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Abstract

The dengue virus (DENV) remains a considerable global public health concern. The
interactions between the virus, its mosquito vectors and the human host are complex and
only partially understood. Dependencies of vector ecology on environmental attributes, such
as temperature and rainfall, together with host population density, introduce strong spatio-
temporal heterogeneities, resulting in irregular epidemic outbreaks and asynchronous
oscillations in serotype prevalence. Human movements across different spatial scales
have also been implicated as important drivers of dengue epidemiology across space and
time, and further create the conditions for the geographic expansion of dengue into new
habitats. Previously proposed transmission models often relied on strong, unrealistic
assumptions regarding key epidemiological and ecological interactions to elucidate the
effects of these spatio-temporal heterogeneities on the emergence, spread and persistence
of dengue. Furthermore, the computational limitations of individual based models have
hindered the development of more detailed descriptions of the influence of vector ecology,

environment and human mobility on dengue epidemiology.

In order to address these shortcomings, the main aim of this thesis was to rigorously
quantify the effects of ecological drivers on dengue epidemiology within a robust and
computational efficient framework. The individual based model presented included an
explicit spatial structure, vector and human movement, spatio-temporal heterogeneity in
population densities, and climate effects. The flexibility of the framework allowed robust
assessment of the implications of classical modelling assumptions on the basic reproduction
number, Ry, demonstrating that traditional approaches grossly inflate Ry estimates. The
model’s more realistic meta-population formulation was then exploited to elucidate the
effects of ecological heterogeneities on dengue incidence which showed that sufficient levels
of community connectivity are required for the spread and persistence of dengue virus. By

fitting the individual based model to empirical data, the influence of climate and on dengue




was quantified, revealing the strong benefits that cross-sectional serological data could bring
to more precisely inferring ecological drivers of arboviral epidemiology. Overall, the findings
presented here demonstrate the wide epidemiological landscape which ecological drivers
induce, forewarning against the strong implications of generalising interpretations from one
particular setting across wider spatial contexts. These findings will prove invaluable for the
assessment of vector-borne control strategies, such as mosquito elimination or vaccination

deployment programs.
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Chapter 1

Introduction to dengue

epidemiology

Dengue is regarded as the most prevalent mosquito-borne viral disease of our time (Guzman
and Harris, 2015). It is now responsible for causing an estimated 20,000 deaths and 50—
100 million infections annually (Gubler, 2011; Murray et al., 2013). Due to major range
expansions in recent decades, global incidence of dengue has dramatically increased (Gubler,
2006; Vasilakis and Weaver, 2008) with transmission now occuring in at least 128 countries
worldwide (Bhatt et al., 2013; Brady et al., 2012). Despite the recent licensure of the first
vaccine against dengue, lack of political will, increased urbanisation and climate change are
some of the reasons behind why prevention and control have continued to be fairly poor
(Gubler, 2002; Morrison et al., 2008; Murray et al., 2013). In this chapter, I provide a brief
overview of the virus, the epidemiology of dengue, its ecological drivers and the theoretical

approaches that have been taken to explain its epidemiological characteristics.

1.1 The dengue virus

The dengue virus (DENV) belongs to the genus Flavivirus of the family Flaviviradae. It is
a mosquito-borne virus that consists of four antigenically different serotypes: DENV-1,
DENV-2, DENV-3, and DENV-4 (De Simone et al., 2004; Raghwani et al., 2011). The
genome of DENV is composed of a single positive-sense RNA molecule of approximately
11 kilobases in a single open reading frame (Lindenbach and Rice, 2003). There are seven
non-structural proteins which are involved in viral replication, assembly, pathogenesis and

immunoinvasion (Fernandez-Garcia et al., 2009), and three structural proteins, including

23



the virus envelope, capsid and membrane. The viral envelope mediates virus binding to host
cell membranes and is the main target of human antibody responses (Weaver and Vasilakis,
2009). Due to high mutation rates, attributed to erroneous self-replication (Holmes, 2003),
RNA-based virus evolution is dictated by the time-scales of host immune responses and
population dynamics (Grenfell et al., 2004). However, as with many other vector-borne
flaviviruses, the virus must survive in both the vertebrate and arthropod host (Bennett
et al., 2003; Holmes, 2003; Weaver and Vasilakis, 2009). Therefore, both host and vector

act as a bottleneck in the evolution of DENV, resulting in strong purifying selection.

1.1.1 Immunology

Infection with any one of the four dengue serotypes confers lifelong immunity to that
serotype (Gibbons et al., 2007). Sabin (1952) found that humans infected with DENV-1
or DENV-2 were protected from clinical illness when challenged with heterologous virus
within two months of primary infection. Furthermore, OhAinle et al. (2011) found that
waning cross-protection produced the observed epidemiological dynamics of dengue in
Managua, Nicaragua. They found that immunity to DENV-1 protected individuals to a
DENV-2 outbreak in 2006, however these individuals were at increased risk of DENV-2
infection in subsequent seasons. However, empirical and theoretical studies alike have yet
to reach a consensus of the precise time interval of cross-protection between serotypes
(Adams et al., 2006; Lourengo and Recker, 2013; OhAinle et al., 2011; Reich et al., 2013;

Sabin, 1952).

In contrast to temporary cross-protection, heterotypic infection in a previously exposed

individuals results in an increased risk of more severe forms of the disease through a

mechanism called anti-body dependent enhancement (Halstead, 2003; Kliks et al., 1989).

This happens when serotype-specific antibodies acquired from primary infection fail to
neutralise the heterologous serotype and facilitate entry of the pathogen into host cells,
which can lead to increased viral replication (Figure 1.1) (Dejnirattisai et al., 2010; Tirado
and Yoon, 2003). Recently, Katzelnick et al. (2017b) showed that the risk of developing

severe dengue is highest within a narrow range of anti-DENV antibody titres, suggesting

that enhancement depends upon pre-existing antibody levels prior to heterotypic infection.
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Dengue virus % 0 §:§ 0
Antibody fails to
neutralise virus %

Antibody from Increased viral load
previous infection of heterotypic infection

Figure 1.1. Mechanism of antibody dependent enhancement. After acquired
immunity to a primary dengue infection, invasion of a second different serotype produces
the antibody response of the first infection. The antibodies then fail to bind to the
heterotypic virus and facilitate the entry of the pathogen into host cells, increasing overall
viral load.

However, the effects of antibody dependent enhancement on the pathogenicity or transmis-
sibility of the virus remain unclear (Katzelnick et al., 2017a). Cross-enhancement between

dengue and other arboviruses, such as Zika, has also been suggested to challenge routine

diagnosis (Dejnirattisai et al., 2016).

1.1.2 Pathology

Symptomatic dengue infection is diagnosed as Dengue Fever (DF), Dengue Haemorrhagic
Fever (DHF) or Dengue Shock Syndrome (DSS) (Halstead, 1980). Dengue fever is symp-
tomatically characterised by flu-like symptoms, such as a fever, headache, joint pain or
skin rash (Cobra et al., 1995), whereas individuals suffering from DHF experience internal
haemorrhaging which can be fatal (Gubler, 1998). However, a large proportion of dengue
infections are asymptomatic, although the ratio of symptomatic to inapparent infections
is highly variable from 1:1 to 1:7.5 (Bhatt et al., 2013; Endy et al., 2002; Guzman et al.,
2012; Montoya et al., 2013). For example, Endy et al. (2011) showed that in a prospective
study of school children in Northern Thailand there was a high spatio-temporal variability
in the ratio of symptomatic to inapparent dengue. It has further been shown that clinical
outcome are correlated with neutralising antibody titres (Kliks et al., 1989). Recently,
Katzelnick et al. (2016) showed that higher neutralising antibody titres correlated with
lower probability of symptomatic infection in children in a longitudinal cohort study in

Nicaragua.
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1.1.3 Serology

Alongside clinical symptoms, serological biomarkers that have been the target for routine
diagnosis. This has included isolation of the virus itself and detection of the first non-
structural protein of the virus, NS1 (Muller et al., 2017). However, virus clearance by
host immune responses and the NS1 protein in post-primary infections make diagnoses
difficult (Soler, 1998). Isolation of the virus itself can also take a long time to perform
(Lanciotti et al., 1992). An alternative is to measure the presence of host immune response
to virus infection through measurement of virus-specific immunoglobulin M (IgM) or
immunoglobulin G (IgG). However, as all four serotypes elicit a similar immunological
response, IgM and IgG detection is not useful for determining the infecting serotype

(Guzmén and Kouri, 2004).

Typically, the IgM antibody appears first, with IgG increasing slowly after the first
week of symptom onset. However, in an individual who has previously been exposed to
dengue, the IgG antibody appears much more rapidly (Nisalak, 2015). In both cases,
the concentrations of both IgM and IgG antibodies slowly decrease during the second
week (Muller et al., 2017). Anti-dengue IgM and IgG detection using enzyme-linked

immunosorbent assay (ELISA) was one of the most important advances for routine dengue

Primary Infection Secondary Infection
Disease/symptom ‘&&Q |gG Disease/symptom _ 9&
onset - 23 onset ?IgG
M = 7% 1M Y = 7 eM
NS1 M | NS1 ¢ !

Virus @ K Virus @

1gG

DHF/DSS

Virus NS1 IgG

IgM
Time H Time
d.

2 0 2 4 6 8 109 L o 2 4 e g 10 @

Figure 1.2. Dengue biomarkers used in diagnosis. The timelines of dengue biomark-
ers in patients of primary and secondary infections differ greatly. Upon primary infection,
the virus and non-structural protein 1 (NS1) can be detected after the onset of symptoms,
with immunoglobulin M (IgM) appearing well before immunoglobulin G (IgG). Secondary
infections are characterised by the rapid emergence of IgG after only a couple of days of
disease onset. Figure taken from Muller et al. (2017).
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diagnosis (Innis et al., 1989). However, in the case of dengue, ELISAs can result in high
false positive rates (Schwartz et al., 2000) due to cross reactivity with other flaviviruses,
such as Japanese encephalitis, St. Louis encephalitis and yellow fever (Burke et al., 1982;
Vazquez et al., 2003). Furthermore, Felix et al. (2017) found that all anti-dengue ELISAs
cross reacted with serum from patients with acute Zika infection, observing a large degree
of dengue IgG and IgM seroconversion. Overall, the development of reliable diagnostic

tools is required to build a picture of dengue’s epidemiology.
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1.2 Dengue epidemiology

The earliest record of a dengue-like illness was in a medical encyclopedia from 265AD (Gubler,
2006). The Chinese record described a ‘water poison’, and noted a possible connection
with flying insects. Disease compatible with dengue was then not reported for over a
millennia. During the 17th century, reports described outbreaks of a ‘break-bone fever’ in
the French West Indies and Panama (Gubler, 1998). This ‘break-bone fever’ referred to
the characteristic muscle and joint pain of Dengue Fever. From the 1800s, the slave trade
enabled the global infestation of dengue’s primary vector, Aedes aegpyti (Powell et al.,
2018). Dengue outbreaks were then large and infrequent until the start of the Second

World War (WWII) (Gubler, 1998).

During WWII, population movement spread dengue to Southeast Asia and South
America (Gubler, 1998). This established hyper-endemic dengue in countries within these
regions, including Venezuela (Barrera et al., 2000; Vincenti-Gonzalez et al., 2017) and the
Philippines (Alera et al., 2016; Bravo et al., 2014). With the co-circulation of multiple
serotypes, more severe clinical outcomes were observed, including DHF and DSS. For a
brief period of time, Central and South America achieved disease control via mosquito
elimination. Yet, control was never realised in Asia (Gubler, 2002). By the late 1990s,
expanding trade and travel increased the frequency of epidemics globally (Gubler, 2006;

Shang et al., 2010).

Since the turn of the millennium, increased international human movement continued to
facilitate the spread dengue. This resulted in an unprecedented increase of reported cases
in the Americas and Southeast Asia (Dick et al., 2012; Ooi and Gubler, 2009). For example,
Lai et al. (2018) reported a large rise in the number of dengue importations to China from
2005-2015. Multiple serotypes began to co-circulate in Brazil (Villabona-Arenas et al.,
2014), and there were outbreaks in previously dengue-naive regions, such as the United
States of America: Hawaii in 2001 (Effler et al., 2005), Texas in 2005 (Waterman et al.,
2008) and Florida in 2009 (Centers for Disease Control and Prevention (CDC), 2010).
More recently, there was an outbreak in Japan during 2014 (Quam et al., 2016), and there

were several in Europe, including the south of France in 2015 (Succo et al., 2016), and
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Figure 1.3. Global burden of dengue. Dengue transmission now occurs in over 128
countries worldwide with over 4 billion people at risk. The figure shows age-standardised
dengue incidence per 100,000 person-years by country, demonstrating highest burden in
South America and South East Asia. Figure taken from Stanaway et al. (2016)

Croatia in 2010 (Gjenero-Margan et al., 2011). During 2012, Madeira experienced a dengue

epidemic, sparked by importations from Southeast Asia (Wilder-Smith et al., 2014).

To date, dengue is estimated to infect over 50 to 100 million people annually with

500,000 individuals requiring hospitalisation (Bhatt et al., 2013; Rigau-Pérez et al., 1998).

The disease is now endemic in more than 100 countries in Africa, the Americas, the Eastern
Mediterranean, Southeast Asia and the Western Pacific (Figure 1.3) (Bhatt et al., 2013;
Brady et al., 2012). Persistent high transmission in South America and South East Asia
(Fig. 1.3) have placed significant socio-economic costs on these regions (Ladner et al., 2017;
Luh et al., 2018; Montibeler and de Oliveira, 2018; Rodrigues et al., 2016; Stanaway et al.,
2016). Depending on access to healthcare facilities, the fatality rate of DHF can be as high
as 15% (Gubler, 2002). Improvement in healthcare access and treatment has decreased
case fatality rates of DHF (AnandaRao et al., 2006; Beckett et al., 2005; Premaratna et al.,
2009; Wilder-Smith and Byass, 2016). For example, both Indonesia since 1968 (Karyanti
et al., 2014) and Thailand since 1958 (Kalayanarooj, 1999) have reported substantial
decreases in dengue-related mortality. In contrast, fatality rates have remained high in
India (Chakravarti et al., 2012), and Brazil has reported a sharp rise in case fatality rates

from 2001-2011 (Paixao et al., 2015).
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1.2.1 Spatio-temporal dynamics

At the population level, dengue dynamics are characterised by irregular epidemic outbreaks,
where seasonal oscillations force the dengue virus close to extinction annually, as shown in
Figure 1.4. The accumulation of immunity to a particular serotype, and waning immunity

to others, drives asynchronous oscillations in dengue’s four serotypes. However, within each

year there are strong spatio-temporal variations in both incidence and serotype prevalence.

This behaviour have been observed across different spatial scales, including at national
levels (Figure 1.5) and within urban settings (Jaimes-Duenez et al., 2015; Teurlai et al.,
2012; Yu et al., 2011; Zhu et al., 2019). These patterns are often hidden in spatially
aggregated data sets (Figure 1.6). In order to determine the causes behind dengue’s
epidemiological dynamics, understanding the transmission cycle of the dengue virus has

been essential.
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Figure 1.4. Dengue cases in San Juan, Puerto Rico from 1990 to 2009. Reported
dengue case data for San Juan, Puerto Rico from 1990 to 2009 was obtained from the
Dengue Forecasting project of the National Oceanic and Atmospheric Administration
(http://dengueforecasting.noaa.gov), published by the Puerto Rico Department of Health

and Centers for Disease Control and Prevention, consisting of laboratory confirmed cases.

The frequency of serotype-specific tests has varied over time, so the serotype-specific
laboratory confirmed cases were adjusted to match the total laboratory confirmed cases
for each month.
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Figure 1.5. Spatio-temporal heterogeneity of dengue incidence across Brazil.
Dengue incidence per 100,000 individuals per state in Brazil in January 2018 and 2019.

Probable case data for each state was obtained from the Ministério da Saude, Brasil
(Ministério da Satde, 2019), and incidence calculated from population estimates from
the Instituto Brasileiro de Geografia e Estatistica (Instituto Brasileiro de Geografia e
Estatistica, 2018).
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Figure 1.6. Spatio-temporal heterogeneity of dengue seroprevalence in Ho Chi
Minh City, Vietnam. There were significant spatial differences in incidence and serotype
prevalence in Ho Chi Minh City, Vietnam during the 2010/11 season, which would not
have been seen in aggregated data. Taken from Lourengo and Recker (2013).
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1.2.2 Transmission

There are two transmission cycles that have been fundamental in the characterising dengue’s

epidemiological dynamics: the endemic and sylvatic transmission cycles.

Endemic dengue

The endemic transmission cycle mains dengue transmission between human and mosquito
populations (Figure 1.7) (Nisalak et al., 2003). The dengue virus is spread primarily by
Aedes aegypti and partly by Aedes albopictus adult mosquitoes. Transmission occurs when
an infected female mosquito takes a blood meal from an infected human via insertion of
her proboscis (a protruding appendage) into the human’s bloodstream for a blood meal
necessary for the development of her eggs, a procedure known as probing. The virus

replicates in the epithelial cell lining of the mosquito midgut and then travels to the
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Figure 1.7. Endemic dengue transmission cycle. Endemic dengue is maintained
through a human to mosquito-to-human transmission cycle. An infectious mosquito bites
a susceptible human individual, who becomes infectious after a period of time known as
the intrinsic incubation period. A susceptible mosquito is infected by biting an infectious
human, and becomes infectious after the time-period called the extrinsic incubation period
has elapsed.
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salivary glands. The duration of time for the virus to infect the saliva in the mosquito
after taking an infected blood meal is referred to as the extrinsic incubation period. The
extrinsic incubation period lasts from eight to twelve days and the mosquito remains
infected for rest of life (Salazar et al., 2007). Once the virus has entered the saliva, infection
of another human is caused during probing (Salazar et al., 2007). The virus replicates in
the human, eventually causing the onset of fever, which lasts 2-10 days (Gubler, 2011).
Known as the intrinsic incubation period, the time between infection and the onset of fever

is approximately five to seven days (Chan and Johansson, 2012).

Sylvatic dengue

Sylvatic dengue transmission is maintained by a transmission cycle between non-human
primates and arboreal Aedes mosquitoes in the forests of Southeast Asia and West Africa
(Vasilakis et al., 2011; Wolfe et al., 2001). Sylvatic DENV has the potential to spill over
into human populations living in close proximity to the regions where they circulate (Carey,
1971; Franco et al., 2011; Vasilakis and Weaver, 2008; Young et al., 2017), implicating
the forest-dwelling Aedes furcifer and Aedes albopictus as bridge vectors of dengue into
peri-urban human populations. However, the low susceptibility of Aedes aegypti to sylvatic
strains (Diallo et al., 2005, 2008) and the lack of evidence for their replication in humans
suggest that in order for sylvatic strains to become integrated into the endemic transmission
cycle, the strains need to evolve such that they can also replicate in both humans and Aedes
aegypti (Vasilakis et al., 2007). Indeed, phylogenetic analysis has shown that endemic
DENV strains have their ancestry in the sylvatic viruses (Wang et al., 2000). Therefore,
tt has previously been suggested that the sylvatic cycle may be a source for dengue
re-emergence Vasilakis et al. (2007). However, due to the strong purifying selection of
DENYV evolution, it is unlikely that sylvatic dengue strains can spill over into the endemic

transmission cycle.
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1.2.3 Control

The endemic transmission cycle has been the main target for dengue control (Gubler, 1998).
However, successful disease prevention has been hindered by the lack of anti-virals against
dengue and that there is only a single licensed vaccine available, which has limited efficacy
(Wilder-Smith et al., 2010; World Health Organization, 2018b). For these reasons, current

control intervention strategies are mainly based on controlling the vector population.

Mosquito elimination

The most effective method for dengue prevention is to reduce the population of dengue’s
primary vector, Aedes aegypti (World Health Organization, 2011). Vector control programs
using ultra-low volume application of insecticides have been successfully implemented
in the past, leading to severely reduced dengue transmission (Gubler and Clark, 1996).
Community-based control programs have been the focus of vector control, aimed at reducing
the population of mosquito larvae by targetting standing water in which Aedes vectors lay
their eggs (Espinoza-Goémez et al., 2002; Lin et al., 2016; Lloyd et al., 1992; Vanlerberghe
et al., 2009). Placement of temephos larvicides into local water sources and household
water storage containers have been demonstrated to reduce larvae populations with varying
degrees of success (George et al., 2015). Furthermore, more environmentally friendly
strategies, including introducing biological agents, such as Mesocyclops and Micronecta,
into water storage units, and implementation of community mobilisation strategies, involving
the provision of vector breeding sties through community education are possible. These
methods have been shown to dramatically reduce Aedes larvae abundance, although the
resulting success on reducing dengue transmission has been highly variable (Andersson

et al., 2015, 2017; Lazaro et al., 2015; Nam et al., 2000; Vu et al., 2005).

Vaccination

Until December 2015, there was no licensed vaccine against dengue. The main challenge
in vaccine development is to ensure that immunisation would not prime individuals to
more severe infection through antibody dependent enhancement. Pharmaceutical agencies

thus sought a vaccine which would provide protection against all four dengue serotypes
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Figure 1.8. Status of dengue vaccines. As of the end of 2018, only one dengue
vaccine, CYD-TDV, has been approved for use in the Americas, Southeast Asia and
Europe, with NIH/Butantan and Takeda vaccines undergoing phase II clinical trials.
Data for countries listed in phase III clinical trials were obtained from ClinicalTrials.gov
(https://clinicaltrials.gov), maintained by the National Library of Medicine at the National
Institutes of Health, and countries which have approved CYD-TDV were obtained from
the World Health Organization (2018b) and European Medicines Agency (2018).

simultaneously (Bhamarapravati and Sutee, 2000; Webster et al., 2009; Whitehead et al.,
2007). At the end of 2015, the first licensed vaccine, the live-attenuated tetravalent vaccine,
CYD-TDV, also known as Dengvaxia, became commercially available. The vaccine has
now been licenced in over 20 countries and authorised for use within the European Union
(European Medicines Agency, 2018). Several other vaccines are under development with two
vaccines, one developed by NIH/Butantan and the other by Takeda, now undergoing phase
III clinical trials (Figure 1.8) (World Health Organization, 2018a). Since licensure, evidence
has come to light that Dengvaxia has the potential to prime seronegative individuals to
more severe infection (Aguiar et al., 2016, 2017; Flasche et al., 2016), resulting in the
Philipines suspending their vaccination programme and the World Health Organization
recommending that the vaccine should only be used in highly endemic regions, and on

individuals who have been pre-screened for previous dengue infection (Fatima and Syed,

2018; World Health Organization, 2018a).

35



1.2.4 Transmission potential
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Figure 1.9. Estimating the basic reproduction number from empirical data.

(A) The reproduction number, Ry, can be estimated from epidemic outbreak data assuming
an initially exponential growth rate. (B) Seroprevalence levels within a population can
also be used to estimate Ry.

A common method to quantify outbreak risk is the basic reproduction, Ry, defined as the
expected number of secondary infections arising from a single infection in a fully susceptible
population (Heesterbeek and Dietz, 1996). From the Ry estimate, the risk of infection to
susceptible individuals, and the conditions to prevent disease outbreaks, such as through
mosquito control or vaccination, can be calculated. A lot of emphasis is put upon the
estimation of Ry, which can be done retrospectively, for example, using the initial growth
rate of an outbreak (Figure 1.9A), or serological surveys (Figure 1.9B) (Dietz, 1993). But,
in its simplest form, it can described as the ratio of infected to susceptible individuals
provided the disease is at endemic equilibrium. However, in the case of vector-borne disease

there is the added complication of the vector-to-host transmission period (VHTP).

A fundamental component of basic reproduction number estimates, the VHTP is
defined as the mean time that an infected vector is able to transmit the pathogen to a
host (Mendes Luz et al., 2003). Traditional derivations of Ry place strong assumptions on
key demographical and epidemiological factors, such as the rate at which vectors die, or the
rate at which they become infectious. Almost always, constant (age-independent) mosquito

mortality rates are assumed, which directly influences the VHTP. However, several field
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studies have shown that the mortality rates of Aedes aegypti are strongly age-dependent
(Harrington et al., 2008; Hugo et al., 2014; Styer et al., 2007). The effects of relaxing these
demographical and epidemiological assumptions on Ry estimates have only been partly

explored (Bellan, 2010).

In the context of DENV, the strong spatio-temporal heterogeneities in dengue incidence
can induce considerable variation in Ry estimates across space and time as well. For
example, the reproduction number for dengue was estimated to be between 2 and 103 from
nine outbreaks across Brazil from 1996-2003 (Favier et al., 2006). The timing and location

of dengue introduction will shape the course of an outbreak. That is, an introduction into

a highly populated urban area will behave differently to one imported into a rural region.

A disease brought in at the start of the transmission season will also react differently to
one introduced at the end of the transmission season. Understanding how these ecological
factors influence dengue epidemiology is therefore key in implementing effective control

strategies and quantifying robust basic reproduction number estimates.
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1.3 Ecological drivers of dengue epidemiology

The main drivers of dengue’s population level dynamics are still debated, and to some
degree, the subject of this thesis. Here, we highlight four factors that are known to influence
dengue’s spatio-temporal epidemiology: heterogeneity in human and mosquito population
density, vector ecology, environmental factors, such as temperature, rainfall and humidity,

and movement of both humans are mosquitoes.

1.3.1 Mosquito ecology

There are two main species of mosquito that spread dengue between humans: Aedes aegpyti
and Aedes albopictus. Both vectors have high vectorial competency (susceptibility to the
virus), however variation in their ecology induce differences in their ability to spread the

disease (Yang et al., 2014).

Aedes aegypti is indigenous to the forests of Africa. The species adapted to the
peridomestic environment by breeding in water storage containers. Between the 17th and
19th century, slave trade and commerce introduced Ae. aegypti into large tropical coastal
cities of Southeast Asia and the Americas. Invasion of countries via river systems during
World War II provided a mechanism for the species to penetrate inland (Gubler, 2006).
Through urbanization, increased transport, and drinking water supply proliferation in
rural areas, the species is now present in both urban and rural areas in most parts of
world (Guha-Sapir et al., 2005; Kyle and Harris, 2008). Ae. aegypti is a nervous feeder,
requiring more than one host to complete a blood meal and more than one blood meal
for completion of the gonotrophic cycle (Ponlawat and Harrington, 2005). Combining this
timid behaviour with its high domestication levels and strong affinity for human blood
(Harrington et al., 2001), results in a highly efficient transmission system for the dengue

virus.

Aedes albopictus originates from South East Asia and the islands of the Western Pacific
and Indian ocean. Over the last few decades, the species has spread to Africa, West
Asia, Europe and the Americas via passive introduction of dormant eggs on international

shipments of used tyres (World Health Organization, 2011). The species aggressively
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feeds on both humans and animals, and is a concoradant species, meaning that it only
requires one blood meal for the completion of the gonotrophic cycle (Delatte et al., 2010;
Ponlawat and Harrington, 2005). There exists considerable concern that Ae. albopictus
would cause serious outbreaks since it is a competent vector of at least 22 arboviruses
(notably dengue) (Gratz, 2004). It is projected to have increasing range expansion due to
climate change providing more suitable environments in which it can thrive (Yang et al.,
2014), including Catalonia, Spain in 2015 (Aranda et al., 2018). However, Ae. albopictus
generally prefers rural areas, only partly invading peripheral areas of urban cities. For

these reasons, it is generally considered a less important vector for dengue.

1.3.2 Climate

Seasonal oscillations in temperature, precipitation and humidity further induce annual
fluctuations in vector suitability (Caminade et al., 2017; Johansson et al., 2009; Li et al.,
2019; Sharma et al., 2005; Strickman and Kittayapong, 2002). Climate factors have also
been shown to influence the transmissibility of the virus (Mordecai et al., 2017). Therefore,
differences in climate across space and time drive the marked spatio-temporal heterogeneity
in dengue incidence. However, the exact relationships of temperature, rainfall and humidity

with the intrinsic factors of dengue are not well-established.

Temperature

Higher temperatures in both Aedes aegypti and Aedes albopictus are associated with
shorter extrinsic incubation periods and faster virus replication rates (Mordecai et al.,
2017; Xiao et al., 2014). Additionally, higher temperatures increase the transmissibility of
the virus from humans to mosquitoes and vice versa (Lambrechts et al., 2011; Mordecai
et al., 2017). The mortality rates of Aedes mosquitoes are generally negatively correlated
with temperature (Alto and Bettinardi, 2013; Mordecai et al., 2017), although very high
temperatures have been associated with shortened mosquito life expectancies (Alto and
Juliano, 2001). Moreover, increased temperatures hasten the life cycle of the vector,
resulting in smaller-sized mosquitoes, in turn forcing more frequently taking blood meals

by the vector in order to obtain enough protein for egg production (Kuno, 1995).
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Rainfall

Rainfall is well-documented as a determinant of mosquito-borne disease transmission with
increased precipitation creating additional breeding sites for vectors (Chen et al., 2012;
Harris et al., 2018; Hu et al., 2006; Li et al., 1985; Messina et al., 2016; Scott et al., 2000b).
Therefore, there is generally an increase in dengue transmission during the wet season. For
example, Sumi et al. (2017) showed that dengue fever incidence was moderately positively
correlated with precipitation levels in Manila, the Philippines 2013-2014. However, at
extreme precipitation levels, larvae are easily washed away, decreasing mosquito population

density (Koenraadt and Harrington, 2008; Paaijmans et al., 2007).

It is important to note however that during the wet season both temperature and
humidity are also favourable for virus propagation (Wearing and Rohani, 2006). The
relative contribution of each climate factor to the timing and magnitude of dengue outbreaks

is thus unclear and is likely different within each spatial region.

Humidity

Humidity has also been demonstrated to correlate with dengue infection outbreaks (Descloux
et al., 2012; Naish et al., 2014; Sumi et al., 2017). However, the effects on vector suitability
are disputed (Alto and Juliano, 2001; Canyon et al., 2013; Da Cruz Ferreira et al., 2017).
The time delay between humidity and disease incidence is also unclear (Naish et al., 2014).
For example Descloux et al. (2012) demonstrated that the highest relative humidity was in
phase with the epidemic peak in Noumea, New Caledonia, whereas Depradine and Lovell

(2004) demonstrate a 1-2 month delay between relative humidity and dengue incidence.

1.3.3 Population density

Together, the influence of climate on vector suitability and the ecology of dengue’s two
vectors introduces significant spatio-temporal heterogeneity in mosquito population den-
sity. Increased risk of dengue infection has been affiliated with greater mosquito density
(Morrison et al., 1998; Sang et al., 2014), suggesting that the habitat preference of Aedes
aegypti and Aedes albopictus may induce heterogeneity in dengue incidence across space.

Theoretical approaches have also demonstrated that heterogeneous vector exposure is fun-
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damental in generating the observed spatio-temporal incidence patterns of mosquito-borne
disease(Manore et al., 2014; Perkins et al., 2013; Romeo-Aznar et al., 2018), whereby
increased heterogeneity in vector abundance induces strong spatio-temporal heterogeneity
in disease transmission rates, and in turn facilitates disease persistence (Acevedo et al.,

2015). However, Cromwell et al. (2017) found there to be no connection between Aedes

aegypti abundance and DENV seroconversion in a cross-sectional study in Iquitos, Peru.

This indicates that the general role which mosquito population density plays in dengue’s

epidemiological dynamics is uncertain.

To further complicate matters, the relationship between human population density and
spatio-temporal dengue incidence is currently not well established, even though the risk of
dengue importation has clearly been demonstrated to increase with population expansion
and urbanisation (Carbajo et al., 2001; Gubler, 2011; Murray et al., 2013; Ooi, 2015;
Pang et al., 2017). Several empirical studies have shown a positive correlation between
population density and dengue incidence across different spatial scales (Diaz-Quijano and
Waldman, 2012; Ko, 1989; Qi et al., 2015; Sirisena et al., 2017), whereas others established
no relationship between human population size and dengue incidence (Kong et al., 2018;
Lin and Wen, 2011; Siqueira et al., 2004). Others have also noted a negative association
between host population density and dengue incidence (Schmidt et al., 2011), although
this may have been confounded by access to an adequate water supply. These conflicting
findings suggest that human population density alone is not sufficient to explain the

observed spatio-temporal patterns of dengue incidence.
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1.3.4 Host mobility

Human movement has long been recognised as a key underlying driver in the dynamics
of directly transmitted diseases (Bharti et al., 2011; Riley, 2007). Vector-borne diseases
add an additional layer of complexity, whereby the dispersal of vectors can induce further
heterogeneity in transmission intensity (Carter et al., 2000). However, due to the limited
flight range of Aedes aegypti mosquitoes (Kuno, 1995), humans are implicated for the
dissemination of the dengue virus across different spatial scales (Figure 1.10) (Adams and
Kapan, 2009; Harrington et al., 2005; Stoddard et al., 2009; Wilder-Smith and Gubler,

2008).

At local scales, congregation at schools, hospitals, and religious institutions result in
high-levels of dengue transmission, and more long-range human movements spread infection
to other parts of the city (World Health Organization, 2011). This has been suggested

to induce spatio-temporal heterogeneity in transmission rates and in turn generating the

underlying spatio-temporal dynamics of dengue (Perkins et al., 2014; Stoddard et al., 2013).

Furthermore, Wen et al. (2012) showed that non-commuters had the propensity to locally

spread the virus, with long-distance commuters carrying the virus to geographically distant
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Figure 1.10. Human mobility across different spatio-temporal scales. Human
movement allows the dissemination of the dengue virus across different spatial (Axy) and
temporal (At) scales. Figure taken from Stoddard et al. (2009).

42



areas, increasing the risk of epidemic outbreaks. Within the same household, the mobility
patterns of infected and uninfected individuals have been shown to differ (Falcén-Lezama
et al., 2017), with Perkins et al. (2016) demonstrating that febrile illness reduces human

mobility. However, it is not clear if and how this might influence transmission.

Human movement has further been shown to provide a major role in the spread of
dengue on a national scale (Teurlai et al., 2012). Wesolowski et al. (2015) showed that
long-distance human movement, based on mobile phone data, was necessary in capturing
the spread and timing of dengue outbreaks across Pakistan in 2013. However, work has
not been done to show how human movement across large geographical areas influences

dengue transmission in hyper-endemic regions.

At an international scale, modern travel is well-documented in providing an efficient

mechanism by which the virus can be introduced into dengue-naive regions, potentially

sparking large epidemic outbreaks (Wilder-Smith, 2012; Wilder-Smith and Gubler, 2008).

For example, human movement has been implicated as playing an essential role in the
recent Madeira 2012 outbreak (Rezza, 2014). In dengue endemic regions, air travel has
further been demonstrated to contribute to seeding annual dengue outbreaks in addition

to facilitating multiple serotype co-circulation (Nunes et al., 2014; Tian et al., 2017).

1.3.5 Summary

From empirical studies alone, it is not clear how the different ecology of dengue’s two vectors
dictate the observed spatio-temporal heterogeneity in dengue incidence. Furthermore, there
is a lot of uncertainty over how heterogeneity in human, alongside vector, population
density drives dengue’s epidemiological dynamics. Local, national and international
human movement clearly influence dengue epidemiology, yet no work has been done to
investigate how human movement across these different scales come together to enable the
persistence of dengue in (hyper-)endemic regions. Finally, although we know that climate

is strongly associated with dengue incidence, the relationships of temperature, rainfall, and

humidity with vector suitability and virus transmissibility are currently not well quantified.

Theoretical approaches have therefore been used to further elucidate how these ecological

factors drive dengue epidemiology.
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1.4 Theoretical approaches

In order to improve our understanding of the effects of climate, vector ecology and host
demography on the emergence, spread and persistence of dengue, theoretical transmission
models are often employed (Figure 1.11). The vast majority of existing epidemiological
models for dengue are based on deterministic systems of ordinary differential equations,
which describe the change in the number of individuals experiencing each stage of disease
(e.g. susceptible, infected, recovered) over time. However, increasingly complex individual
(or agent) based approaches are also being used to capture the inherently stochastic
dynamics of dengue epidemiology. Here, we briefly outline two modelling approaches used
over the past few decades to better understand the epidemiological drivers of dengue. We
further discuss how fitting these epidemiological models to empirical data have been used

to further quantify dengue epidemiology.
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Figure 1.11. Dynamic models in dengue research. Dengue publication over the last
five decades. Total number of dengue articles per year (bars) and the percentage of those
with a computational focus (spikes). Between 1970 and 2016, a total of 15,267 dengue
articles were published, including 190 modelling studies. Figure in Lourengo et al. (2018b)
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1.4.1 Systems of ordinary differential equations

Many traditional approaches in theoretical epidemiology rely on mass-action principles
whereby individuals are grouped into epidemiological compartments, such as susceptible,
infectious or recovered, and the rates of change between each class is described. Here, the
rate at which a disease spreads through a population is directly proportional to either
the number or proportion of infected and susceptible individuals within that population.
Under these assumptions, every individual has the same probability of getting infected,
contributes equally to disease transmission and recovers at the same rate as everyone
else. Their low computational footprint and analytical tractability make these models an
attractive choice for investigating population-level dynamical behaviours, especially when

homogeneity in time and space can safely be assumed.

In the context of dengue, ordinary differential equation frameworks have focused upon
capturing the irregular epidemic outbreaks of dengue, in addition to the sequential domi-
nance of dengue’s four serotypes. One of the first epidemiological models to successfully
capture these features was by Ferguson et al. (1999a). They modelled antibody dependent
enhancement (ADE) within a two-serotype, vector-host system by increasing the transmis-
sion probability to mosquitoes from humans experiencing their secondary infection. By
including ADE, serotype prevalence destabilised at the population level. This 2-strain
model was then generalised by Schwartz et al. (2005) and Cummings et al. (2005), where
the latter showed that ADE was most advantageous in regions where multiple serotypes

co-circulate and there are enough hosts to avoid dengue extinction.

However, Wearing and Rohani (2006) then demonstrated that ADE alone was not
enough to produce results consistent with empirical data. They further showed that a 1-2
month period of temporary cross immunity was necessary to reproduce the data. Including
cross immunity further lowered the extinction risk of dengue outside of the transmission
season. These findings were then supported by Adams et al. (2006), who found that only
temporary cross-immunity, alongside seasonal oscillations of mosquito density, was required

to reproduce the alternating outbreaks of dengue serotypes in Bangkok from 1977-2000.

Until Recker et al. (2009), models required cross-immunity or seasonal forcing, on
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top of extreme ADE effects, to avoid annual virus extinction and capture the dynamics
of empirical data. But, Recker et al. (2009) demonstrated that extending the model
for ADE was enough to reproduce dengue’s epidemiological dynamics in the absence
of temporary cross-protection and/or seasonal forcing. By increasing susceptibility to
secondary infections, in addition to enhancement of human to vector transmissibility, the
observed periodic behaviour of dengue serotypes was captured at much more realistic

ADE-related effects than previously studied.

As shown above, theoretical approaches first focused on immunological interactions to
capture dengue’s epidemiological dynamics (Adams et al., 2006; Cummings et al., 2005;
Ferguson et al., 1999a; Nagao and Koelle, 2008; Recker et al., 2009; Schwartz et al., 2005;
Wearing and Rohani, 2006). However, there is little empirical data showing how ADE
influences virus transmissibility and susceptibility (Katzelnick et al., 2017a) and the precise

time interval of cross-protection between serotypes has yet to be established (Adams et al.,

2006; Lourenco and Recker, 2013; OhAinle et al., 2011; Reich et al., 2013; Sabin, 1952).

Additionally, ordinary differential equations implicitly place strong assumptions on key
demographical and epidemiological parameters, often prescribing constant transition rates
between each epidemiological class. In many cases, these assumptions are unrealistic
(Hugo et al., 2014; Mordecai et al., 2017) as homogeneity across space and time cannot be
guaranteed. Individual variations, arising through the stochastic nature of infection events
or environmental, ecological and demographic heterogeneities, also cannot be captured by
these models. Therefore, a different approach is required altogether, such as an individual

based model.
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1.4.2 Individual based models

Individual or agent-based models offer a more prescriptive way to account for relaxed
assumptions on probabilistic infection events and individual-level variation by keeping track
of the demographic and epidemiological processes of both humans and mosquito vectors.
These frameworks have been implemented to various degrees of realism and permit the
inclusion of different spatial details by dividing the population into smaller subpopulations,
or communities, typically arranged into a rectangular grid (Figure 1.12). The spatial
segregation of individuals in this manner can induce the stochastic local extinction and
re-invasion of DENV (Louren¢o and Recker, 2013). In turn, this produces the irregular
epidemic outbreaks and asynchronous oscillations of dengue’s four serotypes, without the
need to include immunological interactions. Barmak et al. (2016) similarly showed that
random human movement across an urban region can generate the marked spatio-temporal

heterogeneity of dengue.

Further spatial detail can also be introduced by adding more realistic spatial arrange-
ments by means of complex networks with nodes representing villages or cities and edges
representing their connecting trade or commuting routes. Subpopulations can further be
divided to take into account individual households, work places or schools, as well as the
human movement patterns between them (Barmak et al., 2016; Chao et al., 2012; Karl

et al., 2014; Perkins et al., 2014). Many existing individual based approaches for dengue
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Figure 1.12. Increasing model complexity demands higher computational
power. Model detail can be added by dividing a well-mixed population into separate
sub-populations, arranged in a regular spatial grid or by means of complex networks to
represent geographic distribution of villages, towns and cities, with edges corresponding
to major human movement patterns. Depending on data availability, more spatial and
demographic detail can be added by considering individual households, places of work or
schools. However, the computational demands increase significantly with more detailed
information to keep track of, making the model very setting-specific and impractical for
sensitivity analyses and model fitting to empirical data. Figure in Lourenco et al. (2018b)
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have focused upon this fine spatial scale in order to improve our understanding of the

influence of local human movement on dengue epidemiology.

One of the first epidemiological models to adopt this approach was by Chao et al. (2013).

They were interested in finding about the effects of relaxing classical model assumptions of

homogeneous distribution of vectors and homogeneous mixing between hosts and vectors.

In this framework, they explicitly modelled homes, schools and work places, and represented
humans and mosquitoes explicitly in a spatial environment. They found there to be no
difference in dengue epidemiology between heterogeneous and homogeneous distributions
of mosquitoes. But, in line with empirical findings, they found that limited flight range
of the vector greatly reduced its ability to transmit dengue among humans, implicating

human movement as the main driver of dengue spread.

Work by Karl et al. (2014) then found that human movement only had a small effect
on the spread of the dengue virus during the 2008-2009 outbreak in Cairns. Within their
framework, they also included explicit relationships between temperature, rainfall and
mosquito population dynamics. Their approach indicated that these relationships had
little influence on the outbreak. However, they found that compared to the 2003 outbreak,
a shorter extrinsic incubation period was necessary to capture the observed dynamics of
the 2008-2009 epidemic. This implicated higher than average temperatures during the

2008-2009 period in driving the explosive outbreak.

Common to both above approaches were two models for human movement: one driven
by daily commuting behaviour and the other by some distance-dependent infrequent
movement, such as to a shopping store, or visiting friends or family. However, socially
driven movement had been shown by some studies to be independent of distance (at least

over relatively short scales) (Stoddard et al., 2013). This motivated Reiner et al. (2014) to

instead investigate the effects of socially-driven human movement on dengue epidemiology.

Within their individual based model, all individuals were put into different social groups,
where individuals would then visit each other based on their social group. Using this
approach, they were able to recreate the observed epidemiological dynamics of a dengue
outbreak in north-eastern Peru. This implicated that social proximity was more crucial in

driving dengue epidemiology across small spatial scales.
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As demonstrated by these frameworks, the explicit description of each individual,
together with their ecological and socio-demographic interactions, allows a near limitless
level of spatio-temporal detail to be incorporated. However, the inclusion of every minute
detail comes at the cost of computational feasibility and generalizability. The increased
computational demands imposed by higher model complexity, due to the incorporation of
more, and more detailed information of individual-level behaviours, can quickly exceed
the capabilities of modern-day personal computers and require either very long run-times
or implementation onto high-performance computer clusters. Furthermore, the limited
availability of fine-scaled data necessary to parametrise these models often restricts their
use to a single spatial setting and/or the theoretical investigation of certain aspects on
dengue epidemiology. Additionally, the increased difficulty of interpreting results from the
use of more complex models is not compensating for by the increased availability of genetic
(Faria et al., 2017; Woolhouse et al., 2015), mobility (Kraemer et al., 2015; Lemey et al.,
2014; Wesolowski et al., 2015) or social (Salathé et al., 2012) data sets required to validate
model output. Results obtained from these studies, although highly informative for the
particular research question, are therefore not easily transferable to other epidemiological
or geographical settings, implying that for research questions of a more general nature,
a balance needs to be struck between a model’s biological and ecological realism and

computational feasibility.

Therefore, the spatial resolution of the research question should dictate the complexity
level of community structuring required in a model. Non-spatial deterministic approaches
provide a natural entry point in understanding the epidemiology of pathogens strictly across
time (Ferguson et al., 2016; Nagao and Koelle, 2008; Rodriguez-Barraquer et al., 2014).
Epidemiological questions directed over smaller geographical areas, such as investigating
the effects of vector distribution, or vector and host movement between an individual’s
home and workplace, require fine-scale spatial models (Chao et al., 2013; Hladish et al.,
2016; Perkins et al., 2016; Reiner et al., 2014). Coarser-scaled network models are applied
when individual movement between households becomes redundant, such as exploring the
effects of national or international human movement, or environmental heterogeneities over

large spatial regions, on dengue epidemiology.
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Existing individual based models have only focused on very fine spatial scales to better
understand ecological drivers of dengue. There is therefore a clear need for these modelling

approaches to be adapted to coarser scales. Furthermore, current individual based modelling

approaches are calibrated to very rich empirical data sets, which is often not available.

Epidemiological models can instead be fit to much more sparse data sets in order to

elucidate drivers of communicable diseases such as dengue.

1.4.3 Fitting epidemiological models to empirical data

Fitting epidemiological models to empirical data provides a useful way to quantify the
relationships between epidemiological drivers and the spread of disease. In model fitting,
model parameters that may not otherwise be easily, or ethically, measured, such as the
probability of dengue infection after a bite from an infected mosquito, are estimated. This
is done in a way such that model output reproduces the given empirical data as best as
statistically possible. Typically, these parameters are usually inferred by fitting to relatively
sparse data sets, such as disease incidence data, and are often done within a maximum

likelihood or Bayesian framework.

Maximum likelihood

With maximum likelihood approaches, only single-value estimates of each parameter of
interest are calculated. Model parameters are calculated such that the likelihood of

observing the empirical data given the unobserved parameters is maximised.

One of the first epidemiological models for dengue to fit to empirical data was by
Ferguson et al. (1999b). They fit a system of ordinary differential equations (ODEs) to
cross-sectional serological data, which allowed them to estimate changes in serotype-specific
transmission rates over time. The results further provided evidence that ADE influences

dengue transmission dynamics. Similarly, Chowell et al. (2007) fit to disease incidence over

time in order to question the effects of model assumptions on the reproduction number.

They found that the strong simplifying assumptions of ODEs may inflate number estimates.

In both of these methods, only the parameter values of best-fit can be calculated (in

addition to small confidence intervals around them). Furthermore, Chowell et al. (2007)
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highlighted that prior knowledge about key epidemiological parameters is an important
consideration in epidemiological modelling. In contrast, the Bayesian paradigm can take

prior knowledge about the model parameters into account.

Bayesian frameworks

Bayesian frameworks permit the uncertainty around parameter estimates to be inferred by
modelling our knowledge about the parameters of interest through a probability distribution,
known as the posterior distribution, in combination with prior knowledge about the
parameters of interest. Theoretical determination of the posterior distribution is often
impractical in the context of epidemiological models, and so instead the model is executed
several tens of thousands of times with different sets of parameters using some variant of
a Monte Carlo Markov chain (MCMC) algorithm in order to approximate the posterior
distribution. Provided the model is constructed appropriately, the posterior distribution

can then shed light upon the epidemiological drivers of disease.

In the context of DENV, only systems of ordinary differential equations have been
fit within a Bayesian framework. For example, Pandey et al. (2013) estimated dengue
transmission rates by fitting ODEs to hospitalisation data from a dengue outbreak in
Thailand during 1984. They surprisingly found that explicitly including mosquitoes within
the ODE framework was unnecessary. However, fitting to long-term data, or regions where

dengue isn’t endemic, requires consideration of mosquito population dynamics.

Lourengo and Recker (2014) considered the influence of temperature and rainfall on
mosquito demography, in addition to dengue transmissibility, during the 2012 Madeira
outbreak. They fit a climate-dependent ODE framework to reported dengue cases, and
quantified the relationships of climate with mosquito life expectancy and the extrinsic
incubation period. This allowed them to conclude that there was a high potential for future
dengue outbreaks between May and August, when temperature and rainfall were sufficiently

high, informing the ideal time-period during which to increase disease surveillance.

Fitting systems of ordinary differential equations can therefore be useful in better
quantifying ecological drivers and ultimately informing control strategies. However, as

mentioned earlier, these systems of ordinary differential equations place strong assumptions
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on model parameters and assume homogeneity across space. Therefore, in order to better
understand the relationships between dengue epidemiology and other ecological factors,
fitting to individual based models is necessary. However, due to the computational costs of
the individual based model itself, fitting within a Bayesian framework, where the model
needs to be simulated hundreds of thousands of times, is impractical. Because of this,
man