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Quantum inverse iteration algorithm for programmable
quantum simulators
Oleksandr Kyriienko 1,2,3*

We propose a quantum inverse iteration algorithm, which can be used to estimate ground state properties of a programmable
quantum device. The method relies on the inverse power iteration technique, where the sequential application of the Hamiltonian
inverse to an initial state prepares the approximate ground state. To apply the inverse Hamiltonian operation, we write it as a sum
of unitary evolution operators using the Fourier approximation approach. This allows to reformulate the protocol as separate
measurements for the overlap of initial and propagated wavefunction. The algorithm thus crucially depends on the ability to run
Hamiltonian dynamics with an available quantum device, and can be used for analog quantum simulators. We benchmark the
performance using paradigmatic examples of quantum chemistry, corresponding to molecular hydrogen and beryllium hydride.
Finally, we show its use for studying the ground state properties of relevant material science models, which can be simulated with
existing devices, considering an example of the Bose-Hubbard atomic simulator.
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INTRODUCTION
Quantum computing offers drastic speed up for certain
computational problems, and has evolved as a unique direction
in the theoretical information science.1 However, the field of
experimental quantum computing is yet at its infancy. The typical
size of quantum chips for the reliable gate based quantum
computation ranges from one to several tens of physical qubits,
with the main limits posed by decoherence. Despite the
imperfections, the algorithms of ever-increasing complexity were
implemented on different platforms, with circuit depth exceeding
a thousand gates,2,3 ultimately allowing for quantum supremacy
demonstration.4

At the same time, the vox populi of quantum engineers says that
while experimental setups are developed and mastered rapidly,
the theorists in the field lag behind. Whereas by now textbook
examples of quantum algorithms with exponential and quadratic
speed up for factoring and search serve as a great motivation,1 the
estimates of gate counts are daunting, making them distant goals
for the future fault-tolerant quantum computers.5 Recent devel-
opments in this fast evolving field call for new short depth
algorithms which can solve useful problems in the era of noisy
intermediate scale quantum (NISQ) devices,6 and in future lead to
quantum advantage.
One of the most promising directions for quantum computation

is the field of quantum chemistry and materials.5,7 Targeting the
access to ground state properties of molecules and strongly
correlated matter, it can offer huge gain for various technological
applications, for instance helping to find a catalyst for the nitrogen
fixation.8 To date, different quantum theoretical protocols were
developed, and several proof-of-principle experiments on various
platforms were performed in the simplest cases. Examples include
simulation of molecular hydrogen with the linear optical setup,9

superconducting circuits,10–13 and trapped ions.14 Finally, the
variational simulation for larger molecules (LiH and BeH2) were
reported recently.11 From the material science perspective, the use
of cold atom quantum simulators has shown great promise, where

simulations of Fermi-Hubbard lattice dynamics,15 large scale
quantum Rydberg chain16 and Ising model,17 and two-
dimensional many-body localization18 have been performed.
However, in the latter cases the analog approach to simulation
is taken, given an access to unitary dynamics, while precluding the
study of ground state properties.
To access the ground state properties of quantum chemical

Hamiltonian, several routines can be used (see refs 19,20 for the
review). First option corresponds to the quantum phase estima-
tion algorithm (PEA),21 which exploits unitary dynamics of the
system controlled by register qubits. Although this algorithm is
efficient, giving logarithmic error and polynomial gate scaling, its
implementation requires substantial circuit depth for currently
available circuits.10 Moreover, the controlled type of operations
require the digitization of the circuit, thus complicating the use of
analog quantum simulators for PEA. Another approach is adiabatic
quantum computing, which was already applied to quantum
chemistry problems.22 However, the required adiabaticity of
dynamics typically results in the effectively long circuit depth.
Finally, an alternative route to quantum chemistry and materials is
offered by hybrid-classical variational approaches, which were
proposed recently.23 They rely on term-by-term energy measure-
ment for the prepared trial quantum state (ansatz) with
consequent classical optimization, and are referred to as Varia-
tional Quantum Eigensolvers (VQE).19,20,24 VQE can use a
chemically inspired ansatz,24 Hamiltonian variational ansatz,25 or
rely on the variational imaginary time evolution.26 The search for a
simple and efficient ansatz represents an important ongoing
research direction.27,28 In this case the depth of the quantum
circuit is greatly reduced, though at the expense of increased
number of measurements, being favorable strategy for NISQ
devices. For VQE the number of variational parameters scales as
O[(3N)k], where N is a number of qubits and k represents an
approximation order.24 While for quantum chemistry applications
k= 2 suffices to give useful results, these approaches are yet to be
tested for larger system sizes, where the multi-variable
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optimization may raise problems for the genuine ground state
estimation.29

In the following, we propose the quantum inverse iteration
algorithm for the estimation of the ground state energy (GSE) of a
quantum system. It is inspired by the classical inverse power
iteration algorithm for finding the dominant eigenstate of the
matrix, where the computationally demanding part of matrix
inversion and multiplication is performed by a quantum circuit.
Previously, a direct iteration approach was considered as a general
purpose quantum algorithm,30 aiming for large scale fault-
tolerant implementation. Here, we present the protocol of the
hybrid quantum-classical nature. It relies on performing quantum
evolution for different propagation times and classical post-
processing of the measured observables. The approach is applied
to quantum chemistry examples (H2 and BeH2 molecules),
showing favourable scaling with system parameters. Finally, when
applied to the Bose-Hubbard quantum simulator, it allows to study
its ground state properties, showing promise as a protocol for
analog quantum simulators and near-term quantum devices.

RESULTS
We start by considering a generic interacting system, which can
be described by the second quantized Hamiltonian. It can be
written as sum of two-body and four-body parts

Ĥ ¼
X
ij

vij â
y
i âj þ

X
ijkl

V ijkl â
y
i â

y
j âk âl ; (1)

where âyi (âi) can correspond to fermionic or bosonic creation
(annihilation) operators, and cover broad range of models. In the
fermionic case, Hamiltonian (1) can describe the full configuration
interaction problems in quantum chemistry, with operator âj
corresponding to molecular orbital j. Using the existing mappings
between fermionic and spin-1/2 systems, one can rewrite Eq. (1) in
the form of a local Hamiltonian Ĥ for interacting qubits, which
involves strings of Pauli operators. The task is then to find the
lowest eigenvalue of large matrix Ĥ, corresponding to GSE.

Inverse iteration
We propose the procedure which can be seen as a quantum
version of the inverse power iteration algorithm for finding the
dominant eigenvalue of the matrix, represented by the inverse of

Hamiltonian matrix Ĥ�1
, which is treated as a dimensionless

matrix in this section. Given that Ĥ is invertible, the order of
eigenvalues is reversed and, with the appropriate shift of the
diagonal to make eigenvalues positive, the power iteration allows
to find GSE. Namely, starting with an initial state jψ0i, which has
nonzero overlap with the sought ground state jψgsi, by repetitive
application of the inverted matrix one can prepare (unnormalized)

state, eψk

�� � ¼ ðĤ�1Þk ψ0j i, such that ψgsjψk

� ��� ��2 < ϵ for sufficiently
large number of iterations k ≥ K,31 where ψkj i ¼ eψk

�� �
= k eψk

�� � k
(Fig. 1). We note that generally this method has favorable
logarithmic complexity in the iteration depth, being K= log[ϵ
sin−2(θ0)∕(λ1 − λn)]∕[2 log(λ2∕λ1)], where λ1, λ2, and λn correspond

to dominant, sub-dominant, and smallest eigenvalue of Ĥ�1
. Here

sin2θ0 parametrizes the overlap between jψ0i and jψgsi, marking
that convergence of the procedure depends on the initial guess,
and generally can be made nonzero taking jψ0i as a random state.
While classical power iteration methods generally have good
convergence in the number of iterations, the main caveat comes
from the complexity scaling with the system size N. The
requirement for K matrix multiplications leads to O[K22N]
operations (for dense matrices), yielding exponential scaling. Even
worse situation is for the inverse matrix algorithm, where an

overhead comes from the Ĥ�1
calculation, requiring extra O[2N]

operations.

Fourier approximation
In the following we show that we can exploit the iterative
procedure with logarithmic iteration depth in ϵ, while providing
exponential speed up for the inverse Hamiltonian multiplication
process. The latter comes from the approximation theory,32

observing that the inverse can be represented as an integral
x�1 ¼ Rþ1

0 expð�xyÞdy, which by applying the trapezoidal rule
can be written as a sparse sum of exponents. For quantum
systems a similar idea was proposed in ref., 33 where Fourier
approximation of the Hamiltonian inverse was presented as a
double integral of the unitary propagator. This was further used to
design an efficient solver for the quantum linear equation system
problem.33,34 Here we extend the Fourier approximation to the k-
th power of the inverse (k ≥ 1), which formally reads

Ĥ�k ¼ iN kffiffiffiffiffiffi
2π

p
Z þ1

0
dy

Z þ1

�1
dzðzyk�1Þexpð�z2=2Þexpð�iyzĤÞ;

(2)

and N k is a normalization factor. The integral can be then
discretized as

Ĥ�k � iN kffiffiffiffiffiffi
2π

p
XMy�1

jy¼0

ΔyðjyΔyÞk�1
XMz

jz¼�Mz

ΔzðjzΔzÞexp½�j2zΔ
2
z=2�exp½�iðjyΔyÞðjzΔzÞĤ�;

(3)

where Δy,z correspond to the discretization steps for integration
variables, and My,z represent cutoffs for integration. Notably, once
applied to the physical Hamiltonian inverse, the discretization
variable Δz remains dimensionless, while Δy has the units of
inverse energy, serving akin to discrete time variable. The success
of approximation (3) depends on the condition number of the
Hermitian matrix Ĥ, given by the ratio of its largest to smallest

eigenvalue, κ ¼ λĤn =λ
Ĥ
1 . Finally, Eq. (3) can be conveniently

redefined as

Ĥ�k ¼
XLk
‘¼1

ck;‘expð�iϕk;‘ĤÞ � Ĥ�k
a ; (4)

where we have rewritten the double summation in Eq. (3) using
the superindex ℓ(jy, jz), ϕk,ℓ = ( jyΔy)( jzΔz) is a phase of evolution for
parameters chosen to discretize k-th inverse, and Lk=My(2Mz+ 1).
Here ck,ℓ represent purely imaginary coefficients for the series, and
∣ck,ℓ∣ define corresponding weights. The required size and number
of discretization steps Δy,z and My,z depends on ϵ and κ (see

Fig. 1 Flowchart of the quantum inverse iteration algorithm. First, the initial product state is prepared and the inverse Hamiltonian
operation is represented as a sum unitary evolution operators. Next, the iterated wavefunction can be formally obtained by applying the
inverse. Finally, physical quantities (e.g., energy) are estimated as expectation values of corresponding operator, and recast as a sum of
wavefunction overlaps.

O. Kyriienko

2

npj Quantum Information (2020)     7 Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;



Methods, section A, for the details). Importantly, they set the
maximal evolution phase ϕmax= (MyΔy)(MzΔz), which serves as an
equivalent of the total gate count for analog quantum simulation.
As we need to prepare the approximate ground state by

applying generally nonunitary operator Ĥ�K
to the initial state

jψ0i, we shall either introduce an ancillary register to perform it, or
properly account for the normalization of the resulting wavefunc-
tion. The former option is an excellent strategy for the future fault-
tolerant devices, and has beneficial scaling (Methods, Section A). It
has deep connection to linear composition of unitaries (LCU)
methods and duality quantum computing.35 The latter is more
suitable for programmable quantum simulators. In the following
we present the strategy, which can be applied to estimate the
ground state properties by sequential evaluation of terms in the
series. Similarly to VQE approaches, this relies on performing large
number of measurements, and thus adds an extra complexity as
compared to the generic implementation of the inverse operator.
At the same time, term-by-term readout offers better resilience to
errors where even imperfect procedure can yield reasonable GSE
estimate for quantum simulators.

Sequential energy estimation
Our final goal is to estimate system observables, provided that the
approximate ground state is prepared. For any operator Â it can
be retrieved from the measurement A ¼ hψgsjÂjψgsi=hψgsjψgsi,
where the normalization is accounted for explicitly. In particular,
we are interested in calculating the ground state energy λgs ≈ λk,
choosing the operator Â as Ĥ. This amounts to measurement of

Hamiltonian expectation value for ψkj i ¼Ĥ�k
ψ0j i in the form

λk ¼ hψk jĤjψki
hψk jψki

: (5)

We proceed by considering each propagated wavefunction
separately, such that λk can be related to wavefunction overlaps
(see flowchart in Fig. 1). This is motivated by the Hamiltonian
averaging procedure36 used in VQE to reduce the circuit depth at
the expense of larger number of sequential measurements. Using
Fourier expansion of the inverse Hamiltonian (4), the estimated
energy reads

λ
ðaÞ
k ¼

P
‘;‘0 hψk;‘0 jĤjψk;‘iP
‘;‘0 hψk;‘0 jψk;‘i

¼
P

‘;‘0 c
�
k;‘0ck;‘hψ0je�iðϕk;‘�ϕk;‘0 ÞĤĤjψ0iP

‘;‘0 c
�
k;‘0ck;‘hψ0je�iðϕk;‘�ϕk;‘0 ÞĤjψ0i

:

(6)

Note that expression (6) now includes overlaps between initial and
evolved wavefunction for the fixed phase, which shall be
calculated separately for the numerator (“energy”) and denomi-
nator (“norm”). Finally, we note that the wavefunction overlap can
be inferred using different approaches. One option corresponds to
using the SWAP test,37,38 which represents a common quantum
measurement strategy and requires system doubling. It can be
conveniently realized in some near-term setups, being successfully
demonstrated for cold atom lattices by many-body interferometry
of two copies of a quantum state.39 The overlap measurement
schemes continue to improve.40 Additionally, in the Methods,
section B, we describe an alternative approach, which does not
require extra qubits and relies on the measurements of
observables, once the reference state for the system is chosen.
In the previous section we described the general algorithm and

discussed its key properties, namely the scaling and sequential
operation. To show its use for the ground state estimation and
characterize the required resources for realistic problems, we
apply it to quantum chemistry.

Applications: molecular hydrogen
We start with by now the standard example of molecular
hydrogen, H2. As a test task we consider the spinful case. This
allows to examine the protocol for a system of higher complexity
(N= 4), comparable to lithium hydrate four-qubit simulation
considered in ref. 11 The details of mapping of quantum chemical
structure into qubits are presented in Methods, section C. In the
following we work with four-qubit molecular hydrogen Hamilto-
nianĤH2 , with all eigenenergies shifted to positive values. Starting
from the Hartree-Fock (HF) energy λ0, the task is to estimate GSE
λgs, using the protocol described in the preceding section. This
shall be done within the chemical precision ϵ, which is equal to
ϵ= 0.0016 Hartree, and thus defines the relevant cutoff for the
iteration procedure.
We start by benchmarking the inverse power procedure in its

general form, and define how many iteration steps one needs to
come close to the ground state. For this, we first perform the
inverse Hamiltonian iteration in the ideal setting, assuming that an
exact inverse is known. Then, we compare it to the quantum
inverse iteration, which uses the Fourier approximation (4). GSE is
estimated using the measurement of propagated and initial
wavefunction overlaps. To quantify the performance two char-
acteristics are employed. The first, and the most natural one,
corresponds to the difference between estimated energy value λk
and true GSE λgs, being Δλ∕J ≡ (λk− λgs)∕J. It allows to observe the
convergence and provides an indication of how well the
procedure works for a given system. The second quantity
corresponds to the trace distance between an idealized inverse

iteration matrix Ĥ�k
and its approximation Ĥ�k

a , defined as a half
of trace norm for the difference of two matrices. It reveals the
actual success of mimicking the ideal inverse in full generality. At
the same time, this is the quantity which cannot be straightfor-
wardly observed in the experiment, and only serves for the
analysis.
The results of the inverse power iteration for molecular

hydrogen Hamiltonian ĤH2 are shown in Fig. 2a as a function of
iteration step k. The ideal version of inverse iteration is plotted in
red and reveals exponential convergence to GSE. The chemical
precision is achieved already at the second iteration step, as
depicted by the blue shaded area starting at Δλ= 1.6 × 10−3J. The
idealized case is then compared to the quantum inverse iteration
procedure with combined measurement of wavefunction overlaps
as stated in Eq. (6). Here, we assumed that the genuine unitary
evolution with Hamiltonian ĤH2 is run in the analog simulation
fashion. The case of digital evolution with associated Trotterization
technique and its benchmarking is considered in the Supple-
mental Material, where we also present the circuit scheme for
digital evolution. The approximation was performed using equal
number of steps Mz=My= 30, and the discretization values Δz=
ΔyJ were adjusted to match the maximal propagation phases of
ϕmax∕2π = J(MyΔy)(MzΔz)∕2π = {0.3, 0.35, 0.6, 0.95, 1.35} (here, the
propagation phase is taken to be dimensionless by absorbing
energy unit prefactor J from the Hamiltonian). The corresponding
curves show the improvement of the quantum power iteration
estimation for increasing number of iteration steps. The conver-
gence rate also depends on the maximal phase of the
propagation. For small phases (top curves in Fig. 2a), the initial
estimator does not give successful convergence, but comes closer
to GSE for large k. As the propagation phase grows, the

approximation λ
ðaÞ
k starts to resemble the idealized iteration

procedure. However, this only happens up to a certain value of k
past which the approximate energy grows, thus deviating from
the ideal solution. From the point of view of process fidelity, the

trace distance Tr½Ĥ�k
;Ĥ�k

a � between ideal and approximate
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inverse operators increases monotonically with k (Fig. 2b). The

increase of ϕmax allows to reduce Tr½Ĥ�k
;Ĥ�k

a � at each k.
The performance of the quantum inverse iteration procedure is

further analyzed in Fig. 2c, d where energy distance to ground
state and trace distance are shown as a function ϕmax for several
fixed iteration steps (k = 2, 4, 7). Calculations were performed
accounting for two different ways of arranging the phase. First, the
approximation grid was fixed setting My=Mz= 30 while changing
Δz = ΔyJ (solid curves in Fig. 2c, d). In the second case the fixed
step size Δz= ΔyJ= 0.05 was combined with the increment of Mz,y

(dashed curves in Fig. 2c, d). For both energy distance (Fig. 2c) and
trace distance (Fig. 2d) we observe no difference between two
approximation procedures, but clear indication of the importance
of maximal propagation phase (time). For Δλ one sees a non-
monotonic dependence on ϕmax, which starts with a decrease of
the energy difference for increasing maximal phase (ϕmax∕2π <
0.4). At larger phases the dependence experiences pronounced
dips (note the log scale), which are more visible for many
iterations. Overall the difference remains well-within chemical
precision and experiences saturation. When the trace distance is
considered, one sees that success of the approximation mono-
tonically improves with ϕmax. At the same time, for fixed
approximation parameters {Mz,y, Δz,y} it is more difficult to
represent inverse iteration operator faithfully, in-line with scaling
analysis discussed in Methods. Finally, the comparison of results in
Fig. 2c, d allows to suggest that nonmonotonicity in the
spectroscopic signatures can come from the particular structure
of the Hamiltonian and the initial state, where certain phases
might be preferable (i.e., not all elements of the Hamiltonian
matrix contribute equally to the inverse iteration procedure).
To decide on the optimal way to approximate the inverse, we

consider different discretization steps for y and z auxiliary
variables, characterized by the skewness parameter ΔyJ∕Δz. The
calculation is done for Mz=My= 30 with the maximal phase fixed

to ϕmax∕2π= 0.92. The results are shown in Fig. 2e, f as a function
of skew. The energy difference parameter shows that for
approximating the inverse for small iteration numbers (k= 2
curve in Fig. 2e) larger skew factors are preferable, with z variable
requiring finer approximation. However, for increased iteration
number the optimum flows to ΔyJ∕Δz ~ 1 values, suggesting close-
to-equal spacing can work well for varied k. Examining the trace
distance, we see that in unbiased setting the skew ratio of ΔyJ∕Δz ~
2 is preferable.
Finally, the very important issue to address is an influence of

noise on the operation of quantum inverse iteration protocol. For
this we have performed the analysis including relevant dephasing
processes, which influence the estimate for overlaps (see details in
the Supplemental Material). Although noise makes the estimation
of energies at large iteration step k less reliable, it is possible to
estimate the energy within chemical precision using simple noise
mitigation techniques.

Applications: beryllium hydride
To test the scalability of the approach, we consider a molecule of
bigger size, which requires larger Hilbert space simulation. For this,
we choose to simulate beryllium hydride (BeH2) in the full spinful
version using N= 8 qubits (see Methods, section D, for the details).
We proceed in the same manner as for H2 molecule, and

quantify the operation of the quantum inverse iteration procedure
for BeH2. The approximation parameters were chosen as ΔyJ= Δz=
0.05, with the number of discretization points My,z adjusted
accordingly to maintain maximal propagation phase. The results
of the simulation are shown in Fig. 3. The first plot (Fig. 3a) shows
that ideal iteration works well for the beryllium hydride, with
chemically precise GSE obtained already at k= 1 iteration step.
The Fourier approximation for the inverse at small phases does
not reach required accuracy, while for the increased iteration step
number and ϕmax∕2π > 1 chemically accurate ground state

Fig. 2 Molecular hydrogen (H–H) example for benchmarking the quantum inverse power iteration (N= 4 qubits). a Energy difference
between the exact ground state and quantum inverse iteration estimate, shown as a function of the iteration step k for different maximal
phases of Fourier approximation (log scale). Solid red line shows the result for the ideal inverse iteration. Blue shaded area corresponds to the

chemically precise estimate (same in c, e). b Trace distance Tr½Ĥ�k
; Ĥ�k

a � between the ideal and approximate inverse operators shown as a
function of iteration step number for different phases. c Energy difference Δλ vs maximal propagation phase at different k (log scale). d Trace

distance Tr½Ĥ�k
; Ĥ�k

a � vs phase for k= 2, 4, 7. e, f Energy difference (e) and trace distance (f) plotted for the fixed maximal phase of ϕmax∕2π=
0.92, but different arrangement of the approximation grid defined by the skew parameter ΔyJ∕Δz. Several iteration steps k= 2, 4, 7 are
depicted.
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estimate can be attained. Figure 3b shows this behavior as a
function of phase for several representative k’s, and yields the
same conclusion. The increase of the required propagation phase
is attributed to the increased condition number for BeH2

Hamiltonian matrix, being 39.2 as compared to 3.38 for H2.

Applications: Bose-Hubbard simulator
Finally, to provide an example where quantum inverse iteration
algorithm can be largely beneficial, we consider the bosonic
version of the Hubbard model (see sketch in Fig. 4a). The
corresponding system Hamiltonian reads

ĤB�H ¼ �J
X
hi;ji

ðâyi âj þ h:c:Þ þ U
2

X
i

n̂iðn̂i � 1Þ � μ
X
i

n̂i; (7)

where âyi (âi) corresponds to the bosonic creation (annihilation)
operator at lattice site i. Here, n̂i ¼ âyi âi corresponds to the
number operator. The first term in the Hamiltonian (7) describes
the tunneling of bosons with rate J, which leads to their
delocalization at the lattice. For simplicity we consider a one-
dimensional lattice, and that tunneling happens only between
neighbouring sites 〈i, j〉. The second term in Eq. (7) denotes the

contact interaction between bosons with strength U. The last term
corresponds to the chemical potential μ. Importantly, the Bose-
Hubbard model corresponds to the paradigmatic example of hard
material science problem,41 and received considerable attention
from both theoretical42,43 and experimental perspective.44 In
particular, the model was shown to be easily solvable in the so-
called Mott insulating regime where U ≫ J and ground state
corresponds to the product state of one atom per site, jψMotti = ∏i

j1ii. However, going into the superfluid regime, where J becomes
comparable to U, the ground state is entangled, and it is generally
difficult to study the low energy properties of this system.
We show that quantum inverse iteration algorithm can be

applied to study the ground state properties of the Bose-Hubbard
Hamiltonian in the wide range of parameters. For this, we consider
an initial state corresponding to the Mott state, jψ0i ¼ jψMotti,
and perform the iteration as detailed in the “Protocol” subsection
of Results. The numerical results for the energy deviation are
shown in Fig. 4b, where Δλ∕U ≡ ∣λk − λgs∣∕U is plotted as a function
of iteration step k. We consider N= 5 lattice with μ∕U= 0.5,
different values of tunneling rate J, and similarly to H2 and BeH2

examples the energies were adjusted by trivial overall shift E0 to
ensure positive eigenvalues. The Fourier approximation is
performed using My=Mz= 40 and Δz= ΔyU= 0.075. While for
relatively small tunneling J= 0.01U the product state is a good
ground state approximation, thus giving small energy deviation
(lowest curve in Fig. 4b), for larger J ~ 0.1U the system enters a
superfluid phase (critical value for μ= 0.5U approximately
corresponds to Jcrit∕U ≈ 0.1342). Despite the qualitatively different
initial state, the algorithm allows to distill correct energy proper-
ties even for large J.
Going beyond the ground state energy estimation, quantum

inverse iteration can be also used to measure the correlations in
the ground state of the model. We considered the correlation
function of the form hψk jâycþr âcjψki, where jψki corresponds to the
propagated state, and overall procedure is similar to the one
described in Eq. (6). We fix c= 3 to be the central site in the lattice,
and look for intra and intersite correlations with r= 0, 1, 2. The
results are shown in Fig. 4c, d, e where in the Mott insulator
regime correlations fall-off rapidly (Fig. 4c), while in the superfluid

U

J [0]

[1]

[2]

Bose-Hubbard simulatorA.

B.

C. D. E.

J/U=0.01

0.05
0.1

J/U=0.2

J/U=0.01 J/U=0.05 J/U=0.2

k=1 2...
k=1

2
3

k=1

2

3
4

Fig. 4 Bose-Hubbard ground state energy estimation for a chain of five atoms. a Sketch of the system, which depicts coherent tunneling
processes with the rate J and the nonlinear interaction of strength U. Correlations are measured for a set of distances r= [0, 1, 2]. b Energy
difference for the true GSE and quantum inverse iteration estimate are shown for different iteration steps k (log scale). Several tunneling
values are chosen, J∕U= 0.01, 0.05, 0.1, 0.2, capturing the transition between insulating and superfluid behaviour. c–e Correlation functions of
the form hâycþr âci are calculated for the approximate ground state at increasing iteration step k, and for several values of J∕U (log scale).
Correlations for true ground state are shown in blue (large dots and top curves).

Fig. 3 Beryllium hydride (H–Be–H) ground state energy estima-
tion (N= 8 qubits). a Energy difference for true GSE and quantum
inverse iteration shown for different iteration steps k and maximal
propagation phases ϕmax (log scale). The red line corresponds to an
ideal iteration procedure. b Same energy difference shown as a
function of maximal phase at k= 2, 4, 7. In both panels the blue
shaded area corresponds to the chemically precise estimate.
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case the quantum inverse iteration method allows to restore
genuine correlations (blue dots and curve) at increased k (Fig. 4e).
Importantly, the described Bose-Hubbard simulation can be

performed experimentally using available controllable
devices.39,44 First, it allows to run unitary dynamics for sufficiently
long times and large particle numbers. Second, the many-body
interference technique enables the convenient measurement of
the wavefunction overlap, where part of the system is evolved and
later is interfered with the initial copy.39 We note that our
approach also bears similarities with recently introduced Quantum
Virtual Cooling.45 This study demonstrated the reduction of the
temperature in half, while the inverse iteration offers the access to
close-to-zero temperature. Finally, the intriguing possibility is an
application of quantum inverse iteration to 2D models18 and
Fermi-Hubbard model,15 which shall be possible with improved
interference techniques.45

DISCUSSION
We have presented the algorithm for the ground state energy
(GSE) estimation of a quantum Hamiltonian. It is based on the
iterative application of the Hamiltonian inverse to the initial state,
and can be represented as a sum of unitary evolution operators.
Targeting near-term quantum simulators, we described the
protocol as a separate estimation of GSE contributions from the
wavefunction overlap measurements. Then, the results from the
quantum dynamical simulation are post-processed classically, and
provide energy estimate for each iteration step.
The algorithm was applied to several quantum chemistry

examples, being molecular hydrogen and beryllium hydride. Using
the four-qubit H2 simulator, we benchmarked the performance of
iteration and inverse approximation, showing that the most
valuable resource for GSE estimation is a maximal available time
for unitary evolution. Both digital and noisy operation was
considered, and found to be sufficient for a GSE calculation with
chemical accuracy.
As an outlook, we highlight that the approach can be beneficial

for analog quantum simulators such as cold atoms lattices,18

Rydberg atom simulators,16 trapped ions,17 and superconducting
devices.46 For instance, the analog-type fermionic quantum
chemistry simulator47 would be much valued for the task. Future
applications also include material science problems, with the main
target being Fermi-Hubbard model.15 For instance, we note that
recently proposed approach of Quantum Virtual Cooling,45 which
was experimentally applied to Bose-Hubbard model, has similar
iterative structure and requires interferometric measurements.
This poses the question of connection between the measurement-
based cooling scheme and the dynamic protocol described in the
current study. Finally, we note growing interest to protocols,
which exploit wavefunction overlap measurements.48,49 This can
be seen as an emergence of hybrid algorithms, which mimic
nonunitary operation, and together can form the base for
dynamical quantum computing.

METHODS
Scaling and fault-tolerant implementation
In this section we consider the scaling for the quantum inverse iteration
algorithm. For k= 1 it was shown in ref. 50 that the inverse Hamiltonian can
be approximated up to an error ϵ setting the discretization steps to Δy=
Θ (ϵ∕log(κ∕ϵ)), Δz=Θ (1∕κ log(κ∕ϵ)), and summing up to My=Θ (log(κ∕ϵ)
κ∕ϵ), Mz=Θ (κ log(κ∕ϵ)) (κ is a condition number). The maximal evolution
phase then scales as ϕmax= (MyΔy)(MzΔz)=O(κ log(κ∕ϵ)), and is an
equivalent of the total gate count for analog quantum simulation.
Generalizing the result to k-th inverse iteration, the upper limit on the
maximal required phase shall be multiplied by K, where truncation of the
inverse iteration introduces an additional error. In the study we considered
particular examples, and quantified the validity of Fourier approximation as
a function of {My, Δy, Mz, Δz} parameters.

Considering the fault-tolerant implementation, the approximate ground

state can be prepared by applying generally nonunitary operator Ĥ�K
to

the initial state jψ0i using an ancillary qubit register. One possible option
here is the amplitude amplification approach,51 which addresses the task
of implementing the sum of unitary operators, of the same type as the one
in Eq. (4). Moreover, since we also require simulation of Hamiltonian
dynamics for expð�iϕk;‘ĤÞ, which may be not accessible in analog-type
simulation, the subsequent use of Hamiltonian simulation52 or qubitiza-
tion53 methods would lead to favourable resource scaling. The algorithm
will require O(log(L)log(cϕmax∕ϵ)∕log[log(cϕmax∕ϵ)]) auxiliary qubits (c ≡
∑ℓ∣cℓ∣, L = My(2Mz + 1)) and same order of controlled unitaries. This scaling
can be compared to the iterative modification of the quantum phase
estimation procedure (IPEA), based on a small fixed register54 or a single
auxiliary qubit.55 The latest represents conceptually the closest algorithm
to the one described in the paper, and thus will serve as benchmark. The
complexity of IPEA was discussed in ref., 55 showing the requirement of O
[log(ϵ)log(log(ϵ)∕ϵ)] phase iterations to approach an error of ϵ= 2−m

(energy is rescaled such that k Ĥ k < 2π, and m is the number of relevant
bits of precision, typically limited to <20 for quantum chemistry
applications). Each k-th IPEA step then requires implementation of the c-

Uk operation, defined as implementation of ðe�iĤÞk , controlled on the
register qubit. This leads to O[N4 log(ϵ)log(log(ϵ)∕ϵ)] gate count, compar-
able to the inverse iteration procedure described above.
Given the favorable scaling, the cost of the general purpose quantum

inverse iteration algorithm can be small for future large scale quantum
devices. However, generally there is no simple procedure to perform c-U
operation, and it requires decomposition into a set of universal gates or
multi-layer SWAP technique.56 This enlarges the actual circuit depth (while
being polynomial), and precludes the implementation of U ¼ expð�iϕĤÞ in
analog fashion. Therefore, we target programmable devices with possible
analog-type implementation and use sequential estimation strategy
described in the main text.

Overlap measurement
To measure the overlap between the evolved and initial wavefunction, we
propose to exploit a single eigenstate jψRi of the system as a reference,
and measure the overlap with respect to its energy λR (usually set to zero).
This nicely fits the task of GSE estimation for the fermionic Hamiltonian, as
its Hilbert space includes a vacuum state with no fermions present (unless
space reduction procedure was performed). Similar technique was used for
extracting spectroscopic signatures of photon localization.57 The main
steps for the measurement are as follows. The task is formulated as finding
〈ψ0∣ψ0(t)〉, where jψ0i is the initial state (typically corresponding to the
Hartree-Fock solution). The state ψjðtÞ

�� � ¼ ÛðtÞ ψj

�� �
is a time-propagated

state with some unitary Û defined by the expansion. The HF state can be
prepared from the reference jψRi (vacuum or other product state) using
the product of local operators, and we note that these states are
orthogonal. Then, the overlap probability is measured as an expectation
value of the operator M̂0 ¼ ψ0j i ψ0h j for time-evolved wavefunction, which
reads

TrfM̂0 ψ0ðtÞj i ψ0ðtÞh jg ¼ jhψ0jψ0ðtÞij2 ¼: jO0;t j2: (8)

Next, the superposition of the vacuum and initial state shall be prepared as
ψþ
�� � ¼ ð ψRj i þ ψ0j iÞ= ffiffiffi

2
p

and evolved to jψþðtÞi. Its overlap probability is
measured as an expectation value of M̂þ ¼ ψþ

�� �
ψþ
� �� operator. This can be

written as

TrfM̂þ ψþðtÞ
�� �

ψþðtÞ
� ��g ¼ jhψþjψþðtÞij2

¼ 1
4

1þ jO0;t j2 þ 2RefO0;te
�iλRtg

� �
¼: jOþ;tj2;

(9)

and provides an information about real and imaginary parts of O0;t . The
same procedure is performed for measuring an expectation value of the
operator M̂i ¼ ψij i ψih j, where ψij i ¼ ð ψRj i þ i ψ0j iÞ= ffiffiffi

2
p

. An additional
information is gained with

TrfM̂i jψþðtÞihψþðtÞjg ¼ jhψi jψþðtÞij2

¼ 1
4

1þ jO0;t j2 � 2ImfO0;te
�iλRtg

� �
¼: jOi;tj2;

(10)

and both real and imaginary part of O0;t can be found for the known
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reference λR from the system of Eqs. (8)–(10) as

RefO0;tg ¼ ½2jOþ;t j2 � ðjO0;tj2 þ 1Þ=2�cosðλRtÞ
�½2jOi;t j2 � ðjO0;tj2 þ 1Þ=2�sinðλRtÞ;

(11)

ImfO0;tg ¼ �½2jOi;t j2 � ðjO0;tj2 þ 1Þ=2�cosðλRtÞ
�½2jOþ;tj2 � ðjO0;t j2 þ 1Þ=2�sinðλRtÞ:

(12)

Note that we are mostly interested in the real part of the sought overlap
Refhψ0jψðtÞig, as both the “norm” and “energy” terms of λk are real, and
imaginary parts of the overlap cancel out. This can be also shown formally
if an exact form of expansion (3) is considered. The numerator of Eq. (6)
can written term-by-term such that terms with equal jz ¼ j0z are considered,
accompanied by associated exponents eiδϕĤ and e�iδϕĤ. Similarly, the
terms with jz ¼ �j0z can be grouped. Combined this leads to λk /
hψ0jcosðδϕĤÞjψ0i dependence, while odd imaginary terms have vanished.
Thus, it is also possible to deduce the real part indirectly as

jRefO0;tgj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jO0;tj2 � ImfO0;tg2

q
; (13)

and its sign can be inferred from the measurement in Eq. (11). We note
that in principle these are two related ways to estimate the real part of the
overlap, corresponding to Eqs. (11) and (13). While being equivalent in the
noiseless case, the effects of decoherence make two approaches distinct
(see Supplemental Material for the details). For the practical purposes we
thus refer to the overlap estimate in (11) as direct estimation approach and
refer to (13) as the indirect estimation.
Physically, the measurement procedure resembles the Bell-type

measurement, where in the simple case of two-qubits a single CNOT
operation and the Hadamard gate are required. For the larger system the
measurement is generalized to GHZ-type, and consequently requires
increasing number of two qubit operators, which depends on how much
an initial HF state is different from the reference state.
Finally, we note that direct measurement is possible in atomic setups,

where many-body interferometry is applied to two copies. This can be
used in the analog circuits where system size doubling plays lesser role,
and can compensate the absence of fully addressable individual gate
operation.

Molecular hydrogen Hamiltonian
The fermionic Hamiltonian ĤH2 is first written in the form of Eq. (1) (main
text), where coefficients vij and Vijkl are calculated by conventional
quantum chemistry methods. Here, we exploited the OpenFermion
package for Python,58 which allows to extract the interfermionic
interactions for four Gaussian orbitals fit via STO-3G method and perform
the fermions-to-qubits transformation. For the small N= 4 system we have
chosen to use the Jordan-Wigner transformation, although other options
may be used as the system size increases. Specifically, we consider the
bond length for H2 to be 0.7414 (measured in Ångström) and consider full
excitation space. For concreteness, we provide the full form for the
Hamiltonian, being

ĤH2 ¼ ξ0 þ ξ1ðZ0 þ Z1Þ � ξ2ðZ2 þ Z3Þ þ ξ3Z0Z1

þξ4ðZ0Z2 þ Z1Z3Þ þ ξ5ðZ0Z3 þ Z1Z2Þ þ ξ6Z2Z3

�ξ7ðX0X1Y2Y3 � X0Y1Y2X3 � Y0X1X2Y3 þ Y0Y1X2X3Þ;
(14)

where Xj, Yj, Zj denote Pauli matrices for qubit j. The coefficients read ξ0∕J=
−0.098864, ξ1∕J = 0.171198, ξ2∕J = 0.222786, ξ3∕J = 0.168622, ξ4∕J =
0.120545, ξ5∕J = 0.165867, ξ6∕J = 0.174348, ξ7∕J = 0.045322. The energy
scale J for the actual H2 Hamiltonian corresponds to Hartree units, while for
the quantum simulator J corresponds to the effective qubit coupling.
Throughout the text, we measure energy in units of J, and the time is
measured in J−1 units. The digital implementation for the unitary evolution
with Hamiltonian (14) is presented in the Supplemental Material. The
Hartree-Fock (HF) solution for the problem is given by the approximate
ground state ψ0 = (↓, ↓, ↑, ↑)T, and associated HF energy is −1.116684J.
As required by the Fourier approximation approach, the reference energy
is then shifted towards positive values by adding constant term equal to
E0∕J= 2, and we refer to the shifted Hamiltonian asĤH2 in the main text. Its
HF energy is λ0= 0.883316J after the shift. The task is then to estimate the
ground state energy λgs of the Hamiltonian ĤH2 , achieved by preparation
of approximate ground state jψki. This shall be done within the chemical
precision ϵ, which is equal to ϵ= 0.0016 Hartree, and thus defines the
relevant cutoff for the iteration procedure.

Beryllium hydride Hamiltonian
The molecular data structure of beryllium hydride (BeH2) was generated
using Psi4 quantum chemistry package59 considering equal Be−H
distances equal to 1.33 Ångström. While generically described by six spin
orbitals, we set lowest and second excited orbital to be occupied, and set
multiplicity of unity, such that the ground state energy lies close to the full
configurational space solution (STO-3G basis). The fermionic Hamiltonian is
then obtained using OpenFermion package, and as in the case of H2 the
Jordan-Wigner transformation was used to rewrite it in the qubit form.59

The problem then can be solved using N = 8 qubits. The GSE from the
exact diagonalization of original BeH2 Hamiltonian reads −1.806750
Hartree, and analogously to the molecular hydrogen the Hamiltonian
matrix is shifted by constant energy term of 2 Hartree. The product state
corresponding to Hartree-Fock solution reads ψ0 = (↓, ↓, ↑, ↑, ↑, ↑, ↑, ↑)T,
with associated energy for the shifted Hamiltonian being λ0∕J = 0.203323.
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