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Even though compressible plasma turbulence is encountered in many astrophysical phenomena, its

effect is often not well understood. Furthermore, direct numerical simulations are typically not able

to reach the extreme parameters of these processes. For this reason, large-eddy simulations (LES),

which only simulate large and intermediate scales directly, are employed. The smallest, unresolved

scales and the interactions between small and large scales are introduced by means of a subgrid-

scale (SGS) model. We propose and verify a new set of nonlinear SGS closures for future applica-

tion as an SGS model in LES of compressible magnetohydrodynamics. We use 15 simulations

(without explicit SGS model) of forced, isotropic, homogeneous turbulence with varying sonic

Mach number Ms ¼ 0:2–20 as reference data for the most extensive a priori tests performed so far

in literature. In these tests, we explicitly filter the reference data and compare the performance of

the new closures against the most widely tested closures. These include eddy-viscosity and scale-

similarity type closures with different normalizations. Performance indicators are correlations with

the turbulent energy and cross-helicity flux, the average SGS dissipation, the topological structure

and the ability to reproduce the correct magnitude and the direction of the SGS vectors. We find

that only the new nonlinear closures exhibit consistently high correlations (median value> 0.8)

with the data over the entire parameter space and outperform the other closures in all tests.

Moreover, we show that these results are independent of resolution and chosen filter scale.

Additionally, the new closures are effectively coefficient-free with a deviation of less than 20%.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4954304]

I. INTRODUCTION

Turbulence and in particular, plasma turbulence is still

one of the least understood phenomena in classical physics

today. Even though there are advances in theory, many proc-

esses cannot be fully explained yet due to their strong nonli-

nearity. These cover many different scales and include

experiments on Earth1 as well as a wide variety of processes

(e.g., magnetic reconnection2 and turbulent dynamos3) and

astrophysical phenomena such as stellar winds4 and magne-

tized accretion disks.5 Compressibility also plays an impor-

tant role in astrophysical plasmas and increases the

complexity even further.

In addition to theory, experiments, and observations, nu-

merical simulations are a useful tool to understand turbu-

lence. However, the level of detail is restricted by the

available computing power, and realistic (physical) dynami-

cal ranges are usually not covered. Fortunately, this problem

can be improved with the help of large eddy simulations

(LES).6,7 This approach simulates only the largest and inter-

mediate scales directly. The smallest scales, which are below

the resolution limit, i.e., below the grid scale, are introduced

by means of a subgrid-scale (SGS) model. Formally, the

procedure involves the convolution of the primary equations

with a filter kernel G. For a static, homogeneous, and iso-

tropic filter, the compressible magnetohydrodynamics

(MHD) equations under boundary conditions read8,9

@q
@t
þr � qeuð Þ ¼ 0; (1)

@qeu
@t
þr � qeu � eu � B � B

� �
þr P þ B

2

2

 !

¼ r � 2�qeS�� �
�r � s; (2)

@B

@t
�r� eu � Bð Þ þ gr2B ¼ r� E: (3)

Filtering is denoted by �, and mass-weighted filtering10 is

denoted by e� ¼ q�=�. Thus, q; eu; B (incorporating

1=
ffiffiffiffiffiffi
4p
p

), and P are the filtered density, velocity, magnetic

field, and thermal pressure, respectively. In the context of LES,

filtered quantities are considered resolved and therefore acces-

sible in the simulation. Non-ideal effects are included via resis-

tivity g and kinematic viscosity � with traceless kinetic rate-of-

strain tensor eS�ij ¼ 1=2ðeui;j þ euj;iÞ � 1=3dijeuk;k. Here, �i;j des-

ignates the jth partial derivative of component i, a star ��ij indi-

cates the traceless, deviatoric part of a tensor, and Einstein

summation convention applies with the Kronecker delta dij.
a)Electronic mail: grete@mps.mpg.de
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Two new terms enter Equations (2) and (3). The first term,

modified from its hydrodynamical form, is the turbulent stress

tensor

sij ¼ su
ij � sb

ij þ B2 � B
2

� � dij

2
with (4)

su
ij � qðguiuj � euieujÞ and sb

ij � ðBiBj � Bi BjÞ; (5)

which consists of the turbulent (or SGS) magnetic pressure

(last term in (4)), the SGS Reynolds stress su
ij, and the SGS

Maxwell stress sb
ij. The second term is the turbulent electro-

motive force (EMF)

E ¼ u� B � eu � B (6)

in the induction equation. Both terms are a priori unknown

as only filtered primary quantities are accessible in LES

(e.g., eu) but no mixed terms (e.g., gui uj). Moreover, the total

filtered energy density

E ¼ 1

2
qeu2 þ 1

2
B

2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
resolvedð Þ

þ 1

2
q eu2 � eu2
� �

þ 1

2
B2 � B

2
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Eu

sgsþEb
sgs�Esgs unresolvedð Þ

(7)

contains unclosed terms as well, namely, the kinetic SGS

energy Eu
sgs and magnetic SGS energy Eb

sgs. These terms are

given by the isotropic parts of the turbulent stress tensors

1

2
s�

kk ¼ E�
sgs: (8)

Similarly, the filtering procedure applies to other quantities

such as the cross-helicity W — a measure of the alignment

between velocity and magnetic field. The resulting SGS

cross-helicity Wsgs is given by

Wsgs ¼ u � B � eu � B: (9)

It encodes not only the alignment between unresolved fields

but also between resolved and unresolved ones.

On the one hand, there has been a lot of research in the

realm of (incompressible) hydrodynamics11 with successful

applications to atmospheric boundary layers12 and turbulent

mixing,13,14 as well as astrophysical application6 in different

subjects such as isolated disc galaxies15 or the formation of

supermassive black holes.16 On the other hand, results for

MHD are still scarce and limited to a posteriori application

of (decaying) turbulent boxes17 in either 2D,18 or in the

incompressible case,19,20 or by neglecting terms such as tur-

bulent magnetic pressure.8 However, the a priori validation

of these closures is still outstanding, apart from a single

incompressible dataset for the EMF.21 For this reason, we

here expand our first investigation of nonlinear closures22

with additional closures from the literature, and over a more

extended set of parameters and test cases. We have identified

several closure strategies developed in the literature and

evaluate the three major ones: eddy-viscosity, which is typi-

cally purely dissipative, scale-similarity, which is based on

the self-similar properties of turbulence, and deconvolution

closures, which are fundamentally nonlinear based on

approximate inverses of the filtering operator. All closures,

including the new nonlinear closures, are briefly presented in

Sec. II. A detailed derivation and formal analysis of the new

closures are described in Paper I.23 In Section III, we

describe our test setup and the process of a priori testing for

several reference quantities. The results are then illustrated

in Section IV and include a wide variety of functional and

structural tests. Finally, in Section V, we conclude with an

overall comparison of the presented closures.

II. CLOSURES

The following independent terms require closures: the

SGS Reynolds stress su, the SGS Maxwell stress sb, and the

electromotive force E. In the following, we briefly present

three general closure strategies (eddy-viscosity, scale-

similarity, and nonlinear) and possible variations with respect

to normalization. Each closure strategy is based on a certain

idea that naturally transfers to closures of all unknown terms.

We identify closures by two uppercase roman letters (with

normalizations in superscript), and closure expressions in for-

mulas are denoted by a hat �̂.

A. Eddy-dissipation closures

The eddy-dissipation family is the most well-established

type of closure originating from the Smagorinsky eddy-vis-

cosity24 going back several decades. In general, the modeled

effects are purely dissipative in nature and resemble existing

terms, e.g., the Reynolds stress (10) has the same functional

form as the microscopic dissipation in the momentum equa-

tion, cf. the right hand side of (2). The same is true for the

EMF (12) and Ohmic dissipation in the induction equation.

An eddy-diffusivity based closure for the Maxwell stress has

been proposed17 analogous to eddy-viscosity. The resulting

closures are

EV : ŝu�
ij ¼ �2q�ueS�ij; (10)

ED : ŝb�
ij ¼ �2�bMij; (11)

ER : Ê ¼ �gtJ; (12)

with eddy-viscosity (EV) �u, diffusivity (ED) �b, resistivity

(ER) gt, and resolved current J ¼ r� B. The kinetic rate-

of-strain tensor eS�ij and magnetic rate-of-strain tensorMij ¼
1=2ðBi;j þ Bj;iÞ are by construction deviatoric and so are the

closures (10) and (11). The remaining isotropic parts are

closed by means of SGS energy closures

Ê
b;M
sgs ¼ C1D

2jMj2 and Ê
u;S�
sgs ¼ C2D

2qjeS�j2; (13)

which can be derived from (10) and (11) building upon the

realizability of ŝu
ij and ŝb

ij for a positive filter kernel.22,25 The

free coefficients C� appear independently in every closure

(including all following ones) and are typically dimension-

less. One goal of a priori testing is the determination of the

coefficient values as described in Subsection III B.

In addition to the realizability ansatz, the isotropic parts

can be closed under the assumption of local equilibrium

062317-2 Grete et al. Phys. Plasmas 23, 062317 (2016)



between production and dissipation in the SGS energy evolu-

tion equations9 resulting in

Ê
b;J

sgs ¼ C3D
2jJj2 and Ê

u;S
sgs ¼ C4D

2qjeSj2: (14)

Furthermore, several normalizations (or scalings) have

been developed to control the strength of the deviatoric clo-

sures based on different arguments. In this paper, we test the

most often used ones, i.e., constant scaling, scaling by SGS

energy, and scaling by the interaction between the velocity

and the magnetic field. Constant scaling is given by

EVconst : �u ¼ C5D
4=3; (15)

EDconst : �b ¼ C6D
4=3; (16)

ERconst : gt ¼ C7D
4=3; (17)

motivated by dimensional analysis under Kolmogorov scal-

ing.26 These closures neglect any local variability of the

eddy-viscosity, diffusivity, and resistivity. In contrast to this,

SGS energies, as a local measure of unresolved turbulence,

can be used as a proxy to obtain spatially varying closures

EVE : �u ¼ C13D
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eu

sgs=q
q

; (18)

EDE : �b ¼ C14D
ffiffiffiffiffiffiffiffi
Eb

sgs

q
; (19)

ERE : gt ¼ C15D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEu

sgs þ Eb
sgsÞ=q

q
: (20)

However, the exact values for the energies Eu
sgs and Eb

sgs (7)

are unknown. Thus, the energy closure expressions (13) can

be used to formulate complete closures18 based only on

known fields

EVS
�

: �u ¼ C16D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ê

u;S�
sgs =q

q
; (21)

EDM : �b ¼ C17D
ffiffiffiffiffiffiffiffiffiffiffi
Ê

b;M
sgs

q
; (22)

ERSþM : gt ¼ C18D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðÊu;S�

sgs þ Ê
b;M
sgs Þ=q

q
: (23)

Another possibility to include local variability is via the

interactions between velocity and magnetic field. Here, the

SGS cross-helicity (9) serves as a proxy in the closures

EVW : �u ¼ C10Dq�1=4
ffiffiffiffiffiffiffiffiffiffiffiffi
jWsgsj

q
; (24)

EDW : �b ¼ C11ttWsgs; (25)

ERW : gt ¼ C12tt
ffiffiffi
q

p
Wsgs; (26)

with a turbulent time scale tt ¼ D
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q=Esgs

p
. Again, an alter-

native formulation has been proposed19

EVSM : �u ¼ C8D
2q�1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2fSijMij j

q
; (27)

ERSM : gt ¼ C9D
2sgnðJ � eXÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jJ � eXj=q1=2

q
; (28)

since (9) is unclosed. eX ¼ r� eu is the resolved vorticity.

The closures are motivated by assuming that the modeled

cross-helicity dissipation rate is a robust proxy of transfer

between the kinetic and the magnetic energy.

In addition, we include the a-b-c-closure20 for the elec-

tromotive force

a-b-c : gt ¼ aB � bJ þ ceX (29)

in our comparison which was recently applied in LES of cur-

rent sheets.27 Here, b is closed identically to ERE, c ¼
C19ttWsgs is linked to the SGS cross-helicity, and a ¼ C20ttH
is connected to the residual helicity H ¼ u �X � eu � eX
�ðB � J � B � JÞ=q.

B. Scale-similarity closure

Scale-similarity (SS) closures are characterized by the

assumption that the tensorial structure at the smallest

resolved scales is similar to the one at the largest unresolved

scales.28 This motivates the introduction of a second filter (a

test filter) with a filter width equal to or larger than the origi-

nal filter width. The result of the second filter operation is

analogous to the result of the first filter operation, and this

allows the recovery of the subgrid-scales. We use a filter

with twice the original filter width, as proposed based on ex-

perimental data,29 and denote this operation by □. It is under-

stood that mass-weighted filtering is applied to all quantities

involving eu. The resulting closures are

(30)

(31)

(32)

It should be noted that these coefficients are introduced in

order to allow for deviation from model assumptions.

Nevertheless, they are expected to be approximately 1 due to

the self-similarity assumption. In addition to this, closures

for the SGS energies can be extracted from these terms

directly by means of definition (8), i.e.,

(33)

(34)

C. Nonlinear closures

Nonlinear (NL) closures are structural in nature. While

they are related to other gradient (also known as tensor-

diffusivity) closures,30 they are not based on the expansion

of the primary quantities, but can be derived through gradi-

ent expansion of the filter kernel.31 In contrast to the other

two families, the assumptions here are rooted in the proper-

ties of the filtering operator and not of turbulence as such.

062317-3 Grete et al. Phys. Plasmas 23, 062317 (2016)



Truncating the expansion at first order to the following

expressions:23

NLu : ŝu
ij ¼

1

12
C24D

2qeui;keuj;k; (35)

NLb : ŝb
ij ¼

1

12
C25D

2Bi;kBj;k; (36)

NLE;q : bE ¼ 1

12
C26D

2eijk euj;lBk;l � ln qð Þ;leuj;lBk

� �
: (37)

The electromotive force closure is proposed in Paper I for

the first time. It goes beyond the previously proposed

expression21,22

NLE : bE ¼ 1

12
C27D

2eijkeuj;lBk;l (38)

by explicitly capturing compressible effects in the second

term. As for the scale-similarity closures, the coefficients are

external to the closures and meant to capture errors not in-

line with the closure assumptions. Thus, values around 1 are

expected. Again, closures for the SGS energies can readily

be written down by definition (8) as

Ê
u;NL

sgs ¼
1

12
C24D

2qeuk;leuk;l; (39)

Ê
b;NL

sgs ¼
1

12
C25D

2Bk;lBk;l: (40)

A normalized version of the nonlinear SGS stress tensors has

been proposed in the HD32,33 case and in our previous

work22 for MHD

NLu;E : ŝu�
ij ¼ 2C28Eu

sgs

eui;keuj;keul;seul;s
� 1

3
dij

� 	
; (41)

NLb;E : ŝb�
ij ¼ 2C29Eb

sgs

Bi;kBj;k

Bl;sBl;s

� 1

3
dij

 !
: (42)

Effectively, the strength is locally determined by the SGS

energy, and the structural information is extracted from the

unnormalized closures NLu and NLb. Like the energy-scaled

closures within the eddy-dissipation family, (41) and (42)

are not closed. For this reason, the Eu
sgs and Eb

sgs can be

replaced by the energy closure (13) resulting in

NLu;S� : ŝu�
ij ¼ 2C30Ê

u;S�
sgs

eui;keuj;keul;seul;s
� 1

3
dij

� 	
; (43)

NLb;M : ŝb�
ij ¼ 2C31Ê

b;M
sgs

Bi;kBj;k

Bl;sBl;s

� 1

3
dij

 !
: (44)

III. VERIFICATION METHOD

In a first investigation,22 we analyzed the supersonic re-

gime in simulations at a resolution of 5123 grid points. Here,

we extend the parameter space to include the subsonic and

hypersonic regimes, as well as two additional reference runs

at a resolution of 10243 grid points. Furthermore, the

functional analysis now goes beyond the turbulent energy

cascade—we also include the cross-helicity cascade and the

total SGS flux of both resolved energy and cross-helicity.

Finally, the structural analysis now covers alignment and

magnitude of the SGS vectors, and topological properties of

the SGS stresses.

A. Simulations

In total, 15 homogeneous, isotropic turbulence simula-

tions in a periodic box with varying sonic Mach number Ms,

Alfv�enic Mach number Ma, and numerical scheme were con-

ducted. All simulations start with uniform initial conditions,

i.e., q0 ¼ 1, u0 ¼ 0 (these and all following variables are in

dimensionless code units) within a box of length L¼ 1 at re-

solution of 5123 or 10243 grid points. The initial background

magnetic field is uniform in the z-direction and its magnitude

specified by the ratio of thermal to magnetic pressure

bp ¼ 2p=B2. The MHD equations for a compressible fluid

are then evolved in time using either ENZO
34 or FLASHv4.35

Statistically stationary turbulence is driven by a stochastic

forcing field generated by an Ornstein-Uhlenbeck process.36

The strength is defined by a characteristic Mach number V.

We choose a parabolic forcing profile peaking at wavenum-

ber k¼ 2 and a ratio of compressive to solenoidal compo-

nents f ¼ jr � uj=kruk for which we explore values of 0.5

and 0.9. Details on the forcing can be found in Refs. 37 and

38, and details about individual simulation parameters are

listed in Table I. In ENZO, an open-source fluid code, the ideal

(� ¼ g ¼ 0) MHD equations are solved with a MUSCL-

Hancock39 framework, employing the second order Runge-

Kutta integration in time, PLM reconstruction, and HLL or

HLLD Riemann solvers.40 The thermal pressure p is speci-

fied by an ideal equation of state with adiabatic exponent

j ¼ 1:001 to resemble an isothermal fluid. In the simulations

conducted with the publicly available FLASHv4 code, the

MHD equations are evolved with explicit41,42 viscosity �
and resistivity g specified via the kinetic Reynolds number

Re ¼ L0V0

� ¼ 3780 and the magnetic Reynolds number

Rm ¼ L0V0

g ¼ 3780. In all simulations, the characteristic

length L0 ¼ 0:5L is half the box size due to the forcing pro-

file and the characteristic velocity V0 ¼ Vcs;0 corresponds to

the forcing Mach number V relative to the initial speed-of-

sound cs;0 ¼ 1. In contrast to ENZO, the gas is kept exactly

isothermal by a polytropic equation of state. The chosen nu-

merical scheme consists of second-order integration in time

and space with the HLL3R Riemann solver.43 For both ENZO

and FLASHv4, the divergence constraint r � B ¼ 0 is

handled by a divergence cleaning scheme.44

All simulations initially undergo a transient phase in

which the uniform initial conditions evolve into stationary

turbulence. This phase lasts for t < 2T dynamical times with

T ¼ 0:5L=V. Afterwards, the gas is evolved for three addi-

tional dynamical times, and ten snapshots per dynamical

time are captured for the analysis. The resulting parameter

space of the simulations in terms of the temporal mean

(h�it) sonic hhM2
s i

1=2it and Alfv�enic hhM2
ai

1=2it spatial root

mean square (h�i) Mach numbers within 2T < t < 5T is

illustrated in Figure 1. Simulations 1, 2a, 4, 6, 7a, 11, 12, 13

062317-4 Grete et al. Phys. Plasmas 23, 062317 (2016)



within the gray area have hhM2
ai

1=2it � 3 and are therefore

used for a Ms-dependency analysis of the different closures.

B. Reference quantities

In order to assess the quality and performance of the dif-

ferent closures, we conduct functional and structural a priori
tests. In a priori testing, a test filter is applied to high resolu-

tion data to mimic the effect of limited resolution. The scales

below the test filter are treated as unresolved scales. Owing

to the explicit filtering, we not only obtain filtered quantities

intended to resemble the resolved scales but also retain the

sub-filter quantities intended to resemble the unresolved

scales. This allows the exact calculation of SGS quantities.

In the context of LES, three different filter kernels are typi-

cally used:11 the box, the Gaussian, and the sharp spectral fil-

ter. For the majority of our analysis, we use a Gaussian filter

with a characteristic filter scale at a wavenumber k¼ 16 for

several reasons. First, k¼ 16 is within a power-law regime of

the energy spectra (cf. Figure 2), which satisfies the assump-

tion of the eddy-viscosity and scale-similarity type closures.

Second, it is sufficiently far away from the forcing scale

FIG. 1. Parameter space covered by the 15 simulations. Each marker (circles

for a resolution of 5123 grid-points and crosses for 10243, respectively) cor-

responds to the respective mean value over the stationary phase 2T < t <
5T of the spatial root mean square Mach numbers. Only simulations within

the gray area are used in the detailed sonic Mach number dependency study.

Simulation details are given in Table I.

FIG. 2. Mean (2T < t < 5T) power spectra of the simulations. Kinetic

energy is based on the Fourier transform of
ffiffiffi
q
p

u. The dashed vertical lines

indicate the filter widths (k ¼ 4; 8; 16; 32; and 64) we are using during the

analysis. The insets highlight the extended power-law regime of the 10243

runs (2b and 7b, dashed lines) over the corresponding 5123 runs (2a and 7a,

solid lines). Simulation details are listed in Table I.

TABLE I. Overview of analyzed simulations. The sonic Ms and Alfv�enic Ma Mach numbers are the temporal means of the spatial RMS numbers over the sta-

tionary phase between 2T < t < 5T dynamical times. In all ENZO simulations, the ideal MHD equations were solved with an ideal equation of state. For

FLASHv4 a polytropic equation of state and explicit viscosity and resistivity (so that Re ¼ Rm ¼ 3780, see Subsection III A) was used.

Name Resolution Forcing Mach V Init. bp hhM2
s i

1=2i hhM2
ai

1=2i Code Riemann solver f

1 5123 0.2 450 0.22 1.95 ENZO HLLD 0.5

2a 5123 0.5 72 0.56 1.85 ENZO HLLD 0.5

2b 10243 0.5 72 0.57 1.81 ENZO HLLD 0.5

3 5123 0.5 8 0.61 1.26 ENZO HLLD 0.5

4 5123 1.0 18 1.17 1.90 ENZO HLLD 0.5

5 5123 1.0 2 1.25 1.27 ENZO HLLD 0.5

6 5123 2.0 5 1.97 2.64 FLASHv4 HLL3R 0.5

7a 5123 2.0 5 2.46 2.14 ENZO HLL 0.5

7b 10243 2.0 5 2.55 2.13 ENZO HLL 0.5

8 5123 2.9 0.25 2.54 0.78 ENZO HLL 0.9

9 5123 2.9 2.5 2.64 3.11 ENZO HLL 0.9

10 5123 2.9 25 2.68 8.24 ENZO HLL 0.9

11 5123 4.0 1 4.14 2.88 FLASHv4 HLL3R 0.5

12 5123 10.0 0.2 10.04 2.25 FLASHv4 HLL3R 0.5

13 5123 20.0 0.05 20.12 2.08 FLASHv4 HLL3R 0.5
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k¼ 2 where the dynamics of the forcing are expected to be

dominant. Third, it also does not fall above the high-k drop-

off in the spectrum, caused by viscous and numeric dissipa-

tion, which contaminates turbulent dynamics.45 The mean

spectra within the stationary regime (2T < t < 5T) of the

simulations are illustrated in Figure 2, where we also high-

light the filter positions. In addition to filtering at k¼ 16, we

also probe the closures with filter scales at k ¼ 4; 8; 32; 64 to

investigate the dependence of the result on the chosen scale.

Moreover, we verify the results based on Gaussian filtering

against a box filter. Given that we analyze compressible

data, we do not employ a sharp spectral filter, which can pro-

duce negative resolved densities, and SGS stresses that vio-

late realizability.25

The first category of tests, functional tests, probe the abil-

ity of closures to reproduce a particular (physical) property. In

addition to this, they eliminate co-ordinate frame dependence

by reduction to scalar diagnostics, e.g., of six SGS stress ten-

sor or three EMF vector components. Historically, the most

frequently used reference quantity is the turbulent energy flux,

i.e., the cascade term

RE ¼ sij
eS ij þ E � J: (45)

It encodes the local exchange between resolved and unre-

solved energy and is connected to the turbulent energy cas-

cade. However, as it was recently shown,9 the total energy

flux term

FE ¼ �eu � ðr � sÞ þ B � r � E (46)

is more strongly influenced by the transport terms r � ðeu � s
þB � EÞ rather than the cascade term RE in our simulations.

Furthermore, in MHD there are additional conserved quanti-

ties such as cross-helicity, W ¼ u � B, which are, in the con-

text of LES, also governed by resolved and subgrid-scale

evolution equations.9 The exchange of cross-helicity across

the filter scale is analogous to the energy one, with cross-

helicity flux

RW ¼ sijðBi=qÞ;j þ E � eX: (47)

Again, the total cross-helicity term

FW ¼ �B=q � ðr � sÞ þ eu � r � E (48)

is dominated by the transport and not the cascade contribu-

tion.9 In the following, we are going to analyze all four

(pseudo-)scalars as each of them may play a crucial role in

different dynamical regimes, and systematic differences

between results from total and cascade fluxes may indicate

the importance of the differentiation commutator.23

Specifically, we conduct nonlinear least-square minimiza-

tion46 between data and closure. This automatically produces

the best coefficient C� for each snapshot and closure individ-

ually. Eventually, we calculate the Pearson correlation coef-

ficient as an overall measure of accuracy. While these

correlations probe the spatially local performance of the clo-

sures, we also analyze a global indicator. In particular, we

look at the average SGS dissipation, i.e., the total RE for

each snapshot, and examine the contributions of the individ-

ual components.

The performed structural tests start with a topological

analysis. We use the geometric invariants of second-rank ten-

sors to compare the topology of the deviatoric SGS Reynolds

su� and Maxwell sb� stress tensors for data and closure. The

characteristic polynomial of a second-rank tensor T is47 k3
i

þPk2
i þ Qki þ R ¼ 0 with eigenvalues ki and invariants

P ¼ �trðT Þ ¼ �ðk1 þ k2 þ k3Þ; (49)

Q ¼ 1

2
P2 � tr T 2ð Þð Þ ¼ k1k2 þ k2k3 þ k3k1; (50)

R ¼ �detðT Þ ¼ �k1k2k3: (51)

Both tensors, su� and sb�, are traceless, so P¼ 0. Furthermore,

they are symmetric. Thus, Q is negative definite and the three

eigenvalues k1 	 k2 	 k3 are real. Therefore, only two eigen-

value combinations are possible. On the one hand, sheet-like

structures with R> 0 are produced by expansion in two

dimensions (k1; k2 > 0), and contraction in the third dimen-

sion (k3 < 0). On the other hand, tube-like structures with

R< 0 are produced by expansion in one dimension (k1 > 0)

and contraction in two dimensions (k2; k3 < 0).

Given that all closures enter the primary equations ulti-

mately in vectorial form, we also asses their geometrical

performance. For this reason, we compare the alignment of

the data vector, e.g., r � su�, with the corresponding closure

vector, i.e., r � ŝu�
ij . Moreover, we compare their respective

magnitudes. Ideally, the modeled SGS vector will point in

the identical direction as the data vector (cos ðr � ŝu�
ij ;

r � su�Þ ¼ 1) and will be with identical magnitude

(jr � ŝu�
ij j=jr � su�j ¼ 1).

IV. RESULTS

A. Functional analysis: Overview and Ms dependency

We start our functional analysis by evaluating the per-

formance of the different closures for the isotropic parts of

the SGS stresses, i.e. by definition (8), the SGS energies

s�
ij ¼ 2=3dijE

�
sgs. Figure 3 illustrates the creation of the Mach

FIG. 3. Illustration of using correlations from individual simulation snap-

shots (left) to create a bar plot (right). Each marker on the left side corre-

sponds to the correlation coefficient from one snapshot of the color-coded

simulations from the subsonic (dark) to the hypersonic (bright) regime. The

correlation coefficient is always calculated for only one reference quantity

(here, the cross-helicity cascade flux RW) with one closure (here, the kinetic

SGS energy of the scale-similarity family Ê
u;SS

sgs ). Each colored bar on the

right side spans the range of variation from the minimum to the maximum

correlation value over all snapshots of one simulation.
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number dependent bar plots we use in this section for one

sample quantity. We use the kinetic SGS energy closure of

the scale-similarity family Ê
u;SS

sgs (33) and compute the corre-

lation Corr½RW ; cRW 
 of the contribution to cross-helicity cas-

cade term RW based on closure and exact SGS energy

expression Eu
sgs (7), i.e.,

Corr
2

3
dijE

u
sgs Biq
� �

;j;
2

3
dijÊ

u;SS

sgs Biq
� �

;j


 �
: (52)

This is done for each snapshot of all simulations. Then, we

take the minimum and maximum value of each simulation

separately to determine the vertical extent of the color-coded

bars in the right panel of the figure. In this example, it is clear

that the cross-helicity cascade is well modeled in the subsonic

regime (with correlations above 0.8) and tends to perform

worse in the hypersonic regime (going down to almost 0.4).

The results for all energy closures and all reference

quantities are shown in Figure 4(a). In general, all closures

perform very well with respect to the cascade fluxes. A nota-

ble exception is the already mentioned cross-helicity cascade

correlation of the kinetic scale-similarity model Ê
u;SS

sgs , which

has a strong Ms dependency. In addition to this, it can be

seen that the total flux terms are generally less well repre-

sented than the cascade terms. Furthermore, there is practi-

cally no difference between modeling the eddy-viscosity/

diffusivity energies based on realizability conditions (Ê
u;S�
sgs

and Ê
b;M
sgs ) and the equilibrium approach (Ê

u;S
sgs and Ê

b;J

sgs).

Overall, with a slight advantage over the eddy-viscosity clo-

sures, the nonlinear closures perform best with generally

high correlations (>0.7 across the entire parameter space)

and very limited Ms dependency. The median across all sim-

ulations of the free coefficient value of each closure is listed

in Table II including bounds given by the interquartile range

(IQR). For reference, we also provide more detailed data

tables as the supplementary material.48 All SGS energy clo-

sures exhibit only a very limited spread over the tested pa-

rameter space with IQRs within a factor of 2 around the

median. These results also hold (not shown) for direct fits,

i.e., Corr½E�
sgs; Ê

�

sgs
, of the kinetic Eu
sgs, magnetic Eb

sgs, and

total Esgs energies.

FIG. 4. Correlations between closure

and data for all reference fluxes. For

each closure, the four colored bars

(from left to right: energy RE and

cross-helicity RW cascade, and total

energy FE and cross-helicity FW flux)

illustrate the maximum range of corre-

lation split by simulation. A detailed

explanation of the colored bars is given

in Figure 3. Subsonic runs are towards

the dark end and supersonic at the

bright end of the palette (cf. Figure 2).

All simulations have been filtered at

k¼ 16. The x-axis labels denote the

different closure identifiers as intro-

duced in Section II.
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The correlations of all four functional reference quanti-

ties for the traceless SGS Reynolds stress ŝu�
ij are depicted in

Figure 4(b). All eddy-viscosity type closures EV� are very

similar and insensitive to the scaling chosen. Even though

the correlations for all snapshots within a single simulation

do not vary much, there is a substantial difference between

the simulations. Correlations are typically below 0.2 in the

subsonic regime whereas they can reach> 0.8 in the highly

supersonic regime. This ordering is present in all reference

quantities for the EV closures. The scale-similarity SSu clo-

sure also exhibits this behavior for the turbulent energy cas-

cade RE even though the lower bound in the subsonic regime

is much better, �0:5. However, the correlations of the other

fluxes, RW ; FE, and FW , have the opposite ordering. The

most extreme case of FW spreads from �0:5 in the subsonic

regime to correlations as low as 0.1 for the Ms � 20 simula-

tion. The nonlinear family NL is closest to the data in gen-

eral. Again, we observe an ordering with Ms but the spread

is much more constrained and for NLu the correlations are

consistently above 0.7. Here, the scaling only further sepa-

rates individual simulations with supersonic simulations

slightly improving and subsonic simulations becoming worse

on average.

Generally, the results for the traceless SGS Maxwell

stress ŝb�
ij , as shown in Figure 4(c), are very similar to those

for ŝu�
ij . Again, the nonlinear family has the best performance

and different normalizations for NL cause a wider spread.

The scale-similarity closure SSb is slightly worse with best

correlations up to 0.8 for RE and worst (0.4) for FW . Most

striking is the poor performance of all eddy-diffusivity (ED)

closures. Independent of normalization and simulation, the

correlations barely reach 0.4 with the majority of snapshots

(93%) being below 0.2 for all reference quantities.

Finally, the findings for the electromotive force E are

much more diverse. First, within the eddy-resistivity (ER)

family, scaling by cross-helicity leads to poor correlations

(99% snapshots below 0.2). However, ERconst and energy

scalings (ERSM and ERE) provide reasonable correlations

(from 0.5 for low Ms to 0.7 for high Ms) for the turbulent

energy cascade RE but are less effective (<0.5) for RW ; FE,

and FW . In addition, there is practically no difference

between these scalings and the addition of the two extra

terms in the a-b-c closure. Second, the scale-similarity clo-

sure SSE performs similar to the reasonable ER closures with

respect to the total terms FE and FW . However, it performs

much better for the cascade terms with correlations for RW

of �0:65 and for RE of �0:75 without significant Ms de-

pendence. Third, the effect of the compressible extension of

the nonlinear closure NLE;q becomes apparent when compar-

ing the results for different simulations. While there is practi-

cally no difference between NLE and NLE;q in the subsonic

regime (correlations >0.9 for all quantities), the shortcom-

ings of NLE in the highly supersonic regime are apparent.

Correlations of �0:4 for RW ; FE, and FW in the Ms � 20

simulation can be improved by the additional term in NLE;q

to �0:6 for FE and FW , and even up to �0:8 for RW . The

improvements for NLE;q are more pronounced in the cascade

terms (with a spread of 0.8–0.9) than in the total flux terms

(with a spread of 0.6–0.9). Here, the additional differentia-

tion commutator23 might further increase the correlations in

the high-Ms regime. The overall trend that the nonlinear clo-

sures are better correlated with the data than the scale-

similarity or eddy-resistivity closures continues for the elec-

tromotive force as well.

Furthermore, as listed in Table II, closures that exhibit a

generally high correlation show the least spread in their free

coefficient values C� and vice versa. For example, NLu,

TABLE II. Median correlation and coefficient values over all 5123 simula-

tions filtered at k¼ 16 with lower and upper bound given by interquartile

range of all data. Please note that for the nested closures, e.g., EVS
�
, the

listed coefficient contains both coefficients. Detailed data tables including

results split by reference quantity and min-/maximum values can be found

in the supplementary material.48

ID Corr½�; �̂
 Coefficient

Ê
u;S
sgs 0:83þ0:082

�0:094 C4 ¼ 0:036þ0:014
�0:0074

Ê
u;S�
sgs 0:84þ0:068

�0:098 C2 ¼ 0:038þ0:022
�0:005

Ê
u;SS

sgs 0:59þ0:3
�0:11 C21 ¼ 1þ0:19

�0:35

Ê
u;NL

sgs 0:85þ0:077
�0:058 C24 ¼ 1:2þ0:53

�0:19

Ê
b;J

sgs 0:83þ0:057
�0:084 C3 ¼ 0:043þ0:021

�0:0065

Ê
b;M
sgs 0:87þ0:054

�0:13 C1 ¼ 0:045þ0:028
�0:0058

Ê
b;SS

sgs 0:79þ0:093
�0:23 C22 ¼ 1:1þ0:26

�0:36

Ê
b;NL

sgs 0:93þ0:018
�0:073 C25 ¼ 1:3þ0:43

�0:1

EVconst 0:4þ0:079
�0:12 C5 ¼ 0:096þ0:13

�0:074

EVSM 0:35þ0:081
�0:1 C8 ¼ 0:011þ0:0061

�0:0057

EVW 0:39þ0:092
�0:12 C10 ¼ 0:024þ0:008

�0:008

EVS
�

0:43þ0:091
�0:13 C16 ¼ 0:0085þ0:0031

�0:0031

EVE 0:44þ0:089
�0:15 C13 ¼ 0:041þ0:017

�0:021

EDconst 0:02þ0:016
�0:012 C6 ¼ 0:00071þ�0:006

�0:006

EDW 0:089þ0:1
�0:042 C11 ¼ �0:0066þ0:0025

�0:0067

EDM 0:026þ0:021
�0:012 C17 ¼ 0:00014þ0:00014

�0:00038

EDE 0:027þ0:02
�0:014 C14 ¼ 0:00055þ0:00093

�0:002

ERconst 0:35þ0:092
�0:053 C7 ¼ 0:14þ0:054

�0:11

ERSM 0:032þ0:024
�0:017 C9 ¼ �0:00055þ0:0011

�0:0015

ERW 0:042þ0:035
�0:024 C12 ¼ �0:0014þ0:0021

�0:0039

ERSþM 0:36þ0:11
�0:057 C18 ¼ 0:0096þ0:0068

�0:0035

ERE 0:36þ0:1
�0:056 C15 ¼ 0:035þ0:025

�0:013

a-b-c 0:37þ0:11
�0:049

C20 ¼ �0:0026þ0:0018
�0:0043

C15 ¼ 0:033þ0:028
�0:0087

C19 ¼ �0:00017þ0:0058
�0:0079

8><>:
SSu 0:49þ0:11

�0:072 C21 ¼ 0:67þ0:16
�0:23

SSb 0:58þ0:081
�0:084 C22 ¼ 0:9þ0:25

�0:43

SSE 0:55þ0:13
�0:084 C23 ¼ 0:89þ0:098

�0:18

NLu 0:82þ0:038
�0:029 C24 ¼ 0:98þ0:081

�0:19

NLu;S� 0:77þ0:069
�0:038 C30 ¼ 0:032þ0:0026

�0:0052

NLu;E 0:81þ0:078
�0:13 C28 ¼ 0:52þ0:09

�0:12

NLb 0:85þ0:029
�0:038 C25 ¼ 1:1þ0:19

�0:063

NLb;M 0:77þ0:065
�0:074 C31 ¼ 0:039þ0:0093

�0:0052

NLb;E 0:76þ0:11
�0:14 C29 ¼ 0:52þ0:21

�0:21

NLE 0:7þ0:13
�0:13 C27 ¼ 1:2þ0:14

�0:11

NLE;q 0:84þ0:04
�0:072 C26 ¼ 1þ0:11

�0:3

062317-8 Grete et al. Phys. Plasmas 23, 062317 (2016)



with a median correlation of 0.82, has a spread in the coeffi-

cient value of <20%. In contrast to this, EDE, with a median

correlation of 0.027, has median coefficient of effectively 0

because it takes both negative and positive values. It should

be noted that all scale-similarity closures and the unnormal-

ized nonlinear closures have coefficients of C� � 1, as

expected analytically. Finally, the common coefficient C15,

which the a-b-c and ERE closures share, is essentially identi-

cal, while the two additional terms in the a-b-c closure are

effectively canceled by their free coefficients C19;C20 � 0.

This also explains their identical behavior in correlations.

B. Functional analysis: Filter widths and kernel
shapes

In subsection IV A, we saw that the differences in corre-

lations for functional tests are most pronounced between clo-

sure families and that normalization within a family itself is

subdominant. For this reason, we continue our analysis with

the best performing closure of each family. In this section,

we verify that the results shown in subsection IV A from

simulations at a resolution of 5123 filtered at k¼ 16 do not

substantially change with resolution and we investigate how

the different closures react to the chosen filter scale.

Figure 5 illustrates the comparison of correlation and

coefficient values among four simulations (2a,b and 7a,b)

that differ in driving (subsonic and supersonic) and resolu-

tion (5123 and 10243). Furthermore, we apply the filter at dif-

ferent scales k ¼ 4; 8; 16; 32; and 64. The extreme cases,

k¼ 4 and k¼ 64, are very close to the forcing regime or al-

ready in the dissipation regime,45 respectively. Generally,

we confirm the observed ordering in correlations among clo-

sure families described in subsection IV A. Independent of

resolution and filter width, the nonlinear closures outperform

the scale-similarity and eddy-viscosity type closures. On av-

erage the difference in both correlations and coefficient val-

ues between the 5123 and 10243 simulations are below 7% at

k¼ 16. Furthermore, all closures typically achieve higher

FIG. 5. Comparison of the median cor-

relation (top row in each plot) and

coefficient (bottom row) value at dif-

ferent filter wavenumbers k ¼
4; 8; 16; 32; and 64 and simulation res-

olutions 5123 (transparent) and 10243

(opaque) for subsonic simulation 2a,b

and supersonic simulation 7a,b. The

error bars illustrate the respective min-

imum and maximum values. Each col-

umn corresponds to results of fitting

one reference quantity RE; RW , FE, or

FW , and each marker represents the

median value over snapshots at t ¼
f2; 2:5; 3; 3:5; 4; 4:5; 5gT of the partic-

ular simulation. The coefficient values

are normalized to the respective me-

dian value over the snapshots of both

simulations and at all filter widths at a

given resolution.
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correlations (�25% while filtering at k¼ 64 compared to

k¼ 16) towards the high-k end and the correlations from

5123 simulations at k> 16 tend to be higher than from simu-

lations at 10243. This is not surprising. On the one hand, the

amount of subgrid-scale dynamics that needs to be modeled

is reduced with increasing filter wavenumber. One the other

hand, there is less physical information at high k for lower

resolutions. Nevertheless, for some cases, there are more

subtle differences with respect to filter scale, which we

describe in the following.

In Figure 5(a), the best closures within each family for

the SGS Reynolds stress are shown, i.e., EVE; SSu, and NLu.

The overall correlation, depending on filter scale k, for each

model and reference quantity has a very shallow U-shape.

Compared to k¼ 16, the correlations are �6% higher at k¼ 4

and �30% higher at k¼ 64, respectively. The slight increase

at k¼ 4 might be attributed to the proximity to the forcing

scale k � 2, which is completely resolved. Thus, the largest

unresolved scales of su might see an imprint of the (resolved)

forcing and lack SGS turbulent dynamics, which, in turn, ren-

ders specific SGS modeling unnecessary and increases the

correlation. The observed systematic differences in correla-

tions with varying k are generally not present in the coefficient

values. However, the values vary to different extents within

each family and reference quantity. While the mean deviation

from the median coefficient over all reference quantities, filter

widths, and snapshots is only 10% for the nonlinear closure

NLu, it varies by 47% for the eddy-viscosity reference closure

EVE. Compared to the results of sb� in the next paragraph,

this is still acceptable, even though we find systematically

lower coefficient at Ms � 0:6 compared to Ms � 2:5.

The SGS Maxwell stress results depicted in Figure 5(b)

show a strong filter scale dependency of the closure coeffi-

cient for the scale-similarity SSb and eddy-diffusivity EDW

closure. The coefficients are larger for small k and decrease

with increasing k spanning almost two orders-of-magnitude.

Only the nonlinear closure NLb keeps a rather constant value

with deviations of 17% on average. The correlations, on the

other hand, show a systematic increase with k for NLb in all

reference quantities. This might be ascribed to the absence

of a direct forcing term acting on the magnetic field. Similar

behavior is also present in SSb with the slight difference of a

plateau for k � 16 in the total flux quantities FE and FW .

Finally, the eddy-diffusivity closure never reaches a correla-

tion higher than 0.36 over the entire parameter space.

The different closures for the electromotive force E are

closer to each other as illustrated in Figure 5(c). Here, both

NLE;q and SSE exhibit strictly increasing correlation values

with k for the cascade terms RE and RW and a plateau for

k � 16 for the total flux terms FE and FW . The coefficient

values for all E closure are less widely spread. The a-b-c clo-

sure has a variation of 37% around the median over all data

whereby we only take the dominant b term into account. The

SSE closure has a variation of 47%, and the nonlinear closure

is effectively constant with a spread of only 16%.

Finally, the differences between using a Gaussian and a

box kernel for the analysis are illustrated in Figure 6. Two

trends can be observed for the kinetic energy cascade and

total flux. The correlations of RE for the box filter are (within

the error bars) slightly lower (�10%) for all models and fil-

ter widths. In addition, the correlations exhibit a more pro-

nounced deviation for the total energy flux FE especially at

smaller filter wavenumbers k and thus larger filter widths.

We attribute this to the non-smooth nature of the box kernel

versus the Gaussian kernel resulting in numerical biases in

the computation of gradient-based quantities. This could

explain why the deviations are more pronounced in the total

flux which has an additional divergence operator acting on

the SGS terms in comparison to the cascade flux. Likewise,

the effect would be more pronounced in the nonlinear clo-

sures as they are built from nonlinear combinations of gra-

dients. The observed convergence between box and

Gaussian filtering with increasing k is also expected, because

the differences between the kernels become less distinct for

small widths. Overall, the observed behavior based on

Gaussian filtering, i.e., better performance of the nonlinear

closures over the scale-similarity and the eddy-dissipation

family ones, also holds for filtering with a box kernel. These

trends similarly apply to the cross-helicity fluxes and other

SGS terms, too.

C. Functional analysis: Average SGS dissipation

We close the functional analysis with a comparison of

the contributions by individual components to the average

SGS dissipation RE. Figure 7 illustrates the share of devia-

toric kinetic SGS stress, su�
ij
eS ij, and deviatoric magnetic SGS

stress, sb�
ij
eS ij, kinetic SGS pressure, 1=3su

kk
eSkk, and magnetic

SGS pressure, 1=6sb
kk
eSkk, and EMF, E � J to RE for different

filter widths. In general, both SGS pressures (and thus ener-

gies) are almost negligible (<10%) in the reference data

even though the data cover the slightly supersonic regime

(simulation 7b). Similarly, the deviatoric kinetic SGS stress

is subdominant (10%–20%) while the deviatoric magnetic

SGS stress and the EMF jointly contribute �80% to the total

SGS dissipation independent of the chosen filter scale. While

the magnetic stress dominates at the largest scales (up to

50% at k¼ 4), its contribution constantly decreases, and at

the smallest scale the EMF is strongest reaching a contribu-

tion of �50%. This can be understood by analyzing the ratio

FIG. 6. Correlations of the energy cascade, RE, and total energy, FE, flux of

different deviatoric kinetic SGS stress closures for different filter widths and

kernels (box - - and Gaussian —) in subsonic simulation 2b. Markers indi-

cate the median, and the error bars show the minimum and maximum value

over time.
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of forward to inverse energy transfer (not shown). While the

forward transfer mediated by sb�
ij
eS ij is �30 times stronger

than the inverse transfer at k¼ 4, it is only �6 times stronger

at k¼ 64. At the same time, the EMF ratio remains constant

at a factor �8. Two scenarios (or more likely an unbalanced

combination thereof) could potentially explain this situation:

either the existence of an inverse cascade coupled to direct

forward transfer or direct inverse transfer coupled with a for-

ward cascade. On the one hand, a cascade typically transfers

energy from one scale to the next smaller (or larger) scale

resulting in a constant flux with varying filter width. On the

other hand, direct transfer allows exchange of energy between

scales with arbitrary separation and thus the flux may vary

with varying filter width. Although a more detailed study,

e.g., by a shell-to-shell energy transfer analysis, would allow a

better interpretation, it is not required for the following clo-

sure discussion and we leave it as subject to future work.

Before analyzing the predicted contributions by the dif-

ferent closure families, it should be noted that the coefficients

from the fits have been used to calculate the resulting dissipa-

tion values. Allowing all coefficients to vary freely and opti-

mizing for average SGS dissipation would allow each closure

to exactly match the reference data and, in turn, render this

analysis meaningless. In general, all closure families behave

similar with respect to the total dissipation. At large scales,

they underestimate the reference data by�50% (eddy-dissipa-

tion and scale-similarity) and �40% (nonlinear), while

improving towards the smallest scales reaching �75% (ED),

�90% (SS), and �95% (NL) agreement. This is seen to be

due to the successful capture of the EMF related contribution

and failing to represent the deviatoric magnetic stress dynam-

ics at varying filter scale. In other words, all closures predict

too much net inverse energy transfer to the largest scales.

Another important observation concerns the overall inverse

energy transfer by the magnetic SGS pressure of the eddy-

diffusivity closure. Given that the eddy-viscosity and eddy-

resistivity closures cannot provide inverse energy transfer by

construction, and that the eddy-diffusivity closure itself exhi-

bits the overall poorest correlation as shown in subsections

IV A and IV B, the SGS pressures are the only channels left

for inverse transfer in this closure set. Thus, in the process of

matching the inverse transfer that is present in the reference

data, an over-compensation in the SGS energies takes place.

D. Structural analysis: Topology

We begin our structural analysis with the comparison of

the deviatoric stress tensor topology. Figure 8 illustrates the

amount of tube-like structures in our simulations. The only

other possibility for su�; sb�, and s� are sheet-like structures.

Analyzing the kinetic su� and magnetic sb� tensors individu-

ally we have �88% tube-like structures and �12% sheet-

like structures in the data independent of tensor and sonic

Mach number Ms. Furthermore, there are almost no temporal

variations within each simulation—the error bars indicating

the minimum and maximum are within the markers. The

scale-similarity closures SSu and SSb match these topologies

very closely with differences of only �1%. The nonlinear

closures NLu and NLb are closely following the data topo-

logy as well, even though they slightly overestimate the

FIG. 7. Contributions of individual components (deviatoric kinetic SGS stress, su�
ij
eS ij, and deviatoric magnetic SGS stress, sb�

ij
eS ij, kinetic SGS pressure,

1=3su
kk
eS kk , and magnetic SGS pressure, 1=6sb

kk
eS kk , and EMF, E � J) normalized to the average SGS dissipation, RE, of supersonic simulation 7b for different filter

widths. The markers illustrate the median and the error bars show the minimum and maximum values over time. Each closure family is represented by the locally

best performing closures, i.e., eddy-dissipation of EVE-Ê
u;S
sgs -EDW-Ê

b;J

sgs-a-b-c, scale-similarity of SSu-SSb-SSE , and the nonlinear family of NLu-NLb-NLE;q.

FIG. 8. Topology of deviatoric stress

tensors by mean percentage of tube-

like structures over all snapshots of

each simulation (1, 2a, 4, 6, 7a, 11, 12,

and 13, see Table I). The remaining

structures are sheet-like. The error bars

indicate the minimum and maximum

value over time for each simulation.
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amount of tube-like structure by �3% in general. Eddy-

viscosity EVE and eddy-diffusivity EDW closures on the

other hand are not able to match the flow topology. While

EVE is able to reproduce at least the correct tendency with

dominating tube structures (65%), EDW produces an equal

share of tube and sheet structures.

Interestingly, the topological configuration changes dra-

matically when analyzing the deviatoric tensor s� ¼
su� � sb� as a whole. The dominant, Ms-independent tube-

like topology vanishes, and sheet configurations become

dominant in the subsonic regime. In the supersonic regime,

tube- and sheet-like configurations are equally present with

some (<10%) temporal variation. Again, scale-similarity

and nonlinear closures are able to follow the trend more

closely than eddy-dissipation type closures. EVE–EDW

exhibits the same behavior as EVE alone and provides

mainly tube-like topology. The scale-similarity closure cor-

rectly captures the topology in the subsonic regime with neg-

ligible temporal variations. However, in the supersonic

regime, the amount of sheet-like structures is overestimated

by 15% on average and there are temporal variations of up to

14%. In contrast to this, the nonlinear closure shows less var-

iations (<4%). However, it also overestimates sheet-like

structure in the supersonic regime, but by only 10%. Overall

these results are in line with the original closure

approaches—functional versus structural. The functional

eddy-dissipation closures do not perform well in this struc-

tural test, whereas both structural closure families are capa-

ble of capturing the data topology.

E. Structural analysis: Alignment and magnitude

In order to asses how the different closures perform as

vectors in the equations, i.e., r � ŝ and r� Ê , we compare

their magnitude and alignment with the reference data.

Figure 9 is an explanatory sketch of the 2D-histograms we

use for the analysis. The relative vector magnitude, e.g.,

jr � ŝu�
ij j=jr � su�j, is plotted against the angle between

closure and exact solution, e.g., cos ðr � ŝu�
ij ;r � su�Þ.

Furthermore, we use the sign of the product of closure fluxcFE and reference flux FE to split the histogram in two

halves. A positive sign corresponds to the correct direction

of the cascade, while a negative one indicates opposite direc-

tion. We choose this kind of presentation as it illustrates sev-

eral independent measures for single-coefficient closures.

First, the magnitude is a direct result of the free coefficient

value that is determined by the fitting process. Second, the

sign of the fluxes is determined in conjunction with a

resolved flow quantity, e.g., eu for FE ¼ eu � ðr � sÞ, see (46),

and is independent of the coefficient magnitude. Third, the

angle is given by the SGS terms alone and is also independ-

ent of the coefficient magnitude. We define a region of opti-

mal performance in order to make quantitative statements.

Within this region, the relative magnitude does not deviate

by more than a factor of 4, the angle between closure and

data is <30�, and both fluxes (cFE and FE) have identical

sign. We use the results of the energy flux fits FE in this sub-

section. Nevertheless, we also verified that the conclusions

similarly apply to the other flux fits RE; RW , and FW .

Figure 10 illustrates the resulting 2D-histograms for the

best performing closures in a snapshot of the supersonic simu-

lation 7a at t ¼ 4T, which has randomly been chosen for illus-

tration purposes. The deviatoric SGS Reynolds stress ŝu�
ij

closures EVE; SSu, and NLu are shown in Figure 10(a). In

general, the magnitude predicted by EVE and SSu is too small.

Furthermore, the angle between closure and data is almost

randomly distributed with a slight tendency of alignment,

which is more pronounced for SSu. In contrast to this, NLu

exhibits a clear peak at exact alignment and equal magnitude.

Over all simulations 49þ10
�4 % (median and bounds giving

the maximum and minimum) of the cells within the simula-

tion cube are within the region of optimal performance for

NLu and 81þ3
�2% have the correct sign of FE. SSu has still

66þ2
�2% cells with the correct sign and 14þ4

�3% in the optimal

region, whereas EVE performs worst with 5þ4
�4% in the opti-

mal region and only 58þ2
�2% with equal sign.

Figure 10(b) illustrates the deviatoric SGS Maxwell clo-

sures NLb; SSb, and EDW for the same snapshot. Overall, the

nonlinear and scale-similarity closure behave very similar to

their kinetic counterparts with 61þ13
�12% optimal region and

84þ5
�5% correct sign for NLb, and 27þ5

�8% optimal region and

71þ3
�2% correct sign for SSb, respectively. The weak perform-

ance of eddy-diffusivity closures described in subsections

IV A–IV D is also apparent here. The magnitude of EDW is

typically too small by more than a factor of 10. This comes as

no surprise as it is determined by the free coefficient. Given

that FE and cFE have matching signs only in 52þ1
�1% of the

cells, which corresponds to random behavior, the fitting pro-

cess favors a closure coefficient close to 0. In addition to this,

the distribution of the angle between closure and data, which

is independent of the fitting procedure, is completely random

and <1& are in the optimal region.

Finally, the EMF closures a-b-c; SSE , and NLE;q are

depicted in Figure 10(c) for the same snapshot. Here, the

FIG. 9. Illustration of magnitude-alignment 2D-histograms (see Figure 10).

The x-axis shows the alignment between closure vector and reference vector.

Relative closure magnitudes are given on the y-axis with the dashed (- -) lines

indicating identical closure and reference magnitude. The upper half (green “/”

hatching) indicates equal direction in energy cascade, i.e., same sign of FE andcFE , whereas the lower half (red “\” hatching) corresponds to opposed direc-

tions. The white box illustrates the area of optimal performance: alignment is

within 30�, relative magnitude within a factor of 4, and identical flux sign.
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performance of the eddy-dissipation family closure a-b-c is

best compared to the other terms. Overall, 13þ4
�4% cells are

within the optimal region and 61þ5
�4% have the correct

sign. SSE performs slightly better with 19þ4
�7% and 66þ2

�5%,

respectively. In both cases, the closure vector is more likely

to be aligned with the data vector even though it is not as

pronounced as for the NLE;q closure. For the nonlinear clo-

sure 53þ6
�29% are within the optimal region whereby the lower

FIG. 10. Two dimensional histograms showing the distribution of relative closure vector magnitude, i.e., sgnðFEF̂ EÞjr � ŝu�j=jr � su�j, versus alignment, i.e.,

cos ðr � ŝu�;r � su�Þ, between closure and data vector. The additional signum, sgn, function on the y-axis is used to indicate flux alignment, i.e., whether data

flux FE and the flux predicted by the closure cFE have identical sign. Dashed lines in each plot illustrate identical closure and data vector magnitudes. The data

are taken from a single snapshot at t ¼ 4T of supersonic simulation 7a filtered at k¼ 16.
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limit stems from the highly supersonic simulations 12 and

13. Nevertheless, NLE;q produces the correct flux sign in the

majority of cells (80þ3
�8%) and the variation is less extensive.

The general trend that nonlinear closures are performing

best, followed by scale-similarity closures and eventually

eddy-dissipation closures is again visible for all terms,

su�; sb�, and E.

V. CONCLUSIONS AND OUTLOOK

In this paper, we systematically conducted a priori tests

of different subgrid-scale closures in the realm of compress-

ible magnetohydrodynamics. Over a large parameter space

of 15 simulations of forced, homogeneous, isotropic turbu-

lence with sonic Mach numbers ranging from Ms ¼ 0:2 to

20 we were able to show that closures of the proposed non-

linear type outperform traditional closures of eddy-

dissipation and scale-similarity type in every single test.

The main feature of the nonlinear closures is that they

require no assumptions about the nature of the flow or tur-

bulence, and, therefore, are able to capture anisotropic

effects and support up- and down-scale energy transfer. In

contrast, the scale-similarity and eddy-dissipation type clo-

sures assume some universal behavior of turbulence. The a
priori tests included the correlation between closure and ex-

plicitly filtered reference data for quantities such as the tur-

bulent energy RE and cross-helicity RW cascades, and total

turbulent energy FE and cross-helicity FW fluxes. The tur-

bulent energy cascade flux has also been used to analyze

the average SGS dissipation. Additionally, we also eval-

uated the distribution of topological structures for the SGS

Reynolds and Maxwell stress tensors and their alignment

with respect to the reference data in physical space.

Moreover, we verified that our conclusions are not sensitive

to resolution, filter width, or filter kernel by comparing

results between 5123 and 10243 resolution simulations at fil-

ter widths of k ¼ 4; 8; 16; 32; and 64 with box kernel and a

Gaussian kernel. Finally, we were able to verify that the

free coefficients of the basic nonlinear closures are very

close to unity as expected from the analytic derivation.

Overall, we conclude that the eddy-dissipation family

including the popular Smagorinsky closure has only a lim-

ited range of applicability, e.g., in situations with dominantly

supersonic turbulence and in situations where local flow fea-

tures are less important. Closures of the scale-similarity fam-

ily or the nonlinear family can be applied in much more

diverse situations, e.g., where anisotropic features or up-

scale energy transfer are required. However, there is still

room for improvement as the net up-scale transfer via the

SGS Maxwell stress is overestimated. Furthermore, the

scale-similarity closures should be handled with care as their

performance varies strongly with reference quantity and

sonic Mach number. The basic nonlinear closures, NLu; NLb

and NLE;q, on the other hand perform well across the entire

tested parameter space and are able to reproduce local flow

features.

This encourages the application of the basic nonlinear

closures as a zero-coefficient SGS model in large-eddy simu-

lations of compressible MHD. These simulations would

benefit from the additional physics provided by the SGS

model. Promising processes for such LES are turbulent mag-

netic reconnection2 or the turbulent dynamo,3 for example,

in star-forming magnetized clouds49 or even in galaxies50

and clusters.
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