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The effects of psychosocial stress 
on intergroup resource allocation
Adam Schweda1*, Nadira Sophie faber  2,3, Molly J. crockett4 & Tobias Kalenscher  1

Stress changes our social behavior. Traditionally, stress has been associated with “fight-or-flight” – the 
tendency to attack an aggressor, or escape the stressor. But stress may also promote the opposite 
pattern, i.e., “tend-and-befriend” – increased prosociality toward others. It is currently unclear which 
situational or physiological factors promote one or the other. Here, we hypothesized that stress 
stimulates both tendencies, but that fight-or-flight is primarily directed against a potentially hostile 
outgroup, moderated by rapid-acting catecholamines, while tend-and-befriend is mainly shown 
towards a supportive ingroup, regulated by cortisol. To test this hypothesis, we measured stress-related 
neurohormonal modulators and sex hormones in male and female participants who were exposed to 
a psychosocial stressor, and subsequently played an intergroup social dilemma game in which they 
could reveal prosocial motives towards an ingroup (ingroup-love) and hostility towards an outgroup 
(outgroup-hate). We found no significant effects of stress on social preferences, but stress-related heart-
rate increases predicted outgroup-hostile behavior. Furthermore, when controlling for testosterone, 
cortisol was associated with increased ingroup-love. Other-regarding behavior was overall higher in 
male than female participants. Our mixed results are of interest to scholars of the effects of stress on 
prosocial and aggressive behavior, but call for refinement in future replications.

Stress is known to alter social behavior. The canonical social response to stress is fight-or-flight1. Fight-or-flight 
responses prepare an organism for homeostasis for antagonistic situations2, thus increasing the individual’s pro-
pensity to aggress and flee. The fight-or-flight response to stress is a well-documented phenomenon that has been 
widely observed in humans and non-human animals3. For example, in humans, stress has been shown to reduce 
empathy4 and financial generosity5 to foster domestic and general violence6,7 and to promote aggressive criminal 
behavior8. Aggressive fight-or-flight responses go along with arousal, activation of the sympathetic nervous sys-
tem and mobilization of energy resources, and they are linked to rapid-acting catecholaminergic, mainly noradr-
energic (NA) components of the stress response1,9–12.

However, recent theoretical and empirical evidence suggests that stress can also induce prosocial behavior13. 
For example, von Dawans and colleagues14 found that psychosocial stress increased males’ trust in others and 
their sharing of monetary resources. This was interpreted as support for the “tend-and-befriend”13 hypothesis. 
The tendency to “tend-and-befriend” is a proclaimed coping strategy that involves investing into social networks 
after stress, thus offering costly help to a delimited group of people in order to seek and offer mutual protec-
tion during anticipated or experienced threats13–17. The tend-and-befriend hypothesis, initially only postulated 
as being female-specific16, has received empirical support in recent years. For example, stress has been shown 
to increase acceptance of even unfair offers in the ultimatum game amongst women18. A tend-and-befriend 
response has been found in males, too. For instance, stress has been shown, across sexes, to increase donation 
rates among participants with pro-environmental attitudes19, to increase trust and sharing behavior in male par-
ticipants14, and generosity in males20,21. Consistent with the tend-and-befriend hypothesis, stressed individuals 
report more social closeness22, socio-evaluative stress has been shown to enhance emotional empathy23, and 
empathy- and prosociality-related brain areas are activated after a hybrid stress task24. Furthermore, consistent 
with the assumption of tending-and-befriending a close social network under stress, induction of psychosocial 
stress leads to increased generosity towards socially close recipients of help, for instance relatives and friends, but 
not towards socially distant others, such as strangers20.

There is suggestive evidence that prosocial tend-and-befriend responses to stress are linked to relatively 
slow-acting cortisol (CORT), a component of the physiological stress response that is distinct from fast-acting 
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catecholamines. For example, exogenous manipulation of CORT activity has been shown to foster financial altru-
ism towards socially close others21, and stress-related CORT-levels covary with greater trust25 and social affilia-
tion22. The idea that the separate components of the physiological stress response, NA and CORT, have dissociable 
effects on social behavior has been supported by the recent observation that CORT-related financial altruism 
could be counteracted by additional administration of yohimbine (an alpha2-adrenoceptor antagonist that boosts 
NA release21). This discovery is in line with the finding that noradrenergic activity correlates negatively with over-
all financial generosity20 and even implicit intergroup bias26–28.

Thus, existing evidence suggests stress can promote aggressive (fight-or-flight) as well as prosocial tendencies 
(tend-and-befriend), and these two tendencies are tentatively related to distinct components of the physiological 
stress response. However, it is currently unclear when and why stressed individuals show tend-and-befriend or 
fight-or-flight behavior. Here, we propose that stress does not provoke one or the other response, but boosts both 
tendencies at the same time by supporting prosocial behavior towards socially close others (tend-and-befriend), 
who, unlike strangers, can potentially provide comfort and support in stressful times20,21. Simultaneously, 
stress could foster aggression against socially distant outgroup members who are more likely to present a threat 
than ingroup members (fight-or-flight). Because of recent evidence for a role of CORT in promoting generos-
ity towards others20,21,24,25, and the classic association of fight-or-flight tendencies with sympathetic activation, 
we further hypothesize that tend-and-befriend and fight-or-flight tendencies are modulated by the dissociable 
actions of the stress-neuromarkers CORT and NA, with CORT promoting prosociality towards ingroup mem-
bers, and NA fostering aggressive behavior against outgroup members.

Stress induces a complex, non-linear and time-dependent suite of neurohormonal changes. CORT and NA 
exhibit different response profiles, with NA peaking shortly after stress onset, and CORT roughly 20–30 minutes 
later29. CORT effects on neural activity can further be categorized into faster-acting non-genomic CORT action 
and slower, but longer-lasting (up to several days in animals) genomic CORT effects30. Here, participants play the 
IPD-MD within a 10-minute time window after offset of the gTSST, at the time at which we expect CORT and 
NA-action to overlap31.

Moreover, since male participants are known to respond to stress differently than females32,33 and often reveal 
different, gender-dependent social preferences34,35 we additionally considered gender in our main analyses, as well 
as the sex hormones testosterone, estradiol and progesterone36–39, and a range of other state and trait variables.

To test these hypotheses, we induced psychosocial stress in 100 male and 102 female participants (total 
n = 202), using the group version of the Trier Social Stress Test (gTSST40). After performing the gTSST or control 
procedures, participants played an adapted version of the intergroup prisoner’s dilemma maximizing differences 
game (IPD-MD41). In this game, three participants were assigned to one group, and they were told they would 
play against another group that participated on the previous day. To manipulate group affiliation, participants 
were instructed that the members of their own group held similar political views (ingroup), and that the mem-
bers of the other group held radically opposing political views (outgroup42). At the beginning of the game, each 
participant received an initial economic endowment, which they could distribute across three pools (keep-pool, 
within-group pool and between-group pool). Contributions to the keep-pool would be kept by the participants; 
50% of the total sum of contributions to the within-group pool would be paid out to each in-group member, 
including the participant; contributions to the between-group pool had the same effect to the ingroup, but each 
outgroup member would lose the amount each ingroup member received (see Table 1 for payoff matrix and 
example). Hence, contributions to the keep-pool can be interpreted as the motivation to maximize own profit 
(own-utility maximizing), and contributions to the within-group pool can be interpreted as costly motivation 
to maximize ingroup profit (called “ingroup love” in the relevant literature41–47). Finally, contributions to the 
between-group pool can be interpreted as motivation to maximize ingroup profit and, at the same time, harm the 
outgroup (so called “outgroup-hate”). Note that we opted against including a “pure spite” condition that would 
allow participants to harm the outgroup without giving benefits to the ingroup, as costly spite in the absence of 
ingroup favoritism occurs very rarely, if ever, in the laboratory or the field48,49.

We predicted that stressed participants would contribute more money to the between-group pool than 
non-stressed participants, reflecting the predicted combination of ingroup-love and outgroup-hate, and that con-
tributions to this pool would be correlated with measures of the sympathetic stress response (salivary marker of 
NA and heart-rate). Furthermore, we expected that the motivation to contribute to either the within-group or the 
between-group pool over keep-pool investments would be correlated with the amplitude of the salivary CORT 
response, reflecting the predicted CORT effects on prosociality. Although our stress induction was successful, as 
indicated by physiological and subjective stress markers, our results did not confirm these hypotheses, at least not 
unambiguously. While we found evidence for an association between heart-rate increase (indicating sympathetic 

Player 1 Player 2 Player 3

Keep pool Ingroup +5€* 0€ 0€

*Player invests 5€ Outgroup 0€ 0€ 0€

Within-Group Pool Ingroup +2.50€* +2.50€ +2.50€

*Player invests 5€ Outgroup 0€ 0€ 0€

Between-Group Pool Ingroup +2.50€* +2.50€ +2.50€

*Player invests 5€ Outgroup −2.50€ −2.50€ −2.50€

Table 1. Payoff matrix of the IPD-MD for each pool separately. Outcomes are displayed for each player after 
player 1 from the ingroup invests 5€ (example).
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stress response) and outgroup-hate, the stress manipulation did not significantly affect overall preferences, and 
there was no correlation between salivary CORT measures and pool investments. However, CORT predicted 
within-group pool contributions when testosterone was controlled for. Overall, these results suggest a complex 
relation between stress and intergroup rivalry.

Results
Main results. Trait measures and group-differences in hormones. To rule out systematic stress-unrelated 
differences between participants of the stress and control groups, we collected a range of individual trait meas-
ures. None of the trait measures differed significantly between groups, with the exception of chronotype and a 
marginally significant group difference in chronic stress. Moderation analyses with these two factors as potential 
moderators revealed no significantly influencing role on any of the outcome variables. In addition, there were no 
significant differences in any of the sex hormone measures (testosterone, progesterone and estradiol) between 
participants of the stress and control group (cf. SOM for details and analyses).

Manipulation check of stress induction. Compared to controls, participants in the gTSST group had significantly 
elevated CORT and salivary α-amylase (a measure of central noradrenergic activity50) levels (see Fig. 1). In addi-
tion, the subjective stress measures also revealed higher levels of psychological stress, such as negative affect, 
feelings of shame, and insecurity (cf. SOM).

IPD-MD: Main analyses. To assess our main hypotheses, we computed mixed ANOVAs to test for effects of 
condition (stress vs. control) and gender on investments into the within-group and between-group pools. A 
priori power analyses for the effect of stress on allocation patterns yield 95% power for at least medium-sized 
effects (see methods). Consistent with earlier findings41,45,51, subjects invested more into the within-group pool 
(M = 4.17, SD = 3.55) than the between-group pool (M = 1.51, SD = 2.16, main effect of pool: F(1, 197) = 59.54, 
p < 0.001, ηp

2 = 0.232, see Fig. 2). Male participants contributed more to both pools than female participants, i.e., 
female participants kept more money for themselves (keep-pool; males: M = 3.1, SD = 3.58, females: M = 2.58, 
SD = 2.82, main effect of gender: F(1, 197) = 4.79, p = 0.030, ηp

2 = 0.024, see Fig. 2). However, there were no 
significant interaction effects between stress, gender and pool (gender x condition: F(1, 197) = 0.02, p = 0.879, 
ηp

2 < 0.001; gender x pool: F(1, 197) = 0.04, p = 0.837, ηp
2 < 0.001; gender x pool x condition: F(1, 197) = 0.12, 

p = 0.724, ηp
2 = 0.001). Contrary to our predictions, stress did neither significantly increase within-group, nor 

between-group pool investments (main effect of condition: F(1, 197) = 0.04, p = 0.844, ηp
2 < 0.001, 95% CI [0, 

0.019]; interaction effect condition x pool: F(1, 197) = 0.13, p = 0. 0.720, ηp
2 = 0.001, 95% CI [0, 0.025]). Please 

note that the latter effect sizes’ 95% confidence interval upper bound can still be considered a small effect.
To receive a realistic distribution of plausible stress-related effects and, hence, further elucidate our null find-

ing, we additionally computed Bayesian credibility intervals, which have been shown to produce high coverage of 
true parameters52. To this end, the main effect of condition and its interaction with pool were estimated in a full 
Bayesian mixed linear model (see SOM for details). The results indicate comparably narrow credibility intervals 
around zero for stress-related effects, except for the slight increase of investments into the between-group pool 
(pool: β = −0.82, 95%-CrI [−1.00, −0.64]; condition: β = 0.02, 95%-CrI [−0.16, 0.20]; pool x condition: β = 0.08, 
95%-CrI [−0.28, 0.43]). The posterior distributions for condition, pool and their interaction are displayed 
in Fig. 3. Equivalence tests (“region of practical equivalence”, ROPE53) based on the stress-related posteriors’ 

Figure 1. Physiological stress markers. (a) Baseline-corrected cortisol (CORT) increased in the stress group, 
but not the control group (p < 0.001). Its peak was reached 20–30 minutes after gTSST onset. (b) Stress 
increased baseline-corrected salivary α-amylase (sAA; p < 0.001). SAA increased with stressor-onset. (c) 
Heart-rate increase was more pronounced in stressed than non-stressed participants (p < 0.001). All error bars 
indicate ± 1 SEM.
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95%-highest density intervals (HDI) accept the null hypothesis if defined as HDIs congruent with an interval of 
~20% (for the main effect of stress) or ~45% (for the interaction pool x stress) of the grand standard deviation 
around zero53.

Figure 2. Contributions to the keep-, within-group and between-group pool in the IPD-MD. (a) Although 
participants made more keep- and within-group than between-group investments (more egoism and ingroup-
love than outgroup-hate), psychosocial stress did not alter investment patterns. (b) Main effect of gender on 
pool investments. Male participants invested more into the within-group and the between-group pools than 
females, irrespective of whether they underwent the gTSST procedure or not, suggesting more other-regarding 
behavior in male than female participants (p = 0.03).

Figure 3. Posterior distributions of the effects of stress on IPD-MD contributions. Horizontal lines mark 
95% credibility intervals. (a) posterior probability distribution for the standardized regression coefficient of 
the effect of stress; a marked deviation from zero would indicate that stress influences both, within-group and 
between-group pool investments, in some, but the same direction. However, it is centered around the mean of 
0.02 and the 95% credibility intervals are bounded at −0.16 and 0.20, indicating that – given a 95% criterion 
– the standardized difference is unlikely to be larger than 0.20 (effect size at the boundary of the heavier tail). 
(b) posterior probabilities of the interaction term pool x condition. Heavy deviations from zero would indicate 
that stress affects within- and between-group pool investments differentially, for example by only increasing 
outgroup-hate. Although the posterior mean is close to zero (0.08) and the left tail’s 95%-CrI bounds at −0.28, 
the posterior distribution is right-tailed with an interval boundary at 0.43. This very likely results from a slight, 
but, in frequentistic terms, statistically insignificant increase of between-pool investments in the stress vs. the 
control group.
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To further corroborate these null results, we applied Bayesian hypothesis testing to obtain a quantitative esti-
mate of the evidence for the null hypothesis, using a model comparison approach (see SOM for details). For the 
following calculations, we set up a mixed linear model with pool and condition as fixed effects and a varying 
intercept per subject (see SOM for details). Taking into account the reverse of the Bayes factor in favor of the 
alternative hypothesis - the BF01 - we find evidence for our null hypothesis (only condition: BF01 = 8.523, “mod-
erate” evidence54; condition and the interaction term condition x pool: BF01 = 51.476, “very strong” evidence54), 
and this result remains stable for a wider array of prior definitions (see SOM for prior robustness checks). Hence, 
given the centeredness of the posterior distributions of the stress-related effect-estimates around zero, as well as 
the Bayes Factors for the null hypothesis, the most reasonable conclusion is that stress does either have no or only 
a small effect on IPD-MD investments.

Stress markers, sex hormones and investment patterns in the IPD-MD. Next, we asked if investment decisions in 
the IPD-MD were moderated by changes in the levels of stress markers CORT, α-amylase and heart-rate, inde-
pendent of a main effect of stress. To this end, we regressed stress marker estimates (α-amylase and CORT, and 
heart-rate) on the contributions to the pools. As estimates, we considered the area under the curve with respect 
to increase (AUCi55) for CORT and α-amylase, and the increase in heart-rate from the average of the two baseline 
recordings to the gTSST/control procedure. A mixed linear model with pool, stress markers CORT, α-amylase 
and HR, as well as their interactions with pool and condition as fixed effects was calculated. Intercepts varied per 
subject. Our results revealed that changes in heart-rate, but not CORT or α-amylase, modulated decision behav-
ior. We found a significant interaction effect between pool and heart-rate increase (β = 0.196, t(298) = 3.141, 
p = 0.002). Simple regressions on the between- and within-group pool separately indicate an association 
between heart-rate increase and decreasing ingroup-friendly, as well as increasing outgroup-hostile invest-
ments (within-group pool: β = −0.238, t(149) = −2.223, p = 0.028, uncorrected; between-group pool: β = 0.153, 
t(149) = 2.41, p = 0.017, uncorrected). There were no main or interaction effects of α-amylase or CORT on pool 
investments (all p > 0.20.). Additional robust Bayesian parameter estimations revealed identical results (cf. SOM).

This finding is partly consistent with one of our main hypotheses that sympathetic activity, with heart-rate 
as a proxy, should be related to an increased tendency to cause outgroup harm. However, our second proxy of 
sympathetic activity, α-amylase estimates, was not significantly correlated with outgroup harm, thus limiting our 
ability to make a definite decision on our hypothesis.

None of the sex hormones testosterone, progesterone & estradiol, nor their interactions explained variance in 
IPD-MD contributions (cf. SOM). Inspired by the dual-hormone hypothesis56,57 that predicts an interaction effect 
of CORT and testosterone on behavior, we investigated if any of the sex hormones, particularly testosterone, mod-
erated (hidden) effects of CORT on IPD-MD decisions. For interpretability, we constructed three different mixed 
linear models in an exploratory analysis in which we regressed pool (within-/between-group), the respective sex 
hormone, the area under the curve of CORT, and their interaction terms on the investments. In order to condition 
on participants’ gender and control for different effects of the sex hormones for males and females, we additionally 
entered gender as a factor. We let the intercept vary for each participant. Only the model including testosterone 
yielded significant findings: when testosterone was considered in the model, CORT increase (AUCi), as well as 
testosterone levels predicted pool investments. CORT levels were associated with an increase of allocations into the 
within-group pool, and testosterone boosted both within- and between-group pool investments (interaction pool 
x CORT β = −0.149, t(329) = −2.444, p = 0.015; testosterone β = 0.207, t(329) = 2.039, p = 0.042). CORT itself 
reached marginal significance (β = 0.115, t(329) = 1.876, p = 0.062). This suggests that CORT and testosterone lev-
els explained the variance in within- and between-group investments that was not accounted for by each hormone 
alone. There was no significant interaction between testosterone and CORT on pool investments (β = −0.018, 
t(329) = 0.291, p = 0.711), testosterone and pool (β = −0.044, t(329) = −0.808, p = 0.420), nor any of the higher 
order interactions (all p > 0.17). Also, gender has not reached significance in this model (gender β = 0.107, 
t(329) = 1.104, p = 0.270). Robust Bayesian models show similar results (cf. SOM). Thus, in summary, we found 
that heart-rate increase predicted a shift from within- to between-group pool investments, and that CORT and 
testosterone levels explained the variance in within- and between-group investments if considered in a model that 
conditions on both hormones. This finding is partly consistent with our hypothesis predicting a double-dissociation 
of sympathetic activity and CORT on ingroup-love (within-group investments) and outgroup-hate (between-group 
investments). However, it has to be interpreted with caution because of the complexity of the results and the incon-
sistency in redundant stress marker effects, e.g., the lack of correlation of α-amylase with pool investments.

Exploratory Analyses
Sex-hormonal underpinnings of gender differences in IPD-MD investments. We ran additional 
exploratory analyses to further elucidate the gender differences in pool investments described above, suggesting 
that male participants invested more into both the within- and between-group pool than females (see SOM for 
details). We asked if these gender differences in behavior can be explained by diverging sex hormone profiles or 
trait measures that we collected. However, these analyses revealed that the gender differences in pool investments 
were unrelated to differences in the sex hormone compositions and trait measures, except for the emerging value 
of testosterone as a predictor when cortisol is considered (see above). Since this result needs to be considered with 
caution, and sex hormones are not directly related to pool investments, our data suggest that males’ higher contri-
butions to both the within- and between-group pool likely reflected factors not considered in this study such as, 
for example, physiology-independent gender differences or same-sex group composition.

IPD-MD investments and chronic stress. It is possible that chronic, but not acute stress (as induced 
by the gTSST procedure), altered investment behavior in the IPD-MD. Indeed, we found that an increase in 
chronic stress – as measured by the Trier Inventory of Chronic Stress58 (TICS; see SOM) - was associated with an 
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overall decrease in ingroup-love and outgroup-hate, and thus, in other-regarding preferences (TICS β = −0.089, 
t(394) = −2.024, p = 0.043). This suggests that chronic stress, as opposed to acute psychosocial stress, is related 
to an overall disengagement from other-regarding investments. See SOM for analyses on other trait variables.

Discussion
We measured the effects of psychosocial stress on social decision-making in an intergroup rivalry setting. We 
predicted that stress would increase ingroup-love, and, at the same time, promote outgroup-hate. We further 
expected that the prosocial effects of stress towards the ingroup would be related to the CORT-component of 
the neuroendocrine stress response, while aggressive tendencies of outgroup harm would be associated with the 
sympathetic part of the stress response, mainly NA action. We further considered the potentially moderating role 
of a range of other endocrine, trait and state variables, including gender, and sex hormones. Although our results 
are mixed, as discussed below, we found no straightforward support for our hypotheses.

Regarding our main hypothesis, there was no significant effect of psychosocial stress on ingroup-love, 
outgroup-hate, or selfish choice. A priori power analyses indicated sufficient power to capture small to 
medium-sized effects with our IPD-MD design. The Bayesian credibility interval of the main effect of stress on 
investments into the within- and between-pool is considerably narrow; if the heavier tailed 95%-bound of the 
stress-related posterior distributions of the β-estimates is considered an upper limit of a standardized measure 
of difference (β = 0.20), it only yields small plausible effects59, if any. The posterior distribution of the interaction 
term is tailed towards higher credibility. Here, plausible effect sizes based on the 95% bound of the longer tail 
(β = 0.43) of the posterior still range in the medium category59. Further calculations of Bayes factors show reason-
able evidence in favor of our null hypotheses. This, as well as the narrow frequentist confidence intervals around 
the effect sizes, point to no – or a non-detectable - effect of our stress manipulation on IPD-MD decisions.

Of course, this analysis still leaves room for doubt of a true null effect. We could accept the HDI-based null 
hypothesis using criteria of 20% (for the main effect of stress) or 45% (for the interaction between pool and stress) 
of the standard deviation around 0 in an equivalence test, but these criteria are still very liberal53. The variability 
in individual contributions to the pools was large, so that we cannot exclude the possibility with certainty that 
we simply failed to detect small or noisy stress effects on choice. However, our sample size is large, and given our 
initial power, the centeredness of the posterior distributions, and the Bayes Factor analyses the most likely inter-
pretation of our results is that psychosocial stress had very small or non-existent effects on investment behavior 
in the IPD-MD game.

We further hypothesized that outgroup-hate was linked to catecholaminergic activity, so that catecholamine 
action, especially noradrenaline, would boost between-group investments. Our secondary analyses yielded at 
least partial evidence for this hypothesis. Heart-rate increase from baseline to stress, which is heavily influenced 
by catecholaminergic action60,61, predicted a decrease of investment into the within-group pool, and a slight, 
statistically significant increase into the between-group pool. This suggests that sympathetic activity correlates 
with decreased ingroup-love, consistent with previous findings21, as well as increased outgroup-hate. We note 
that heart-rate responses to stress were associated with reduced prosociality and enhanced harm infliction in the 
absence of a main effect of stress on social decision-making.

However, while sympathetic activity is associated with enhanced NA release, our other marker of NA activ-
ity, α-amylase, did not significantly correlate with pool investments in the IPD-MD game. Hence, the question 
remains why heart-rate, but not α-amylase levels, predicted changes in ingroup-love and outgroup-hate. The 
heart-rate response is a temporally well-resolved measure of sympathetic activity, including, but not restricted 
to, noradrenergic release, and is also to a degree influenced by the parasympathetic nervous system60. α-amylase 
is mainly secreted by the parotid glands, it is directly controlled by sympathetic input, and linked to plasma 
noradrenaline50,62. Correlations between sympathetic indicators (such as skin conductance level63 and ventricular 
ejection time64) and α-amylase are moderate50 and often noisy. Also in our study, heart-rate and α-amylase cor-
relate significantly, but weakly (r = 0.19, p = 0.018). Thus, both measures show complex relationships with sym-
pathetic activation, and each have their own caveats65,66 because they measure different subprocesses of arousal. 
This might be one reason why other studies found behavioral measures to be correlated with one marker, but not 
the other20. Thus, the relationship between the sympathetic stress response and a shift away from ingroup-love 
to outgroup-hate is possibly real, but the specific mechanisms are complex and need to be illuminated in future 
studies.

We further hypothesized that the CORT response to the stress manipulation would be correlated with 
ingroup-love21,25. Neither stress nor CORT were directly associated with ingroup-love, but when controlling 
for the variance explained by testosterone, CORT indeed positively predicted within-group pool investments. 
Also, if testosterone levels were conditioned on CORT, testosterone predicted an increase in overall within- and 
between-group pool contributions. Note that, because the default option was to keep the investment (contribu-
tions to the keep-pool; see methods), increased investments into within- or between-group pools reflect a dom-
inance of other-regarding over selfish motives. Hence, this finding suggests that, when considering the variance 
explained by either hormone, CORT and testosterone indeed predict ingroup-love and other-regarding behavior.

At first glance, this result seems consistent with the dual-hormone hypothesis42,53. This hypothesis postulates 
that testosterone needs low CORT to predict aggression, while CORT would boost empathy, but only at high tes-
tosterone levels54. However, despite the fact that, here, CORT levels predicted IPD-MD decisions only when con-
trolling for testosterone (and vice versa), we found no statistical interaction between CORT and testosterone, nor 
any three-way interaction with pool; our results therefore cannot be readily interpreted as a CORT-testosterone 
moderation effect on social choice. Thus, our results are, once more, exploratory, complex and call for further 
investigation.
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Not unexpectedly, male participants revealed more outgroup-hate, but also more ingroup-love (higher within- 
and between-group than keep investments) than female participants. Hence, male participants showed more 
other-regarding behavior while females were more selfish. This finding is consistent with much of the literature 
on gender differences in cooperative and competitive behavior, showing that men are often more competitive 
than women, but can also form cooperative alliances to reach a common goal and protect resources and social 
status34,67–71. The ultimate cause of such behaviors is often discussed in terms of the evolutionary importance of 
forming strong male bonds to enhance chances of success in intergroup conflicts70. Especially testosterone has 
been linked to rapidly and adaptively increasing the drive for competition in social settings32. The fact that we 
found a simultaneous increase in generosity and hostility in males might conform with possible bidirectionalities 
caused by testosterone. For example, exogenous testosterone administration has been found to both increase61 
and decrease72 generosity in the ultimatum game. However, the evidence that testosterone mediated the gender 
effects on other-regarding behavior in the present study was weak: none of our sampled sex hormones were 
directly correlated with the male participants’ increased ingroup-love and outgroup-hate, except when testoster-
one and CORT were considered in one exploratory model, and none of our trait measures, such as psychopathy 
or social value orientation, explained the gender-dependent variance in IPD-MD choices. Hence, the proximal 
mechanisms underlying the gender differences in other-regarding behavior in the present study remain elusive 
and might be caused by other factors, such as non-physiological gender differences, that were not considered in 
this study. For example, a recent meta-analysis on the effects of same- versus mixed-sex group compositions on 
social behavior found that female participants are slightly less cooperative than men (d = 0.16) in same-sex set-
tings73, suggesting that non-biological, environmental factors matter in shaping prosocial attitudes. Moreover, the 
interpretation of the small size of the gender effect (partial eta² = 0.024) requires caution, too.

Interestingly, exploratory analyses reveal an association between subjective chronic stress and an overall dis-
engagement from other-regarding investments. Chronic stress has been frequently discussed as a trigger for social 
idleness, or even aggression; for example, rodents exposed to chronic physical stressors show a shutdown in 
social motivation, as well as antagonistic behavior against conspecifics3,74, and in humans, depressive periods 
that correlate with chronic stress might be accompanied by social isolation75, and sometimes even with sudden 
aggressive outbursts76. Of course, the correlative nature of our finding prompts caution, but if chronic stress could 
be identified as causal to decline of social engagement, this would shed light on the causes of some of the core 
symptoms of chronic stress disorders, and it would even have significant implications for our understanding of 
societal cohesion. Future studies should investigate the relationship between chronic stress in social and inter-
group contexts e.g. by using modern approaches to causal inference in longitudinal data. Also, note that caution is 
required here because of our result’s exploratory nature, and the inherent potential for false-positive conclusions. 
Yet, our result is consistent with evidence from the animal literature suggesting increased social apathy, or even 
agression, with chronic stress3.

The most robust result of the present study is the null effect of psychosocial stress on pool investment in the 
IPD-MD game. The absence of any acute stress effect on social decision making is puzzling, given the vast num-
ber of studies, including experiments from our own lab, that found such effects on social choice14,17,18,20–22,24,77,78. 
It is unlikely that the null-effect of stress on social choices was due to ineffective or insufficient stress induction 
because all physiological and psychological stress markers indicate the contrary, i.e., successful stress induction in 
our participants. There are several other reasons why our manipulation might have failed to work. For instance, 
it is plausible that our implementation of the IPD-MD was not sufficiently sensitive to the social constructs it was 
supposed to measure, despite recent claims to the contrary with other implementations42,79. For instance, our task 
might have prompted deliberate, strategic thinking, but relied to a much lesser degree on social sentiments, such 
as ingroup-love and outgroup-hate80,81. That is, our participants’ predominant motive might have been payoff 
maximization, achieved by risk assessments and reciprocity expectations, and an attempt to balance these to make 
an optimal decision. Hence, social feelings like ingroup-love and outgroup-hate might have been overshadowed 
by these strategies, or they might have been outright irrelevant for task performance. Additional analyses (cf. 
SOM) partially support this possibility, suggesting that the IPD-MD might indeed be a predominantly strategic 
decision game, and less as an instrument to capture affectively tinted ingroup-love and outgroup-hate.

In addition, it is also possible that our ingroup-outgroup manipulation was not salient enough to produce 
true intergroup rivalry. We used political voter preferences to induce social group affiliation. Although our polit-
ical framing induced relatively strong outgroup harm (between-subject pool investments) as compared to other 
studies (15.1% in our study vs. 6% in the original work by Halevy and colleagues), it was, overall, still low (a 
recent replication82 also reached 18.33% on average). And only half of our participants allocated money into the 
between-group pool at all. Consistent with Weisel and Böhm42, we conclude that political rivalries in Germany 
may not be strong enough to produce a robust outgroup harm response. The expression of any covert tendencies 
for outgroup harm might, additionally, be shackled by prevailing social norms prohibiting interpersonal aggres-
sion. Furthermore, it is uncertain whether similar political preferences generate the group cohesion necessary to 
produce ingroup affiliation, or even ingroup-love. Future studies could replicate the present experiment with a 
more emotionally salient intergroup manipulation aimed at overcoming harm aversion, such as the recruitment 
of members of minorities83 or rivalling ethnic tribes84.

Also, the temporal dynamics of the stress response need to be considered in future research. Here, participants 
performed the IPD-MD directly after stressor offset where CORT and NA-action are supposed to act in con-
cert31. In order to obtain further evidence for our postulated dissociation between CORT for tend-and-befriend 
and NA for fight-or-flight, it would be interesting to administer the IPD-MD in different time windows after 
stress. If our hypothesis was true, then fight-or-flight tendencies should preferably occur during and shortly after 
the stressor, when catecholaminergic action peaks, while tend-and-befriend behavior should be predominantly 
found in the aftermath of stress during (genomic or non-genomic) CORT action. Also, future research should 
target the proximate neural mechanisms of “tend-and-befriend” and “fight-or-flight” in social decision making. 

https://doi.org/10.1038/s41598-019-54954-w


8Scientific RepoRtS |         (2019) 9:18620  | https://doi.org/10.1038/s41598-019-54954-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

Recent neuroimaging literature suggests that processes involving cooperation and intergroup cognition reliably 
recruit frontolimbic brain networks85. At the same time, acute stress was found to cause a massive reorganization 
of functional network dynamics in the brain, including the prefrontal cortex, the amygdala, as well as subcorti-
cal and orbitofrontal valuation-related areas31,86,87, suggesting that stress-related changes in those frontolimbic 
networks might underlie the promotion of tend-and-befriend or fight-or-flight tendencies. In addition, social 
decision making is known to be moderated by a range of other mental faculties, including reasoning, cognitive 
control, time-preference, memory and attention88–94 – faculties that are subserved by the same neural networks 
that are altered by stress. Hence, it is an open question if and how these mental functions and their underlying 
neural processes moderate or even mediate stress-effects on social behavior.

Overall, our study shows no direct effect of socio-evaluative stress on social decisions in the IPD-MD. 
However, heart-rate changes in response to stress were associated with a shift from ingroup-love to outgroup-hate. 
In addition, when considered in one model, CORT and testosterone action was associated with ingroup-love or 
both, ingroup-love and outgroup-hate - thus, other regarding behavior. In general, male participants revealed 
more other-regarding preferences than female participants, and this gender-effect was neither explained directly 
by sex hormones nor gender-dependent traits. Our study contributes to the literature on stress and decision mak-
ing by highlighting the boundaries of stress effects on social choice; we conclude that our version of the IPD-MD 
failed to capture stress-related effects on social sentiments, probably due to its strategic character. Future studies 
are needed to further elucidate putative stress effects on social behavior.

Methods
Participants. One hundred and three male (age: M = 24.85, SD = 4.77), and 105 female participants (age: 
M = 24.71, SD = 5.13) were recruited within the Düsseldorf (Germany) area. Three male and three female sub-
jects were excluded, either for incidentally knowing other members in their group (three females and two males), 
or for misunderstanding the intergroup prisoners’ dilemma rules, as revealed by the comprehension questions 
(one male). Based on a priori power analyses (G*Power95), we opted for a sample size that yielded 95% power for 
small to medium effect sizes for our pool x condition interaction (n = 206, Cohen’s f = 0.15, repeated measures 
correlation = 0.3). In case of a between-group effect, our experiment could detect effect sizes of 0.205 with a 
power of 0.95 (n = 204, repeated measures correlation = 0.3). With a final sample size of n = 202, our experiment 
is comparably well-powered.

Before participation, participants were screened via telephone interview for a number of eligibility criteria. 
Participants required to hold at least moderate sympathy for one of Germany’s five political parties with seats in 
the German parliament, except the right-wing populist party (Alternative für Deutschland, AfD). We applied a 
number of further eligibility criteria and participation rules, as outlined in the SOM.

The study was approved by the ethical committee of the Heinrich Heine University Düsseldorf, and our meth-
ods were performed in accordance with the committee’s rules and guidelines.

Material. Trait measures and cognitive reflection. To exclude potential confounds and ensure similarity 
between participants in stress- and decision-making related traits, we collected a number of trait measures before 
the laboratory experiment and before the stress induction using online survey tools. These trait measures are 
described and summarized in the SOM.

Stress induction. All experimental sessions took place between 14:00 and 17:00 h to control for diurnal variation 
in CORT levels. We tested all participants in groups of three. They were randomly assigned to a stress condition 
or a control condition. Socio-evaluative stress was induced using the Trier Social Stress Test for groups40. In the 
stress condition, participants were exposed to a fictional job interview (net speaking time three minutes per 
participants) and, subsequently, to a mental arithmetic task in presence of other participants and in front of a 
non-responsive evaluation panel of experimenters, while their performance was video-taped. In the control con-
dition, participants prepared a short talk about their friends, and they also performed an arithmetic task, but the 
evaluation panel paid ostensibly no attention to the participants. Participants spoke simultaneously and they were 
not videotaped. Stress and control conditions were matched in terms of cognitive load, speaking time, participant 
engagement etc., but differed in the socio-evaluative component20,40.

Physiological and subjective stress measures. We collected multiple saliva samples to determine stable baseline 
measures of the sex hormones progesterone, estradiol and testosterone, and to quantify the impact of our stress 
manipulation based on CORT and α-amylase. For the sex hormones, subjects filled ultra-pure polypropylene 
spit-in samples (SaliCaps, IBL International GmbH, Hamburg, Germany) with 1 mL of clear saliva. Three separate 
sex-hormone samples were collected in the first half of the experiment before subjection to the stress or control 
procedure (see Fig. 4). CORT/α-amylase samples (Salivette®, Sarstedt AG & Co. KG, Nuernbrecht, Germany) 
were collected throughout the entire experiment (see Fig. 4 for exact sample time points and SOM for a descrip-
tion of the timeline). Further details of saliva sampling and analysis procedures are provided in the SOM. As an 
additional measure of sympathetic activity, we recorded heart-rate using a commercially available HR-monitor 
(Polar A370, Polar Electro Oy, Kempele, Finland). Heart-rate was measured at several time points during the 
experiment (see Fig. 4 and SOM). Participants indicated positive and negative mood by completing a Positive and 
Negative Affect scale (PANAS96) before, during and after the gTSST/control procedure (see Fig. 4 and SOM), and, 
they also indicated current feelings of shame, insecurity, stress and confidence on visual analogue scales before, 
during and after the experimental procedures (VAS, 1–100).

Intergroup prisoners’ dilemma - maximizing differences (IPD-MD). We used political preferences 
to induce intergroup rivalry. Unlike other means of group manipulations49, group assignments based on political 
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preferences have been shown to induce ingroup affiliation and outgroup harm while being realistic, feasible and 
credible42. The three participants in each testing session were instructed that they would form a group and play 
against another group of three other participants who performed the game one day before. They were told that 
group assignment was based according to the participants’ political voting preferences which were assessed before 
in the online questionnaires. The instructions explicitly stated that all members of the participants’ own group 
held similar political views (ingroup) and that the members of the other group were supporters of the political 
party “Alternative für Deutschland” (AfD; a German right-wing populist party). Outgroup decisions were not 
real and shammed by the experimenters. We used an adapted version of the IPD-MD to simulate intergroup 
behavior in the laboratory41,42,79. As mentioned above, in this game, two groups of three participants play against 
each other. Each participant receives the initial monetary endowment of 10 EUR, which they can freely distribute 
between three pools. Money contributed to the first pool (the “keep” pool), is kept by the player. For example, 5 
EUR investment into the keep-pool would imply that the participant can keep those 5 EUR for herself. Fifty per-
cent of the total sum of contributions to the second pool (the “within-group” pool) are paid out to each ingroup 
member, including the participant. For example, if a participant contributes 5 EUR to the within-group pool, 
each ingroup member, including the participant, would receive 2.50 EUR payback. Thus, contributions to the 
within-group pool are potentially costly to the participant because she only receives a back-payment of 50% of 
the invested sum if no one else contributes, but the overall sum of all payoffs to all group members is higher than 
individual contributions to the keep pool (the sum of the payoffs to all ingroup members in the above example is 
7.50 EUR, see Table 1). Hence, the dominant group strategy41 would imply that every member contributes to the 
within-group pool since this would maximize the overall sum of payoffs to all players. For example, if all three 
ingroup members contributed their entire endowment of 10 EUR each to the within-group pool, the total sum of 
contributions would amount to 30 EUR, thus each ingroup member would receive a back-payment of 15 EUR.

Contributions to the third pool (the “between-group”-pool) have the same effect to the ingroup members 
as contributions to the within-group pool, but each outgroup member loses the amount each ingroup member 
receives. For example, if a participant invests 5 EUR to the between-group pool, each ingroup member, including 
the participant, would receive 2.50 EUR, and each outgroup member would lose 2.50 EUR. Thus, contributions 
to the between-group pool represent the same social dilemma as contributions to the within-group pool, but 
additionally entail the possibility to harm the outgroup.

Contributions to the keep-pool can be interpreted as the motivation to maximize own profit (own-utility max-
imizing), contributions to the within-group pool can be interpreted as potentially costly motivation to maximize 
ingroup profit (ingroup-love, or ingroup trust) and contributions to the between-group pool can be interpreted as 
costly motivation to maximize ingroup profit and, at the same time, harm the outgroup (outgroup-hate).

To ensure participants’ full understanding of the game, we presented extensive instructions covering multiple 
exemplary scenarios before stress induction. Subjects’ comprehension was controlled using a set of questions. If 
subjects revealed difficulties in understanding the rules of the game or its financial implications for the ingroup 
and outgroup, the respective parts of the game were explained again by the experimenters. The experiment was 
incentive-compatible. Subjects received a fixed participation fee of 20 EUR plus the gains from the in-group 
investments in the IPD-MD, minus 2 EUR as result of simulated between-group pool investments by the fictional 
outgroup decisions. Task completion took less than 10 minutes.

Figure 4. Illustration of experimental timeline. After giving the phone interview and completing the online 
questionnaires, participants were invited to the laboratory. All experimental sessions took place between 14:00 
and 17:00. Participants gave informed consent and were familiarized with the different types of saliva sampling 
and the HR-monitor. Then, the first heart-rate baseline recording of 3 minutes started and the sex hormone 
and baseline CORT and α-amylase samples were collected together with the first PANAS measurement. The 
IPD-MD instructions were then given individually and comprehension was exhaustively tested, interspersed 
with the 2nd and 3rd sex-hormone samples. This was followed by heart-rate baseline monitoring for six minutes 
and gTSST/control procedure instructions, after which the gTSST/control procedure began. Participants 
completed the PANAS and gave further stress marker saliva samples during and directly after the gTSST/control 
procedure. Directly following the gTSST/control procedure, subjects played the IPD-MD. The IPD-MD lasted 
for no more than 10 minutes. The cognitive reflection task (CRT; cf. SOM), as well as a set of decision- and 
demographics-related questionnaires followed. 10 minutes after the TSST, we collected the last stress-marker 
saliva sample. The experiment concluded with a debriefing and individual, anonymous payouts.
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Data analysis. To analyze IPD-MD distribution patterns, we applied a 2 × 2 × 2 mixed-factorial analysis of 
variance (ANOVA) with pool as a repeated-measures (within-group vs. between group; note that investments 
into all three pools were not independent, we therefore considered investments into the keep-pool as the default 
option and compared investments between the within- and between-group pools only) as well as condition (stress 
vs control) and gender (male vs female) as between-subject factors. To complement this analysis, we ran addi-
tional Bayes-Factor analyses on a mixed linear model with pool and condition as fixed factors and subject as 
a random intercept (using the software JASP97). Furthermore, full Bayesian parameter estimation of the same 
model was used to estimate posterior parameter distributions and to yield information on credible parameter 
values (R-Package brms98). We used the R-package afex99 for mixed linear models and ANOVAs.

Ethics approval and consent to participate. The study was approved by the ethics committee of the 
Medical Faculty of the Heinrich-Heine-University in Dusseldorf. All participants gave their informed consent.

Statement of responsibility. AS designed the task, ran the data collection, analyzed the data and wrote 
the paper, TK designed the task, wrote the paper, provided consultation at all stages of the project and funded the 
project, NF and MC edited the paper and provided consultation at all stages of the project100–102.

Received: 26 March 2019; Accepted: 20 November 2019;
Published: xx xx xxxx

References
 1. Cannon, W. B. Natural Defenses of the Organism. In The wisdom of the body 213–215 (W W Norton & Co, 1932).
 2. Goldstein, D. S. Adrenal Responses to Stress. Cell. Mol. Neurobiol. 30, 1433–1440 (2010).
 3. Sandi, C. & Haller, J. Stress and the social brain: behavioural effects and neurobiological mechanisms. Nat. Rev. Neurosci. 16, 

290–304 (2015).
 4. Negd, M., Mallan, K. M. & Lipp, O. V. The role of anxiety and perspective-taking strategy on affective empathic responses. Behav. 

Res. Ther. 49, 852–857 (2011).
 5. Vinkers, C. H. et al. Time-dependent changes in altruistic punishment following stress. Psychoneuroendocrinology 38, 1467–1475 

(2013).
 6. Silver, E. & Teasdale, B. Mental Disorder and Violence: An Examination of Stressful Life Events and Impaired Social Support. Soc. 

Probl. 52, 62–78 (2005).
 7. Klaw, E. L., Demers, A. L. & Da Silva, N. Predicting Risk Factors for Intimate Partner Violence Among Post-9/11 College Student 

Veterans. J. Interpers. Violence 31, 572–597 (2016).
 8. Agnew, R. Building on the foundation of general strain theory: Specifying the types of strain most likely to lead to crime and 

delinquency. J. Res. Crime Delinquency 38, 319–361 (2001).
 9. Geen, R. G. & O’Neal, E. C. Activation of cue-elicited aggression by general arousal. J. Pers. Soc. Psychol. 11, 289–292 (1969).
 10. Allen, J. J., Anderson, C. A. & Bushman, B. J. The General Aggression Model. Curr. Opin. Psychol. 19, 75–80 (2018).
 11. Nelson, R. J. & Trainor, B. C. Neural mechanisms of aggression. Nat. Rev. Neurosci. 8, 536–546 (2007).
 12. Miczek, K. A., DeBold, J. F., Gobrogge, K., Newman, E. L. & Almeida, R. M. M. The Role of Neurotransmitters in Violence and 

Aggression. In The Wiley Handbook of Violence and Aggression 1–13 (Wiley, 2017).
 13. Taylor, S. E. Tend and Befriend: Biobehavioral Bases of Affiliation Under Stress. Curr. Dir. Psychol. Sci. 15, 273–277 (2006).
 14. Von Dawans, B., Fischbacher, U., Kirschbaum, C., Fehr, E. & Heinrichs, M. The social dimension of stress reactivity: acute stress 

increases prosocial behavior in humans. Psychol. Sci. 23, 651–660 (2012).
 15. Baumeister, R. F. & Leary, M. R. The need to belong: desire for interpersonal attachments as a fundamental human motivation. 

Psychol. Bull. 117, 497–529 (1995).
 16. Taylor, S. E. et al. Biobehavioral responses to stress in females: Tend-and-befriend, not fight-or-flight. Psychol. Rev. 107, 411–429 

(2000).
 17. Buchanan, T. W. & Preston, S. D. Stress leads to prosocial action in immediate need situations. Front. Behav. Neurosci. 8, 5 (2014).
 18. Youssef, F. F., Bachew, R., Bissessar, S., Crockett, M. J. & Faber, N. S. Sex differences in the effects of acute stress on behavior in the 

ultimatum game. Psychoneuroendocrinology 96, 126–131 (2018).
 19. Sollberger, S., Bernauer, T. & Ehlert, U. Stress influences environmental donation behavior in men. Psychoneuroendocrinology 63, 

311–319 (2016).
 20. Margittai, Z. et al. A friend in need: Time-dependent effects of stress on social discounting in men. Horm. Behav. 73, 75–82 (2015).
 21. Margittai, Z., van Wingerden, M., Schnitzler, A., Joëls, M. & Kalenscher, T. Dissociable roles of glucocorticoid and noradrenergic 

activation on social discounting. Psychoneuroendocrinology 90, 22–28 (2018).
 22. Berger, J., Heinrichs, M., von Dawans, B., Way, B. M. & Chen, F. S. Cortisol modulates men’s affiliative responses to acute social 

stress. Psychoneuroendocrinology 63, 1–9 (2016).
 23. Wolf, O. T. et al. Enhanced emotional empathy after psychosocial stress in young healthy men. Stress 18, 631–637 (2015).
 24. Tomova, L. et al. Increased neural responses to empathy for pain might explain how acute stress increases prosociality. Soc. Cogn. 

Affect. Neurosci. 12, 401–408 (2017).
 25. Steinbeis, N., Engert, V., Linz, R. & Singer, T. The effects of stress and affiliation on social decision-making: Investigating the tend-

and-befriend pattern. Psychoneuroendocrinology 62, 138–148 (2015).
 26. Terbeck, S. et al. Propranolol reduces implicit negative racial bias. Psychopharmacology (Berl.) 222, 419–424 (2012).
 27. Terbeck, S., Savulescu, J., Chesterman, L. P. & Cowen, P. J. Noradrenaline effects on social behaviour, intergroup relations, and 

moral decisions. Neurosci. Biobehav. Rev. 66, 54–60 (2016).
 28. Terbeck, S. et al. β-Adrenoceptor blockade modulates fusiform gyrus activity to black versus white faces. Psychopharmacology 

(Berl.) 232, 2951–2958 (2015).
 29. Dickerson, S. S. & Kemeny, M. E. Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory 

research. Psychol. Bull. 130, 355–391 (2004).
 30. Joëls, M. Corticosteroids and the brain. J. Endocrinol. 238, R121–R130 (2018).
 31. Hermans, E. J., Henckens, M. J. A. G., Joëls, M. & Fernández, G. Dynamic adaptation of large-scale brain networks in response to 

acute stressors. Trends Neurosci. 37, 304–314 (2014).
 32. Ter Horst, J. P., de Kloet, E. R., Schächinger, H. & Oitzl, M. S. Relevance of stress and female sex hormones for emotion and 

cognition. Cell. Mol. Neurobiol. 32, 725–735 (2012).
 33. Soldin, O. & Mattison, D. Sex Differences in Pharmacokinetics and Pharmacodynamics. Clin. Pharmacokinet. 48, 143–157 (2009).
 34. Soutschek, A. et al. The dopaminergic reward system underpins gender differences in social preferences. Nat. Hum. Behav. 1, 819 

(2017).

https://doi.org/10.1038/s41598-019-54954-w


1 1Scientific RepoRtS |         (2019) 9:18620  | https://doi.org/10.1038/s41598-019-54954-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

 35. Rand, D. G., Brescoll, V. L., Everett, J. A. C., Capraro, V. & Barcelo, H. Social heuristics and social roles: Intuition favors altruism for 
women but not for men. J. Exp. Psychol. Gen. 145, 389–396 (2016).

 36. Casto, K. V. & Edwards, D. A. Testosterone, cortisol, and human competition. Horm. Behav. 82, 21–37 (2016).
 37. Losecaat Vermeer, A. B., Riečanský, I. & Eisenegger, C. Competition, testosterone, and adult neurobehavioral plasticity. in Progress 

in Brain Research (eds Studer, B. & Knecht, S.) 213–238 (Elsevier, 2016).
 38. Geniole, S. N., Bird, B. M., Ruddick, E. L. & Carré, J. M. Effects of competition outcome on testosterone concentrations in humans: 

An updated meta-analysis. Horm. Behav. 92, 37–50 (2017).
 39. Dreher, J.-C. et al. Testosterone causes both prosocial and antisocial status-enhancing behaviors in human males. Proc. Natl. Acad. 

Sci. 113, 11633–11638 (2016).
 40. Von Dawans, B., Kirschbaum, C. & Heinrichs, M. The Trier Social Stress Test for Groups (TSST-G): A new research tool for 

controlled simultaneous social stress exposure in a group format. Psychoneuroendocrinology 36, 514–522 (2011).
 41. Halevy, N., Bornstein, G. & Sagiv, L. “In-Group Love” and “Out-Group Hate” as Motives for Individual Participation in Intergroup 

Conflict: A New Game Paradigm. Psychol. Sci. 19, 405–411 (2008).
 42. Mehta, P. H. & Josephs, R. A. Testosterone and cortisol jointly regulate dominance: Evidence for a dual-hormone hypothesis. 

Horm. Behav. 58, 898–906 (2010).
 43. Brewer, M. B. The Psychology of Prejudice: Ingroup Love and Outgroup Hate? J. Soc. Issues 55, 429–444 (1999).
 44. De Dreu, C. K. W. et al. The neuropeptide oxytocin regulates parochial altruism in intergroup conflict among humans. Science 328, 

1408–1411 (2010).
 45. Halevy, N., Weisel, O. & Bornstein, G. “In-Group Love” and “Out-Group Hate” in Repeated Interaction Between Groups. J. Behav. 

Decis. Mak. 25, 188–195 (2012).
 46. Hamley, L., Houkamau, C. A., Osborne, D., Barlow, F. K. & Sibley, C. G. Ingroup Love or Outgroup Hate (or Both)? Mapping 

Distinct Bias Profiles in the Population. Pers. Soc. Psychol. Bull., https://doi.org/10.1177/0146167219845919 (2019).
 47. Yamagishi, T. & Mifune, N. Social exchange and solidarity: in-group love or out-group hate? Evol. Hum. Behav. 30, 229–237 (2009).
 48. West, S. A. & Gardner, A. Altruism, Spite, and Greenbeards. Science 327, 1341–1344 (2010).
 49. Yamagishi, T. & Mifune, N. Parochial altruism: does it explain modern human group psychology? Curr. Opin. Psychol. 7, 39–43 

(2016).
 50. Nater, U. M. & Rohleder, N. Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: Current state 

of research. Psychoneuroendocrinology 34, 486–496 (2009).
 51. De Dreu, C. K. W., Dussel, D. B. & Velden, F. S. T. In intergroup conflict, self-sacrifice is stronger among pro-social individuals, and 

parochial altruism emerges especially among cognitively taxed individuals. Front. Psychol. 6, 572 (2015).
 52. Nalborczyk, L., Bürkner, P.-C. & Williams, D. R. Pragmatism should not be a substitute for statistical literacy, a commentary on 

Albers, Kiers, and van Ravenzwaaij. Collabra: Psychology, 5(1), (2018).
 53. Mehta, P. H. & Prasad, S. The dual-hormone hypothesis: a brief review and future research agenda. Curr. Opin. Behav. Sci. 3, 

163–168 (2015).
 54. Zilioli, S., Ponzi, D., Henry, A. & Maestripieri, D. Testosterone, Cortisol and Empathy: Evidence for the Dual-Hormone Hypothesis. 

Adapt. Hum. Behav. Physiol. 1, 421–433 (2015).
 55. Pruessner, J. C., Kirschbaum, C., Meinlschmid, G. & Hellhammer, D. H. Two formulas for computation of the area under the curve 

represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology 28, 916–931 (2003).
 56. Weisel, O. & Böhm, R. “Ingroup love” and “outgroup hate” in intergroup conflict between natural groups. J. Exp. Soc. Psychol. 60, 

110–120 (2015).
 57. Carré, J. M. & Mehta, P. H. Importance of considering testosterone–cortisol interactions in predicting human aggression and 

dominance. Aggress. Behav. 37, 489–491 (2011).
 58. Schulz, P. & Schlotz, W. The Trier Inventory for the Assessment of Chronic Stress (TICS). Scale construction, statistical testing, and 

validation of the scale work overload. Diagnostica 45, 8–19 (1999).
 59. Cohen, J. A power primer. Psychol. Bull. 112, 155 (1992).
 60. Hall, J. E. Rhythmical Excitation of the Heart. In Guyton and Hall Textbook of Medical Physiology 123–129 (Elsevier Health 

Sciences, 2016).
 61. Eisenegger, C., Naef, M., Snozzi, R., Heinrichs, M. & Fehr, E. Prejudice and truth about the effect of testosterone on human 

bargaining behaviour. Nature 463, 356–359 (2010).
 62. Chatterton, R. T., Vogelsong, K. M., Lu, Y., Ellman, A. B. & Hudgens, G. A. Salivary α-amylase as a measure of endogenous 

adrenergic activity. Clin. Physiol. 16, 433–448 (1996).
 63. El-Sheikh, M., Erath, S. A., Buckhalt, J. A., Granger, D. A. & Mize, J. Cortisol and Children’s Adjustment: The Moderating Role of 

Sympathetic Nervous System Activity. J. Abnorm. Child Psychol. 36, 601–611 (2008).
 64. Bosch, J. A., de Geus, E. J. C., Veerman, E. C. I. & Nieuw Amerongen, A. V. Innate secretory immunity in response to laboratory 

stressors that evoke distinct patterns of cardiac autonomic reactivity. Psychosom. Med. 62, 245–258 (2000).
 65. Nagy, T. et al. A fluid response: Alpha-amylase reactions to acute laboratory stress are related to sample timing and saliva flow rate. 

Biol. Psychol. 109, 111–119 (2015).
 66. Picard, G., Tan, C. O., Zafonte, R. & Taylor, J. A. Incongruous changes in heart period and heart rate variability with vagotonic 

atropine: implications for rehabilitation medicine. PM R 1, 820–826 (2009).
 67. Wakefield, K. L. & Wann, D. L. An Examination of Dysfunctional Sport Fans: Method of Classification and Relationships with 

Problem Behaviors. J. Leis. Res. 38, 168–186 (2006).
 68. Bourgeois, C. A. & Fisher, M. L. More “bros,” more woes? The prevalence of male coalitions in crimes of robbery. Evol. Behav. Sci. 

12, 126–131 (2018).
 69. Massen, J. J. M., Bauer, L., Spurny, B., Bugnyar, T. & Kret, M. E. Sharing of science is most likely among male scientists. Sci. Rep. 7, 

12927 (2017).
 70. Van Vugt, M., De Cremer, D. & Janssen, D. P. Gender differences in cooperation and competition: the male-warrior hypothesis. 

Psychol. Sci. 18, 19–23 (2007).
 71. McDonald, M. M., Navarrete, C. D. & Van Vugt, M. Evolution and the psychology of intergroup conflict: the male warrior 

hypothesis. Philos. Trans. R. Soc. B Biol. Sci. 367, 670–679 (2012).
 72. Zak, P. J. et al. Testosterone Administration Decreases Generosity in the Ultimatum Game. PLOS ONE 4, e8330 (2009).
 73. Balliet, D., Li, N. P., Macfarlan, S. J. & Van Vugt, M. Sex differences in cooperation: A meta-analytic review of social dilemmas. 

Psychol. Bull. 137, 881–909 (2011).
 74. Mineur, Y. S., Prasol, D. J., Belzung, C. & Crusio, W. E. Agonistic Behavior and Unpredictable Chronic Mild Stress in Mice. Behav. 

Genet. 33, 513–519 (2003).
 75. Glass, T. A., De Leon, C. F. M., Bassuk, S. S. & Berkman, L. F. Social Engagement and Depressive Symptoms in Late Life: 

Longitudinal Findings. J. Aging Health 18, 604–628 (2006).
 76. Fava, M. Depression with anger attacks. J. Clin. Psychiatry 59, 18–22 (1998).
 77. Von Dawans, B., Ditzen, B., Trueg, A., Fischbacher, U. & Heinrichs, M. Effects of acute stress on social behavior in women. 

Psychoneuroendocrinology 99, 137–144 (2019).
 78. Starcke, K., Polzer, C., Wolf, O. T. & Brand, M. Does stress alter everyday moral decision-making? Psychoneuroendocrinology 36, 

210–219 (2011).

https://doi.org/10.1038/s41598-019-54954-w
https://doi.org/10.1177/0146167219845919


1 2Scientific RepoRtS |         (2019) 9:18620  | https://doi.org/10.1038/s41598-019-54954-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

 79. De Dreu, C. K. W. Social value orientation moderates ingroup love but not outgroup hate in competitive intergroup conflict. Group 
Process. Intergroup Relat. 13, 701–713 (2010).

 80. Loewenstein, G., O’Donoghue, T. & Bhatia, S. Modeling the interplay between affect and deliberation. Decision 2, 55–81 (2015).
 81. Hofmann, W., Friese, M. & Strack, F. Impulse and Self-Control From a Dual-Systems Perspective. Perspect. Psychol. Sci. 4, 162–176 

(2009).
 82. Open Science Collaboration. Replication of N Halevy, G Bornstein, L Sagiv (2008) by Thomae, Wood & Immelman as part of 

‘Estimating the reproducibility of psychological science’. Science 349, aac4716 (2015).
 83. Hein, G., Engelmann, J. B. & Tobler, P. N. Pain relief provided by an outgroup member enhances analgesia. Proc. R. Soc. B Biol. Sci. 

285, 20180501 (2018).
 84. Bernhard, H., Fischbacher, U. & Fehr, E. Parochial altruism in humans. Nature 442, 912–915 (2006).
 85. Cikara, M. & Van Bavel, J. J. The Neuroscience of Intergroup Relations: An Integrative Review. Perspect. Psychol. Sci. J. Assoc. 

Psychol. Sci. 9, 245–274 (2014).
 86. Kinner, V. L., Wolf, O. T. & Merz, C. J. Cortisol alters reward processing in the human brain. Horm. Behav. 84, 75–83 (2016).
 87. Porcelli, A. J., Lewis, A. H. & Delgado, M. R. Acute Stress Influences Neural Circuits of Reward Processing. Front. Neurosci. 6, 157 

(2012).
 88. Amodio, D. M. Social Cognition 2.0: An Interactive Memory Systems Account. Trends Cogn. Sci. 23, 21–33 (2019).
 89. Crockett, M. J. et al. Serotonin Modulates Striatal Responses to Fairness and Retaliation in Humans. J. Neurosci. 33, 3505–3513 

(2013).
 90. Crockett, M. J., Clark, L., Lieberman, M. D., Tabibnia, G. & Robbins, T. W. Impulsive choice and altruistic punishment are 

correlated and increase in tandem with serotonin depletion. Emot. Wash. DC 10, 855–862 (2010).
 91. Peters, J. & Büchel, C. Episodic future thinking reduces reward delay discounting through an enhancement of prefrontal-

mediotemporal interactions. Neuron 66, 138–148 (2010).
 92. Ruff, C. C. & Fehr, E. The neurobiology of rewards and values in social decision making. Nat. Rev. Neurosci. 15, 549–562 (2014).
 93. Wing, E. A. et al. Neural mechanisms underlying subsequent memory for personal beliefs:An fMRI study. Cogn. Affect. Behav. 

Neurosci. 18, 216–231 (2018).
 94. Yao, S. et al. Oxytocin Modulates Attention Switching Between Interoceptive Signals and External Social Cues. 

Neuropsychopharmacology 43, 294–301 (2018).
 95. Erdfelder, E., Faul, F. & Buchner, A. G*Power: A general power analysis program. Behav. Res. Methods Instrum. Comput. 28, 1–11 

(1996).
 96. Watson, D., Clark, L. A. & Tellegen, A. Development and validation of brief measures of positive and negative affect: The PANAS 

scales. J. Pers. Soc. Psychol. 54, 1063–1070 (1988).
 97. The JASP Team. JASP. (2018).
 98. Bürkner, P.-C. brms: An R Package for Bayesian Multilevel Models using Stan. J. Stat. Softw. 80, 1–28 (2017).
 99. Singmann, H. afex: A User-Friendly Package for the Analysis of Factorial Experiments. (in revision).
 100. Kruschke, J. K. Rejecting or Accepting Parameter Values in Bayesian Estimation. Adv. Methods Pract. Psychol. Sci. 1, 270–280 

(2018).
 101. Kass, R. E. & Raftery, A. E. Bayes Factors. J. Am. Stat. Assoc. 90, 773–795 (1995).
 102. Kirschbaum, C., Pirke, K.-M. & Hellhammer, D. H. The ‘Trier Social Stress Test’ – A Tool for Investigating Psychobiological Stress 

Responses in a Laboratory Setting. Neuropsychobiology 28, 76–81 (1993).

Acknowledgements
We thank Guy Kahane for proofreading the manuscript. The study was supported by a grant from the Deutsche 
Forschungsgemeinschaft to TK (DFG-KA 2675/4-3), as well as a grant by the Oxford Martin School to NF and 
MK (Oxford Martin Programme for Collective Responsibility for Infectious Disease). We acknowledge the 
support of the article processing charges by the Heinrich Heine University Düsseldorf.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-54954-w.
Correspondence and requests for materials should be addressed to A.S.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-54954-w
https://doi.org/10.1038/s41598-019-54954-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	The effects of psychosocial stress on intergroup resource allocation
	Results
	Main results. 
	Trait measures and group-differences in hormones. 
	Manipulation check of stress induction. 
	IPD-MD: Main analyses. 
	Stress markers, sex hormones and investment patterns in the IPD-MD. 


	Exploratory Analyses
	Sex-hormonal underpinnings of gender differences in IPD-MD investments. 
	IPD-MD investments and chronic stress. 

	Discussion
	Methods
	Participants. 
	Material. 
	Trait measures and cognitive reflection. 
	Stress induction. 
	Physiological and subjective stress measures. 

	Intergroup prisoners’ dilemma - maximizing differences (IPD-MD). 
	Data analysis. 
	Ethics approval and consent to participate. 
	Statement of responsibility. 

	Acknowledgements
	Figure 1 Physiological stress markers.
	Figure 2 Contributions to the keep-, within-group and between-group pool in the IPD-MD.
	Figure 3 Posterior distributions of the effects of stress on IPD-MD contributions.
	Figure 4 Illustration of experimental timeline.
	Table 1 Payoff matrix of the IPD-MD for each pool separately.




