straight, sinusoidal and helical buckling configurations on the drill-strings is kept until
the axial displacement increases to 0.13 m. Thereafter, the entire drill-strings become buckling, and it is
completely in helical buckling when the axial displacement is increased to 0.15 m.
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Figure 14: (Colour online) Drill-string configurations under different axial displacements: (a) x = 0.1 m; (b) x = 0.11 m;
(c) x = 0.12 m; (d) x = 0.13 m; (e) x = 0.14 m; and (f) x = 0.15 m.

Fig. 15 presents the axial load and its loss as the function of the axial displacement under different
buckling configurations. From this figure, we can observe that when the axial displacement is less than
0.1 m, the axial forces at the loading and the dead ends increase linearly with the axial displacement.
When the axial displacement is between 0.1 m and 0.14 m, the axial force at the dead end drops, even
that the force at the loading end increases with the axial displacement. Once the axial displacement
is greater than 0.14 m, the load changes at both ends are very nonlinear, which are reflected by the
large fluctuations in the axial force loss. To refer to the buckling configurations in Fig. 14, point A,
corresponding to Fig. 14(a), is the start point of the sinusoidal buckling, and the sinusoidal buckling is
converted to the helical buckling completely at point B, which corresponds to Fig. 14(e). The loss of the
axial load indicates the inefficiency of the axial load transfer once buckling is encountered. When the
drill-string is straight, the loss of the axial load is small, and this loss is kept constant until sinusoidal
buckling is encountered. Once the drill-strings is in helical buckling only, the trend of the axial load loss
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becomes fluctuated as the axial displacement increases.
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Figure 15: (Colour online) The axial loads at the loading (black squares) and the dead (red circles) ends and their loss
(grey triangles) as a function of the axial displacement.

Fig. 16 demonstrates the distribution of the contact force along the drill-strings under different axial
displacements shown in Fig. 14. As the displacement increases, the drill-strings and the casing have no
contact before any buckling emerges at point A. Thereafter, contact forces are encountered along the
drill-strings from the loading end to the dead end, and the entire drill-strings become helical buckling
after point B.
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Figure 16: (Colour online) The map of the contact forces between the drill-strings and the casing calculated for a 300 m long
drill-strings shown in Fig. 14. The drill-strings start to encounter buckling from point A, and become completely helical
buckling from point B.

To study the influence of the friction coefficient between the string and the casing on the axial load
transfer, calculations of the axial loads at both ends under different friction coefficients were presented in
Fig. 17 as a function of the axial displacement. It can be seen from the figure, the axial loads at both ends
increase linearly with the axial displacement until x = 0.1 m where an initial buckling is encountered. As
the axial displacement increases, friction coefficient has more influence on both ends, since more buckling
configurations emerge along the drill-strings. After the drill-strings are completely in helical buckling at
x = 0.14 m, the axial load at the loading end is more sensitive to friction coefficient than the one at the
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Figure 17: (Colour online) Axial load at (a) the loading end and (b) the dead end as a function of the axial displacement
under different string-casing friction coefficients µ.

dead end.

5. Conclusions

This paper mainly studied the axial load transfer along the entire drill-strings in a deviated well by
employing a finite element model taking into account the nonlinear pipe-casing contact and actual well
trajectory. Based on this newly built model, our studies focused on the analysis of the axial load loss, the
distribution of the pipe-casing contact force and the drill-string deformation, including both pulling-out
and tripping-in operations. The efficacy of our proposed model was validated experimentally by using
the field testing data obtained from a packer releasing procedure in an oil field. Through these analyses
above, some useful conclusions and suggestions were obtained.

In pulling out operation, with the increase of hook load, the loss of axial load and the pipe-casing
contact force are significantly increased in the build-up section, while have less variations in the inclined
straight section. We studied the deviation angle and the overall angle change rate of the well trajectory.
The results indicate that, the overall angle change rate has a significant effect on axial load transfer and
constant force distribution. When this change rate remains constant, the loss of axial load increases
linearly with the hook load. In addition, we found that the pulling-out axial force increases with the
tripping velocity, and this effect is more obvious in the build-up section.

In horizontal well, with the increase of the axial displacement, both sinusoidal and helical buckling
configurations were observed along the drill-strings, and these buckling configurations were transferred
from the loading end to the dead end until the entire drill-strings became helical buckling. This causes the
axial load transfer more sensitive to the string-casing friction coefficient, since the string-casing contact
due to buckling degrades the efficiency of axial load transfer.

The FEM established in this paper, taking into account the actual well trajectory and nonlinear
pipe-casing contact, provides an effective approach to prediction of the axial load transfer along the drill-
strings in the deviated wells. Moreover, the theoretical guidance can be obtained to guide the parameter
control in actual drilling.

Acknowledgements

Mr Wei Lin would like to acknowledge the financial support from the China Scholarship Council
(Award no. 201708510133) for his one year visiting study at the University of Exeter.

16



 

References

Aadnoy, B., Andersen, K., 1998. Friction analysis for long-reach wells, in: IADC/SPE drilling conference,
Society of Petroleum Engineers.

Adewuya, O.A., Pham, S.V., 1998. A robust torque and drag analysis approach for well planning and
drillstring design, in: IADC/SPE drilling conference, Society of Petroleum Engineers.

Brett, J., Beckett, A., Holt, C., Smith, D., 1987. Uses and limitations of a drillstring tension and torque
model to monitor hole conditions, in: SPE Annual Technical Conference and Exhibition, Society of
Petroleum Engineers.

Cebeci, M., Kök, M.V., 2019. Analysis of sinusoidal buckling of drill string in vertical wells using
finite element method, in: SPE Middle East Oil and Gas Show and Conference, Society of Petroleum
Engineers.

Chen, Y., Fu, J., Ma, T., Tong, A., Guo, Z., Wang, X., 2018. Numerical modeling of dynamic behavior
and steering ability of a bottom hole assembly with a bent-housing positive displacement motor under
rotary drilling conditions. Energies 11, 1–23.

Duman, O.B., Miska, S., Kuru, E., 2003. Effect of tool joints on contact force and axial-force transfer in
horizontal wellbores. SPE drilling & completion 18, 267–274.

Gao, G., Miska, S., 2010. Effects of friction on post-buckling behavior and axial load transfer in a
horizontal well. SPE Journal 15, 1–104.

Hestenes, M.R., 1969. Multiplier and gradient methods. Journal of optimization theory and applications
4, 303–320.

Hill, T., Chandler, R., 1998. Field curves for critical buckling loads in curving wellbores, in: IADC/SPE
drilling conference, Society of Petroleum Engineers.

Ho, H., 1988. An improved modeling program for computing the torque and drag in directional and deep
wells, in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers.

Huang, W., Gao, D., 2019. Combined effects of wellbore curvature, connector, and friction force on
tubular buckling behaviors. SPE Journal .

Johancsik, C., Friesen, D., Dawson, R., 1984. Torque and drag in directional wells-prediction and mea-
surement. Journal of Petroleum Technology 36, 987–992.
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Highlights 

� The non-linear finite element method is proposed by taking into 

account the nonlinear contact and the actual well trajectory. 

� A field test was carried out to verify the finite element method. 

� Contact force distribution is introduced to study the axial load loss. 

� The well trajectory factors and buckling configurations are studied. 
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