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Abstract 50 

The emergence of novel diseases represents a major hurdle for the recovery of endangered populations, 51 

and in some cases may even present the threat of extinction. In recent years, epizootics of infectious 52 

diseases have emerged as a major threat to marine mammal populations, particularly group-living 53 

odontocetes. However, little research has explored the potential consequences of novel pathogens in 54 

endangered cetacean populations. Here, we present the first study predicting the spread of infectious 55 

disease over the social network of an entire free-ranging cetacean population, the southern resident killer 56 

whale community (SRKW). Utilizing 5 years of detailed data on close contacts between individuals, we 57 

build a fine-scale social network describing potential transmission pathways in this population. We then 58 

simulate the spread of cetacean morbillivirus (CeMV) over this network. Our analysis suggests that the 59 

SRKW population is highly vulnerable to CeMV. The majority of simulations resulted in unusual mortality 60 

events (UMEs), with mortality rates predicted to be at least twice the recorded maximum annual 61 

mortality. We find only limited evidence that this population’s social structure inhibits disease spread. 62 

Vaccination is not likely to be an efficient strategy for reducing the likelihood of UMEs, with over 40 63 

vaccinated individuals (>50% of the population) required to reduce the likelihood of UMEs below 5%. This 64 

analysis highlights the importance of modelling efforts in designing strategies to mitigate disease, and 65 

suggests that populations with strong social preferences and distinct social units may still be highly 66 

vulnerable to disease outbreaks. 67 

 68 
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 72 
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 75 
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Introduction 78 

Infectious diseases, particularly novel pathogens emerging in naïve populations, can have severe 79 

consequences for animal populations (Daszack et al. 2000). The consequences of these pathogens are 80 

exacerbated in small, endangered populations, where disease can contribute to elevated extinction risk 81 

(Pedersen et al. 2007). The prediction of infectious disease outbreaks through epidemic modelling, and 82 

the subsequent design of mitigation strategies, is therefore a key task in endangered species 83 

management. Traditional epidemic models assume that contact rates are homogenous within a 84 

population (Allen 2008). However, this is rarely the case. In populations that are strongly spatially or 85 

socially structured, these assumptions may hamper efforts to predict the severity and patterning of 86 

disease outbreaks.  87 

Network-based models have been increasingly used for analyzing disease dynamics in animal populations, 88 

because they can incorporate spatial and social structure (Craft & Caillaud 2011; Godfrey 2013; Silk et al. 89 

2017). In social network models, social entities (i.e. individuals or groups) are represented as nodes in a 90 

graph, with the edges between nodes representing social connections and thus the opportunity for 91 

disease transmission. A great deal of research has modelled disease outbreaks over the social networks 92 

of terrestrial mammal populations, with the goals of predicting outbreak sizes, estimating temporal trends 93 

in susceptibility, and designing vaccination strategies (e.g. chimpanzees (Pan troglodytes) and orangutans 94 

(Pongo pygmaeus): Carne et al. 2014; raccoons (Procyon lotor): Reynolds et al. 2015; Japanese macaque 95 

(Macaca fuscata): Romano et al. 2016; chimpanzees: Rushmore et al. 2014; African buffalo (Syncerus 96 

caffer): Cross et al. 2004; Verreaux’s sifakas (Propithecus verreaxi): Springer et al. 2017; European badgers 97 

(Meles meles): Rozins & Silk et al. 2018). This work has highlighted the importance of considering non-98 

random social structures in wildlife epidemic modelling, and has suggested a role for social structure in 99 

containing epidemics in natural populations. 100 

Emergent infectious disease is of increasing concern for populations of cetaceans, many of which are 101 

already threatened or endangered (Gulland & Hall 2007; Van Bressem et al. 2009). Relatively little work, 102 

however, has been done modelling the disease consequences of cetacean social structure. Guiamares et 103 

al. (2007) modelled the spread of a hypothetical pathogen in a subnetwork of mammal eating killer whales 104 

(Orcinus orca), finding that the network was particularly vulnerable to disease outbreak. In this analysis, 105 

the dynamics of the simulation were not tuned to any particular pathogen. More recently, unweighted 106 

versions of networks derived from bottlenose dolphin populations (Tursiops truncatus) have been 107 

analyzed as part of comparative and theoretical studies (Sah et al. 2017; Sah et al. 2018). Importantly, no 108 
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previous study has modelled the spread of specific pathogens over cetacean social networks with the goal 109 

of predicting the severity of outbreaks, and none have modelled the spread through a complete 110 

population. 111 

Due to the logistical challenges of observing social interactions in wild cetaceans, the vast majority of 112 

cetacean social network studies are based on association indices, which estimate the probability that 113 

dyads associate in a given sampling period. Criteria for “association” are varied, but researchers typically 114 

set a temporal or spatial threshold at which two individuals are considered to be together. A mismatch 115 

between association criteria and disease transmission scales may have hampered previous 116 

epidemiological studies; most cetacean social network studies that use a spatial threshold define 117 

associations on broad scales, from 100 m (e.g. Lusseau et al. 2006) up to 10 km (e.g. Foster et al. 2012). 118 

While these association criteria are often justified when trying to understand the patterns of social 119 

relationships within a population, many pathogens of interest are typically transmitted over smaller 120 

spatial scales, e.g. when animals exchange viruses through the respiratory tract. This mismatch between 121 

contacts relevant to infection and network definitions may lead to incorrect inferences about the 122 

dynamics of disease outbreaks (Craft 2015).  123 

A pathogen of particular concern in gregarious cetacean species is cetacean morbillivirus (CeMV). CeMV 124 

is an RNA virus belonging to the family Paramyxoviridae, which also contains measles virus, phocine 125 

distemper virus, canine distemper virus, feline morbillivirus, and peste des petits ruminants virus (Alfonso 126 

et al. 2016).  CeMV is implicated as the cause of several unusual mortality events in wild cetaceans (Van 127 

Bressem et al. 1999; Di Guardo et al. 2005). This virus is highly infectious, with high potential for 128 

interspecies transmission (Jo et al. 2018) and is likely transmitted via the respiratory tract through the 129 

inhalation of aerosolized virus (Van Bressem et al. 2014). Several factors may increase a population’s 130 

susceptibility to CeMV, including high polychlorinated biphenyl (PCB) load (Aguilar & Borrell 1994), poor 131 

nutrition (Aguilar & Raga 1993) and inbreeding (Valsecchi et al. 2003). 132 

In this study, we use detailed social network data to model disease dynamics in an endangered killer whale 133 

population, the southern resident killer whales (SRKW). The SRKW population is an extremely small (less 134 

than 80 individuals), closed population of killer whales in the northeastern Pacific, frequenting the inland 135 

waters of Washington and British Columbia. This population faces long-term threats from a variety of 136 

environmental and anthropogenic factors. The three factors identified as primary hazards to this 137 

population are the decline in abundance and quality of their primary prey, Chinook salmon (Oncorhynchus 138 

tshawytscha), anthropogenic noise, and persistent organic pollutants (Lacy et al. 2017). In addition, recent 139 
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analysis of the respiratory microbiome of this population has highlighted pathogens as a potential fourth 140 

threat (Raverty et al. 2017). Previous analysis has emphasized CeMV as a pathogen in need of further 141 

study and monitoring in this population (Gaydos et al. 2004). 142 

Killer whales are susceptible to CeMV infection; an Atlantic killer whale that stranded in 2002 was found 143 

to be seropositive for CeMV antibodies, indicating recent exposure (Rowles et al. 2011). Morbillivirus 144 

epizootics have not yet been recorded in any killer whale population and the virus has not been detected 145 

in Pacific killer whales, but CeMV has high spillover potential from reservoirs into novel populations (Van 146 

Bressem et al. 2014). SRKWs have been observed interacting with other cetacean species which are known 147 

carriers of CeMV, including harbor porpoise (Phocoena phocoena), humpback whales (Megaptera 148 

novaengliae), and Pacific white-sided dolphins (Lagenorhynchus obliquidens), providing a potential 149 

pathway for the introduction of this pathogen into the population. In addition, many of the factors that 150 

are thought to increase a population’s susceptibility to CeMV are present in the SRKW community, 151 

including high PCB load, inbreeding, and nutritional stress (Krahn et al. 2007; Ford et al. 2018; Ford et al. 152 

2010). 153 

The SRKW live in stable, multilevel social groups, and individuals form distinct social clusters (Bigg et al. 154 

1990; Parsons et al. 2009; Ellis et al. 2017).  The smallest, most stable social unit is the matriline, composed 155 

of females and their descendants, which usually contain 2-9 whales. Closely related matrilines form pods 156 

that may contain over 40 individuals and exhibit distinct vocal dialects. The southern resident community 157 

contains 3 pods, referred to as J, K, and L (Bigg et al. 1990). This social organization creates a modular 158 

social network structure, although the implications of this multilevel social structure for disease 159 

transmission in this population has yet to be established. 160 

Modular networks have been hypothesized to provide fitness benefits to social species by trapping 161 

disease within modules and preventing large-scale epidemics. Simulation studies predict that modular 162 

contact networks result in smaller disease outbreaks than non-modular networks (Nunn et al. 2015; Sah 163 

et al. 2017; Rozins & Silk et al. 2018). Recent comparative work has suggested that network subgrouping 164 

may decrease outbreak size and epidemic probability, dependent on the characteristics of the disease and 165 

strength of the subdivisions (Sah et al. 2018). An analysis of parasite load in primate social groups supports 166 

the hypothesis that modular organization inhibits disease spread, with individuals in more modular groups 167 

generally having lower parasite load (Griffin & Nunn 2012). In addition, the presence of pronounced social 168 

preferences may itself aid in preventing disease spread. Strong social preferences result in increased 169 

variance in edge weights (Whitehead 2008), and social networks with greater variance in edge weight are 170 
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predicted to generally experience smaller outbreaks of infectious disease (Yang & Zhou 2012; Wang et al. 171 

2014). It is currently unclear if the modular structure and strong social preferences of the SRKW 172 

community are capable of significantly reducing disease spread. Previous work in a closely related species 173 

with a similar social structure, the long-finned pilot whale (Globicephala melas), demonstrated that 174 

increased mortality after a CeMV epizootic was limited to a subset of social groups (Wierucka et al. 2014), 175 

potentially indicating that modular social structures can effectively trap this disease. 176 

Recently, there has been growing interest in applying individualized medical treatment to the SRKW 177 

population (e.g. NOAA 2018), following the model of wildlife veterinary care that has been applied in 178 

terrestrial systems such as mountain gorillas (Robbins et al. 2011). Such individualized care may include 179 

prophylactic vaccination strategies. Although no morbillivirus vaccine is proven to be effective in any 180 

cetacean species, a DNA vaccine for CeMV has been tested in bottlenose dolphins (Vaughan et al. 2007) 181 

and recent genomic studies could further inform the development of new vaccines (Batley et al. 2018). 182 

Logistical challenges and ethical considerations, however, may preclude vaccinations on a large scale in 183 

wild populations. Nonetheless, network-based vaccination strategies to mitigate morbillivirus spread have 184 

been successfully implemented in another endangered marine mammal, the Hawaiian monk seal 185 

(Monachus schauinslandi; Robinson et al. 2018). Furthermore, herd immunity is thought to be more easily 186 

induced in modular social networks, as individuals that bridge communities can be targeted for 187 

vaccination, preventing global disease spread (Salathe & Jones 2010). It is currently unclear whether 188 

vaccinating a realistic portion of the SRKW population would be effective at preventing epizootics. 189 

Here, we use five years of detailed, fine-scale association data to inform a stochastic, network-based 190 

model of pathogen spread through the SRKW population. We focus on simulating the epidemic 191 

characteristics of cetacean morbillivirus based on previously published research, given its role in mass 192 

mortality in other populations and the risk it poses to the SRKW. We further use null models of the social 193 

network to determine the role that social structure has in shaping disease outbreaks. Finally, we simulate 194 

both random and network-based vaccination strategies to determine if prophylactic treatment could 195 

efficiently mitigate epizootics in this population. 196 

 197 

Methods 198 

Field observations 199 
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Social associations were recorded over five years (2011-2015) of opportunistic photographic identification 200 

surveys in the inland waters of Washington and British Columbia conducted by the Center for Whale 201 

Research (CWR). The purpose of these surveys was both to capture clear images of every whale present 202 

during each encounter and to acquire photographs that could be used for assessment of body condition 203 

and social affiliations. As the SRKW are protected by federal law in both the United States and Canada, all 204 

field work was carried out under federal permits issued by both countries (NMFS 15569; DFO SARA 272). 205 

Surfacing whales were photographed using Canon or Nikon DSLR cameras. Encounters only occurred on 206 

days when clear photographic identification was possible (i.e. no rain and sea state less than Beaufort 4). 207 

As the CWR has been conducting annual surveys of the SRKW population since 1976, all individuals in this 208 

population are well known. Individuals are easily identifiable throughout their lives by unique 209 

pigmentation patterns behind their dorsal fins (“saddle patches”), as well as by dorsal fin shape, knicks, 210 

and scars they acquire throughout their lives (Bigg et al. 1990). Surveys were typically conducted from 211 

small motorized vessels (5.5 m Boston Whaler), although shore-based photographs of sufficient quality to 212 

identify individuals and associations were also analyzed. Only in-focus, clear photograph sequences in 213 

which all individuals were identifiable were analyzed. Photographs were managed and analyzed using 214 

ACDSee Photo Studio. 215 

 216 

Social network construction 217 

As CeMV is thought to be contracted primarily through the inhalation of aerosolized virus, our contact 218 

network was constructed to reflect close surface associations, with the goal of estimating the frequency 219 

of “respiratory contact” between dyads. While much is still unknown about the transmission dynamics of 220 

CeMV, including how long the virus remains infectious in the air after exhalation, we chose a restricted 221 

association criteria to ensure that our estimates of disease spread were conservative. Therefore, we 222 

considered individuals surfacing synchronously or successively within one body length to be in respiratory 223 

contact. Synchronous and successive surfacings were recorded from photographic series capturing 224 

surfacing sequences. A surfacing was considered successive or synchronous when an individual began 225 

surfacing before the previous individual became completely submerged (Figure 1a). 226 

Individuals and social groups within the SRKW population differ in their use of the study area, and were 227 

not continuously followed. Therefore, we are unable to directly estimate the total number of contact 228 

events between individuals. Instead, we estimate the probability that each dyad came into contact on a 229 
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given day. We estimated daily respiratory contact probabilities by calculating dyadic simple ratio indices 230 

(SRI; Cairn & Schwager 1987): 231 

SRI𝑖𝑗 =  
𝑋𝑖𝑗

𝐷𝑖𝑗
    (1) 232 

where Xij is the number of days in which individual i was photographed in respiratory contact with 233 

individual j, and Dij is the total number of days on which either i or j were photographed. SRI values 234 

represent an estimated daily association probability, and thus range from 0 to 1, with zero indicating 235 

individuals were never observed in respiratory contact, while 1 indicates individuals were observed in 236 

respiratory contact on every day that either was observed. Many cetacean network studies use a half-237 

weight index (HWI) to correct for biases in data collection, namely that individuals are often more likely 238 

to be seen apart than together. However, in line with our goal of being conservative in our estimates of 239 

disease spread, we chose to use SRI, as a dyad’s SRI value will always be less than or equal to the same 240 

dyad’s HWI value. 241 

During surveys, the primary objective was to photograph all whales present, with secondary goals of 242 

recording social groupings and assessing the health of individuals. Groups of whales could not be 243 

continually followed for all hours of the day, and it was therefore not possible to quantify the amount of 244 

time associated dyads spend together on a given day. Moreover, not all individuals could be 245 

simultaneously monitored and surveys were likely to miss surface associations. Therefore, our SRI values 246 

are prone to underestimating daily contact probabilities, which may lead to overly-conservative estimates 247 

of disease outcomes.  248 

We limit our dataset to sampling days occurring in the summer months (May to September) of each year. 249 

This is the period in which the southern residents are most frequently in the study area as they follow 250 

returning Chinook salmon runs, and therefore provides the most detailed data on association patterns. 251 

While some aspects of SRKW social structure change over longer time-scales, relationships are 252 

consistently structured by pod and matriline, and changes are not predictable (Parsons et al. 2009). 253 

Therefore, we aggregate association data across the entire study period, as this aggregation allows for 254 

more precise estimates of dyadic contact probabilities (Whitehead 2008). In order to avoid biases in 255 

estimated contact probabilities due to the births and deaths of individuals, only individuals that were alive 256 

for the entire study period were included in our analysis. 257 

To confirm the suitability of this approach, we compared all pairs of networks derived from each year of 258 

data collection by calculating the Spearman correlation coefficient between dyadic SRI values across the 259 
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two years, with Mantel tests with 1,000 permutations to assess statistical significance of the correlations 260 

(Hobson et al. 2013). We also tested for seasonal changes within the summer months by constructing 261 

aggregated networks for each study month (May-September) across all years and carrying out the same 262 

comparison procedure described above. 263 

While the aggregation of several years of data allows for more precise estimates of contact probabilities, 264 

it also presents the potential for increasing the density (i.e. number of edges) in our simulated networks 265 

relative to the empirical annual contact patterns. Overestimating the density of contact networks can lead 266 

to overestimation of disease spread in epidemiological simulations (Risau-Gusman 2011). We carry out a 267 

simulation study to confirm that simulations based on the aggregated network do not result in higher 268 

density networks that would be expected for a single year of associations. For each year, we simulate 269 

associations for each dyad from a binomial distribution, using the observed annual dyadic sampling effort 270 

(Dij in eq. 1) as the sample size and the aggregated SRI value as the probability of success. The expected 271 

mean annual density is then calculated from these simulated networks. We carry out this procedure 272 

10,000 times to build a distribution of mean densities for our simulations, which is then compared to the 273 

mean density of the observed annual networks. If aggregation results in increased density, the observed 274 

mean density would be significantly lower than the simulated mean densities. 275 

SRI networks were constructed in R (R Core Team 2017) using the asnipe package (Farine 2018) and 276 

custom code, and the vegan package was used to conduct Mantel tests (Oksanen et al. 2018). 277 

 278 

Network metrics 279 

To evaluate the precision of our social network, we estimated the correlation between our measured 280 

association indices and the underlying association probabilities. We first calculate the coefficient of 281 

variation (CV) of our observed SRI values, and then estimate the CV of the underlying association 282 

probabilities (S) via maximum likelihood, assuming the underlying associations follow a beta distribution.  283 

The ratio of S to the observed CV is an estimate of the portion of variance in SRI values that is accounted 284 

for by the variance in association probabilities, rather than sampling variance, and therefore approximates 285 

the correlation between true and observed association indices. Correlations greater than 0.4 are generally 286 

considered to indicate useful representations of the underlying social structure (Whitehead 2008). 287 

Parameter fitting was performed in R, using the VGAM package for beta-binomial likelihood calculation 288 

(Yee 2018). 289 
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We measure the extent to which individuals formed subgroups by performing community detection on 290 

the contact network. We use a walktrap community detection algorithm implemented in the igraph R 291 

package to detect communities (Csardi & Nepusz 2006). The modularity of the community division found 292 

by this algorithm is a network-level measure of how strongly individuals associate within rather than 293 

across social clusters. 294 

 295 

Temporal independence of respiratory contacts 296 

A key assumption of our disease transmission model (see below) is that the probability of a dyad coming 297 

into respiratory contact on a given day is constant, and therefore independent of contacts in previous 298 

days. Biologically, this would indicate that contacts dissolve and reform within a single day according to 299 

constant contact probabilities, leading to temporal independence of associations. 300 

We test this assumption by calculating the lagged association rate (LAR) across several time-lags in our 301 

dataset. The LAR at time-lag τ estimates the probability that a dyad associated in a given day will also be 302 

associating τ days later. Most analyses of LAR analyze extremely large values of τ (i.e. over 1,000 days) in 303 

order to investigate the long-term temporal structure of associations. However, as we are interested in 304 

transmission dynamics over considerably shorter timescales (see below), we only investigate LARs for 305 

values of τ from 1 to 20 days. 306 

Whitehead (1995) suggests comparing LARs to null association rates that represent the expected patterns 307 

if individuals associated randomly. As our model does not assume random mixing, but rather temporal 308 

independence, we use an alternative null association rate that approximates the expected LAR if 309 

associations dissolve and reform between each sampling period with a constant probability of association 310 

for each dyad. Let aij be the probability of an association between individuals i and j in each sampling 311 

period (approximated by SRIij). The probability that i and j associate twice in any two sampling periods, 312 

given independence, is then aij
2. The expected LAR across all time-lags under temporal independence 313 

(LARnull) is then: 314 

LAR𝑛𝑢𝑙𝑙 =  
∑ ∑ 𝑎𝑖𝑗

2
𝑗𝑖

∑ ∑ 𝑎𝑖𝑗𝑗𝑖
    (2) 315 

We calculated 95% confidence intervals for LARs at each τ using jackknife resampling (Whitehead 1995). 316 

LARnull represents our null hypothesis of temporal independence, and we rejected this null hypothesis at 317 
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a given τ if the 95% confidence interval of the LAR at τ did not include LARnull. All temporal analyses were 318 

performed using custom R code available in the supplementary material. 319 

 320 

Disease outbreak model 321 

We simulate the spread of CeMV using a stochastic individual-based susceptible-infected-removed (SIR) 322 

model over the killer whale respiratory contact network. Note that in SIR models, there is no difference 323 

between dead and recovered, immune individuals; they are removed from the population and cannot 324 

become infected again or spread the pathogen to others. While this framework is potentially overly 325 

simplistic for some pathogens, recovery from CeMV confers life-long immunity and the virus has no carrier 326 

state, meeting the basic assumptions of an SIR model (Van Bressem et al. 2014). 327 

The model simulates a situation in which an interaction with a CeMV infected individual of another species 328 

(e.g. Pacific white-sided dolphin, humpback whale, harbor porpoise) leads to the introduction of the 329 

disease to the SRKW population via a single seed individual. Interspecific interactions are rarely observed, 330 

and therefore we assume no further interspecific transmission after the initial introduction. As CeMV has 331 

not been detected in this population in over 40 years of observations, all non-infected individuals start as 332 

susceptible. Each time-step in the model represents a single day. We therefore model the probability that 333 

an infected individual j transmits the disease to a susceptible individual i at time t (λtij) as the joint 334 

probability that i and j come into contact on that day and that a given contact effectively transmits the 335 

disease. As the fine-scale transmission dynamics of CeMV have not been resolved, we make the 336 

simplifying assumption that for each day a susceptible individual is exposed to an infected individual, there 337 

is a constant probability of transmission. We further simplify the model by assuming that daily contacts 338 

are independent of one another. We use our estimated SRI values to approximate daily contact 339 

probabilities, and so 340 

𝜆𝑡𝑖𝑗 =  𝛽 ∙ SRI𝑖𝑗 ∙ 𝐼𝑡𝑗    (3)  341 

where β is the transmission coefficient, representing the per-contact probability of transmission, and Itj is 342 

an indicator variable that takes the value of 1 if j is infected at time t, and 0 otherwise. The probability 343 

that susceptible individual i will become infected during timestep t (Tti) is then 344 

𝑇𝑡𝑖 = 1 −  ∏ ( 1 − 𝜆𝑡𝑖𝑗)𝑗    (4) 345 
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The probability that individuals already infected at the beginning of timestep t will be removed by 346 

timestep t+1 is denoted by α (mean infectious period = 1/α). Individuals that become infected during t 347 

cannot infect others or be removed until timestep t+1. The model run is terminated when there are no 348 

infected individuals left, or until the time limit is reached. We limit the number of daily time-steps to 150, 349 

as our dataset represents association patterns during a five-month period of the year. We do not include 350 

non-pathogen induced baseline mortality in the model, as mortality rates over a single 5-month period 351 

would be too low to have a significant impact on model predictions. The disease simulation model was 352 

coded in R and is available in the supplementary materials. 353 

 354 

Model parameters and output 355 

The outcome of our model is influenced by the removal probability α, and the transmission coefficient β. 356 

We therefore sought to estimate values of these parameters that most closely resemble those of previous 357 

CeMV outbreaks in wild odontocetes. In the absence of data on CeMV outbreaks in killer whale 358 

populations, we estimate the likely range of epidemic parameters of CeMV from previously published 359 

epidemic modelling and social network studies of western Atlantic bottlenose dolphins. We note that 360 

CeMV strains vary in their epidemiology, and that there are likely differences in recovery rates and 361 

infectiousness between host species (Jo et al. 2018). The derived parameter values should therefore be 362 

viewed as rough estimates based on the best available knowledge. 363 

Morris et al. (2015) estimated a reproductive ratio for CeMV (the average number of secondary cases 364 

expected from a single infected individual, R) of 2.58 during the peak of an epidemic (95% CI = 2.08-3.17) 365 

and a removal rate of 0.12 (95% CI = 0.1-0.14). While the overall rate at which infected individuals infect 366 

others was estimated in this analysis, this study did not estimate a per-contact transmission probability. 367 

To estimate the per-contact transmission probability of CeMV during this previously observed epidemic, 368 

we use a social network study carried out by Titcomb et al. (2015) on a subpopulation of western Atlantic 369 

bottlenose dolphins in the Indian River Lagoon to estimate the mean strength ⟨s⟩ of association networks 370 

in this population. This study is the only large-scale social network study we are aware of in this species 371 

that uses the same daily sampling period as our analysis, and spatially overlaps the CeMV outbreak from 372 

which the other epidemic parameters were derived. This study reports a mean weighted degree in the 373 

dolphin social network of 1.88 (95% CI = 1.63-2.13). We note that this study defined associations over 374 

broader spatial scales than our analysis (100 m) and HWI was used, rather than SRI. These factors are 375 
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likely to produce estimates of ⟨s⟩ larger than our methodology, potentially leading to an underestimation 376 

of the transmission coefficient for CeMV and making our estimates of CeMV spread conservative. 377 

For each set of simulations, we generate a set of α, ⟨s⟩, R0, and seed individuals via Latin hypercube 378 

sampling using the “lhs” R package (Carnell 2019). This sampling technique allows for a more efficient 379 

exploration of the entire parameter space than sampling each variable independently (Seaholm et al. 380 

1988). Parameter values for α, ⟨s⟩, and R0 were drawn from continuous uniform distributions with ranges 381 

equal to their reported 95% confidence intervals, while the seed individual is draw from a discrete uniform 382 

distribution on [1, N], where N is the total number of individuals in the network (Table 1). We then 383 

calculate β for each parameter set using a simple estimate of the reproductive ratio for epidemics on 384 

weighted graphs (Kamp et al. 2013): 385 

𝑅0 =  
𝛽⟨𝑠⟩

𝛼
    (5) 386 

which can be re-arranged to 387 

𝛽 =  
𝑅0𝛼

⟨𝑠⟩
    (6) 388 

Our baseline simulation to assess overall vulnerability of the network consisted of 100,000 model runs. 389 

We evaluate the outcome of the model first by calculating the probability that an outbreak results in an 390 

“unusual mortality event” (UME; Gulland & Hall 2007). We use a simple heuristic to define UMEs, and say 391 

a UME has occurred when a simulation results in predicted mortality at least 2x higher than the highest 392 

recorded annual mortality rate in this population, which was 8.24% in 2016. Therefore, our definition of 393 

a simulated UME was a simulation in which at least 16.47% of the population is predicted to die. While 394 

the mortality rate of CeMV infected cetaceans is not known, individuals infected with viruses of this family 395 

tend to exhibit mortality rates of 70% - 80% (Diallo et al. 2007). We therefore assume that mortality rates 396 

due to CeMV were 70% of the final outbreak size, and thus our threshold outbreak size for UMEs was 397 

23.53% of the population infected. While we use this threshold in the rest of the text, our general results 398 

were robust to alterations to this heuristic. We also calculated the mean and standard deviation of the 399 

outbreak size (the proportion of the population infected) during runs in which UMEs occurred as a 400 

measure of predicted UME severity.  401 

We also conducted a sensitivity analysis to determine which of our two parameters, α and β, was most 402 

influential on the outcome of our simulation. We did this by calculating partial Spearman rank correlation 403 

coefficients for the final outbreak sizes of our 100,000 model runs and their respective values of these 404 



15 
 

two parameters (Wu et al. 2013). Higher absolute values of these coefficients indicate a greater amount 405 

of variance in the outcome of the simulation being due to variance in the parameter of interest, controlling 406 

for other parameters. 407 

 408 

Influence of social structure on disease outbreaks 409 

We next sought to determine the extent to which the structure of SRKW social relationships shapes 410 

disease spread. We do this by performing simulations of disease outbreaks on two null models. The first 411 

is a mean-field null model, in which all contact probabilities between individuals are set to the mean 412 

contact probability in the observed network. This model simulates a population that associates entirely at 413 

random, and is therefore equivalent to traditional epidemic models that assume random mixing. The 414 

second null model is an edge randomization, in which observed edge weights are randomly shuffled 415 

between dyads. This retains the heterogeneity of social preferences, but removes the higher-order 416 

structure of the network. In both null models, the mean strength (i.e. an individual’s average contacts per 417 

time step) from the observed network is retained. 418 

We carry out the same simulation procedure outlined above on the null-model networks, and examine 419 

the influence of network structure on disease dynamics by comparing the UME probability and mean UME 420 

size between the observed network and the two null models. 421 

 422 

Effectiveness of vaccination 423 

We next investigated whether a prophylactic vaccination strategy would be effective in this population.  424 

We simulate the implementation of three potential vaccination strategies. The first is a random 425 

vaccination, in which V randomly chosen individuals are set as removed prior to the start of the simulated 426 

outbreak. The other two strategies are both based on individuals’ centrality in the network. In many 427 

networks, targeting vaccinations towards individuals with high weighted degree is the most effective 428 

strategy to induce herd immunity (Rushmore et al. 2014), however in networks with community structure, 429 

targeting high betweenness individuals that bridge communities is sometimes more effective (Salathe & 430 

Jones 2010). We simulate scenarios in which individuals are targeted either based on their weighted 431 

degree or weighted betweenness. In both scenarios, the V individuals with the highest centrality are set 432 

as removed prior to the start of the simulation. 433 
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We evaluate vaccination effectiveness relative to a “conservative coverage threshold” (Rushmore et al. 434 

2014). We therefore define an effective vaccination coverage when UMEs do not occur in 95% of 435 

simulations. We simulate values of V from 1 to 50 (coverage of 1%-70%), with 50,000 simulations for each 436 

value of V and each vaccination strategy. We stress that safely vaccinating 50 free-ranging killer whales is 437 

most likely an unrealistic management goal, even if a safe and effective CeMV vaccine is developed for 438 

this species. Nonetheless, we simulate these high values to better illustrate the degree to which 439 

vaccination may be effective in this population. 440 

 441 

Results 442 

Respiratory contact structure 443 

The final respiratory contact network contained a total of 72 individuals sighted over the course of 314 444 

days of observation. All individuals were photographed on at least 30 different days throughout the study 445 

period, with a median of 82 days per individual. Estimation of social differentiation and subsequent 446 

comparison to the observed CV suggested a highly differentiated social structure and a good correlation 447 

between our observed network and the true underlying association probabilities (S = 1.50, r = 0.70). 448 

All pairs of yearly networks were significantly positively correlated (range of r values= 0.41-0.58, all p < 449 

0.001), as were monthly networks (range of r values = 0.38-0.56, all p < 0.001). We therefore conclude 450 

that there is no evidence for significant changes in the patterns of social relationships within the summer 451 

months during our study period, nor was there evidence that social structure shifted significantly across 452 

the 5 years of the study. The mean density of annual networks was not different from the expected density 453 

given aggregated SRI values and sampling effort (Supp. Figure 1). 454 

The aggregated SRKW respiratory contact network formed a single, highly connected component (Figure 455 

1b). Over 70% of dyads had a non-zero contact probability during the study period. Non-zero edge weights 456 

ranged from 0.005 to 0.62, with the mean contact probability over all dyads being 0.03 (median = 0.01, 457 

IQR = 0.03). 458 

In agreement with previous studies (Parsons et al. 2009; Ellis et al. 2017), the network was distinctly 459 

modular (Q = 0.52) and was divided into six social clusters. All but one cluster contained members of a 460 

single pod, the exception being J pod’s cluster, which contained individual L87, an adult male that has 461 

frequently changed social affiliation since his mother’s death in 2005 and has travelled with J pod since 462 
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2010 (Center for Whale Research 2018). L pod showed the most significant sub-pod structure, with three 463 

identified social clusters. In contrast, J pod formed a single, large cluster (Figure 1). 464 

Analysis of lagged association rates showed that the temporal patterns of association in the observed data 465 

are largely similar to the expected patterns under temporal independence, given the observed association 466 

preferences. While the LAR is typically slightly above the expected LAR, jackknifed 95% confidence 467 

intervals overlap LARnull (Supp. Figure 2). We conclude that our model’s assumption of temporal 468 

independence is unlikely to significantly bias the results of our simulations. 469 

 470 

Simulated disease outbreaks 471 

As expected, the outcome of the baseline simulation showed distinct bimodality; the disease either failed 472 

to spread far beyond the initially infected individual, or most of the population became infected (Figure 473 

2). The network was extremely susceptible to simulated CeMV outbreaks. The majority of simulations 474 

resulted in unusual mortality events (UME probability = 0.69). When UMEs occurred, the disease typically 475 

infected around 90% of the population (mean UME size = 0.89, SD = 0.09). 476 

Sensitivity analysis using partial correlation coefficients suggested that the outcome of our model was 477 

more sensitive to variation in the per-contact transmission rate than the recovery rate. The partial rank 478 

correlation between outbreak size and transmission rate was 0.33, while the correlation with removal 479 

rate was -0.18. This is not surprising, as our values of the removal rate were based on the results of explicit 480 

epidemic modelling, while our estimates of the transmission rate were derived from a combination of 481 

previously reported epidemic parameters and social network metrics. The uncertainty in our estimates of 482 

the transmission rate therefore incorporate the uncertainty in recovery rate, basic reproductive number, 483 

and contact rates.  While our range of recovery rates was 0.1 to 0.14, our final values of the transmission 484 

rate ranged from 0.1 to 0.27. This result highlights the need for further studies into the transmission 485 

dynamics of CeMV to inform modelling and management efforts. We note, however, that our estimates 486 

for the per-contact transmission rate of CeMV are highly conservative compared to the known 487 

transmission rates of other morbilliviruses (e.g. the 90% transmission rate found in measles; Hamborsky 488 

et al. 2015). 489 

 490 

Influence of social structure on disease outbreaks 491 
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Comparison of results of simulations on the observed network to the two null models revealed that the 492 

structuring of contacts in the observed network provided limited protection from disease outbreaks 493 

(Figure 2). While UME probability was larger in the null models, the changes in UME probability were small 494 

(mean-field UME probability = 0.74; edge-randomized UME probability = 0.72). Similarly, the size of UMEs 495 

was slightly larger in both null models (mean-field: mean = 0.95, SD = 0.05; edge-randomized: mean = 496 

0.93, SD = 0.06).  In terms of number of individuals infected during UMEs, these differences amount to an 497 

average increase of 3 individuals in the edge-randomized model, and 5 individuals in the mean-field 498 

model. While these results suggest that both the strength and patterning of social preferences may lead 499 

to measurable reductions in epidemic probability and size, they also clearly demonstrate that these 500 

effects are likely not significant from the perspective of conservation planning in this population. 501 

 502 

Effectiveness of vaccinations 503 

Our network measures used to design vaccination strategies, weighted degree and betweenness, were 504 

not strongly correlated (Spearman’s r = 0.24), indicating that there would be significant differences 505 

between vaccination strategies based on these measures. Both targeted vaccination strategies performed 506 

better than the random vaccination strategy at reducing the probability of outbreaks, and both targeted 507 

strategies performed similarly to one another. However, the differences in conservative coverage 508 

thresholds were modest. Given random vaccination, 45 individuals (62.5% coverage) were required to 509 

reduce UME probability below 0.05, compared to 40 individuals (55.6% coverage) in the betweenness 510 

strategy and 42 individuals (58.3% coverage) in the weighted degree strategy. 511 

 512 

Discussion 513 

In this study, we assessed the vulnerability of a critically endangered killer whale population to outbreaks 514 

of an infectious disease that has previously been identified as a potential hazard. In our analysis, designed 515 

to replicate the observed properties of cetacean morbillivirus, most simulations resulted in outbreaks that 516 

would likely result in unusual mortality events, and in these cases nearly the entirety of the population 517 

became infected. Our results further suggest that the social structure of this population offers only limited 518 

protection from disease outbreaks, and that vaccination programmes, even with relatively high coverage 519 

and ideal targeting of individuals, are unlikely to efficiently reduce the risk of outbreaks. Given its fragile 520 

state, it is unlikely that this population would recover from the sudden increase in mortality that would 521 
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result from a majority of the population becoming infected with CeMV. While this model was specifically 522 

parameterized to simulate the spread of CeMV, the general vulnerability suggested by this analysis is likely 523 

to be applicable to other highly infectious pathogens that can be spread via aerosols. 524 

Theoretical models and comparative studies suggest that subgrouping in social networks reduces the risk 525 

of disease spread (Griffin & Nunn 2012; Sah et al. 2018). Our findings generally support this result, with 526 

the important caveat that the protection provided seems unlikely to be significant in a conservation 527 

context for this population. This agrees with recent simulation experiments suggesting that disease spread 528 

is only significantly inhibited at extreme modularity values, and that network fragmentation may be more 529 

important than modularity (Sah et al. 2017). We suggest that this lack of significant protection is due to 530 

the sheer density of connections in the killer whale network; while there were clear preferences for 531 

associating within clusters, associations across clusters were still common. In addition, modular structures 532 

are predicted to be most effective at trapping disease with low transmissibility (Sah et al. 2018). Social 533 

structure may therefore be less effective at trapping pathogens such as morbilliviruses, which are highly 534 

transmissible. 535 

Both the distribution of contact probabilities and the degree of subgrouping had small but measurable 536 

effects on the outcomes of simulated epidemics. The effect of edge weight variance may partially be 537 

driven by the density of non-zero edges, as all individuals had the opportunity to interact in the mean-538 

field model, while the edge-randomization maintained the portion of edges from the original network, 539 

although overall interaction rates were the same between the two models. In most cases, both the portion 540 

of non-zero edges and variance in edge weights are the result of social preferences in association networks 541 

(Whitehead 2008). Therefore, our findings suggest that both the intensity of social preference and the 542 

patterning of relationships may be determinants of disease spread on animal social networks. However, 543 

our study also demonstrates that small populations with strong social preferences and clear divisions 544 

between social units may still be highly vulnerable to the emergence of novel pathogens. 545 

It is important to note that factors not included in the model, such as potential changes in social behavior 546 

after infection (e.g. Lopes et al. 2016; Stroeymeyt et al. 2018), the duration of daily social contacts, 547 

transitivity effects in the daily contacts, the potential for continued interspecies transmission, and 548 

variation in epidemic parameters, are likely to influence the actual outcome of CeMV outbreaks in this 549 

population. Our analysis draws particular attention to current uncertainty about the per-contact 550 

transmission rate of CeMV. We suggest that future empirical work address these knowledge gaps to better 551 

inform management efforts. Regardless, the results of our model are concerning, and suggest that the 552 
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possibility of widespread disease outbreaks and their potential impact on SRKW vital rates should be 553 

accounted for in future population assessments. 554 

Our results demonstrate that it is difficult to induce effective herd immunity in the SRKW population by 555 

partial vaccination of the population, even when vaccinations are ideally targeted based on network 556 

centrality. At least 40 vaccinations (> 50% of the network) were required to reduce UME probability below 557 

0.05, even with network-informed vaccination strategies. Modularity in contact structures is thought to 558 

generally make targeted vaccination more effective (Salathe & Jones 2010), however the multilevel nature 559 

of resident killer whale society complicates this; since family groups typically move together, there are no 560 

single individuals responsible for the majority of the spread between modules that can be targeted for 561 

vaccination. The logistical challenges of vaccinating and monitoring individuals at sea and the potential 562 

stress these activities may cause the animals likely make the prospect of wide-scale vaccinations 563 

impractical, as well as potentially unethical. 564 

As individualized treatment is unlikely to be efficient, we suggest that management of potential disease 565 

outbreaks is likely best addressed by increasing the overall health of the population. Since the 1990s, the 566 

SRKW population has declined from nearly one hundred individuals to 73 at the time of writing. The most 567 

severe pressure contributing to this ongoing decline is reduced availability of prey (Lacy et al. 2017). As a 568 

result of consistently low food availability, visibly poor body condition is widespread in this population 569 

(Fearnbach et al. 2018), as is hormonal evidence of nutritional stress (Ayres et al. 2012). Poor nutrition 570 

may increase this population’s vulnerability to CeMV and other pathogens (Aguilar & Raga 1993). While 571 

inbreeding and PCB concentration are also of concern due to their link to CeMV outbreaks (Aguilar & 572 

Borrell 1994; Valsecchi et al. 2003), these hazards are less readily addressed by conservation efforts. 573 

Therefore, in line with previous recommendations, we suggest that management actions designed to 574 

increase the abundance of Chinook salmon available to the SRKW are critical to mitigating the potential 575 

impact of epizootics in this population. 576 

Our analysis highlights the importance of applying modelling techniques in conservation planning, while 577 

also highlighting the limitations of targeted vaccination as a disease management strategy. As 578 

conservation interventions are always limited by both resources (Bottrill et al. 2008) and potential 579 

negative impacts on individual animals (e.g. Woodroffe 2001), maximizing the payoff of management 580 

actions is crucial. Individualized medical interventions in general, and vaccinations in particular, are 581 

increasingly central to a number of conservation efforts. Previous work has demonstrated that modelling 582 

techniques can often inform low-impact, effective, and efficient vaccination programs in endangered 583 
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wildlife populations, particularly in primarily solitary species (Robinson et al. 2018) and in group-living 584 

species with well-defined territories (Haydon et al. 2006). Our analysis suggests that such actions may be 585 

less effective in highly social, group-living populations with frequent social contact between subgroups, 586 

even when these groups are well defined. These social structures may also be generally vulnerable to 587 

disease outbreaks, despite their apparent modularity. Such social structures are prevalent in several taxa 588 

of conservation concern, including cetaceans, elephants, and primates (Grueter et al. 2012). We 589 

recommend that similar simulation studies be implemented when evaluating infectious disease risk and 590 

management strategies in these systems. 591 
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Figure 1. Respiratory contacts in the southern resident killer whale population. a) Example photographic 836 

sequence of a successive surfacing between two individuals (J42 and J16). Individual J42 is identifiable 837 

from her saddle patch in (i), and as J42 begins to submerge in (ii), individual J16 begins surfacing within 838 

one body length. In (iii), J16 is fully identifiable. b) Final respiratory contact network for the population 839 

from 2011 to 2015. Edge thickness corresponds to estimated daily probabilities of respiratory contact. 840 

Node colors indicate pod membership (blue = J, green = K, orange = L) and dotted lines indicate clusters 841 

found by walktrap community detection algorithm. 842 

 843 

Figure 2. Distribution of disease outcomes in the observed network and two null models. Violin plots 844 

indicate the density of disease outcomes (in proportion of the population infected). Dotted line indicates 845 

our threshold for an unusual mortality event. Boxplots indicate quantiles for the runs in which the 846 

epidemic resulted in a UME. 847 

 848 

Figure 3. Results of simulated vaccination strategies. Lines indicate UME probability for each vaccination 849 

strategy (solid = random, dashed = weighted degree, dotted = betweenness) under different levels of 850 

coverage.  Red dotted line indicates our conservative vaccination target, at which UMEs are predicted to 851 

occur in less than 5% of cases. 852 
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Table 1. Parameters and values used for disease simulations. All parameter ranges were derived from 880 

studies of social interactions and CeMV epizootics in western Atlantic T. truncatus. 881 

Parameter Interpretation Value Source 

α Probability of removal per day 0.10 – 0.14 Morris et al. 2015 

1/ α Mean infectious period 7.14-10.00 Morris et al. 2015 

R0 
Mean number of secondary cases per 
infected individual during an outbreak 

2.08 – 3.17 Morris et al. 2015 

⟨s⟩ Mean number of contacts per 
individual per day 

1.63 – 2.13 Titcomb et al. 2015 

β Per-contact transmission probability 
𝑅0𝛼

⟨𝑠⟩
 Kamp et al. 2013 
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Supplementary Figures 896 

 897 

 898 

Supplementary Figure 1. Results of simulation comparing density of annual networks to aggregated 899 

network. Histogram represents the mean density of annual networks simulated from the aggregated 900 

contact probabilities and yearly dyadic sampling effort. Red line indicates the observed mean density of 901 

annual networks. 902 

 903 
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 904 

Supplementary Figure 2. Lagged association rates of respiratory contacts. Black line is the calculated LAR 905 

at each daily time-lag, with error bars indicating jackknifed 95% confidence intervals. Dotted red line 906 

indicates the expected LAR under temporal independence, given the observed association preferences 907 

(as in equation 2). 908 


