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Abstract  

With the general trend across all commodities towards the treatment of lower grade and 

medium grade ores, it is becoming increasingly important to develop the proper design for 

comprehensive mineralogical characterization and a complete procedure based on image analysis 

and grade distribution is proposed for the measurement of the liberation in the particles to reach 

the mineral liberation modeling. 

The tendency for the complexity of the mineral group in the ore to increase requires the 

use of more complicates tools in order to characterize the ore in the context of the implications of 

the mineralogy on its process response. Some of the key mineralogical attributes that are used to 

inform process selection and infer process response include: which identification of valuable 

minerals; the type and relative proportions of the minerals present (modal mineralogy); and the 

grain size, association and liberation characteristics of the valuable minerals.  

Ta and W ores are typically complex in terms of their mineralogical characterization. 

There are a wide range of minerals that contain Ta and W in different proportions which can make 

it difficult to identify them. Additional challenges include the relatively low concentrations of Ta 

(ppm) within an ore, the large number of Ta and W-bearing minerals that can occur in a deposit 

and the potential for Ta and W to occur in wide range of different minerals. Therefore, 

understanding the mineralogical attributes of the ore, particularly the valuable minerals within the 

ore, is critical in developing an effective concentration processing strategy. 

Automated SEM-based systems are a commonly used tool to quantify these attributes for 

an ore, but the low-grade and medium grade together with the large number of minerals that are 

potential hosts for Ta and W means that often, complementary analytical tools must be used in 

order to properly account for the valuable element. 

This thesis aims to develop an appropriate methodology to characterize complex low-

grade Ta and medium grade W ores for the purpose of developing the most appropriate physical 

separation strategy. As result of this investigation a methodology is proposed for the 

mineralogical characterization and it consists of three different levels of characterization using 

different analytical techniques. Level 1, the simplest (which included chemical analysis, XRD, 

optical microscopy, SEM, and EMPA), was applied to Penouta and Mittersill ores and 

successfully characterized the mineralogy. Level 2, which included mineral characterization of 

the processed ores, and were XRD, SEM, and EMPA were needed for ores. The ores required the 

added sophistication of Level 3. In addition to the techniques of Level 1 and Level 2, Level 3 

included the use of chemical analysis and automated SEM to estimate the mineralogical attributes 

of the ores. The insights from the mineralogical characterization were then used to inform the 

physical separation testing that was undertaken, for example, selective or bulk concentration.  

The ore characterization for Penouta deposit identified the presence of at least eight 
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tantalum-bearing minerals including coarse grained quartz. Mineralogical analysis of 

preconcentration test samples indicated that that columbite-group minerals (CGM) are the most 

abundant Nb-Ta rich phases in the Penouta leucogranite. These results, together with the 

mineralogical characterization, indicated that selective gravity separation would be an appropriate 

processing route for this ore. The fine-grained Ta minerals required a P80 of about 100 µm. The 

final flow sheet produced a rougher concentrate that contained 103 ppm of Ta, at a recovery of 

52%.  

In the Mittersill ore, the majority of the scheelite (>99%) was contained in hornblende, 

which itself represented approximately 33% of the ore. A bulk separation strategy using shaking 

table and the introduction of grinding to generate a P80 of 150 µm, was necessary to recover 

scheelite minerals to achieve a rougher concentrate of 2260 ppm W at a recovery of 87%.  

The mineralogical characterization of Mittersill, during which an association was found 

between scheelite and quartz, accounting for more than 17% of quartz in this ore with most of the 

remainder occurring as fine-grained quartz helped to guide the mineralogical characterization. 

This work describes a method for determining the downstream milling energy 

requirements for the mill products based on a Bond mill test performance. The grade distribution 

of particles at a given size fraction was calculated using a predictive liberation model. The 

concentration behavior of these particles in size fractions was evaluated using batch concentrate 

tests. The recovery of particles in size/grade classes, image analysis using mineral liberation 

analysis (MLA), and function calculations were implemented for the modeling of the liberation. 

By describing the size, grade, and recovery data of particles in size/grade classes, a technique for 

the measurement of distribution functions was developed that relates beta distribution, a model 

for the function based on the incomplete beta function, and a solution to produce liberation 

modeling. It was shown that the predicted results agreed well with the observed results. With a 

procedure for measuring the liberation, it was possible to carry out the first experimental 

measurement of the beta distribution. The model was implemented in MATLAB, a simulation 

model, with King’s solution to the beta distribution function model that includes the liberation 

distribution. 

The outcomes of this research include:  

Ø A systematic method that enables the development of gravity separation strategies to 

achieve >50% tantalum and >80% scheelite recovery in laboratory rougher separation. 

Analyses of concentrate products were performed on unsized, size-by-size and size-by-

liberation bases, opening a broad understanding of the behavior of complex low-grade 

tantalum and medium grade tungsten ores. 

Ø A framework for assessing the ‘liberation model’ of tantalum and tungsten ores based on 

the mineralogical characteristics of the ores and the gravity separation performance. 

Ø The liberation/concentrate model has wide potential applications for metallurgy and plant 
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design, where the liberation modeling is to be determined with the distribution density 

solution to the predictive mineral liberation function equation, which includes the 

liberation of ores samples and their liberation characteristics. 

In summary this work provides a clear demonstration of how powerful a detailed 

mineralogical study at the onset of a project can be to guide the modeling the liberation test work 

for improved recoveries. 
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Chapter I  
Introduction 
 
1.1. Context  

One of the current trends in the mining industry is the need to move towards processing 

more complex and low-grade ores (Mudd, 2010). This presents new challenges and provides an 

opportunity to conduct research to improve the understanding of how mineralogy can affect the 

separation of among minerals. Particularly the importance of liberation of valuable minerals, the 

potential activation of gangue minerals and the presence of minerals that generate slimes that may 

coat the surface of the valuable mineral. 

In nature ore minerals exist physically and chemically combined with the gangue, or 

minerals of non-commercial value. Removal of the unwanted gangue to concentrate ores in an 

economically viable manner is the basis of mineral processing operations. The greatest challenge 

to a mineral processor is to produce high grade concentrates with the maximum recovery from 

the ore body. To quantify recovery a reasonable idea of the initial concentration of mineral in a 

lode is required (Gupta, 2006). 

An intimate knowledge of the mineralogical assembly of the ore is essential if efficient 

processing is to be carried out. This requires to know not only the nature of the ore and gangue 

minerals but also of their texture and mineral assemblage is required (Harris, 1990; Wills, 2006; 

Goodall et al., 2015; Sykora et al., 2018; Alfonso et al., 2019)).The processing of minerals should 

always be considered in the context of the mineralogy of the ore in order to predict grinding and 

concentration requirements, feasible concentrate grades and potential difficulties of separation 

(Hausen, 1991; Guerney et al., 2003; Baum et al., 2004). Microscopic analysis of concentrate and 

tailings products can also yield much valuable information regarding the efficiency of the 

liberation and concentration processes (Wills, 2006). 

In mineral processing, the name "liberation" is used as synonymous to the study of 

mineral particle composition. In the same way, "liberation spectrum" is used in a broad manner 

to refer to the distribution of grades in a particle population (Schneider, 1995). This distribution 

can be multidimensional since there is no upper limit for the number of phases present in a mineral 

particle population. The simplest system, and probably the most common, is the binary ore, where 

one phase is regarded as gangue and the other as ore. 

The importance of liberation to mineral processing operations has been recognized since 
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the late 1930's (Gaudin, 1939) and liberation has become an active field in mineral processing 

since the mid-1980's because of the high improvements in the analytical instrumentation, maturity 

of mineral processing simulation, and the increase in computing power. 

Among the raw materials of high critical interest are the tantalum and tungsten ores, both 

included in the European Union list of critical raw materials (European Union, 2017); Figure 1.1) 

 

 
Figure 1.1. Raw materials classified according to the economic importance and supply risk in the EU (European 

Comission 2017). In red those considered as critical in the 2017 list. 
 

Tantalum has a great relevance nowadays for its use in modern technologies., It is 

difficult to substitute using other metals and is considered a critical metal (Mackay and Simandl, 

2014; Chakhmouradian et al., 2015). Europe needs to have greater self-sufficiency in the exploitation 

of strategic metals; for this reason, the exploitation of low-grade deposits should be considered. 

This is the case with the tantalum ore deposits in Europe.  

Tantalum deposits are mainly pegmatites and rare metal granites (Černý et al., 2005). In 

general, low-grade tantalum ore deposits in rare metal granites are relatively abundant in the 

western and central parts of Europe. However, in order to make the exploitation of these deposits 

economically viable, their processing needs to be optimized. To this end, it is crucial to know the 

mineralogical and textural characteristics of the ores in order to be able to carry out their liberation 

in the most efficient way. 

Tungsten is considered a critical raw material because its economic importance and local 

production (European Commission 2017). Tungsten has a wide range of application in industry 
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such as high temperature technology, chemical industry, lighting, X-ray technology, superalloyds 

(Mohammadnejad et al., 2018). Some properties made possible these applications, as its low 

vapor pressure, high melting point, good electrical and thermal conductivities, high density, high-

elastic modulus, high wear resistance and good X-ray performance (Rieck 1967; Ilhan et al, 

2013). More than 83 % of the world tungsten production comes from China and only 3.1% from 

Europe (USGS 2019). These made tungsten a critical metal for the European Union (European 

Commission, 2017) and it is also considered as critical by other entities as the US Department of 

defense and the government of the Russian Federation (Chakhmouradian et al., 2015). However, 

Europe has aa high potential for tungsten with abundant deposits (Table 1.1). 
 

Table 1.1. Main tungsten mines and prospects in Europe. 
Deposit country Metal Type Ore References 
Mittersill Austria W Stratabound Sch Thalhammer et al. (1989) 
Panasqueira Portugal W Greisen Wf Kelly and Rye (1979) 
Hemerdon United Kingdom W Greisen Fb Shepperd and Miller (1988) 
Los Santos Spain W Skarn Sch Tornos et al. (2008) 
Barruecopardo Spain W Greisen Sch, Wf Antona et al. (1994) 
La Parrilla Spain W veins Sch Mangas and arribas (1988) 
San Finx Spain W-Sn Greisen Wf, Cst, Sch Gonzalo Corral, Gracia 

Plaza (1985) 
Santa Comba Spain W-Sn Greisen Wf, Cst Cuenin and Gagny (1983) 
Morille Spain W Stratabound Sch Arribas (1979) 
Borralha Portugal W (Cu,Ag) veins Wf, Sch Norohna (1984) 
Covas Portugal  Skarn Sch, Wf, Fb Coelho et al. (1988) 
Salau France W-Cu-Au Skarn Sch Fonteilles et al. (1989) 
Montbelleux France W-Sn Veins Wf Chauris et al. (1989) 
Puy –les-Vignes France W Veins Wf Harleux et al. (2015) 
Enguialès France  Veins Wf, sch Lerouge et al. (2000) 
Fumade France W Skarn Sch Safa et al. (1987) 
Krásno  Czech republic Mo-W Greisen Wf Beran and Sejkora, (2006) 
Cínovec Czech republic Sn-W-Li-Ta Greisen Wf Breiter et al. (2017) 
Carrock United Kingdom W Greisen Wf, Sch Ball et al. (1985) 
Myszków Poland Sn-W Skarn Sch,Wf Podemski (2001) 
Yxsjoberg Sweden W Stratabound Sch, Mo Romer and Öhlander 1994) 

  

Tungsten con be exploited in different types of deposits, the most important are vein and 

stockwork, greisen, skarns, and stratabound. Usually, grisen-type and vein-stockwork deposits 

coexist in the same area. The main tungsten ores are scheelite (CaWO4) and wolframite, which is 

member of a solid solution constituted by hubnerite (MnWO4) and ferberite (FeWO4). 

Approximately two-thirds of the world tungsten reserves consist of scheelite deposits (Lassner 

and Schubert, 1999; Hu., 2012; Shepeta, 2012). 

Most liberation models, including the first quantitative model proposed by (Gaudin, 

1939), are based on the analysis of the mineral texture of an ore. In these models, the 

mineralogical texture of an ore is simplified and characterized in such a way so that the liberation 

distribution of the particles can be predicted as a function of size. For example, regularly arranged 

cubes are used to model ore texture and fracture patterns in Gaudin's model. Although this model 

was simple, the idea of superimposing fracture patterns on an ore texture seeded much of the work 

that followed. 
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Recovery of minerals using ore dressing and concentration operations is based on 

methods that separate particles on the basis of their physical or chemical properties. Individual 

minerals can be completely separated only if each particle contains only one mineral. Two 

minerals in the same particle can never be separated using physical separation methods alone. 

Separating minerals at the particulate level is referred to as liberation since the individual minerals 

are liberated from each other in a physical way. In practice, however, the comminution processes 

that are used to reduce mineralogical raw materials to the particulate state are, for the most part, 

unselective, and, apart from a few unusual cases, the particles that are formed consist of mixtures 

of the mineral components that are present in the original ore. 

During comminution, however, there is a natural tendency toward liberation, and 

particles that are smaller than the mineral grains that occur in the ore can appear as a single 

mineral. It happens when the particle is formed entirely within a mineral grain. Obviously, this 

will occur more frequently as the particle size gets smaller, and it is impossible when the particle 

is substantially larger than the mineral grains in the ore. Methods that can be used to model these 

distributions are presented in this report. These methods must necessarily be quite complex 

because the geometrical structure of any mineralogical material is not uniform and cannot be 

described by the familiar conventional, regular geometrical entities such as spheres and cubes. 

Mineralogical textures have indeterminate geometries that are, to a greater or lesser extent, 

random in size, shape, orientation, and position. Likewise, the particles that are generated by 

comminution operations are irregular in shape and size. Thus, the particle population is made up 

of individuals that have irregular shapes and sizes and which are composed of material that itself 

has an irregular and complex texture of mineral phases. In spite of this lack of regularity, the 

distributions of particles with respect to composition do show some regular features, particularly 

with respect to the variation of the distribution with particle size. 

A liberation study is also useful to improve the performance in other mineral processing 

operations. The product particles of the comminution stage will be subjected to classification 

according to one or more of its properties. In order to study the behavior of particles in the 

classification process, it is important to know the liberation distribution of the particles. 

King (1975) developed a predictive liberation model based on distribution grade of 

valuable mineral and gangue when describes a population of particles that have a distribution of 

mineral content which produced during grinding process. He proposed that the fraction of the 

population which is fully liberated mineral, and fraction consist of gangue particles produced by 

random breakage.  

King (1979) proposed a theory which was completely free of empirical constants or other 

parameters. The theory predicts that the fractional liberation of mineral at mesh size D is given 

by: 
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𝐿(𝐷) = 1 − (
) ∫ {1 − 𝑁(𝑙|𝐷)}{2 − 𝐹(𝑙)}𝑑𝑙34

5                                  (1-1) 

where 	𝐹(𝑙)the distribution of linear intercept lengths for the mineral and µ is the mean 

linear intercept length for the mineral. 𝑁(𝑙|𝐷) is the linear intercept distribution function for 

particles of mesh size D and Du is the largest intercept length across any particle of mesh size D. 

Schaap (1979) was extended this model including the compound particles and liberated 

particles produced during random breakage. 

A liberation model based on the texture of the parent rock has been described by Barbery, 

(1991); Barbery and Leroux, (1988). According to Barbery (1991) the grade distribution of 

valuable mineral and gangue based on ore texture and particle structure has been estimated. 

Several models have been developed to describe the liberation properties of mineral 

particles include liberation characteristics in predicting downstream separation process by using 

texture and grade distribution of low-grade ores (Schaap, 1979; Subasinghe, 2008). 

Barbery (1991) and King (2012) to describe the shape of the valuable and gangue 

minerals, developed beta distribution function with parameters α and β. This is only an 

approximation to the distribution measurements and has shown that it is generally applicable for 

low- and high-grade ores. It has also been assumed that the model may be extended to composite 

ores as valuable mineral and gangue. This distribution function was developed (King, 2012) for 

the description of the populations of particles that have variable mineral content. This distribution 

function is based on the beta distribution that is widely used in mathematical statistics could be 

estimated from: 

               𝑃(g) = (1 − 𝐿5 − 𝐿()
9:;<((=9)>;<

?(@,B)
																											0 < 𝑔 < 1                (1-2) 

where g is the average grade of the particle produced from random grinding made on a 

plane section of the parent rock, α and β are the distribution parameter and B (α, β) is distribution 

function. 

Zhang (2012) measured the linear intercept grade distribution of valuable mineral and 

gangue and found that the particle breakage may have occurred during the grinding process 

provided a better fit to simulated data in different size classes (e.g. 300 µm and 800 µm). A 

comparison mainly of liberated and gangue minerals using a binary ore has been done and 

developed a liberation model to predictive the liberation by Zhang and Subasinghe (2016) and 

the grade distribution of comminuted particles were determined from linear measurements. 

 

1.2. Objectives 

The research objectives have been divided into the overall objective and specific 

objectives; both are described in the following paragraphs. 
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1.2.1. Overall objective 

The overall objective of the present research was to develop an appropriate methodology 

to characterize the liberation properties of complex low-grade tantalum and tungsten ores for the 

purpose of developing the most appropriate separation process. 

The aim is to produce the maximum degree of mineral concentration and improve the 

performance in mineral processing operations. In fact, using liberation modelling, we’ll predict 

the distribution of valuable minerals in particles and determine the optimal particle size for a 

comminution unit.  

 

1.2.2. Specific objectives 

The principal purpose of liberation in a mineral processing plant is to break the ore to a 

size sufficiently small to release or liberate the ore. Therefore, valuable minerals to be recovered 

by concentration process, such as gravity or magnetic concentration. The study is reaching these 

goals: 

1) To determine the process mineralogy of the feed minerals: characterization of the mineral’s 

phases and mineralogical texture. 

2) The measurement and calculation of the liberation.  

3) To asses of the quantitative predication of liberation in the separation process.  

4)  Modelling of liberation in comminution by simulation.  

5) The distribution of liberated types in the process.  

6) To find the liberation size in the process.  

7) To connect the libation results with the mechanical processing. 

8) To improve method of concentration in mineral processing.  

This work is focused on using a combination of mineralogical characterization and 

comminution test-work to recover Ta and W from two different ore types; from a complex low-

grade tantalum deposit in Spain and the tungsten ore which scheelite associated with calc-

silicate minerals in Austria. This work has resulted in the development of a systematic approach 

for identifying unknown Ta and W-bearing minerals. 

This study determines the mineral liberation modelling of tantalum and scheelite ores, using 

quantitative mineralogy and simulation to complete the characterization. The liberation modelling 

has been obtained using back calculation method in MATLAB with the distribution density 

solution to the predication mineral liberation. Knowledge of the key mineralogical attributes of 

each ore (including Ta and W behavior, liberation and grain size) are shown to be critical in the 

development of the processing strategies used to treat each ore. 

 

1.3 Statement of Originality Contribution to Knowledge  
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This research has made the following contributions to current knowledge:  

1) A methodology for mineralogical characterization of the Ta and W ores. 

2) Identification of a new association between minerals that is described in the published 

literature. 

3) A systematic method that enables the development of physical separation strategies to achieve 

>90% Ta and W recovery in a laboratory rougher process.  

4) A framework for assessing the tantalum and tungsten based on the mineralogical characteristics 

of the ores.  

 

1.4 Scope of the thesis 

Mineralogical characterization provides the attributes of a given ore sample and this key 

information is then used to select the most appropriate physical separation processes to recover 

the minerals containing the valuable elements present in the ores. There are a range of 

beneficiation processes that can be used for recovering commodities from the ores, namely 

crushing. comminution, separation and concentration processes, shown schematically in Figure 

1.2. The red dashed box in Figure 1.2 shows which processes are included in this thesis, i.e. the 

beneficiation process under investigation is liberation. The investigation of other potential 

beneficiation routes is outside the scope of this work. 

 

 
Figure 1.2.  Scope of the thesis. 

A detailed description of the scope of the thesis is provided in Figure 1.3, which shows 
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the inputs, mineralogical characterization and outputs of the research scope. The inputs are the 

two case studies that relate to the two different ore types. For each case study, Level 1 

mineralogical characterization was undertaken. If this level of analysis was sufficient to identify 

the key mineralogical attributes for tantalum and tungsten minerals and gangue minerals, then 

development of a concentration strategy could follow. For cases where the key mineralogical 

attributes of the ore were unable to be identified, mineralogical characterization progressed to 

Level 2 and then Level 3, both incorporating increasingly advanced analytical techniques. In 

terms of the mineralogical characterization, modal mineralogy will play an important role, not 

only by providing the deportment of Ta and W but also to determine the gangue mineralogy. This 

information will help to develop proper strategies in order to depress the gangue minerals that 

might dilute the concentrates. 

 

 
Figure 1.3. Mineral characterization and beneficiation process to be applied. 

 

1.5 Thesis outline  

The following is an outline of the chapters contained in this thesis.  

Chapter I presents an overview of this research work and describes the objectives and research 

path developed for this work.  

Chapter II provides a review of the literature related to the mineralogy of tantalum, the 

techniques available for mineralogical characterization A description of the strategies used for 

concentrating tantalum using gravity separation is discussed, and finally, two examples describing 

Penouta ore

Mittersill ore

Level One:

• Chemical Compositions
• X-ray Diffraction
• Optical microscopy
• MLA
• SEM-EDS

Input

Level two:

• Base methodology

Level three:

• SEM-EDS
• EMPA
• X-ray methods

Full characterization is not 
possible with the

technology available

Not Adequate 

Not Adequate 

Not Adequate 

Identification of key
mineralogical 

attributes for two ores 

Adequate 

Adequate 

Adequate 

Mineralogical characterization 

Gravity separation process:

• Preconcentrating
• Grinding size
• Flow rate
• Size by size and size by

liberation analysis of the
concentration process

• Modelling liberation

Output
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how process mineralogy is applied in the context of tantalum are provided.  

Chapter III provides details of the experimental methodology used in this research, and 

provides detailed descriptions of the ores studied. The different levels of the mineralogical 

characterization methods used, as well as the concentration characterization protocols are also 

described. In addition, an approach for identifying Ta and W minerals that was developed as part 

of this research is described. 

Chapter IV describes the results of the mineralogical characterization of the low-grade tantalum 

and medium grade tungsten ores, where key mineralogical attributes were able to be defined using 

the Level 1, 2, and 3 methodology. This allowed the development of a selective physical 

separation strategy that enabled a concentrate of 103 ppm Ta with 52% recovery and 2260 ppm 

W with 87% recovery to be achieved in laboratory concentration tests. A procedure based on 

liberation distribution and using beta distribution function to describe the liberation modeling 

have been developed. 

Chapter V discusses the key findings from this work and the implications in the context of how 

understanding of the complexity of the ore characteristics will provide insights into the physical 

separation strategy. The concept of liberation modeling as it applies to the tantalum and tungsten 

ores studies in this work is also discussed and a framework for describing how liberation a 

tantalum or tungsten ore is likely to be is predictive using simulation and liberation modeling.  

Chapter VI describes how the objectives and outlined in Chapter I were achieved and tested 

respectively, and identifies potential areas for future work related to complex low-grade tantalum 

and medium-grade tungsten ores i.e., mineralogical characteristics that results in different stages 

of processing flow sheet and predictive liberation that possibly changed the flow sheet design 

adding more unit process in the treatments. 
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Chapter II  
Literature Review 
 

This chapter examines the literature relating to the mineralogy and processing of 

tantalum and tungsten ores. It begins with the different Ta-W deposits and tantalum and tungsten 

minerals that can be found worldwide, then reviews the techniques currently used to identify and 

characterize tantalum and tungsten minerals. The literature that describes the liberation 

processing routes for tantalum and tungsten minerals is also discussed, with particular emphasis 

on the different strategies used to concentrate tantalum and tungsten minerals. The chapter 

concludes with literature examples of process mineralogy in the context of tantalum and tungsten, 

leading to the identification of gaps in the literature that will be addressed in this thesis. 

 

2.1 Introduction 

Tantalum is a transition metal with atomic number 73 and atomic weight 181. The 

element is usually found together with niobium with an atomic number 41 and atomic weight 93 

(Table 2.1). Tantalum is a grey blue, ductile metal with a high melting point and high resistance 

to chemical attack at temperatures below 150 ºC. It is, however, dissolvable in hydrofluoric acid 

or in acidic solutions containing fluoride ion, sulphur trioxide and potassium hydroxide. 

Niobium is a lustrous, gray, ductile metal with a high melting point, relatively low 

density, and superconductor properties. Tantalum is a dark blue-gray, dense, ductile, very hard, 

and easily fabricated metal. It is highly conductive to heat and electricity and is renowned for its 

resistance to corrosion by acids. It is these special properties, especially hardness, conductivity, 

and resistance to corrosion, that determine the primary uses of niobium and tantalum today. 

Niobium has similar physical and chemical properties to tantalum, which makes them sometimes 

difficult to distinguish (USGS, 2017). 

Tantalum and niobium have unique mechanical, electrical and chemical properties, which 

make them indispensable in many industrial applications. In addition to the properties listed 

above, they also have nearly zero electric resistance at low temperatures, high corrosion 

resistance, shape memory properties and high capacitance. 

Niobium (Nb) and tantalum (Ta) are transition metals that are very similar in their 

physical and chemical properties (Table 2.1). They are almost always found together in nature. 

Both are named after tragic figures from Greek mythology—Niobium is named after Niobe, and 

tantalum is named after Niobe’s father, Tantalus. Niobium was first discovered in 1801 by English 
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chemist Charles Hatchett, who named it columbium after Columbia, the poetic name for North 

America. Columbium was used interchangeably with niobium until 1949 when niobium was 

officially accepted as the designated name by the International Union of Pure and Applied 

Chemistry. Tantalum was first discovered by Swedish scientist Anders Ekeberg in 1802, but 

because it was difficult to separate from niobium, tantalum was confused with niobium until 1864, 

when it was confirmed to be a separate element. Relatively pure tantalum metal was not produced 

until 1903 (USGS, 2014). 

 
Table 2.1. Selected properties of niobium and tantalum. (Source: Winter (2014). Å, angstrom; °C, degree Celsius; 

g/cm3, gram per cubic centimeter; nΩ-m, nano ohm-meter) (Source: USGS, 2017). 
Property Niobium (Nb) Tantalum (Ta) 

  Atomic number 41 73 
  Atomic weight 92.90638 180.94788 
  Atomic radius (Å) 1.46 1.46 
  Density (g/cm3) 8.57 16.69 
  Melting point (°C) 2,477 3,017 
  Boiling point (°C) 4,744 5,458 
  Hardness (Mohs scale) 6.0 6.5 
  Electrical resistivity (nΩ-m) 152 at 0 °C 131 at 20 °C 
  Crystal structure Body-centeredcubic Body-centeredcubic 

 

Tungsten is a metal of superlatives. The melting point of 3410 °C is the highest of all 

metals. The density of tungsten is 19.25 g/cm³, which is almost as high as the density of gold. 

Tungsten has the lowest vapor pressure and the lowest expansion coefficient of all metals. The 

total consumption of tungsten metal is 40.000 t/year. Best known is the usage of tungsten wire in 

various lamps. Wires for filaments of household lamps have a diameter of 17 to 45 µm. 3 kg of 

sintered tungsten will yield 365.000 m of a 24 µm filament corresponding to 500.000 coils for a 

40 – W lamp. 60 – 70 % of the tungsten metal is further processed to tungsten monocarbide, 

which is the main constituent of hard metals. The latter materials are used in a wide range of 

applications in the industry. Well known are drill bits which are inserted in tools, used in the 

mining-, oil- and gas industry and in mechanical engineering (Wolfram, 2015). 

Tungsten is a hard, very dense, steel-grey to greyish-white metal. It has the highest 

melting point of all non-alloyed metals and the second highest of all elements behind carbon. Of 

all pure metals, tungsten has the lowest coefficient of expansion and the highest tensile strength 

at temperatures over 1650 °C (Christie and Brathwaite, 1996). Tungsten is also known for its high 

density, which is similar to gold, and its high thermal and electrical conductivities. It has excellent 

corrosion resistance, does not react with air or water at room temperature (although fresh surfaces 

will oxidize) and is largely unaffected by most acids. Key properties are summarized in Table 2.2 

(BGS, 2014). 
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Table 1.2. Selected properties of tungsten (Source: BGS, 2014). 
Property Value Units 
Symbol W  

Atomic number 74  

Atomic weight 183.84  

Density at 25 °C 19254 kg ⁄m3 
Melting point 3422 °C 
Boiling point 5555 °C 
Hardness (Mohs scale) 7.5  

Specific heat capacity at 25 °C 0.13 J ⁄ (g °C) 
Electrical conductivity 18.2 × 106 S ⁄m 
Coefficient of linear thermal expansion 4.5 × 10−6 ⁄°C 
Tensile strength at 20 °C 1000 MPa 
Tensile strength at 1650 °C approx 100 MPa 
Thermal conductivity 174 W ⁄ (m °C) 

 

2.2 Tantalum Production 

Global tantalum mine production peaked in 2004 at just greater than 1,400 metric tons of 

elemental tantalum and mostly declined since 2006 to 770 metric tons in 2011. The decrease in 

tantalum production reflects the drop-in tantalum prices that accompanied the global economic 

downturn and the increased volume of tantalum coming out of areas of armed conflict in Congo 

(Kinshasa). Since 2012 the global tantalum production has been shown another increase, where 

in 2017 greater than 1800 metric tons of elemental tantalum (Figure 2.1). Australia and Brazil 

have been the leading national producers of tantalum mineral concentrates, although since 2009, 

production from Australia has decreased, and production from Mozambique and some other 

countries has increased (Papp, 2013a). Australia shows another increase of production since 2015 

from 20 metric tons to 90 metric tons in 2018. The leading companies producing tantalum mineral 

concentrates in 2011 were Companhia Industrial Fluminense Mineração S.A. (Volta Grande 

Mine) and Mineração Taboca S/A (Pitinga Mine) in Brazil and Noventa Ltd. (Marropino Mine) 

in Mozambique. The leading tantalum producer in other years was Global Advanced Metals from 

its Greenbushes and Wodgina Mines in Western Australia. Other countries, including Burundi, 

Canada (Tanco Mine), China (Yichun Mine), Congo (Kinshasa), Ethiopia (Kenticha Mine), 

Nigeria, Russia (Lovozero Mine), Rwanda, and Uganda also produced tantalum mineral 

concentrates in 2011 (USGS, 2017). 

About one-half of all tantalum production consists of tantalite ore, and the remainder 

comes from tin slag, from such other minerals as strüverite and columbite-tantalite, and from 

recycling and synthetic concentrates. Tin slag is produced primarily in Southeast Asia, Australia, 

and Brazil. Tantalum is mined from both open pit and underground operations. Heavy minerals 

that contain tantalum are separated from the bulk ore by gravity methods and flotation. The 
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concentrate is then subject to electrical (electrostatic and [or] electromagnetic) separation and 

other methods used to separate tantalum minerals from other heavy minerals. Because most 

mining of tantalum recovers minerals that also contain niobium, a chemical processing step 

involving the addition of potassium fluoride is necessary to separate niobium from tantalum, 

resulting in compounds of Nb2O5, Ta2O5, potassium niobium fluoride (K2Nb2F5), and potassium 

tantalum fluoride (K2Ta2F5). The tantalum compounds are then smelted to make tantalum metal 

products (Roskill Information Services Ltd., 2012). The global supply of tantalum historically 

has been 70 percent from concentrates, 10 percent from tin slag, and 20 percent from recycling 

and synthetic concentrates (Schwela, 2010). 

Conventional mining accounted for 51 percent of the world’s tantalum supply in 2011, 

artisanal mining accounted for 29 percent, and tin slags and synthetic concentrates accounted for 

10 percent (Roskill Information Services Ltd., 2012). 

Tantalum has a unique set of properties that make it useful in a number of diverse 

applications. The ability of the metal to store and release electrical energy makes it ideally suited 

for use in certain types of capacitors that are widely used in modern electronics. Approximately 

60 percent of global tantalum consumption is in the electronics industry (Bleiwas, 2015). The 

ductility and corrosion resistance of the metal lends itself to application in the chemical processing 

industry, and its high melting point and high strength retention at elevated temperatures make it 

an important component of super alloys used in aircraft engines (Global Advanced Metals Pty 

Ltd, 2010). 

Although developed countries dominated tantalum mine production in the early 2012s, 

production today is dominated by countries in the Great Lakes Region of Africa (Figure 2.1 and 

2.2). There is concern that the sales of minerals, including columbite-tantalite or “coltan” a 

mineral from which tantalum is derived, have helped finance rebel groups accused of violating 

human rights as part of the continuing armed conflict in the Democratic Republic of the Congo 

(DRC) and neighboring countries. 

These accusations have prompted the passage of legislation in the United States to curb 

the procurement of these mineral commodities, referred to as “conflict minerals,” from the DRC. 

Specifically, section 1502 of the 2010 Dodd-Frank Wall Street Reform and Consumer Protection 

Act (Public Law 111–203, 124 Stat. 2213–2218) requires companies that source tantalum, tin, 

tungsten, and gold (3TG) to perform due diligence on their supply chains to determine if the 

materials they use originate from the DRC or adjoining countries (defined as sharing a border 

with the DRC) (U.S. Securities and Exchange Commission, 2012; Chasan, 2015; U.S. 

Department of State, 2015). 

The DRC, Rwanda, and surrounding countries are not globally significant sources of tin, 

tungsten, or gold, accounting for only about 2 percent of the mined world supply for each of these 

elements. The region has, however, evolved to become the world’s largest producer of mined 
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tantalum. 
 

 

Figure 2.1: Bar charts showing percentage of average annual world production of tantalum, for the period 2012–18, 
by country (Source: World Mining Data 2019). Canada had reported tantalum production only in 2014. 

 

A further complication of the production of tantalum stems from the opacity of the 

tantalum market. Unlike most base and precious metals, tantalum concentrates are not publicly 

traded through commodities exchanges but are bought and sold through networks of dealers and 

on contract between producers and consumers, some of whom may not provide accurate statistical 

data concerning the amounts, origins, and destination of the concentrates (Browning, 2015;). 

Some price data can be found in trade journals or in other publications; however, there are no 

recognized official set exchange prices for either concentrate or tantalum metal. Because price is 

determined by negotiation between buyer and seller (Browning, 2015), published prices for 

concentrate are probably not representative of global prices paid for concentrate. The 

development of a mine-to-market supply-chain analysis is complicated and difficult because 

many of the industry participants that produce, trade, and consume tantalum do not publish statis-

tical information, contracts are long term between miners and buyers, and much of the industry 

is vertically integrated. 

As a result of these and other considerations, tantalum is considered by many to be a 

“critical” commodity (National Research Council, 2007; Erdmann and Graedel, 2011; Meinert, 

2014; Australia Geoscience, 2015). This fact sheet identifies and addresses the major geographic 

shifts in the sources of mine production of tantalum which have occurred over the past 18 years, 

some of the factors that drove these shifts, and some of the related consequences.  

The estimated annual mine production of tantalum contained in tantalum and tin 

concentrates for 2012 –2016 is shown in Figure 2.2 for 11 countries. The USGS–NMIC analysis 
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does not address the amount of tantalum ultimately recovered from these concentrates, which may 

be considerably less because of the losses experienced during processing to produce marketable 

products. 
 

 
Figure 2.2. Mine production of tantalum contained in concentrates, by country of origin, for 2012 - 2016 (Source: 

USGS, 2016). 

 
Data limitations prevent estimating the amounts of potentially recoverable tantalum 

contained in tantalum and tin concentrates that are produced annually in a number of countries. 

Most of this production is a byproduct of the mining and smelting of cassiterite. Tantalum 

contained in slags from past smelting activities in Australia, Portugal, and several Asian countries 

also is excluded from the estimates because of data limitations. The level of information required 

to develop estimates of undocumented tantalum production that originated in conflict and some 

nonconflicted areas in Africa, South America, and some other locations was not available (USGS, 

2017). 

The data indicate that the total amount of tantalum contained in tantalum and tin 

concentrates in the countries studied averaged about 94,000 kilogram per year (Kg/yr) (expressed 

as tantalum contained in concentrate) for the period 2012 to 2016. Tantalum derived from mining, 

is a component of total supply, which also includes secondary production (recycling), and 

contributions from releases of inventories. 

In 2012, a total of approximately 76,500 kilograms (Kg) of tantalum in concentrate was 

produced among the countries studied. Canada was by far the dominant global producer of mined 

tantalum in concentrates with a 3 percent share of global production. Other leading producers in 

that year were Rwanda (47 percent), the DRC (14 percent), and Brazil (13 percent).  

The estimated annual production of tantalum contained in tantalum and tin concentrates 
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in the DRC and Rwanda was relatively modest for the period 2000 through 2006, averaging 101 

t and 73 t, respectively. Combined, the contribution of the two countries to tantalum-in-

concentrate production among the countries studied averaged less than 15 percent during the 7-

year period. In 2007, however, reported production in the DRC increased to 320 t of tantalum in 

concentrate, nearly three times the average of the previous years, and mine production in Rwanda 

increased to 170 t of tantalum in concentrate (Figure 2.3). 

 

 
Figure 2.3 Main producers of tantalum as principal product of mining. (Data from USGS 2017 and Mackay and 

Simandl 2014).  

 

The increase in production in the DRC and Rwanda and the decline in production in 

Australia were already underway prior to the global economic downturn in 2008–2009 and the 

drop-in tantalum prices. This was a time of reduced demand for electronics and a drop in the price 

of tantalum. The actions on the part of the Australian mining companies were reportedly taken in 

response to a combination of the comparatively high costs associated with hard rock mining, the 

bankruptcy of the owner/operators of the Greenbushes and Wodgina Mines, and an increasing 

amount of lower-priced tantalum concentrates entering the supply chain from central Africa 

(Schwela, 2007; Taylor, 2011). 

Australian and Brazilian mines, the dominant producers from 2000 through 2008, were 

considered low risk for supply disruptions. Although these countries had modern mining 

operations and transparent commerce characteristics, the Australian hard rock mines had 

relatively high operating costs. In contrast, concentrates supplied from Africa were mostly 

sourced from small, labor intensive, and relatively unsophisticated artisanal mines, producing at 

lower costs. Brazil was able to maintain a position as one of the world’s major producers because 

most of the countries concentrate was derived from relatively low-cost unconsolidated placer 
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deposits. African production increased, and the price for tantalum dropped because of decreased 

global demand during the global recession. Australian operations decreased or suspended 

production (Schwela, 2010) and, by 2007, the country had lost a significant share of global supply 

to the DRC and Rwanda (Figure 2.3). 

In 2009, the geographic distribution of world tantalum mine production shifted 

dramatically from Australia and Brazil, with a combined global share of 18 percent, to the DRC 

and Rwanda, with a combined share of 51 percent (28 percent and 23 percent, respectively). 

Although still retaining a major share of global production, the DRC had begun to decline in 

production from the high of 410 t achieved in 2008 (Figure 2.3). 

In 2013, Rwanda became the world’s leading producer of tantalum contained in tantalum 

and tin concentrates with an estimated 600 t, which is nearly 50 percent of the total estimated 

production from the countries studied. This was a major increase from the estimated 310 t of 

tantalum in concentrate produced in Rwanda in 2012 when it represented about 28 percent of the 

production among the countries studied. In December 2013, the Rwandan Government disclosed 

that they had “dramatically” increased their tantalum concentrate exports and had become the 

world’s largest exporter, mostly to China, which has been a major importer of concentrates from 

Rwanda (Bleischwitz et. al., 2012; Browning, 2015). This noteworthy increase in production may 

be attributed to the Government privatization of its mining operations and opening new 

concessions to investors and artisanal cooperatives (Yager, 2014). 

Reports indicate that the implementation of the Dodd-Frank Act resulted in an increase 

in tantalum concentrate production in parts of the DRC that were determined to be conflict free 

(Bafilemba et. al., 2014). In 2013 and 2014, the estimates of annual mine production in the DRC 

decreased to about 200 t of tantalum in concentrate but continued to represent about 17 percent 

of estimated mine production among the countries studied (Figures 2.3 and 2.4). There have been 

claims over the years by nongovernmental organizations, United Nations observers, and others 

that at least some portion of Rwanda’s reported production for the period analyzed originated 

from concentrates smuggled across the border from conflict areas in North Kivu and South Kivu 

in the DRC and was exported through Rwanda’s domestic tagging system as a nonconflict source 

(Bleischwitz et. al., 2012; Polinares, 2013; Bafilemba et. al., 2014). 

In 2012, the total production of nearly 1,200 t of mined tantalum in concentrate from 13 

countries studied was substantially lower than what was estimated just prior to the global 

recession in 2008 when nearly 1,800 t was produced. Possible reasons for the reduction include 

(1) global tantalum consumption had still not recovered to the previous levels of a more robust 

economy; (2) improvement in the efficient use of the metal or increased substitution; (3) 

drawdown of producer inventories; (4) increased usage of secondary (recycled) material; and (5) 

unaccounted tantalum production entering the supply chain, some of which may originate from 

conflict-affected sources (USGS, 2017). The USGS–NMIC has no statistical information with 
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regard to the undocumented amounts and origins of conflict minerals in the global supply chain. 

 

2.3 Tungsten Production 

World tungsten resources have been estimated at seven million tones (contained tungsten 

metal) including deposits that have so far not been proven to be economically workable (Hinde, 

2008). It is believed that 30 per cent of the resources are wolframite (76.5 per cent tungsten 

trioxide) and 70 per cent are scheelite (80.5 per cent tungsten trioxide) ores (Hinde, 2008). Werner 

et al., (1998) noted that the ten largest known deposits at that time were located in Kazakhstan, 

Canada, China and Russia. However, since then new deposits have been discovered, for example 

O’Callaghan’s in Australia, and previously identified occurrences have been found to contain 

more tungsten than previously thought, for example Hemerdon in the United Kingdom. It is clear 

that China, Kazakhstan and Russia have considerable resources but detailed Information is 

difficult to obtain. Resources in Canada are known to exceed one million tons of contained 

tungsten, whereas resources in Australia are believed to be nearly 0.5 million tons of contained 

tungsten. 

The USGS (Shedd, 2012a) estimated in January 2012 that reserves stood at 3.1 million 

tones (contained tungsten metal) with more than 60 per cent of these located in China (Figure 

2.4). The National Bureau of Statistics of China reported that their reserves of tungsten in 2010 

were approximately 1.75 million tons of contained metal (NBSC, 2012) and it is believed this is 

concentrated in the provinces of Hunan and Jiangxi (Pitfield et al., 2010). These two provinces 

also receive the highest proportion of China’s production quota (Shedd, 2012b). Deposits of 

tungsten are known to exist in many other Chinese provinces but it is not known whether they are 

categorized formally as resources or reserves. In Russia, reserves of tungsten are believed to be 

mainly located in the North Caucases area and the Far East region. Canadian reserves are 

dominated by the huge deposit at Mactung and the nearby operating mine at Cantung, which are 

located in the Yukon and North West Territories, respectively. 

In 2013, total world production was nearly 86,000 tones of tungsten. This was a nine 

percent increase compared to 2012, shown in Figure 2.4. Tungsten is currently produced in 

approximately 23 countries. China has been the world’s leading tungsten producer for many 

years. In 1989 it accounted for 58 per cent of the world total but this rose to reach a peak of 82 

per cent in 2016. 

In recent years this proportion has increased slightly but it was still about 82 per cent in 

2017 (Figure 2.5). China’s output was produced mainly in Jiangxi and Hunan provinces, 

accounting for 44 per cent and 24 per cent of the total respectively (Research in China, 2011). Its 

major operating mines are at Shizhuyuan in Hunan Province and Yangchulin, Xingluokeng and 

Xianglushan in Jiangxi Province. There are further mines, in these and other provinces, and new 



Chapter II Literature Review 
 

Sarbast Ahmad Hamid 21 

mines are believed to have opened but accurate information is difficult to obtain. Vietnam, also 

has been shown an increase in production from 1100 tones in 2012 to 5141 tones in 2017. Russia’s 

output is believed to come from Tyrnyauz in the North Caucases and the Vostok-2 area of the Far 

East region, but Russian mines were reported to be struggling in the economic crisis (Levine, 

2011). Historically, Bolivia has had numerous small-scale mining operations extracting tungsten 

and this is thought to still be the case (Anderson, 2011). However, output from Bolivia has 

decreased significantly in recent years from approximately 1461 tones of contained tungsten in 

2015 to 1015 tones in 2017 (Reichl, 2019). Austria’s output comes from the Mittersill mine, 

operated by Wolfram Bergbau and Hütten AG, while Canada’s is from the Cantung mine in the 

Yukon Territory, which is operated by North American Tungsten Corp. Other countries 

producing tungsten in 2017 included: Portugal (mainly from the Panasqueira mine), Rwanda, 

Spain, Uzbekistan, Brazil, Thailand, Burma (Myanmar), North Korea, Burundi, Kyrgyzstan, 

Democratic Republic of Congo, Uganda, Australia (mainly from the Kara mine on Tasmania) and 

Mongolia (Reichl, 2019).  

 

 
Figure 2.4. Mine production of tungsten, 2012–2017. (Data from British Geological Survey, World Mineral Statistics 

database, 2018). 

 
The concentration of production in China is a relatively recent occurrence, as illustrated by Figure 

2.5. Prior to the 1990s, China’s share of the total world production was less than 35 per cent. 

Between 1980 and 1990, although the total world production remained approximately the same, 

China’s share of that total more than doubled from 29 per cent to 62 per cent. Total world 

production had dropped significantly by 2000 and in tonnage terms China’s output fell too, but 

other countries’ production levels reduced by proportionally greater extents. The result was that 

China’s share of the world total increased to 77 per cent despite the decrease in output. Between 

2000 and 2010 total world production recovered, and in 2010 was higher than 1990, but the 
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majority of this increase has been in China. It is likely that this pattern of supply is related to 

tungsten prices and market availability. In the late 1970s and the 1980s there was a significant 

increase in the availability of tungsten concentrates and intermediate products from China at 

cheaper prices than the rest of the world. This led to oversupply and a significant fall in tungsten 

prices, with the result that many mines could not sustain economic production and world output 

decreased. The cost of production was probably lower in China than other countries and 

consequently output there fell less. As demand and prices recovered, Chinese producers were able 

to react more quickly and therefore China’s output has grown much more rapidly than that in the 

rest of the world. The sub sequent imposition of production and export quotas in China has pushed 

prices up further and encouraged both the exploration for new deposits and the development of 

new mines outside of China (BGS, 2014). 

 

 
Figure 2.5. Main producers of tungsten as principal product of mining during 2017. (Data from British Geological 

Survey, World Mineral Statistics database, 2018).  

 

2.4 Tantalum ores 

2.4.1 Geochemistry 
Niobium and tantalum generally show strongly coherent geochemical behavior because 

they are identical in charge (5+ under most geologically relevant oxidation conditions) and nearly 

identical in effective ionic radius (Table 2.3). As a result, they are closely associated and found 

together in most rocks and minerals in which they occur. Both elements are lithophile, in that they 

show a strong affinity for oxygen, and they are high-field-strength elements (HFSEs), meaning 

that their ions are relatively small and have intense electrostatic fields. Their HFSE characteristics 

significantly reduce their potential to substitute for more common elements in most rock-forming 

minerals and make them essentially immobile under most natural conditions (Wood, 2005); as a 

result, their concentrations in the surface environment are generally low. The average abundance 

of niobium and tantalum in bulk continental crust is 8.0 parts per million (ppm) niobium and 0.7 
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ppm tantalum (Rudnick and Gao, 2003). In surface waters, concentrations are generally in the 

low parts per trillion. 

Niobium and tantalum are depleted in continental crust relative to other highly 

incompatible elements (elements that do not readily substitute for more common elements in 

major rock-forming minerals), such as cesium, rubidium, thorium, and uranium, and the light 

REEs, including cerium and lanthanum. As a result, continental crustal rocks are typically 

characterized by high lanthanum to niobium (La:Nb) ratios— the average crustal ratio is about 

2.5 (Rudnick and Gao, 2003). 

 
Table 2.3. Selected Tantalum and Niobium Minerals. 

Mineral name Mineral group Formula Nb2O5 (%) Ta2O5 (%) 

Columbite CGM (Fe,Mn)(Nb,Ta)2O6 78.72 n.a. 

Tantalite CGM (Mn,Fe)(Ta,Nb)2O6 n.a. 86.17 

Pyrochlore Pyrochlore supergroup (Na,Ca)2Nb2O6(O,OH,F) 75.12 n.a. 

Microlite Pyrochlore supergroup (Na,Ca)2Ta2O6(O,OH,F) n.a. 83.53 

Betafite Pyrochlore supergroup (Fe,Mn)(Ti,Nb,Ta)2O6   

Tapiolite Tapiolite (Fe,Mn)(Ta,Nb)2O6 1.33 83.96 

Ixiolite Ixiolite (Ta,Nb,Sn,Mn,Fe)4O8 8.30 68.96 

Wodginite Wodginite (Ta,Nb,Sn,Mn,Fe)O2 8.37 69.58 

Euxenite Euxenite (Y,Ca,Ce,U,Th)(Nb,Ti,Ta)2O6 47.43 22.53 

Struverite Rutile goup (Ti,Ta,Fe)O2 11.32 37.65 

Iimenorutile Rutile group Fex (Nb,Ta)2x 4Ti1-x O2 27 N.A. 
 

The depletion of niobium and tantalum in continental crust is attributed to the formation 

of crustal rocks at convergent margins above subduction zones where titanium-rich minerals that 

host niobium and tantalum may remain as residual phases in the source region during generation 

of the magmas (Kelemen et. al., 2003). 

Although niobium and tantalum generally show coherent geochemical behavior, some 

chemical processes are able to separate them, which results in preferential enrichment or depletion 

of one or the other. These processes are still poorly understood, although crystal fractionation 

during magma evolution is the most commonly invoked mechanism. Niobium and tantalum show 

limited substitution for tin, tungsten, and zirconium in some rock-forming minerals, but 

particularly for titanium in such minerals as ilmenite (FeTiO3), rutile (TiO2), and titanite (sphene) 

(CaTiSiO5). As niobium and tantalum become more highly enriched in residual igneous melts, a 

variety of chiefly oxide and hydroxide niobium and tantalum minerals may form, depending on 

melt composition, temperature, pressure, and fluid composition. In addition, some evidence 

suggests that later alteration by hydrothermal (hot) fluids—in particular, concentrated fluoride 

solutions (Wood, 2005) - may pla a role in mobilizing and enriching niobium and tantalum. 



Chapter II Literature Review 
 

Sarbast Ahmad Hamid 24 

Tantalum is a fairly widely distributed element but relatively rare, with an average crustal 

abundance of 1.7 mg/kg (0.000017%); niobium crustal abundance is 20 mg/kg. Tantalum and 

niobium are hosted in a variety of minerals, some of which are listed in Table 2.3.  Niobium and 

tantalum do not occur naturally as pure metals, but they are essential components in a variety of 

oxide and hydroxide minerals, as well as in a few rare silicates and one borate (Parker and 

Fleischer, 1968). The economically important mineral species are all oxides (Table 2.3); 

pyrochlore is the principal ore mineral for niobium, and tantalite is the principal ore mineral for 

tantalum. Until the discovery of pyrochlore-rich deposits in the 1950s, niobium was produced as 

a byproduct of mining columbite-tantalite- bearing pegmatites for tantalum. 

 

2.4.2 Mineralogy 

Tantalum and niobium are almost exclusively found in complex oxide and hydroxide 

minerals. Silicates of these elements exist but they are relatively rare, one such example is the 

eudialyte mineral (Na4(Ca,Ce)2(Fe++,Mn,Y)ZrSi8O22(OH,Cl)2) (Moreno, 2011). Tantalum and 

niobium also substitute ions in common oxide groups, such as the titanium minerals, rutile and 

ilmenite. The oxides comprise the majority of the economically important minerals. The most 

common tantalum and niobium minerals occur in a solid solution named columbite group 

minerals (CGM) ((Fe,Mn)(Nb,Ta)2O6. When the predominate the Ta atoms in the structural 

formula, it is called tantalite and when the Nb atoms predominates it is columbite. The name 

“coltan” is a popular terminology, non-scientific, used to refer to CGM. The CGM is a nearly 

compete solid solution. Columbite and tantalite have very similar properties because they have 

the same structure and similar chemistries, but tantalite has a much higher specific gravity (8.0 +) 

than does columbite. Tantalite also has a dimorphic relation (same chemistry but different crystal 

structure) to the mineral tapiolite. Columbite-tantalite minerals are found as accessory phases in 

rare-metal granites and pegmatites (Černý, 1991a, b). 

The pyrochlore-supergroup minerals crystallize in the isometric crystal system and 

exhibit a unit cell characterized by a ~10.4 Å and Z = 8 (Rouse et al. 1998). They conform to the 

general formula: A2-mB2X6-wY1-n (Atencio et. al., 2010). 

In this formula, A typically is a large [8]-coordinated cation with a radius of ~1.0 Å or a 

vacancy (□), but can also be H2O (includes ions with or without lone-pair electrons on sites 16d 

or 96g in Fd3m). The A site therefore may host Na, Ca, Ag, Mn, Sr, Ba, Fe2+, Pb2+, Sn2+, Sb3+, 

Bi3+, Y, Ce (and other REE), Sc, U, Th, □, or H2O. The main constituents are shown in B is a [6]-

coordinated cation (site 16c), typically of high field-strength. This site thus may contain Ta, Nb, 

Ti, Sb5+, W, but also V5+, Sn4+, Zr, Hf, Fe3+, Mg, Al and Si. X typically is O, but can include 

subordinate OH and F (site 48f). 

Y typically is an anion, but can also be a vacancy, H2O, or a very large (>> 1.0 Å) 
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monovalent cation (site 8b). Examples are OH–, F, O, □, H2O, K, Cs, Rb. Displacements to 96g, 

32e and 192i positions were also located. 

The symbols m, w, and n represent parameters that indicate incomplete occupancy of the 

A, X and Y sites, respectively. Vacancies have not been found to occur at the B site (Borodin & 

Nazarenko 1957, van Wambeke 1970). Compositions with a substantial concentration of 

vacancies at the A site have been described as “defect pyrochlores”. However, it is undesirable to 

give this term official status in this context, since it is non-specific, and likely to be used to 

describe other deviations from the ideal structure and stoichiometry. Lumpkin & Ewing (1992, 

1995), Ercit & Robinson (1994), Brugger et al. (1997), and Nasraoui & Waerenborgh (2001) 

noted vacancies at the X site in some extreme cases of secondary alteration. According to 

Lumpkin & Ewing (1995), the following ranges are encountered: m = 0 to 1.7, w = 0 to 0.7, and 

n = 0 to 1. Actually, m can range up to 2 (Ercit et al. 1994, Brugger et al. 1997). 

Atencio in 2010 presented the new scheme of nomenclature based on two prefixes and a 

root name allows one to use the root names without prefixes, or with only one prefix [e.g., 

“plumboelsmoreite”] to specify at least a group for minerals that have not been fully analyzed. 

The first prefix will refer to the dominant anion (or cation) of the dominant valence [or H2O or □] 

at the Y site. The second prefix will refer to the dominant cation of the dominant valence [or H2O 

or □] at the A site. Given the Classical Greek derivation of “oxy-”, “hydro-” and “hydroxy-”, he 

suggested “keno-” to represent “vacancy”, from the Greek kevos, meaning “empty”. 

He also, proposed that the occupancy of the A position in pyrochlore-supergroup minerals 

by cations is in some cases very low (<50%). Where the zero-charge group exceeds any valence 

group of the A site, the second prefix “keno” is proposed for species in which □ exceeds H2O, 

and the second prefix “hydro” is proposed for species in which H2O exceeds □. 

The Hogarth (1977) rules of nomenclature that reflect the chemical composition at the A 

position have been modified to conform to the dominant-valence rule. Consequently, where 

neutral species are not the largest valence-based group at the A position, a second prefix is now 

to be applied for the dominant cation of the dominant valence. Nomenclature based on the 

dominant element in a dominant-valence group is simple and reproducible. This is not true for 

the alternative scheme of one end member is equal to one name, which is another reason for 

rejecting that model. In multidimensional coupled solutions, particularly where there are several 

different valence-groups at more than one site, it is not easy to define a rigorous, reproducible 

way of extracting a unique dominant end-member (Atencio et. al. 2010). 

Pyrochlore-supergroup minerals show a variable Y-site composition. In the past, 

variations in Y-site occupancy were not reflected in species nomenclature, in part owing to a lack 

of knowledge of the structural chemistry of pyrochlore, but also owing to difficulties with the 

determination of some Y species. As the dominant constituent at the Y position can now 

commonly be established via EPMA and structure analysis, it is reasonable to indicate the 
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composition of this site in the nomenclature. Rouse et al. (1998) demonstrated the presence of 

structural (OH) groups by infrared spectroscopy. The dominant-valence rule is also valid for 

anionic sites (Hatert & Burke 2008). 

where root is the name of the group, determined by the dominant species of the dominant 

valence group at the B site, y indicates the dominant species of the dominant-valence group at the 

Y site, and a indicates the dominant species of the dominant-valence group at the A site (Atencio 

et al. 2010). 

 

2.4.3 Ore deposits 

Tantalum and niobium deposits are usually associated with igneous rocks (e.g. 

pegmatites, granites, syenites and carbonatites). Pegmatites and granites enriched with lithium 

minerals, caesium, as well as tantalum and niobium, are the main sources of tantalum in the world 

and usually contain lower levels of niobium. 

Other oxide minerals, such as loparite, ixiolite, tapiolite, and the perovskite group (Table 

2.3) are fewer common sources of niobium and tantalum (USGS, 2017). Klaus also explained 

that microlite is the tantalum-rich end member of the pyrochlore mineral group and is generally 

found in pegmatites in association with columbite-tantalite. The titanium-bearing mineral 

strüverite has been a low-grade source of tantalum recovered from tin-mining waste in Southeast 

Asia. Niobium- and tantalum- bearing silicate minerals are relatively rare and found mostly in 

alkaline igneous rocks. 

Tantalum and niobium minerals are found in a variety of igneous rocks around the world 

but only rarely in concentrations great enough to be of economic interest. Primary niobium and 

tantalum mineral deposits are found in three main types of igneous intrusive rocks (Table 2.4; 

Küster, 2009): 

1.  Carbonatites and associated alkaline rocks (Nb dominant), 

2.  Alkaline to peralkaline granites and syenites (Nb dominant), and 

3. Rare-metal granites and pegmatites of the lithium- cesium-tantalum (LCT) family (Ta 

dominant) (Černý and Ercit, 2005). 

In addition, some secondary concentrations have been formed by weathering of primary 

deposits (laterites) and by sedimentary processes (placers). The secondary deposits are of 

particular interest because they can be less expensive to mine and can have higher grades than 

primary hard-rock deposits. Because secondary deposits typically occur in close proximity to their 

primary sources, they are not described separately below. 

Deposits of niobium and tantalum are found around the world (Table 2.4), but major 

production is currently restricted to only a few countries. Grade and tonnage figures for these 

deposits are shown in Figure 2.6. Generally, grades for niobium are higher (from about 0.1 to 3.0 
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percent niobium pentoxide [Nb2O5]) than those of tantalum (generally < 0.1 percent tantalum 

pentoxide [Ta2O5]). Carbonatites generally have the highest grades and tonnages of niobium, 

although they overlap with those of alkaline granite and syenite-hosted deposits. In addition, some 

alkaline granite- and syenite-hosted deposits have higher tonnages at similar grades of tantalum 

than do rare-metal granite and pegmatite- hosted deposits (Figure 2.6). The ratios of niobium to 

tantalum in the alkaline granite and syenite deposits are much higher (>10 to 20) because of the 

predominance of niobium-rich minerals, such as pyrochlore and columbite. 

 
Table 2.4. Major types of niobium and tantalum deposits, with key characteristics and examples. 

(Modified from British Geological Survey (2011). Grades and tonnages are highly variable among deposits, and the 
grades and tonnages given in this table are generalizations only. LCT, lithium-cesium-tantalum; Mt, million metric 

tons; Nb, niobium; Nb2O5, niobium pentoxide; Ta, tantalum; Ta2O5, tantalum pentoxide). 
Deposit type Brief description Typical grades and tonnage Major examples 

    Carbonatite-hosted 
primary deposits 

 

    Nb >Ta: Niobium deposits 
commonlyconsisting of 
members of the perovskite 
and pyrochlore mineral 
groups found within 
carbonatite intrusions in 
alkaline igneous provinces 

    Deposits show a wide range in 
both grade and tonnage. Morro 
dos Seis Lagos is the largest 
reported deposit; it contains 
about 2,900 Mt at a grade of 
2.85 percent Nb2O5. More 
typicalis the deposit at Niobec, 
whichcontains about 46 Mt at a 
gradeof 0.53 percent Nb2O5 

     Niobec and Oka, 
Canada; Araxá, 
Catalão I and 
II,and Morro dos 
Seis Lagos, Brazil 

 

    Alkaline granite and 
syenite  
 

    Nb >Ta: Deposits containing 
niobium and lesser amounts 
of tantalum; the deposits are 
related to silicic alkaline 
granite and syenite igneous 
intrusions 

    Generally, <1,000 Mt at grades 
of 0.1 to 1 percent Nb2O5 and < 
0.05 percent Ta2O5 
 

   Motzfeldt and 
Ilímaussaq, 
Greenland; 
Lovozero, Russia; 
Thor Lake and 
Strange Lake, 
Canada 

    Rare-metal granite 
 

    Ta > Nb: Deposits containing 
tantalum and lesser amounts 
of niobium; the deposits are 
generally found in the 
uppermost parts of 
peraluminous and 
(commonly) hydrothermally 
altered late-stage granitic 
plutons 

    Generally, <100 Mt at grades of 
< 0.05 Ta2O5 
 

    Yichun, China; 
Abu Dabbab and 
Nuweibi, Egypt 
 

    LCT-type pegmatite 
 

    Ta > Nb: Deposits containing 
tantalum and lesser amounts 
of niobium; the deposits are 
LCT-enriched-type 
pegmatites 
 

Generally, <100 Mt at grades of 

< 0.05 Ta2O5 
    Greenbushes and 

Wodgina, 
Australia; Tanco, 
Canada; Volta 
Grande, Brazil; 
Kenticha, 
Ethiopia 

    Secondary(regolith) 
deposits 

 

    Niobium and (or) tantalum ore 
minerals concentrated in zones 
of intense weathering above 
carbonatite and granite or 
pegmatite intrusions, or in 
sedimentary placer deposits 
derived from such intrusions 

    Lateritic deposits generally have 
<1,000 Mt at grades of up to 3 
percent Nb2O5. Placer deposits, 
such as the deposit at Tomtor, 
can have very high grades ofup 
to 12 percent Nb2O5 

    Araxá and 
Catalão, Brazil; 
Tomtor, Russia; 
Greenbushes, 
Australia 

 

 

Carbonatites and associated alkaline rocks 

Carbonatites are typically enriched in barium, fluorine, niobium, phosphorus, REEs, 

strontium, thorium, uranium, and zirconium. Not all carbonatites show similar enrichments in all 

elements, however; those related to carbohydrothermal fluids (hot fluids rich in carbon dioxide 
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and water ± fluorine) typically have enriched REEs and strontium, but not niobium, whereas 

carbonatites associated with alkaline igneous rocks are typically enriched in niobium, phosphorus, 

and titanium, but not REEs (Mitchell, 2005). The most common niobium- bearing minerals in 

carbonatites include members of the pyrochlore and perovskite mineral groups, as well as 

niobium- rich silicates, such as titanite. The diversity of mineral types in carbonate-hosted 

deposits, their diverse compositions, and textural evidence for replacement and resorption of 

mineral phases suggest that the niobium-bearing minerals represent transported and (or) mixed 

mineral assemblages and are not in situ products of crystallization (Mitchell, 2005). Along with 

serving as the major source of niobium, carbonatites can also host deposits of barite, copper, 

fluorite, magnetite, phosphate, REEs, titanium, and vermiculite (Mariano, 1989). 
 

 
Resources, in million metric tons 

Figure 2.6. Log-log plots of deposit grades and tonnages of tantalum by deposit type. The data include different 
levels of probability, including measured, indicated, and inferred resources and (or) proven and probable reserves. 
Data and sources are given in Table 2.4. P, primary deposit; R, residual deposit, Nb2O5, niobium pentoxide; Ta2O5, 

tantalum pentoxide (USGS, 2017). 

 

Brazil is the world’s leading supplier of niobium (about 90 percent); its major deposits 

occur in Late Cretaceous carbonatite complexes. These complexes were emplaced along deep-

seated faults located along the southwestern border of the ancient (Archean) São Francisco craton 

(Cordeiro et. al., 2011). The Araxá deposit is the largest operating deposit; it has more than 460 

million metric tons of weathered ore with a mean grade of 2.48 percent Nb2O5 (Cordeiro et.al., 

2011). The Barreiro carbonatite complex that hosts the Araxá deposit is approximately circular in 

shape with a diameter of about 4.5 kilometers (km); it is composed of carbonatite, glimmerite 

(altered ultramafic rock composed almost entirely of biotite or phlogopite), and phoscorite (a rock 
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composed of magnetite, apatite, and one of the silicate minerals clinopyroxene, olivine, or 

phylogopite) (Nasraoui and Waerenborgh, 2001). The complex is surrounded by a 2.5km wide 

aureole of metasomatized (fluid-altered), alkali-enriched quartzite and mica schist country rocks. 

Phoscorite, which forms thick masses in dolomitic carbonatite in the central part of the complex, 

shows the highest concentrations of pyro- chlore, the main niobium-bearing ore mineral, either 

as indi- vidual grains or in veins associated with magnetite. Intensive tropical weathering over the 

central part of the carbonatite complex has produced a lateritic cover up to 230 meters (m) thick 

that is enriched in pyrochlore and comprises the residual ore at Araxá (Nasraoui and 

Waerenborgh, 2001). The lateritic residual ore is exploited by open pit mining. 

At Catalão, Brazil, niobium deposits are associated with two alkaline-carbonatite 

complexes, Catalão I and Catalão II (Cordeiro et. al., 2011). The Catalão I complex consists of a 

vertical pipe-like, zoned intrusion about 6 km in diameter at the surface. Two pipe-like orebodies, 

the Mine II and the East Area, have been defined (Cordeiro et. al., 2011). The Mine II orebody is 

hosted mainly by dolomitic carbonatite, and the East Area orebody is hosted by glimmerite. Both 

orebodies have been confirmed by drilling to extend to at least 800 m depth. The main niobium-

bearing mineral in both deposits is pyrochlore, which in the East Area deposit is concentrated in 

late-stage dikes composed of nelsonite (magnetite-apatite-phlogopite rock). As at Araxá, current 

mining at Catalão II is in the weathered lateritic zone above the center of the complex. 

The leading producer of niobium outside of Brazil is the Niobec Mine in Quebec, Canada. 

This mine is the only operating underground niobium mine in the world. The Niobec Mine is 

hosted by the Saint-Honoré carbonatite complex dated at 650 mega-annum (Ma) (Belzile, 2009), 

which is covered by Paleozoic limestone and glacial deposits. The ellipsoidal Saint-Honoré 

carbonatite complex is zoned with an outer ring of feldspathic (feldspar-bearing) and 

feldspathoidal (minerals that resemble feldspar but have a different structure and much lower 

silica content) alkaline rocks and an inner zone consisting of a series of carbonatite lenses. Like 

the Brazilian deposits, pyrochlore is the main niobium-bearing mineral, but it is very fine-grained 

(0.2 to 0.8 millimeters) and rarely visible. Although dissemi- nated throughout the carbonatite, 

pyrochlore is especially concentrated in steeply dipping (>70 degrees) mineralized lenses that are 

rich in, in order of abundance, magnetite, apatite, and biotite (Belzile, 2009). Some lenses extend 

to a vertical depth of at least 730 m and have average grades of between 0.44 and 0.51 percent 

Nb2O5. Other carbonatite complexes in Canada, including the nearby Crevier syenite- carbonatite 

complex, the Oka carbonatite complex to the south, and the Blue River complex in British 

Columbia, are currently being evaluated for their niobium resources. 

Other carbonatite complexes around the world are known to host niobium mineralization, 

but none are currently in production. Two complexes are claimed to contain particularly large 

resources. The Tomtor complex in northern Siberia, Russia, is claimed to contain more niobium 

than the Araxá complex in Brazil along with significant REE resources (Kravchenko and 
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Pokrovsky, 1995); grade and tonnage figures for the deposit are not publicly available. Although 

the central carbonatite in the Tomtor complex is reported to be mineralized, the higher-grade 

niobium (>12 percent niobium) and REE-rich ore is in weathered carbonatite and in a buried 

placer deposit interpreted to have formed in an ancient lake overlying the complex (Kravchenko 

and Pokrovsky, 1995). 

The Morro dos Seis Lagos carbonatite in northwestern Brazil is poorly known but is 

reported to contain the world’s largest single niobium deposit; its resources are said to be 2,900 

million metric tons grading 2.85 percent Nb2O5 (Pollard, 1995). 

Woolley and Kjarsgaard (2008) report 23 carbonatites in the United States. Of these, the 

Elk Creek carbonatite, which is located in the subsurface of Nebraska, is currently being 

evaluated. The inferred resources at the deposit are reported to be 102.6 million metric tons 

grading 0.638 percent Nb2O5 (Daigle, 2012). 

 

Alkaline to Peralkaline Granites and Syenites 

The term “alkaline” encompasses a large variety of igneous rocks containing certain 

sodium- or potassium-rich minerals, such as feldspathoids and (or) alkali-rich pyroxenes and 

amphiboles and generally little or no quartz (Sørensen, 1974). Peralkaline rocks are a subset of 

alkaline rocks and are characterized by having a molecular amount of Na2O +K2O that exceeds 

Al2O3 (termed the agpaitic index >1). Alkaline rocks can range from ultramafic to felsic and from 

silica- undersaturated (feldspathoid-bearing) to silica-oversaturated (quartz-bearing). They are 

most commonly found in intraplate settings, such as continental rift zones (for example, the East 

African rift zone) and oceanic islands (for example, the Azores, Hawaii, and Réunion), but they 

can also be found in some orogenic belts where they were emplaced after major tectonic 

deformation. An important feature of alkaline rocks, but particularly peralkaline rocks, is unusual 

and locally extreme enrichment in alkalis; HFSEs, including zirconium, niobium, titanium, 

uranium, yttrium, and REEs; and halogens, such as fluorine and chlorine (Salvi and Williams-

Jones, 2005). As a result, alkaline igneous rocks can contain mineral deposits with high contents 

of HFSEs, including niobium, but they less commonly have high contents of tantalum. 

Alkaline magmas are the product of low degrees of partial melting in a deep, chemically 

undepleted mantle (Niu and O’Hara, 2003). As a result, alkaline magmas are enriched over many 

other magma types in incompatible elements, including the HFSEs. These incompatible elements 

become further enriched as the alkaline magmas cool and crystallize, becoming concentrated in 

the most evolved, volatile-rich granitic and syenites (same general composition as granite but 

with potassium feldspar dominant and little or no quartz [< 5 percent]) melts and eventually 

forming disseminated ore minerals in the crystallized rocks. In addition, because the HFSEs form 

relatively dense minerals, they can accumulate into layers through crystal settling and be 

transported and mixed by currents or new injections of magma (Mitchell, 2005). Many alkaline 
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igneous complexes also show extensive evidence of hydrothermal alteration, commonly with the 

most altered rocks also having the highest HFSE and REE contents. 

Although the role of fluids in the transport of HFSEs and REEs is still a matter of debate, 

growing evidence suggests that these elements are mobile in fluids that are enriched in fluorine, 

chlorine, and (or) carbon dioxide (CO2) (Salvi and Williams- Jones, 2005). Typical ore minerals 

in mineralized peralkaline granites are usually niobium-rich pyrochlore and columbite. 

Alkaline intrusive complexes are not currently major sources of niobium and tantalum 

production, although exploration is ongoing in some areas (for example, Strange Lake in Canada 

and Ghurayyah in Saudi Arabia). Examples of alkaline igneous complexes include the Pitinga 

complex in Brazil, the Strange Lake and Thor Lake complexes in Canada, the Ilímaussaq and 

Motzfeldt complexes in southern Greenland, the very large Lovozero complex in Russia, and the 

Pilanesberg complex in South Africa. Alkaline intrusive complexes have been identified in the 

United States, including Bokan Mountain in Alaska and Magnet Cove in Arkansas, but they are 

not known to contain significant niobium and tantalum resources of current economic interest. 

The Devonian Lovozero alkaline complex on the Kola Peninsula of Russia and the 

adjacent Khibina complex together make up the largest peralkaline igneous intru- sions in the 

world, covering an area of about 2,000 square kilometers (km2). The Khibina complex is host to 

one of the largest phosphate resources in the world (2.7 billion metric tons averaging 17.5 percent 

phosphorus pentoxide [P2O5]), whereas the Lovozero complex hosts zirconium, niobium, REEs, 

yttrium, strontium, barium, and phosphorus, which occur as eudialyte (a zirconium-bearing 

silicate mineral), loparite, and apatite (Salvi and Williams-Jones, 2005). The Lovozero complex, 

which is exposed over an area of 650 km2, occurs as a trough-shaped intrusion composed of three 

main intrusive phases (Figure 2.7) (Kogarko et. al., 2010). The oldest phase (phase 1), which 

accounts for about 5 percent of the total volume, consists of nepheline syenites with varied 

mineralogy, but it contains no loparite or eudialyte. The next phase, (phase II), which accounts 

for about 77 percent of the total volume, consists of layered nepheline syenites with varied 

mineralogy and locally accessory loparite or eudialyte. Loparite is concentrated up to 25 percent, 

by volume, in some layers (Kogarko et. al., 2002). Loparite concentrate has been produced 

intermittently during the past 50 years; about 30,000 metric tons grading 8 percent Nb2O5 and 0.7 

percent Ta2O5 has reportedly been produced annually (Semenov, 1997). The third intrusive phase 

(phase III), which is also known as the eudialyte complex, accounts for about 18 percent of the 

total volume and consists of nepheline syenites that, particularly in the upper part of the complex, 

can contain seams and lenses of almost monomineralic eudialyte (50 to 85 percent) (Kogarko et. 

al., 2010). 

The Mesoproterozoic Ilímaussaq alkaline complex in southwestern Greenland is one of 

the most studied alkaline complexes in the world (Sørensen, 2001). It is 1 of 10 alkaline intrusions 

in the Gardar igneous province, which is a failed continental rift that was active between 1,350 
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and 1,140 Ma (Upton et. al., 2003). The Ilímaussaq alkaline complex is the type locality for the 

rock-type peralkaline nepheline syenite and also 27 minerals. It contains large concentrations of 

a number of rare elements, including beryllium, lithium, niobium, REEs, uranium and thorium, 

yttrium, and zirconium, contained in about 220 different minerals, of which 9 are unique to this 

complex (Sørensen, 2001). The complex covers 136 km2 and has an exposed vertical thickness 

of 1,700 m; its total depth is not known. The main rare-metal deposits with potentially exploitable 

niobium, REEs, yttrium, and zirconium are present in 29 separate eudialyte-rich layers interpreted 

to have formed by crystal settling (Sørensen, 2001). Cumulatively, these rocks are estimated to 

contain a resource of about 54 million metric tons grading 1.1 percent zirconium dioxide (ZrO2), 

0.09 percent yttrium xide (Y2O3), 0.56 percent rare-earth oxides, and 0.11 percent Nb2O5 

(Steenfelt, 1991). The Motzfeldt intrusion, which is another of the alkaline intrusions in the 

Gardar igneous province, has zones of hydrothermally altered syenite containing niobium-

tantalum-REE-bearing pyrochlore mineralization (Steenfelt, 1991), which is the focus of ongoing 

exploration. 

 

Rare-Metal Granites and Lithium-Cesium- Tantalum–Type Pegmatites 

All economically important tantalum mineralization is related to rare-metal granites (also 

called rare-element granites) and lithium-cesium-tantalum (LCT)-type pegmatites. The rare-metal 

granites are generally peraluminous (have molecular Al2O3>[CaO+Na2O+K2O]), muscovite- and 

albite- rich granites that display high degrees of chemical fractionation, and represent the last 

stages of felsic magma evolution in upwardly differentiated granitic intrusions (Linnen and 

Cuney, 2005). The parental magmas are formed by partial melting of preexisting crustal rocks, 

particularly aluminous sediments, and are generally emplaced at shallow levels of the crust (in 

the upper few kilometers) during the late stages of or after major tectonic deformation and 

regional metamorphism in orogenic belts. They may show pervasive hydrothermal alteration and 

host disseminated tantalum and niobium mineralization, as well as tin and tungsten, in complex 

vein systems (stock works) that developed from circulation of late-stage hydrothermal fluids. 

Typical mineralization consists of microlite, columbite-tantalite, tantalum-rich cassiterite (tin 

oxide), and lepidolite (lithium-rich mica). 

LCT-type pegmatites are generally small (meters rather than kilometers in length and 

width) granitic intrusions characterized by extremely coarse but variable grain-size and 

enrichments in lithium, rubidium, cesium, beryllium, tantalum, and niobium (Ta>Nb) (Černý and 

Ercit, 2005). 

They are the products of highly fractionated and volatile-rich granitic magmas generally 

derived from rare-metal granites. They commonly occur in aureoles surrounding the roof of their 

parental granite intrusion, and the mineralized and most fractionated pegmatites are found the 

farthest away (Figure 2.8). Most LCT-type pegmatites are concentrically but irregularly zoned 
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(Figure 2.9), and typically have a thin border zone, a wall zone, an intermediate zone, an albite 

zone, and a core zone (Cameron et. al., 1949; Fetherston, 2004). Tantalum mineralization is 

mostly concentrated in the intermediate and albite zones and generally consists of columbite-

tantalite, ixiolite, microlite, and (or) wodginite. Additional minerali- zation may be present, 

including beryllium (as beryl, a beryllium aluminum silicate), cesium (as pollucite, a cesium 

zeolite), lithium (as spodumene, a lithium pyroxene; petalite, a lithium aluminum silicate; and 

lepidolite), tin (as cassiterite, a tin oxide), and a number of gemstones. LCT-type pegmatites are 

also mined for albite, muscovite, potassium feldspar, and ultrapure quartz. Like their parental 

rare-metal granites, LCT-type pegmatites are widely distributed globally, and range in age from 

Archean to Mesozoic, but they are found to be concentrated particularly during times of conti- 

nental collision and supercontinent assembly (Bradley and McCauley, 2013). By far the largest 

LCT-pegmatite-hosted mineral deposits are of Archean age, however (for example, the 

Greenbushes and Wodgina deposits in Australia and the Tanco deposit in Canada). 
 

 
Figure 2.7. Schematic cross-section of the Lovozero alkaline intrusion, Kola Peninsula, Russia, showing the relation 
among the three intrusive phases and the niobium mineralization contained in eudialyte and loparite. (After Kogarko 

and others (2002)). 
 

In recent years, pegmatites in the State of Western Australia, Australia, have been major world 

suppliers of tantalum, particularly the Greenbushes and the Wodgina Mines. The giant (>3 km 

long) Greenbushes pegmatite is located 250 km south of Perth and has been mined for tin and 

tantalum since 1888, and more recently also for kaolin and lithium (Partington et. al., 1995). 
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Figure 2.8. Schematic representation of regional lithium-cesium-tantalum (LCT) rare-metal-bearing pegmatite zoning 

above a parental granite. (After Černý (1991b)). 
 

 
Figure 2.9. Schematic cross-section of a concentrically zoned lithium-cesium-tantalum (LCT) rare-metal-bearing 

pegmatite. (After Černý (1991a) and Fetherston (2004)). 
 

It contains the world’s largest identified pegmatite-hosted tantalum resource and mining 

operation. The pegmatite is late Archean in age and appears to have been intruded along a crustal 

fault zone synchronously with deformation. Unlike many other pegmatite districts, there is no 

evidence for a nearby parental granite pluton for the Greenbushes pegmatite. Four major 

compositional zones have been identified; however, the most compositionally evolved zones (that 

is, the most lithium-rich) occur at the top and bottom of the pegmatite rather than at the center. 

Early formed tantalum minerals are mainly wodginite and ixiolite; later tantalum minerals 

(tantalite and tapiolite) occur within fractures, whereas microlite is related to later hydrothermal 

mineralization (Partington et. al., 1995). The main ore zones generally occur within the more 
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tourmaline-rich portions of albite-rich zones in the pegmatite. Most ore produced at Greenbushes 

since 1888 has been by open pit mining of weathered pegmatite and alluvial sources; recently, 

however, underground mining of hard-rock ore has also begun. 

The Wodgina pegmatite district is one of more than 27 pegmatite districts located in the 

northern part of Western Australia, Australia; it includes the Wodgina main lode and Mount 

Cassiterite tantalum-mineralized pegmatites (Sweetapple and Collins, 2002). The Wodgina main 

lode pegmatite is a north-south-trending, easterly dipping (20 to 50 degrees) dike with a total 

length of about 1 km and a thickness ranging from 5 to 40 m; most mining has been in the 

northern, thicker end. Originally discovered in 1902, the Wodgina pegmatite has intermittently 

produced beryl, tantalum, and tin during the past 100 years. The main tantalum mineral is 

manganese-rich tantalite, which, together with some manganese-rich columbite and wodginite, is 

found mainly in marginal cleavelandite (a platy form of albite) (Sweetapple and Collins, 2002). 

In the Mount Cassiterite pegmatite, which lies just south of Wodgina, wodginite is the main 

tantalum mineral (Sweetapple and Collins, 2002). Tantalum from both pegmatites is recovered 

by open pit mining. Additional tantalum-bearing pegmatites occur in Western Australia, including 

the producing Mount Cattlin pegmatite, as well as the Bald Hill and the Mount Deans deposits, 

which are under development (Fetherston, 2004). 

A number of pegmatite fields are present in Africa. Pegmatites in Ethiopia (Kenticha) 

and Mozambique (Marropino) were significant tantalum producers in the 2000–13 time period 

(Bleiwas et. al., 2015); others were undergoing exploration or development for tantalum and 

associated resources (for example, the Morrua and the Mutala pegmatites in Mozambique). 

Mining of columbite-tantalite (also called coltan) from weathered pegmatites and from secondary 

placer deposits derived from pegmatites in central Africa, particularly in Burundi, the Democratic 

Republic of the Congo (Congo [Kinshasa]), Nigeria, Rwanda, and Uganda, has been conducted 

mainly by artisanal family mining groups and prospectors. The Main Kenticha pegmatite in 

Ethiopia is a Cambrian-age intrusion exposed across a length of more than 2 km (Küster, 2009). 

The pegmatite displays asymmetric internal textural and mineral zonation with manganese-rich 

tantalite as well as ixiolite concentrated in the upper intermediate and core zones. The deposit 

also contains valuable lithium resources, although these are not currently mined. Tantalum 

production has been from deeply weathered regolith over the pegmatite; however, exploration 

drilling of the hard-rock pegmatite is being conducted to evaluate the size of the primary 

mineralization (Küster, 2009). To the south of Kenticha, the Alto Ligonha pegmatite province in 

Mozambique contains numerous mineralized pegmatites, which have been mined intermittently 

since 1926. Tantalum concentrate was produced from ore from the Marropino Mine, concessions 

were held for the Morrua and Mutala deposits, and exploration was ongoing in adjacent areas. In 

Egypt, rare-metal granites were the focus of ongoing exploration and development activities, 

including the Abu Dabbab and Nuweibi granites (Küster, 2009). These deposits consist of fine-
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grained columbite-tantalite minerals disseminated throughout the granite intrusions. In addition, 

these intrusions host tin mineralization and ceramic-grade feldspar (Bleiwas et. al., 2015). 

In China, the Yichun tantalum-niobium-lithium deposit is the leading tantalum producer, 

accounting for more than one-half of China’s tantalum output (Fetherston, 2004). 

The deposit is in a small, sheet-like rare-metal granite that represents the most 

fractionated and youngest phase of the Jurassic Yanshan granite intrusion (Yin et. al., 1995). The 

main tantalum minerals in this deposit are columbite-tantalite and tantalum-rich cassiterite along 

with minor microlite. The 801 Mine, which is located in the eastern part of the Inner Mongolia 

Autonomous Region about 640 km northeast of Beijing, is reported to have large resources of 

niobium, REEs, tantalum, and zirconium (Fetherston, 2004). Additionally, pegmatites in the Altai 

region of northwestern China and in the Nanping region of southeastern China have also produced 

columbite-tantalite. 

In South America, the Volta Grande pegmatite mine located near the city of Nazareno in 

the State of Minas Gerais, Brazil, is a significant supplier of lithium, niobium, and tantalum. The 

main deposit is in a large, about 1-km-long, subhorizontal, zoned albite-spodumene pegmatite 

body of Paleoproterozoic age (Lagache and Quéméneur, 1997). Cassiterite, microlite, and 

tantalite are the main tantalum-niobium-bearing minerals. A distinctive feature of pegmatites in 

the Volta Grande district is that they are exceptionally enriched in lithium and rubidium (Lagache 

and Quéméneur, 1997). 

The only pegmatite mine in North America producing tantalum in the 2000–13 time 

period was the Tanco deposit at Bernic Lake in southeastern Manitoba, Canada (Bleiwas et. al., 

2015). Operated briefly as a tin mine beginning in 1929, tantalum production began only in 1969. 

Full-scale mining to produce lithium from spodumene (the underground mine’s major product), 

along with cesium, rubidium, and tantalum, began in 1984. Tanco is part of the rare-metal-bearing 

Bernic Lake pegmatite group, which intrudes metamorphosed Archean volcanic rocks. The Tanco 

pegmatite occurs as a shallowly dipping sheet that is up to about 100 m thick and can be traced 

for about 1,600 m along strike. The pegmatite consists of nine zones, each of which has a different 

mineralogy, texture, and location, as well as a halo of altered mafic host rock. The deposit has a 

very complex mineralogy—more than 80 minerals are present, including 14 tantalum-bearing 

minerals (Černý, 2005). Wodginite is the principal ore mineral, and it occurs mainly in a zone 

lying below the quartz core (Grice et. al., 1972). Numerous other tantalum-bearing pegmatites 

have been identified in Ontario and Manitoba (Selway et. al., 2005); several were undergoing 

evaluation of their tantalum and associated resources. In the United States, niobium-tantalum 

minerals, chiefly columbite, were recovered intermittently from a number of pegmatites in the 

past (Barton, 1962). The Harding pegmatite in New Mexico, which is a complexly zoned lithium- 

and beryllium-bearing pegmatite, was an important source of tantalum briefly during World War 

II and supplied about 3 metric tons of microlite concentrate (Parker and Adams, 1973). There has 
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been no reported tantalum mine production in the United States since 1959. 
 

2.4.4. Uses, Applications, and Consumption 
 

The electronics industry accounts for about one-half of tantalum consumption, mainly as 

powder and wire (Schwela, 2010). Electronic capacitors are the leading end use of tantalum owing 

to tantalum’s particular ability to store and release energy. Because of this ability, components 

can be exceptionally small and are favored in space-sensitive, high-end applications, such as 

telecommunications (for cell phones), data storage (for hard drives), and implantable medical 

devices (for hearing aids and pacemakers). To date, no effective substitute has been found for 

tantalum in electronic devices without loss in performance. 

Tantalum’s low mechanical strength and high biocom- patibility allows it to be used as a 

coating on stronger substrates, such as stainless steel, for such medical applications as stents to 

support blood vessels, plates, bone replacements, and suture clips and wire. In addition, tantalum 

is used to impart strength and high temperature resistance to cracking in the manufacture of 

superalloys for use in aerospace applications and energy generation. Its resistance to corrosion 

makes tantalum useful in the chemical industry, generally as a lining to pipes, tanks, and vessels. 

World consumption of tantalum, by material produced, is shown in Figure 2.10, (TIC, 2019).  

 

 
Figure 2.10. Pie charts showing percentage of reported world consumption of tantalum in 2017, by material produced 

(Data source: TIC, 2019). Ta, tantalum. 
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of tantalum carbide makes it ideal for cutting tools. The leading uses are metallurgical-grade 

powder (27%), tantalum chemicals (26%), followed by capacitor-grade tantalum powder (21%), 

and other uses (26%); and tantalum mill products (12%), tantalum ingot (11%); and tantalum 

carbide (3%). In 2017, world consumption of tantalum (measured as elemental tantalum) was 

2,371 metric tons, which was an increase of 15% from consumption in 2009. 

 

2.5 Tungsten mineralogy, types and deposits  

2.5.1 Mineralogy 

Tungsten does not occur in nature as a free metal, but only in the form of chemical 

compounds with other elements. Although several tungsten-bearing minerals are known, most are 

rare or very rare. Only scheelite and the wolframite group are abundant enough to be considered 

ores (Table 2.5). Scheelite, a calcium tungstate (CaWO4), is typically white to yellowish in color, 

and has blue-white fluorescence in ultraviolet light; a property which is especially utilized in 

exploration and mining. 

 
Table 2.5. Properties of the most common tungsten minerals (Source: BGS, 2017). 

  Wolframite Group 
 Scheelite Ferberite Worframite Hubnerite 
Chemical formula CaWO4 FeWO4 (Fe,Mn)WO4 MnWO4 
Tungsten trioxide content (WO3%) 80.6 76.3 76.5 76.6 
Specific gravity (g/cm3) 5.4-6.1 7.5 7.1-7.5 7.2-7.3 

Color 

Pale yellow to orange, 
green to dark brown, 

dark blue to black, white 
and colorless 

Black Dark gray to 
black 

Red-brown to 
black 

Lustre Vitreous or resinous Submetallic 
to metallic 

Submetallic 
to metallic 

Submetallic 
to adamantine 

Hardness (Mush scale) 4.5-5.0 5.0 5.0-5.5 5.0 
Crystal Structure Tetragonal Monoclinic Monoclinic Monoclinic 

 

The color of the fluorescent light is influenced by the molybdate content and changes 

from blue to cream and then to pale yellow and orange with increasing molybdenum content 

(Lassner and Schubert, 1999). Wolframite is a general term for iron–manganese tungstate and is 

a solid-solution series between two end members: ferberite (FeWO4, with less than 20 percent 

manganese) and hübnerite (MnWO4, with less than 20 percent iron). In practice, the name 

wolframite is often used for the intermediate mineral between these two end members. The 

wolframite group exhibit typically tabular morphology, and are usually black, dark grey or 

reddish-brown in color (Lassner and Schubert, 1999). Secondary tungsten minerals, such as 

hydrotungstite (H2WO4 · H2O) or cerotungstite (CeW2O6(OH)3), can be produced by alteration 

processes or weathering and may cause problems during processing leading to reduced recovery 
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of tungsten (Schmidt, 2012). 

 

2.5.2 Deposit types 

Tungsten deposits usually occur within, or near to, orogenic belts resulting from 

subduction related plate tectonics. All major deposit types are associated with granitic intrusions 

or with medium- to high-grade metamorphic rocks. The locations of selected major tungsten 

mines and deposits are shown in Figure 2.11. Werner et al. (1998) classified major tungsten 

deposits into seven types: vein/stock work, skarn, disseminated, porphyry, strata bound, placer, 

and brine/evaporite. Four additional types of relatively minor economic interest were also 

identified as: pegmatite, breccia, pipe, and hot-spring deposits. In reality the categorization of 

individual localities can be complicated by multiple stages of formation creating deposits that 

could be ascribed to more than one of these types. Table 2.6 contains a summary of typical sizes 

and grades for the major producing deposit types. 

 

 
Figure 2.11. The location of selected major tungsten mines and deposits. Note: In China there are many other 

deposits noted in the literature and it is not possible at this scale to include them all. 
 

Vein and stockwork deposits 

Vein and stockwork deposits are genetically related to the development of fractures that 

occur in or near granitic intrusions during emplacement and crystallization. These fissures are 

frequently filled with quartz and can be up to several meters in width. 
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Table 2.6. Typical size and grade of major producing tungsten deposit types (Source: BGS, 2017). 

Deposit type Deposit size range 
(metric tons) 

Typical range 
(WO3%) Examples 

Vein/Stockwork <105 to 108 0.1 to 0.8 Panasqueira (Portugal), Hemerdon (UK) 
Skarn <104 to 107 0.1 to 1.5 Mactung and Cantung (Canada) 
Disseminated <107 to 108 0.1 to 0.5 Akchatau (Kazakhstan) 
Prophyry <107 to 108 0.08 to 0.4 Xingluokeng and Yangchulin (China) 
Stratabound <106 to 107 0.2 to 1.0 Mittersill-Ferbertal (Austria) 

 

Large vein deposits may contain several individual veins, while stockworks comprise 

swarms of parallel, or near parallel, veins with interconnecting veinlets (Werner et al., 1998). The 

veining is commonly bordered by greisen (a form of endoskarn alteration) and is often spatially 

associated with disseminated greisen and porphyry-style tungsten mineralisation. The mineralogy 

of vein deposits ranges from the simple, consisting almost entirely of quartz and wolframite, to 

the complex, as at Pasto Bueno in Peru (Landis and Rye, 1974) or Panasqueira in Portugal (Kelly 

and Rye, 1979) where more than 50 vein-forming minerals have been identified. The wolframite 

series is the main tungsten-bearing mineral but scheelite also occurs in some deposits of this type. 

Tin, copper, molybdenum, bismuth and gold may also be present in economic quantities. In 

addition, uranium, thorium, rare earth elements and phosphate minerals may also occur (Elliott et 

al., 1995).  

In general, vein and stockwork deposits tend to be low grade. However, even with grades 

as low as 0.1 per cent tungsten trioxide they can still be exploited economically by bulk mining 

methods, as demonstrated at Mount Carbine mine in Australia (De Roo, 1988), which operated 

successfully at this low grade between 1973 and 1986. Other notable examples of vein/ stockwork 

deposits are found at Verkhne-Kayrakty, Kazakhstan (Rubinstein and Barsky, 2002); Xihuashan 

in the Nanling tungsten–tin province, China (Elliott, 1992; Guiliani et al., 1988; Wang et al., 

2011); Bolsa Negra and Chicote Grande, Bolivia (Cox and Bagby, 1986) and Hemerdon, United 

Kingdom (Mining Magazine, 1979; Keats, 1981). The tungsten mineralization at Hemerdon in 

Devon, is hosted in sheeted greisen’s-bordered vein systems and stockworks in the apex of a 

steeply dipping, dyke-like, granite body (known as Hemerdon Ball) on the south-west side of the 

early Permian-age Dartmoor pluton. Mineralisation extends to depths of at least 400 meters below 

surface. The Ta’ergou tungsten deposit, located in the western part of the Qilian orogen in Gansu 

Province, north-western China, consists of scheelite skarn bodies and wolframite–quartz veins. 

The deposit is genetically related to the Caledonian Teniutan granodiorite emplaced within 

Proterozoic rocks bordering the Archaean North Chine Plat form. The tungsten veining overprints 

the calcic skarns (Zhang et al., 2003). The tungsten vein system in the Nanling Range, South 

China, has been described using a so-called “five-floor building” model (Gu, 1982; Liu and Ma, 

1993; Li et al., 2011). Within this model there are broadly five vertical zones: a thread or stringer 

zone at the top, over a veinlet zone, thin vein or mixed zone, large vein zone and finally a thin-
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out or extinction zone (Figure 2.12). Large veins can also be sparsely developed in the underlying 

granite where typically they are weakly mineralized. The large-vein zone and the thin-vein or 

mixed-vein zones are the most economically valuable. 

 

 
Figure 2.12. Schematic model of ‘five-floor building’ vein-type tungsten deposit. (Data sourced from: Gu, 1982; 

Huang and Xiao, 1986.). 
 

Skarn deposits 

Skarns are coarse-grained rocks dominated by calc-silicate minerals that have formed by 

metasomatic processes in sequences containing carbonate- bearing rocks such as limestone 

(Einaudi et al., 1981). Most are found adjacent to plutons and are often associated with hornfels, 

skarnoid, marble and other similar rocks in the thermal aureoles. They can also occur along faults, 

major shear zones, in shallow geothermal systems and in metamorphic rocks at lower crustal 

depths (Meinert et al., 2005). Less common types of skarns form in contact with sulfidic or 

carbonaceous rocks such as banded iron formations or black shales. Calcic skarns are 

characterized by calcium- and iron-rich silicates (andradite, hedenbergite, wollastonite); 

magnesian skarns by calcium- and magnesium-rich silicates (forsterite, diopside, serpentine); and 

aluminous skarns by aluminium- and magnesium-rich calc-silicates (grossularite, vesuvianite, 

epidote). Dolomitic rocks tend to inhibit the development of tungsten bearing skarns; 

consequently, magnesian tungsten-bearing skarns are uncommon (Ray, 1995). 

Newberry and Einaudi (1981) distinguished two types of skarn on the basis of host-rock 

composition and relative depth: reduced skarns such as the Cantung and Mactung deposits in the 

North West Territories, Canada, and oxidized skarns, such as King Island, Tasmania, Australia 
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(Kwak and Tan, 1981; Kwak, 1987). In general, oxidized tungsten bearing skarns are smaller than 

reduced tungsten bearing skarns. The highest grades in both systems are associated with hydrous 

minerals and retrograde alteration (Meinert et al., 2005). Scheelite is the principal tungsten 

mineral and this may occur as disseminated grains or fracture fillings. Copper, molybdenum, tin, 

zinc and bismuth may also be present and can be economically recoverable. Economically 

exploitable skarn deposits usually contain between 0.1 per cent and 1.5 per cent tungsten trioxide 

(Werner et al., 1998). Mactung in the Yukon Territory, Canada, is the one of the largest tungsten-

bearing skarn deposits, with a NI43-101 compliant resource estimate including 33 million tones 

@ 0.88% WO3 in the indicated category and a further 11.9 million tones @ 0.78% WO3 in the 

inferred resource category (Narciso et al., 2009). The deposits occur in the thermal aureole of a 

late Cretaceous felsic intrusion, which was emplaced into a dominantly pelitic, Lower Paleozoic 

sequence along the eastern margin of the Selwyn basin. The mineralisation is stratabound and 

confined to four individual beds (Dick and Hodgson, 1982). Other tungsten-bearing skarn 

deposits include Los Santos in Spain (Tornos et al., 2007), Tyrnyauz and Vostock-2 in Russia 

(Soloviev and Krivoschchekov, 2011) and Xintianling and Yaogangxian in China (Zhao et al., 

1990; Chang, 2005). The Xintianling scheelite deposit, located on the north-east side of the 

Qitianling batholith in Hunan Province, is one of the largest amongst several tungsten-bearing 

skarn deposits in China. It is spatially associated with two-stage granite emplacement into 

Carboniferous dolomitic limestones over a 10 Ma interval in the mid–late Jurassic. Skarn ore 

formation is related to the older stage granite. It is a typical example of the Jurassic tungsten–tin 

ore-forming event in the Nanling Range of south China (Zhang et al., 2011). 

 

Disseminated or greisen deposits 

In disseminated or greisen deposits wolframite or scheelite are disseminated in highly 

altered (greisenised) granite or granitic pegmatite. Greisen comprises mainly quartz and mica and 

is formed by post-magmatic metasomatic replacement of the primary granite minerals. 

Disseminated deposits are distinguished from the greisen- bordered veins and stockworks by the 

pervasive nature of the alteration and the absence of fluid pathways. In reality, these deposit types 

commonly coexist. Disseminated greisen deposits usually occur near to the upper parts of 

intrusions that are emplaced at depths of between 0.5 and 5 km, where fluids can boil but are 

prevented from escaping to the surface. Tungsten is usually present as wolframite although some 

deposits also contain scheelite. Tin, molybdenum, bismuth and other base metals may also be 

present, along with quartz, topaz, white mica, tourmaline and fluorite. Tungsten grades are 

generally low but exploitation can be economic as a by-product of tin extraction. Examples of 

disseminated deposits include the Akchatau and Kara Oba deposits in central Kazakhstan 

(Zaraisky and Dubinina, 2001), the Torrington district of New South Wales, Australia and the 
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Hub stock at Krásno in the Czech Republic (Jarchovsky, 2006). 

 

Porphyry deposits 

Porphyry deposits are extensive, low-grade deposits formed following the separation of 

metal-rich fluids from a crystallizing wet magma. Tungsten tends to be concentrated in stockwork 

zones and fractures either in or near to the upper parts of granitic intrusions emplaced at shallow 

depths. Mineralized breccia zones may also be present. Tungsten occurs either as wolframite or 

scheelite, and sometimes both are present. Molybdenum, bismuth and tin often occur and may 

represent an opportunity for co-production. Tungsten-bearing porphyry deposits tend to be large 

in size but may not be economic due to their low grade. Nevertheless, important examples include 

Northern Dancer (formerly known as Logtung), Sisson Brook and Mount Pleasant in Canada 

(Brand, 2008; Snow and Coker, 1986; Kooiman et al., 1986) and the Xingluokeng, Shizhuyan, 

Lianhuashan and Yangchulin deposits in China (Liu, 1980; Zhaolin and Zhongfang, 1996; 

Werner et al., 1998). The Northern Dancer porphyry of the Western Cordillera, which straddles 

the boundary between Yukon Territory and British Columbia Province, comprises multiple, mid-

Cretaceous felsic intrusions hosting four vein systems with different tungsten/molybdenum ratios 

(Noble et al., 1984). Mineralization is centred on a felsic porphyry dyke complex and includes 

stockworks, sheeted vein systems, disseminations and skarns but mostly comprises typical 

porphyry-style crackle breccias showing many similarities with porphyry molybdenum deposits. 

Resources, which are NI43-101 compliant, are estimated to include 30.8 million tonnes @ 0.114% 

WO3 in the measured category, 192.6 million tonnes @ 0.1% WO3 in the indicated category and 

a further 201.2 million tonnes @ 0.089% WO3 in the inferred resource category (Molavi et al., 

2011). The Xingluokeng tungsten–molybdenum deposit of the Fujian province is hosted in a late 

Jurassic Yanshanian granite porphyry stock in the Wuyishan metalloorganic belt. The central 

zone underwent strong silicic and potassic alteration and is enriched in rare earth elements (Zhang 

et al., 2008). The Shizhuyuan deposit in the Dongpo orefield of Hunan Province is a world-class 

polymetallic tungsten deposit. The mineralization is diverse in character and has a complex origin 

related to multiple phases of granite intrusion (Lu et al., 2003). It comprises dominantly W–Mo– 

Bi–Sn–F calcic skarn-greisen zones developed around the late Jurassic Qianlishan granite 

complex of the Yanshanian granitoid province. The highest tungsten grades occur in 

vein/stockwork W–Sn–Mo–Bi–Be mineralization associated with a later granite phase which is 

superimposed on the early stage massive skarn-greisen zone. On this basis some researchers have 

described this deposit as porphyry in style (Li et al., 2004). 

 

Breccia deposits 

Breccia deposits are composed of angular, broken fragments of rock located within, 
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above or marginal to the apex of an intrusion. They are formed either by magmatic/hydrothermal 

hydraulic fracturing or by explosive interactions between water and magma. Many 

vein/stockwork and porphyry deposits have breccia zones associated with them. However, some 

tungsten-bearing breccia bodies appear to have formed independently of other deposit types 

(Werner et al., 1998). An example is the Washington copper–molybdenum–tungsten breccia pipe 

in Sonora, Mexico (Simmons and Sawkins, 1983). 

 

Stratabound deposits 

Tungsten mineralization in strata bound deposits is confined to a single stratigraphic unit, 

although they may not be strictly conformable to bedding, i.e. mineralization may cross bedding 

planes. Stratabound deposits occur in volcano-sedimentary sequences and are considered to be 

syngenetic in origin. They can be distinguished from skarn deposits which are largely controlled 

by the composition of the host rock lithology and are assumed to be epigenetic. Strata bound 

tungsten mineralization occurs within iron–magnesite and dolomitic marbles in the Eastern Alps 

(Neinavale et al., 1989). Many strata bound tungsten occurrences appear to have been affected by 

later mobilization and reconcentration and therefore their syngenetic origin is questionable 

(Werner et al., 1998). Examples of this type of tungsten deposit include the Mittersill-Ferbertal 

deposits in the Salzburg province of Austria and Damingshan in China (Ma, 1982). The 

Cambrian-age Mittersill- Ferbertal orefield comprises several lenses of scheelite-rich quartzite, 

an underlying vein-stockwork zone, an eruption breccia and quartz-rich aureole to a granitoid 

intrusion. Further scheelite enrichments occur along shear zones. Geochronological and 

geochemical data on the Ferbertal deposit indicate a genetic link with mantle dominated granitic 

melts (Eichhorn et al., 1999). Subsequent metamorphic events and granitic intrusions have 

remobilised the scheelite (Höll and Eichhorn, 2000). The Cambrian-Ordovician Damingshan 

tungsten deposit in the Danchi metalloorganic belt in Guangxi Province includes Late Cretaceous 

vein and stockwork wolframite mineralization as well as the massive stratiform types (Li et al., 

2008). 

 

Pegmatite deposits 

Pegmatites are coarse-grained igneous rocks, generally of granitic composition, formed 

by the late stage crystallization of magma and containing many incompatible elements such as 

lithium, beryllium, niobium, tantalum, tin and uranium. Tungsten is not a common constituent of 

pegmatites and tungsten-bearing pegmatite deposits are therefore rare. Grades for tungsten tend 

to be low but it can be extracted as a by-product. For example, tungsten occurs in the pegmatite 

which is worked primarily for tantalum at the Wodgina mine in Western Australia, and it is also 

found in the Okbang deposit in South Korea (Chung, 1975). 
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Pipe deposits 

Pipe deposits can be cylindrical or irregular, elongated or bulbous masses or quartz that 

occur at the margins of granitic intrusions. Mineralization, most frequently wolframite, is often 

erratically distributed in high-grade shoots or pockets containing up to 20 percent wolframite, but 

deposits tend to be small. Examples include the Wolfram Camp deposit in Queensland, Australia 

(Plimer, 1975). 

 

Hot-spring deposits 

These deposits are probably derived from bedrock tungsten-bearing deposits and are 

formed by circulating hot ground water. Deposits of calcareous tuffs or travertine are formed by 

precipitation as this hot ground water cools and tungsten mineralization has been found in selected 

locations. Examples, where these deposits have been worked in the past, include Golconda in 

Nevada, USA (Kerr, 1940; Marsh and Erickson, 1975) and Uncia in Bolivia (Werner et al., 1998). 

 

Placer deposits 

Placer deposits are concentrations of heavy and chemically resistant minerals that occur 

in sediments. Wolframite and scheelite, although heavy, will eventually decompose during 

weathering and therefore, tend not to be preserved long enough to form widespread placer 

deposits. However, they do occur, in both alluvial and coastal sediments, albeit they are usually 

small in size. Typically, they are located very close to the bedrock deposit from which they were 

originally derived (Werner et al., 1998). A few tungsten bearing placer deposits have been worked 

on an industrial scale, for example in the Heinze Basin in Burma (Myanmar) (Goosens, 1978) 

and in the Dzhida district of eastern Siberia. 

 

Brine and evaporite deposits 

Tungsten-bearing brines and evaporite deposits occur in recent lakes and/or palaeolake 

settings in arid regions of Asia and North America. The tungsten is thought to have been leached 

from bedrock deposits by hot fluids. The most significant example of this type of deposit is the 

Searles Lake deposit in California, USA (Guerenko and Schmincke, 2002; Altringer, 1985). 

Stratabound scheelite at Halls Creek in Western Australia is of evaporitic origin analogous to 

continental-sabkha playa basins of the Mojave desert (Todd, 1989). 

 

2.6 Mineralogical characterization 

2.6.1 Quantitative mineralogy  
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A wide range of micro analytical techniques exists that can be used to examine an ore. 

During the 1980s, Gasparrini (1984A) noted that optical microscopy and electron microprobe 

(EMPA) were the techniques used for studying silver carriers in an ore, being that the optical 

properties were the most important features for the identification of silver deportment at that time. 

Currently, advanced microscopic techniques provide detailed quantitative information of the 

minerals present in the ores, directly analyze the structure and composition of the ore, and 

quantify the key mineralogical attributes (such as modal mineralogy, deportment of the elements, 

and textures, among other relevant attributes). 

Factors that affect the identification of minerals are mainly the grain size of the minerals 

(Gasparrini, 1993; Zhou, 2010), textures present in the ore and the detection limits of each 

microscopic technique used in the mineralogical characterisation (Knights and Patterson, 1988; 

Basto et al., 1995). In the following paragraphs the techniques used in the present study are 

described. It is also necessary to comment that there are other micro analytical techniques, which 

are outside the scope of this work, for example, Sensitive High-Resolution Ion microprobe 

analysis (SHRIMP), Proton induced microprobe (µ-PIXE), among others. 
 
¨ SEM-based automated mineralogical systems 

Automated mineralogical systems are used widely in process mineralogy and mineral 

characterization. They can measure key mineralogical attributes in a few hours, such as modal 

mineralogy, grain size, association and liberation of minerals (Jones and Gravilovic, 1970; 

Gottlieb et al., 2000; Petruk, 2000; Gu, 2003; Lastra, 2007). SEM-EDS are equipped with 

commercial software that controls the SEM-EDS, making it automatic. There are two well-known 

software products used worldwide – Quantitative Evaluation of Minerals by Scanning Electron 

Microscopy (QEMSCAN) and Mineral Liberation Analyser (MLA). 

 
¨ Electron microprobe analysis (EMPA) 

Electron microprobe analysis (EMPA) is the most mature of the micro beam analysis 

techniques, providing quantitative analyses for small areas of polished samples (Reed, 2005). The 

information given by the use of these techniques is shown in Table 2.7.   

 
Table 2.7. Information gained by analytical techniques (from Lamberg, 2011). 

Analytical technique Level of information 
Chemical Assays Elements 
MLA/QEMSCAN Minerals 

XRD    Minerals 
Mineral conversion Minerals 

EMPA Elements, minerals 
ICP-MS Elements, minerals 

MLA analysis Elements, minerals, particles 
Synchrotron – based methods Elements, minerals 
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Generally, this method is considered the most useful for the analysis of major and minor 

elements within a sample, with an accepted minimum detection limit (MDL) for trace elements 

by wavelength dispersion in the order of 100 ppm (Newbury et al., 1986; Goodall and Scales, 

2007; Zhou, 2010). This method is used primarily to quantify the chemical composition of 

minerals. 

 
2.6.2 Key mineralogical attributes 

Butcher (2010) and Evans (2010) noted that, in an ore more than one texture may be 

present with varying deportment of valuable elements. Figure 2.13 illustrates an example of 

different micro- textures where copper may occur in ores given by Butcher (2010), i.e. copper 

can be present as chalcopyrite inter-grown with pyrite, discrete native copper, chalcocite rimming 

pyrite, or others as shown in the figure. 

1. Modal mineralogy: the relative proportions of minerals present in an ore. Mc Arthur 

(1996) described the traditional method to measure this as point counting using optical 

microscopy methods. Currently, the newer methods, such as QEMSCAN, MLA and 

Quantitative X-Ray Diffraction (QXRD), allow the measurement of modal mineralogy 

“using a quantitative and unbiased approach” (Bonnici, 2012). QEMSCAN/MLA in some 

modes uses the point counting approach, in others a different basis is used. 

2. Elemental deportment: indicates the minerals in which the valuable element is present and 

what proportion of the total elemental concentration is accounted for by those minerals. 

 

 
Figure 2.13. Various copper minerals and the textures that may be present in an ore (from Butcher 2010 and modified 

by Evans, 2010).  
 

3. Textures of ores: According to Bojcevski (2004), texture is closely related to mineral 

liberation of the ores. There are three different scales that describe texture: macro (ores are 
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at scale of Km-m), meso (ores are at scale of m-cm) and micro (ores are observed at the scale 

of micrometres-examples of these micro-textural characteristics include mineral grain size 

and mineral association). For metallurgists, micro-textures are the most relevant of the 

textures for consideration of processing properties. 

Texture also considers grain size and mineral association because together they largely 

describe the texture of ores. 

¨ Grain size: As stated by Craig (2001), “(i)t is important to note that size of grains is vital 

in interpreting growth histories of ores and in predicting the degree of liberation and 

potential recovery of minerals during processing”. 

¨ Mineral association: describes how the boundary of a mineral is shared with other 

minerals. These associations have a direct impact on the potential liberation of the target 

minerals, and therefore on flotation and recovery (Petruk, 2000; Bojcevski, 2004; 

Goodall and Scales, 2007; Becker et al., 2008). 

 

Butcher (2010) discussed the basic textures that have some influence in flotation – these 

are equigranular and inequigranular. Also, complex textures have influence on the processing to 

liberate the valuable minerals, for example: “rims, disseminated inclusions (or exsolutions), or as 

interstitial phases – as this will control breakage mechanisms during blasting, crushing and 

grinding (intragranular versus intergranular), and will make it either relatively easy, or difficult 

(or impossible) to liberate and float effectively” (Butcher, 2010). Figure 2.14 shows the basic and 

complex textures that affect the processing of the ores. 

 

 
Figure 2.14. A) basic textures; B) complex textures present in an ore that influence processing (after Butcher, 2010). 

 

4. Degree of liberation: The degree of particle liberation is a function of the grade and 

distribution of particles that contain the valuable mineral. Butcher (2010) commented on the 
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modern techniques used to quantify this. He stated that “the degree of mineral liberation can 

be quantified using a variety of optical and SEM-based image analysis techniques”. Figure 

2.15 illustrates an ore that starts as unbroken ore and undergoes crushing and grinding to obtain 

some degree of liberation. 

 

Additionally, there is a relationship between the degree of liberation and grain size. The 

size of grain is crucial on predicting the degree of liberation and therefore the potential recovery 

of metals during treatment (Craig, 2001). Thus, it is necessary to know the degree of mineral 

liberation of the feed for complex sulphide ores to design the flow sheet, monitor plant 

performance and optimise circuits (Johnson and Munro, 2002). They also commented about the 

ranges of liberation and the effect on the separation process (Table 2.8) based on their experience 

with the data and the sulphide flotation process. These numbers will not necessarily be the same 

for all ores. 
 

 
Figure 2.15. From unbroken ore – to obtain liberation of valuable minerals in an ore (from Butcher, 2010). 

 

Table 2.8. Degree of liberation for minerals of interest (from Johnson and Munro, 2002). 
Liberation value for mineral of interest* Expected or theoretical possible separation process 

< 70% Poor separation results 

70% to 80% Sound of separation results 

> 80% Good separation results 

*uncorrected 2D value  
 

The degree of liberation is typically examined by mounting particles into resin and 

sectioning them to obtain 2D (areal) information (Butcher, 2010). By analysing these particles 

using optical microscopy or automated SEM, it is possible to classify them into the following 

groups: liberated particles, binary composites, ternary composites or quaternary composites. This 

is illustrated in Figure 2.16 where A, B, C and D represent different minerals. 
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Figure 2.16. Particle compositions for binary, ternary and quaternary composites (from Jones, 1987). 

 

2.6.3 Mineralogical characterization for tantalum 

Tantalum mineralogy has been studied by many researchers including Bale (1989), Zihu 

et al. (2012), Martin et al. (2014), Ghorbani et al. (2017) and Allain (2019). These researchers 

have developed well-defined approaches for the mineralogical characterization of tantalum. 

According to the previous studies, the most common techniques used for tantalum 

characterization are listed in Table 2.6. For bulk mineral analysis, they are X ray fluorescence 

(XRF) for major elements. Minor elements were measured using ICP-MS from acid digestion of 

fused glass beads, Petrographic and mineralogical characterisations were carried out by X-ray 

powder diffraction (XRD), optical microscopy and scanning electron microscopy (SEM–EDS) 

and EMPA was used to obtain the chemistry of minerals. Mineral liberation analysis (MLA) and 

TIMA-X were performed to obtain textural and compositional information of a large number of 

particles. 

A well described methodology to follow for tantalum characterization is provided by 

Ghorbani et al. (2017). It starts with sampling, then performing a chemical characterisation, 

followed by mineralogical characterisation to identify the key mineralogical attributes for 

tantalum processing. 

Ghorbani (2017) described the Penouta mine as a tantalum deposit in Spain. The 

mineralogical study was carried out. Quantitative mineralogical analysis was conducted on the 

samples using a QEMSCAN® 4300 which is based on a Zeiss EVO 50 series SEM and consists 

of four light elements Bruker SDD (Silicon Drift Droplet) Energy Dispersive X-ray 

Spectrometers (EDS) and an electron backscatter detector (Rollinson, 2011). Both the Field scan 

and PMA measurement modes were used on the samples depending on the sample particle sizes. 

iMeasure v. 4.2 was used for data acquisition, and iDiscover v. 4.2 and 4.3 were used for the data 

processing. Bulk geochemical analysis was carried out using a Bruker S4 Pioneer WDS X-ray 

Fluorescence (XRF) instrument. Portable X-ray Fluorescence analysis (PXRF) was carried out 

using an Olympus DP-6000C PXRF to provide more in-depth analysis on sized fractions of 

gravity test products. Detailed spatially resolved chemical analysis of minerals was carried out by 

Electron Probe Microanalysis (EPMA) using a JEOL JXA-8200 Electron Microprobe. 

Hamid (2018) the mineral characteristics of the Penouta ore grinding products were 
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analyzed using a Tescan Integrated Mineralogical Analyzer (TIMA-X) and X-ray powder 

diffraction (XRD). Mineralogy was determined by optical microscopy, X-ray powder diffraction 

(XRD), scanning electron microscopy with energy-dispersive spectral analysis (SEM–EDS) in 

the back-scattered electron mode (BSE), and EMPA. Electron microprobe analyses were obtained 

in a JEOL JXA-8230 electron microprobe. 

 

2.6.4 Mineralogical characterization for scheelite 

The mineralogy of scheelite is not more complex than that of tantalum, as discussed. 

Although several authors have studied the mineralogy of scheelite, a systematic approach for the 

characterization of scheelite has not been well defined. Combinations of different techniques need 

to be applied for each new scheelite ore, making it impractical to have a strictly defined procedure 

for scheelite. A practical framework to systematically characterize scheelite ores is required. 

Many authors have described methods for identifying scheelite in different contexts; 

however, a consistent framework for characterisation has not been applied. A number of 

microscopic techniques that could be used to determine the average level of scheelite using 

microprobe techniques, and ICP-MS. As well, by using point counting and QEMSCAN or MLA, 

the average weight percentages of the minerals present in the ore could be quantified. 

Nevertheless, there have been some mineralogical studies performed for different 

scheelite mines around the world that apply a mineralogical characterization method for sheelite. 

Some of these are discussed in the following paragraphs. 

Martins (1996) investigated the low-grade concentrate was supplied by Minas de 

Tarouca. Chemical analysis, by atomic absorption spectroscopy and gravimetric methods, 

mineralogical composition, by X-ray powder diffraction pattern, and sieve analysis have been 

done. 

X-ray diffractometer (D8-ADVANCE Bruker-AKS) was run in the reflection mode with 

Cu Kα radiation (λ = 1.5406, tube potential of 40 mV, and tube current of 40 mA), and a 

goniometer speed of 4 (°)/min. The shape characterization of milled particles was imaged by the 

JSM-6490LV SEM instrument have been studied by Hu (2012). 

To determine impurities in minerals samples, chemical analyses were performed 

(Filippova et al., 2014). Pure minerals were used in micro-flotation. The pure minerals sources 

were as follows: calcite from France, apatite from Madagascar, fluorite from France and scheelite 

from China.  

Filippov (2018) was analyzed scheelite through inductively coupled plasma mass 

spectrometer (ICP-MS) and inductively coupled plasm atomic emission spectroscopy (ICP-AES). 

He also both the floated and the non-floated products were dried in an oven at 80 °C, weighted 

and ground in a laboratory disc mill to obtain a −10 µm powder. The powder was analyzed by 



Chapter II Literature Review 
 

Sarbast Ahmad Hamid 52 

Energy Dispersive X-ray fluorescence spectroscopy (ED-XRF) using a Thermo Scientific 

Niton™ Xl3t portable XRF analyzer. 

These examples demonstrate that the approach used to characterise scheelite varies 

widely and there is an opportunity to develop a standard systematic approach to characterise 

scheelite in ore deposits. 

 

2.7 Gravity concentration to recover tantalum and scheelite  

This research will focus on the gravity concentration process, which is used on a 

laboratory scale to selectively separate valuable minerals from non-valuable minerals. Gravity 

concentration is the separation of minerals based upon the difference in density (Wills et al., 

2006). Many machines have been designed and built to effect separation of minerals by gravity 

(Burt, 1985). Design and optimization of gravity circuits is discussed by Wells (1991) and 

innovations in gravity separation are reviewed by Honaker et al. (2014). The Vanner, a vibrating 

continuous belt, was developed in the 1860s and bumping tables followed before the modern 

differential shaking table was developed by Wilfley in 1896 (Gupta et al., 2016). 

 

2.7.1 Description of gravity concentration 

 Concentration occurs within a two-phase, solid-liquid system containing finely ground 

particles, and water. A schematic of the operation of a shaking table system is shown below in 

Figure 2.17. When a film of water flows over a flat, inclined surface, the water closest to the 

surface is retarded by the friction of the water absorbed on the surface and the velocity increases 

toward the water surface. If mineral particles are introduced into the film, small particles will not 

move as rapidly as large particles, since they will be submerged in the slower-moving portion of 

the film (Figure 2.18). Particles of high specific gravity will move more slowly than lighter 

particles, and so a lateral displacement of the material will be produced (Wills & Finch, 2015). 

The shaking table consists of a slightly inclined deck, on to which feed, at about 25% 

solids by weight, is introduced at the feed box and is distributed across the table by the 

combination of table motion and flow of water (wash water). Wash water is distributed along the 

length of the feed side, and the table is vibrated longitudinally, using a slow forward stroke and a 

rapid return, which causes the mineral particles to “crawl” along the deck parallel to the direction 

of motion. The minerals are thus subjected to two forces, that due to the table motion and that, at 

right angles to it, due to the flowing film of water. The net effect is that the particles move 

diagonally across the deck from the feed end and, since the effect of the flowing film depends on 

the size and density of the particles, they will fan out on the table, the smaller, denser particles 

riding highest toward the concentrate launder at the far end, while the larger lighter particles are 

washed into the tailings launder, which runs along the length of the table. An adjustable splitter 
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at the concentrate end is often used to separate this product into two fractions a high-grade 

concentrate (heavy product) and a middling’s fraction. Separation can be influenced by the length 

of stroke, which can be altered by means of a hand-wheel on the vibrator, or head motion, and by 

the reciprocating speed (Wills & Finch, 2015).  

 
Figure 2.17. Operation of shaking table (Wills & Finch, 2015). 

 
Figure 2.18. Action in a flowing film (Wills & Finch, 2015). 

 
Tables slope from the feed to the tailings (light product) discharge side and the correct 

angle of incline is obtained by means of a handwheel. In most cases the line of separation is 

clearly visible on the table, so this adjustment is easily made. The table is slightly elevated along 

the line of motion from the feed end to the concentrate end. The moderate slope, which the high-

density particles climb more readily than the low-density minerals, greatly improves the 

separation, allowing much sharper cuts to be made between concentrate, middling’s, and tailings. 
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The correct amount of end elevation varies with feed size and is greatest for the coarsest and 

highest specific gravity feeds. The end elevation should never be less than the taper of the riffles, 

otherwise there is a tendency for water to flow out toward the riffle tips rather than across the 

riffles. Normal end elevations in ore tabling range from a maximum of 90 mm for a very heavy, 

coarse sand, to as little as 6 mm for an extremely fine feed (Wills & Finch, 2015). 

 

à Particle size in gravity concentration 

Particle size is an important factor governing over the shaking table, especially important 

are the effect of the coarser and finer particle sizes on the recovery of the valuable minerals. The 

variation of concentration recovery with particle size follows the general pattern of inverted “u” 

shape shown in Figure 2.19., where the recovery for fine particles is low, increases with particle 

size (intermediate region) reaching a maximum and then decreasing for coarser particles. 

Predictions from laboratory tests can be improved if the mineral recovery from the batch tests is 

expressed as a function of particle size (Wills and Napier-Munn, 2006). 

The determination of an optimum grind size for particles in a given ore depends not only 

on their grain size (Finch et al., 1979). In the case of real complex ores, an initial examination 

should be made to determine the degree of liberation in terms of particle size so that an estimate 

of the required fineness of grind can be made (Wills and Napier-Munn, 2006). The potential for 

liberation of the minerals contained in the ore and the texture of ore samples can be characterized 

by using automated image analysis techniques, such as the MLA. 

 

 
Figure 2.19. Average recovery by particle size during separation by a Knelson concentrator. Recoveries calculated 

from PXRF results (Ghorbani, 2017). 
 

2.8 Mineral liberation modelling and prediction of the ores 
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A major portion of the scientific work on liberation has focused on the prediction of the 

natural mineral liberation; considerably less attention has been given to the problem of predicting 

the liberation spectrum produced when concentration processes occur simultaneously to that of 

size reduction (Schneider et al., 1991). Such concentration processes are very common in mineral 

processing operations, the definitive example being milling in closed circuit with a shaking table. 

This is not surprising, since liberation is a very complex process and the prediction of the natural 

liberation spectrum is a formidable task, requiring complex mathematical formulation. 

The first attempt to develop a procedure for predicting the natural liberation spectrum 

was made by Gaudin in 1939. Gaudin’s approach was essentially geometrical, based on the 

superposition of very simple regular fracture and texture patterns.  

Wiegel and Li 1967 randomized Gaudin’s model, recognizing that the textural structure 

of real mineralogical materials is better described by probabilistic models. The latest expansion 

of Gaudin’s model is due to Meloy et al. 1987, who proposed solutions to the superimposition of 

a randomized fracture pattern that produces spherical particles in shape and four distinct, regular 

texture patterns.  

The first, known as the integral geometry approach, is due to Barbery, 1991, and the 

second, known as the stereological approach, is due to King, 1979. 

The integral geometry approach is the ultimate application of superimposition of 

complex, more realistic, texture patterns with fracture patterns, both controlled by random 

polyhedral processes, in three dimensions. However, it is rather complicated to model the 

liberation process directly in three-dimensional space, which makes King’s approach 

considerably more attractive (Schneider, 1995). This consists of modelling texture and fracture in 

one dimensional space with great advantage in simplicity. 

However, no realistic transformation function was available until 1985, when Lin et al., 

1986 first measured it from computer generated PARGEN particles. Following that work, Lin, 

1987 generated the first solutions to the stereological transformation equation, and the first 

attempts to measure the liberation spectra of real mineralogical particles were made. Finally, 

Schneider et al., 1991 presented a procedure for inverting the stereological equation which 

generated a mildly constrained volumetric grade distribution, which was used for the first time in 

conjunction with King’s Random Fracture Model to predict the natural liberation spectra 

produced by the breakage of a copper and an iron ore. 

The only known method for predicting the liberation spectra produced by the breakage 

of mineralogical particles is the one based on population balance modelling (Schneider, 1995). 

Also, a model for the quadrivariate breakage function based on PARGEN simulations is 

proposed, and incorporated into MODSIM, the Modular Ore Dressing Simulator (Schneider, 

1995). 

A method was proposed by Ueda, 2016 for estimating the number of particle sections that 
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should be analyzed in order to achieve a degree of apparent liberation in 2D and a degree of 

liberation in 3D for a desired arbitrary reliability. 

Attempts have been made in the past to explicitly include liberation characteristics in 

predicting downstream separation process performance for disseminated low grade ores (Schaap, 

1979; Subasinghe, 2008) with limited success (Zhang, 2012). 

Welsby et al. (2010) determined the floatability of each size/grade class of a Pb/Zn ore 

by back-calculation and considered it to be constant for a given the flotation environment. 

A predictive liberation model without any ore texture and particle structure assumption 

has been developed and the details have been given elsewhere (Zhang, 2012; Zhang and 

Subasinghe, 2013). 

Using the measured distributions and the distribution equations, the extent and the linear 

grade distribution of the composite and liberated particles have been calculated. The calculated 

values are compared with the measured distributions in Figure 2.20 for two size fractions (Zhang 

and Subasinghe, 2016). 

 

 
Figure 2.20. Comparison of cumulative linear grade distributions of particles at from measurements and model 

predictions (Zhang and Subasinghe, 2016). 

 

2.9 Applying mineralogy to increase recovery of valuable metals from ores 

 Process mineralogy is a science that combines mineralogy and mineral processing, with 

the capabilities of identifying bulk mineralogy, degree of liberation and the presence of 

problematic minerals in an ore to develop or improve the processing flow sheet for that ore 

(Hagni, 1982; Henley, 1983; Hagni, 1986; Baum et al., 2004). There are a number of researchers 

who have applied process mineralogy to tantalum and scheelite (Bose 2008; Ayeni et al., 2012; 

Allain, 2019). Allain (2019) studied an ore body that had tantalum and niobium naturally occur 

in cassiterite deposits and are concentrated in the slag during the smelting process. 
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The concentration of tantalum and niobium oxides in a solid residue have been studied. 

Starting from a slag containing about 15% (Ta,Nb)2O5, sequential alkaline and acid leaching 

stages resulted in the production of a 63% (Ta+Nb) oxides concentrate, which is comparable to 

commercial grade of mineral concentrates. SEM-EDS was performed on the tailings to investigate 

which form of tantalum present in the ore was lost.  

In 2017, Li carried out the surface properties and flotation behavior of scheelite particles 

having a size of −74 + 38 µm produced by ball and rod mills were studied through single mineral 

flotation experiment, scanning electron microscopy (SEM) observation, wettability measurement, 

and X-ray diffraction (XRD) test. The SEM analysis further confirmed that mineral grains 

obtained from the rod mill possess larger elongation and flatness values, which are essentially 

required for their attachment with air bubbles. The flotation results showed that the rod mill 

particles have a higher flotation recovery and are much easier to achieve a mono layer adsorption 

of collector compare to the ball mill ones 

Therefore, before any metallurgical characterization is attempted, the following key 

mineralogical factors need to be studied: 

à Modal mineralogy 

à Tantalum and scheelite carriers or valuable mineral deportment 

à Mineral locking/ liberation 

à Grain size 

à Mineral association 

 

2.10 Key findings  

As a consequence of tantalum and scheelite having a lower price in the metal market for 

many years, it has not been a target for recovery in many mine sites around the world. However, 

with recent increases in its price, those previously uneconomical sources of tantalum and scheelite 

have become more attractive to process. Within this category, it can be seen that old tailings and 

low-grade ores are now considered new resources of this noble element and offer an important 

opportunity for opening research, and applying or developing new techniques to recover tantalum 

and scheelite, which necessitates the development of a systematic approach to characterize 

tantalum and scheelite. 

Tantalum mineralogy is more complex than scheelite mineralogy, due to the variety of 

CGM minerals that may be present in a tantalum ore. A wide range of grain sizes are also found, 

and the quantification of tantalum deportment is difficult to achieve. There are a number of 

explanations for the difficulties in identifying the deportment of tantalum: i) tantalum has 

different mobility in different environments, which includes the different operational conditions 

to which the ore is exposed during mineral processing operations; ii) the large number of CGM 
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minerals present in an ore, which could affect the accuracy of identifying its mineralogy; and iii) 

the texture of some CGM minerals present. Therefore, it becomes more important to perform the 

mineralogical characterization, in order to develop a clear understanding of which mineral 

processing routes should be tested for both situations. 

In terms of mineral processing, there are different strategies that can be applied to recover 

tantalum and scheelite, and these strategies play an important role in developing the flow sheet 

design for recovering tantalum and scheelite. Due to the large number of CGM minerals present 

within an ore that can react differentially to different mineral processes, comprehensive 

characterization of the nature of CGM minerals within an ore is needed before a suitable 

processing route can be selected. 

 

The following gaps were identified in the literature review:  

a) The development of a standardized approach to determine tantalum and scheelite deportment 

in low-grade tantalum and intermediate scheelite ores; 

b) A systematic approach to establish appropriate gravity separation strategies, based on 

tantalum and scheelite deportment, to achieve adequate recovery of tantalum and scheelite 

through shaking table stages; 

c) Presentation of a framework that clearly describes what makes tantalum and scheelite ores 

simulation and modelling based on the results obtained through this work; 

d) Investigation of the concentrate of tantalum and scheelite ores on size-by-size and size-by-

liberation basis, which is not reported in the literature.  

 

As a result of the identification of these points, the aim of this thesis is to develop an 

appropriate methodology to characterize complex low-grade tantalum and intermediate scheelite 

ores for the purpose of developing the most appropriate gravity separation strategy. 
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Chapter III  
Materials and Methodologies 
 

This chapter describes the overall framework used in this research to study two different 

ore types all from the different deposit. Descriptions of the ores used and of the general test-work 

procedures are presented, followed by descriptions of the conditions pertaining to the equipment, 

and the methodologies used for the mineralogical, chemical and physical separation product 

characterization. 

 

3.1. Ore samples 

3.1.1 Penouta ore 

The tantalum ore used for this study came from the Penouta ore deposit where is located 

in the Penouta village, municipality of Viana do Bolo, Ourense, Galicia, northeast of Spain. It is 

a Sn-Ta greisen-type ore deposit. The Sn-Ta mineralization occurs Ta as disseminations in a 

leucogranite stock intruded in Precambrian-Lower Cambian gneisses and mica-schists of the 

Viana do Bolo series. The Penouta mine is composed of leucogranite hosted in metamorphic 

rocks, mainly constituted by gneisses and mica-schists corresponding to the Viana do Bolo series 

that was exploited up to de 1980s. Samples from the open pit and the tailings were used in the 

experiments. 

An exhaustive sampling was obtained from leucogranite located in ancient open pit and 

from the tailings of the previous exploitation. There are more than 60 tailings from the 

leucogranite processing; two of them will be reprocessed for the Sn and Ta recovering: 

Balsa Grande (B1) tailing. It is composed of 6 Mt residue of the leucogranite processing. 

Tantalum-rich minerals have not been processed; then, this tailing has similar tantalum content 

as leucogranite. The Strategic Minerals enterprise indicate that here the T2O5 content is of 60 

ppm. 

Balsa Pequeña (B2) tailing. It is composed of 300.000t of residue of the leucogranite 

processing that was reprocessed for Sn.   

These ore were processed in the laboratory of mines of the Universitat Politècnica de 

Catalunya, in Manresa, Spain. For the mineralogical characterization, physical separation was the 

process investigated to treat the ore due to the fact that Penouta Was constructing a separation 

plant to process the ore. 
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• Geology of Penouta deposit 

The Penouta deposit is located in the Central Iberian Zone of the Iberian Variscan Massif, 

near the contact with the Asturoccidental–Leonese Zone (Figure 3.1), according to the 

classification of Julivert et al. (1972). In the Central Iberian Zone the Variscan orogeny generated 

most of the extant structures, the internal deformation and the metamorphism. During the first 

Variscan deformation phase (D1), a low-grade slaty cleavage (S1) and recumbent folds were 

developed in the northern domain of the CIZ. The second Variscan deformation event yielded 

thrusting toward the external zones, crustal anatexis and a pervasive subhorizontal tectonic 

foliation (S2) linked to extension in the internal domains. The Variscan D3 phase led to upright 

folds, open to tight folds and occasionally a crenulation cleavage (S3) associated with subvertical 

shear zones with a dextral wrench component (Iglesias and Choukroune, 1980). 

The Penouta deposit is located in the hinge of a D1 Variscan antiform (Figure 3.1) that is 

obliterated by the D3 Ollo de Sapo anticlinorium. This megastructure follows a NW–SE direction 

(Figure 3.1) and forms a continuous outcrop that extends ∼300 km, from the island of Coelheira 

(Lugo) to the point where it disappears under the Tertiary materials of the Duero Basin (Arribas 

and Mangas, 1991; Arias et al., 2002) (Figure 3.1). The metamorphic rocks of the area consist of 

a lower part which crops out in the core of a gneiss dome around the Viana do Bolo village, the 

so-called Viana do Bolo Series (Ferragne, 1972); this is overlain by the Ollo de Sapo Formation. 

The Viana do Bolo Series constitutes the oldest material in the area and is a metamorphic complex 

consisting of quartzites, followed by mica-schists with garnet and Ca-silicate rocks which crop 

out NE of Penouta, and orthogneisses deformed during the Variscan orogeny, which crop out in 

the Covelo and Ramilo localities, near Penouta (Díez Montes, 2006) (Figure 3.1). The lower part 

of the series is considered to be Lower Cambrian (Arias et al., 2002) but the age of the upper part 

is not well known and a range of ages from Middle Cambrian to the lowermost Ordovician has 

been reported (Díez et al., 2010). These materials are overlain by the Ollo de Sapo Formation, 

which is a volcanogenic sequence consisting of fine- to coarse-grained massive gneisses with 

ocellar texture. With regard to igneous rocks in the area, synkinematic granites (Bembibre granite) 

are scarce and crop out close to Viana do Bolo village, whereas late to post-kinematic 

granodiorites (Veiga Granodiorite) and granites (Pradorramisquedo granite) are more important 

volumetrically (Figure 3.1). 

The Penouta deposit is a greisenized cupola with four units: albite leucogranite, aplite-

pegmatite dykes, greisen and quartz veins hosted in the metamorphic country rock (Llorens 

González et al., 2017). The Penouta stock is a leucogranitic body that intruded the Viana do Bolo 

Series and Ollo de Sapo Formation. Study of the outcrops has revealed that the granite intruded 

following planar anisotropies developed in the country rock corresponding to the regional D2 

Variscan fabric. There are no ages available for the Penouta granite and only a relative dating can 
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be inferred from structural and contact relationships. The lack of foliation and significant internal 

deformation in this body are features typical of the late- to post-Variscan, similar to the Veiga 

and Pradorramisquedo plutons (Figure 3.1), which have been inferred to be related to a strikeslip 

shear zone (Vegas et al., 2001), this stage being similar in age (∼308 Ma, Gutiérrez-Alonso et al., 

2015) to other Sn-bearing granites dated recently in the CIZ (e.g. Logrosán Sn-(W) ore deposit, 

308 ± 1 Ma, Chicharro et al., 2015). The Penouta albite granite is similar in composition to other 

albite granites in the Iberian Massif, most of them located in the innermost part of the Iberian 

Variscan Belt, namely, in the Central Iberian Zone. Most of these albite leucogranites were 

affected by an intense albitization, kaolinitization and greisenization (Mangas and Arribas, 1991; 

Clauer et al., 2015), probably related to fluid saturation in the apical zone of the leucogranite 

(López Moro et al., 2017). 

 

 
Figure 3.1. Detailed geological map of the Penouta deposit showing the locations of the samples. Upper left: location 

of Penouta in the Iberian Variscan Massif; upper right: geological sketch of the Ollo de Sapo Anticlinorium in its 
western region (Alfonso et al., 2018, modified from López Moro et al., 2017). 
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3.1.2 Mittersill ore 

The tungsten material used for this study was a scheelite ore from the crushing step in the 

processing plant of Mittersill mine, Austria and provided by the exploitation enterprise. The 

sheelite ore is e associated with calc-silicate minerals. Scheelite is exploited from veins hosted in 

an amphibolite rock mainly composed of quartz, plagioclase of albite, hornblende, actinolite, K-

feldspar, and biotite, muscovite and epidote as minor minerals. 

 

• Geology of Mittersill deposit 

The Mittersill tungsten depòsit, located in the Salzburg province, in the Hohe Tauern 

range of the central Eastern Alps, Austria, is a stratabound mineralization, where ore is hosted in 

a Cambro-Ordovician metavolcanic arc sequence with minor Variscan granitoids in the central 

Tauern Window (Raith and Stein, 2006).  

The deposit is hosted in amphibolites and felsic gneisses of the volcano-sedimentary 

Habachs series. This series is part of the lower schist cover of the Tauern window. Above a basal 

amphibolite member, which belong to the Stubach Group, followed by a sequence of metaclastic 

rocks and an up to 4500 m thick magmatic unit, grading into the phyllite-dominated Habachphyllit 

unit.  

The deposit consists of two parts, the Eastfield open pit and the Westfeld underground 

mine (Figure 3.2). The hornblendite units consist of hornblendites coarse-grained amphibolites, 

and intercalations of rhyolitic to dacitic gneisses. The metavolcano-sedimentary units contain 

associated fine-grained amphibolites and gneisses. The entire sequence has undergone multiple 

metamorphism and deformation, up to 530°C and 5-6 Kbars (Thalhammer et al., 1989).  

The amphibolites are fine-grained banded and foliated rocks composed of variable 

amounts of major amphiboles, plagioclase, biotite, garnet and epidote group minerals and minor 

chlorite, muscovite, carbonate, quartz and opaque minerals. Hornblende prasinites and 

hornblende schists also belong to this group of amphibolites (Raith and Schmidth, 2010). 

The tungsten and its associated sulfide-sulfosalt mineralization occurs within the entire 

metavolcanic sequence but the only zone of economic importance occurs in the hornblendite, 

located in the bottom of the magmatic unit, where WO3 attains up to 1 % (Thalhammer et al., 

1989).  

In the deposit four generations of scheelite are distinguished (Raith and Schmidt 

2010): Scheelite 1, or fine grain, up to 0.4 mm,it has white, with yellowish-white fluorescence, 

and usually with growth zoning. This generation occurs in the laminated scheelite ore in the 

western zone and in the underlying stockwork of the eastern zone. 

 Scheelite 2 is fine to coarse grained, up to 1 cm, gray with greasy brightness, yellow 
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fluorescence if it contains between 0.1-1.7 wt% Mo substitution. There is much in the western 

part and less in the eastern part. Often it presents a fragile deformation with cracks that contain 

solutions of molybdenum and tungsten. 

 Scheelite 3 usually it is forms re-crystallisation rims and overgrowths around as well as 

fracture fillings within Scheelite 1 and 2. It has from gray to white color with blue fluorescence 

that reflects its low content in Mo. Commonly it is associated with fine grain molybdenite.  

 Scheelite 4 is rare and forms isolated porphyryblasts: pale white with blue fluorescence 

that reflects its extremely low concentration of Mo. It is given in Alpine metamorphic quartz veins 

or as "weeds" in older scheelite generations. 
 

 
Figure 3.2. Geological map of the Mittersill deposit area (Höll and Eichhorn, 2000; Raith and Schmidt, 2010). 

 

 

3.2. Approach procedure 

The framework used to study the ore is shown in Figure 3.3, which illustrates the steps 

used for the sample preparation, and for the detailed mineralogical characterization of the samples 

received (ore characterization), mill product, shaking table product for each of the samples. The 

approach comprised the following steps: 
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Ø Sample preparation which included: 

ü Crushing the ore types to 100% passing – 20 mm. 

ü Sample homogenization. 

ü Milling the sample – 600 µm. 

ü Splitting the sample into charges of 7.5 kg of ore in sealed plastic bags to be stored 

until further processing. 

Ø Detailed mineralogical characterization of the ore which can be divided into three 

sections: ore characterization, mill product characterization, pre-concentration properties 

and concentration properties was applied to the ore using a laboratory scale model 

shaking table separation (Wilfley - Holman), with a feed rate of 75 kg/h and a stoke rate 

of 280 RPM. 

Ø Each product of the shaking table test (concentrates and tailings) was submitted for 

chemical analysis to evaluate the mineralogical performance (i.e. recovery and grade) of 

the ore. 

Ø Mineralogical characterization using MLA and TIMA-X was performed on a size-by-

size for the shaking table products resulting from the conditions which produced the best 

performance from each ore. This was carried out to investigate the influence of the degree 

of liberation of valuable minerals and how they are locked with other minerals in the ore. 

 

 
Figure 3.3. Approach procedures for all case studies (Penouta and Mittersill ores). 
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For practical measurement of liberation, a particle is considered liberated when more than 

80% of its surface is liberated. Another concept that it is important to mentioning is the degree of 

liberation that is stated by mass or volume present as liberated divided by the mass or volume of 

the phase present in the population. 

 

3.3 Sample preparation 

Two types of samples were characterized: 

a. Original sample obtained from the open pit or tailings of Penouta and material from the 

processing plant of Mittersill ore. 

b. Samples processed by gravity concentration in order to facilitate the study of the liberation 

characteristics. 

 

a. Original samples 

The original sample from Penouta mining sites were obtained and the Mittersill material 

used in this study was scheelite consisting of the crushed ore of a processing plant of the Mittersill 

tungsten mine. It was obtained several samples to know the possible mineralogical variations in 

the deposit. The next step was doing the chemical and mineralogical characterization of these 

materials (determination of the grain size, whole rock chemical and mineralogical composition 

and distribution of tantalum and tungsten in the different minerals where it can be present. Grain 

size distribution were determined via sieving and laser. Mineralogy were established by x-ray 

powder diffraction, optical microscopy, scanning electron microscopy and electron microprobe. 

 

b. processing of samples 

The ores were crushing 100% passing – 20 mm by jaw crusher. Stage crushing minimizes 

the production of fines ahead of grinding. The samples, after the primary crushing by jaw crusher, 

using Jones riffle splitter and quartering method, fifty kilograms (50 kg) of the samples pour into 

a conical heap, flatten and divide into four identical parts using a metal cutter. Two opposite 

corners take as sample for further crushing by either HPGR, rod mill and ball mill; the other two 

corners of sample were put into charges of ores in sealed plastic bags to be stored until further 

processing. Ball mill tests were carried out in a mill with an internal diameter of 305 mm and 305 

mm long, with conditions shown in Guasch et al. (2018).  

HPGR test was conducted using a unit of 25 cm diameter rolls and 15 cm width that was 

fully equipped to control and record the hydraulic and nitrogen pressures and throughputs 

operating at a pressure of 40 bar. The portion chosen as the sample was further coned and 

quartered and this continued until a sample of the Penouta and Mittersill obtain for sieve, chemical 
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analyses, XRD and MLA. 

For Penouta material (open pit), all samples undersize of 600 µm and thereafter feed into 

a conducted laboratory scale model shaking table separation (Wilfley - Holman), with a feed rate 

of 75 kg/hr and a Stoke rate of 280 RPM. The equipment starts and the sample process for about 

60 minutes. The valve of water is open at a rate of 6 L/min. The sample top size (+600 µm) from 

HPGR was fed to the ball mill and comminuted for 10 min. in the same way as the first ball 

milling. Then all samples under 600 µm was feed through the hopper at a rate of 130 g/min of the 

table and the sample will gradual spread on the table. The screened samples under 600 µm were 

physically separated into two fractions (- 250 µm and - 600 + 250 µm) in order to obtain 

concentrate samples. The flow of water and the shaking transfer the feed material through the 

table. The high-density material in the feed separate from the feed at the top of the table and 

collect in the left side of the table. For maximum recovery, the tilt and angle of the table adjust 

according to the sample size. Figure 3.4 shows the schematic diagram of sample preparation, C1, 

C3, and C5 are - 250 µm and C2, C4, and C6 are - 600 + 250 µm (Hamid et al., 2018). 

A composite sample from a pit test of a tailings called “Balsa Grande” was obtained. This 

tailing is a 6 Mt residue of leucogranite previously processed for Sn. Due the low Ta concentration 

in this tailing, a concentration was necessary in order to obtain a high number of particles to be 

studied and a about 15 kg of representative sample were obtained. First the sample was grinded, 

up to less than 1 mm. Then it was sieved and thereafter fed into a laboratory scale model shaking 

table separation (Wilfley - Holman), with a feed rate of 75 kg/h and a Stoke rate of 280 rpm. The 

screened sample under 212 µm were used through the separation in shaking table. First the sample 

between 212 µm and 106 µm and then the sample under 106 µm was treated in the shaking table 

(Figure 3.5). 

 

 
Figure 3.4. Schematic diagram of the Penouta open pit sample preparation. C, concentrate sample, T, tailing. 
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Figure 3.5. Schematic Diagram of Penouta tailings sample preparation. 

 
In case of the Mittersill sample, the feed material, with size of 20 mm, was crushed in a 

jaw crusher to obtain a -1 mm size fraction for all the material. To complement the laboratory 

data, sample was filled into a grinding batch rod mill at 46 RPM and it should be noted that the 

laboratory test work, carried out under repeatable, controlled conditions forms the back-bone of 

this study. Most scheelite occurs in the fine fraction (Anticoi et al. 2018), then the ore was grinded 

up to a size lower than 250 µm. Then, scheelite was physically concentrated in a shaking table 

(Figure 3.6). To reach the liberation size, the sample and steel rods were loaded to the rod mill 

and dry grinding test was run and material was sieved at 250 µm and the non-passing fraction was 

ground into the rod mill, for different time intervals (4, 6 and 8 min). For each stage, milled 

material +250 µm size fraction were combined with the rest of the mill discharge as feed for the 

next grinding interval. The passing fractions (−250 µm) were all used in the shaking table feed 

(Hamid et al., 2019). 

 

 
Figure 3.6. Schematic diagram of Mittersill preparation in the laboratory. 

Mill Product

- 1 mmMill Feed

+250 µm

-250 µm

Ball Mill

Screening

Shaking Table

Tailing
Concentrate

Feed
0 - 3 mm

Mill Product

Mill Feed

5-13 mm

+250 µm

-250 µm

Rod Mill

Screening

Shaking Table

Tailing
Concentrate

Hooper

+ 20 mm

Jaw crusher - 1mm



Chapter III Materials and Methodologies 
 

Sarbast Ahmad Hamid 69 

 

The sample preparation for ore characterization is described as follow: 

ü Three sub-sample (256 grs each sub-sample) of a 7.5 kg sample was sieved into 13 size 

intervals for each ore type, namely +2 mm, -2+1mm, -1mm+750 µm, -750+600 µm, -

600+425 µm, -425+300 µm, -300+212 µm, -212+150 µm, -150+106 µm, -106+75 µm, -

75+53 µm, -53+38 µm and -38 µm. 

ü A remaining unsized portion (256 grs) of the split sample was kept for further analysis. 

ü From size intervals, selected size fractions were submitted for a range of different 

analyses as described in the previous section. 

 

3.4 Analytical methods  

In this section, the experimental conditions of the analytical techniques used for ore, mill 

product and shaking table products characterization are described. In this section the term ore 

head made referenced to feed samples and mill product is the sample prior to feed to shaking 

table. 

 

3.4.1 Chemical analysis  

The chemical analysis was performed on unsized samples (feed samples, mill products 

and shaking table products) and on size-by-size samples (mill product and the shaking table 

products for each ore tested under optimum conditions). Table 3.1 shows the sizes fractions 

submitted to chemical analysis for each ore. 

 
Table 3.1 Samples submitted to chemical analysis as unsized and size-by-size bases. 

Ore Unsized Size by Size 
Penouta open pit Whole rock/ Shaking 

table product 
Mill product, Concentrates and tailings: +600, 

- 600 + 250, - 250 µm 
Penouta tailings Whole rock/ Shaking 

table product 
Mill product, Concentrates and tailings: +600, 

- 600 + 250, - 250 µm 
Mittersill Whole rock/ Shaking 

table product 
Mill product, Concentrates and tailings: 

+1000, - 1000 + 250, - 250 µm 
 

Inductively-coupled mass spectroscopy (ICP-MS) was used to measuring for minor 

elements from acid digestion of fused glass beads. Fusion was obtained using lithium or sodium 

borate.  

The whole rock of Penouta sample and the Sn, Ta, Nb, U, and Th of all the grinding 

products were analyzed by X-ray fluorescence (XRF) using glass beads, followed by acid 
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digestion and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) at ALS laboratories and 

Activation Laboratories (ACTLABS) Ontario, Canada.  

Chemical composition of the original and processed Mittersill sample was obtained at the 

ALS laboratories where W was measured using ICP-MS from acid digestion of fused glass beads. 

 

3.4.2 Mineralogical characterization 

The objective was to identify the key mineralogical properties (modal mineralogy, 

particle size distribution, morphology and texture of particles and degree of liberation) necessary 

for developing an adequate concentration process for each ore. This characterization consisted of 

two stages, one called ore characterization and the second called comminuted products 

characterization, both characterizations were applied to the samples of the ores under study. 

Petrographic characterization of the Penouta open pit leucogranite was obtained from 15 

thin sections observed with the petrographic microscope coupled with transmitted and reflected 

light. 

Mineralogical characterizations of the bulk sample were completed by powder X-ray 

diffraction (XRD), optical microscopy and scanning electron microscopy (SEM). 

  

3.4.2 .1 X-ray diffraction (XRD) 

The XRD spectra were measured from powdered samples in a Bragg-Brentano 

PANAnalytical X’Pert Diffractometer (graphite monochromator, automatic gap, Kα-radiation of 

Cu at λ = 1.54061 Å, powered at 45 kV–40 mA, scanning range 4 – 100° with a 0.017°2θ step 

scan and a 50 s measuring time. Identification and Rietveld semi-quantitative evaluation of phases 

were done using the PANanalytical X’Pert HighScore software.  

These analyses were performed for Penouta and Mittersill samples in the Centres 

Cientifics i Tecnològics de la Universitat de Barcelona.  

 

3.4.2.2 Scanning electron microscopy  

A Scanning electron microscope (SEM) with Energy-dispersive spectral (EDS) for 

chemical microanalysis was used to mineralogical, textural and mineral chemistry 

characterization. SEM was used in the back-scattered electron mode (BSE).  

A Hitachi TM-100 was used in the department d’Enginyeria Minera, Industrial I TIC 

from the UPC. 

 

3.4.3 Electron microprobe analysis (EMPA)  



Chapter III Materials and Methodologies 
 

Sarbast Ahmad Hamid 71 

EMPA was performed to obtain the chemistry of minerals by a JEOL JXA-8230 EMPA 

equipment located at the Centres Cientifics i Tecnològics de la Universitat de Barcelona. Analyes 

were carried out on Nb-Ta-rich minerals at 20 kV, an electron beam current of 20 nA, and a beam 

diameter of 2 µm. Each element was counted for 5 s, except Ti, Sc and Pb, which were counted 

for 10 s and F for 15 s. with the following elements measured by EMPA, Standards used were: 

Nb (NbLα), Ta (TaLα), Fe2O3 (FeKα), rhodonite (MnKα), rutile (TiKα), ThO2 (ThMα), UO2 

(UMβ), Sn (SnLα),W(WLα), Sc (ScKα), albite (NaKα), apatite (FKα), and wollastonite (CaKα). 

The detection limits are 0.17 wt % U; 0.1% wt. Th andW; 0.06 wt % Ta, Sn and Nb; and <0.03 

wt % for other elements. 

The structural formulae were calculated on the basis of 24 oxygens and 12 cations per 

unit cell (apfu) for CGM. The number of cations was fixed by a method of charge balance by 

conversion of part of Fe2+ to Fe3+ as proposed by Ercit et al. (1992a). The structural formula of 

tapiolite and cassiterite were calculated on the basis of 6 and 4 oxygens, respectively. The 

structural formula of microlite was calculated on the basis of a fully occupied B site 

(Nb+Ta+W+Ti=2 apfu) and OH- was calculated by charge-balancing to the anion total of 7 

(Černý et al., 2004). The wodginite formula was calculated according to the general formula 

ABC2O8 (Z =4); A = Mn2+, Fe2+, Li, □, B = Sn4+, Ti, Fe3+, Ta; C = Ta, Nb (Ercit et al. 1992a, b, 

c). When the C site had more than 2 apfu, the excess was corrected by extraction of Ta to B site. 

The Fe3+ was calculated up to B site (Ti+Sn4++Zr+Hf+Fe3+) was fully occupied, with 1 apfu. 

 

3.4.4. Automated quantitative mineralogy  

3.4.4.1. Mineral Liberation Analyzer (MLA) 

The samples that were analyzed by MLA was performed on a polished thick section of 

particles of ore and shaking table products at the University of Tasmania using a FEI MLA 650 

ESEM to obtain textural and compositional information from a large number of particles. These 

polished blocks composed of mixing the particles with a two-part epoxy resin to make a block 

with a diameter of 30 mm. Figure 3.7 shows some blocks used for these analyses. 

 

 
Figure 3.7. Polished thick sections used in this thesis. 

The block sample is polished with an automatic polishing machine to provide a high-

quality flat surface. 
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In this study, MLA modes were selected for analysis of ore. The ore characterization was 

measured with a GXMAP so that mapping of the high BSE phases could be undertaken to capture 

the complex textures observed in the ores. XBSE was used for the mill product tailings; and for 

the concentrate products, XBSE was used. The MLA was performed for Penouta open pit 

(Concentrate), Penouta tailings (bulk sample) and Mittersil (Concentrate and tailings).  

Grain based x-ray mapping (GXMAP) combines the use of X-ray mapping and area X-

ray analysis for phase identification. X-ray mapping analysis is used to resolve any overlaps in 

BSE. For this method, different grains of interest in the analysis can be selected through a BSE 

trigger (this targets grains within a set BSE threshold), as discussed by Fandrich et al. (2007); for 

these ores a high BSE trigger was selected so that bright phases in the particles underwent X-ray 

mapping.  

Unsized Penouta tailing bulk sample were chosen to MLA analysis for this type of 

sample. These unsized fractions were made in order to preserve the texture in the ore and 

maximizing the number of particles to be measured. 

In the case of the processed material, the material that was selected for the shaking table 

product characterization corresponds to the best concentration test obtained through the 

experimental design. The best test of each ore sample was made by triplicates to have the statistic 

of the samples and also the sufficient mass for performing the MLA and chemical analysis. The 

size fractions analyzed were: - 250 µm for Penouta tailing and Mittersill samples, - 250 µm and - 

212 µm for Penouta open pit. XBSE mode looks for target minerals of interest, using a BSE 

threshold (i.e. using BSE gray-scale range), then using XBSE measurement for each particle that 

was identified. It is used for samples where the mineral of interest is present at low levels, 

typically between 0.01 to 1.0 %, being the typical application for Ta-Nb and W characterization, 

as well as valuable mineral liberation in tailings, and penalty elements in concentrates.  

 

3.4.4.2 TESCAN Integrated Mineral Analyzer (TIMA-X) 

Automated mineral liberation analysis was used to quantify the mineralogical 

characteristics of particles and grains. Samples from all the concentrates obtained from HPGR 

and BM were analyzed using a new generation of the Tescan Integrated Mineralogical Analyzer 

(TIMA-X). All samples were micro-riffled to produce a representative subsample to be mounted 

and polished for TIMA-X analysis. Samples were prepared with an addition of graphite flakes. 

Perpendicular cross-sections through the mounts were created once the epoxy was cured. The 

cross-sections were remounted in order to avoid the effect of heavy particle settling. It was carried 

out at the Tescan facilities in Brno, Czech Republic. Measurements were performed using an 

acceleration voltage of 25 kV and a current of 7.47 nA. Dot mapping analytical mode was used 

for the analysis. The image was segmented in two stages using this approach. The BSE imaging-



Chapter III Materials and Methodologies 
 

Sarbast Ahmad Hamid 73 

based segmentation with a resolution of 2 µm and preceded the actual collection of EDS spectra. 

The EDS analytical points (3000 counts) were placed in the middle of each segment smaller than 

the predefined distance of 10 µm. Segments larger than this value were covered with a regular 

mesh of analytical points 10 µm apart. Segment boundaries were adjusted based on the chemical 

information obtained by EDS in the next stage of segmentation (Hrtska et al., 2018). 

The selected materials for the shaking table product characterization by TIMA-X were 

C1, C2, C3, C4, C5, and C6 of concentrates from the Penouta open pit. 

 

3.5 Experimental methods 

3.5.1 Ore characterization 

The ore characterization was performed using mineralogy, chemical analysis; ICP-MS; 

X-ray diffraction; SEM-EDS; and MLA.  

The objective of the mineralogical characterization was to identify the key mineralogical 

properties (modal mineralogy, particle size distribution, morphology and texture of particles and 

degree of liberation) necessary for developing an adequate concentration process for each ore. 

This characterization consisted of two stages, one called ore characterization and the second 

called comminuted products characterization, both characterizations were applied to the samples 

of the ores under study. 

Level 1 was the minimum Level of characterization used to identify key mineralogical 

properties and was performed on each ore. When this Level of characterization was insufficient 

to identify Ta and W bearing, which is one of the key specific needed for the mineralogical 

characterization, additional measurements were required. These measurements were divided into 

Level 1 and 2. A comprehensive description of what comprised each of the Level is provided in 

the following sections. 

The Level 1 is consisted of a combination of complementary techniques that are 

commonly used in ore characterization. This Level included: chemical analysis; XRD; SEM-

EDS; and mineral liberation analysis. This protocol was used for the ore characterization in this 

work because each of these analytical techniques complemented the others. A summary of the 

techniques used is presented in Table 3.2. This step of characterization was found to be sufficient 

to describe the mineralogical properties for the Mittersill ore. 

To complete the mineralogical characterization, level 2 was performed which included 

all of the analytical techniques described in previous Level and also incorporated the use of base 

methodology to analyze mineral grains. This Level was applied to both Penouta and Mittersill 

ores and was found to be sufficient to adequately characterize the mineralogical properties for the 

Penouta ore (open pit) and Penouta tailings.  

The Level 3 in ore mineralogical characterization was included after Level 1, 2 and 



Chapter III Materials and Methodologies 
 

Sarbast Ahmad Hamid 74 

incorporated a highly intensive search for Ta and W bearing minerals. This Level was used as the 

last resort for the ore characterization, due to the time consuming of this technique and has higher 

associated cost due to the equipment needed for it. This resulted in the development of a new 

protocol for identifying previously unknown vision for Ta and W minerals which could then be 

enable to reclassification of measured data and recalculation of the Ta and W behavior. 

Table 3.2 presents the summary of the mineralogical characterization by steps used for 

the ores under study and the sizes that were analyzed. 

 
Table 3.2. Summary of the mineralogical characterization by steps used for three samples. 

Methodology Technique Size Evaluated 

Level 1 

Chemical Analysis Unsized and size by size 

XRD Unsized and size by size 

SEM-EDS -600 µm 

MLA -600 µm 

Level 2 
Same techniques used in Level 1 and 

ICP-MS, Base methodology 
-250 µm 

Level 3 

Same techniques used in Level 2 and other 

methodology for identifying the unknown 

tantalum and tungsten minerals 

-1000 + 250 µm 

 

3.5.2 Mill product characterization 

The purpose of the mill product (shaking feed) characterization was to quantify the level 

of liberation of the key minerals that were the recovery targets in the concentration process. 

 
ü 7.5 kg of each Penouta ore (open pit) and Penouta tailings was ground for 10 minutes in 

a laboratory ball mill and 7.5 kg of Mittersill ore was ground for 4, 6 and 8 minutes in 

a laboratory rod mill to develop the grinding calibration curve, with the aim of estimating 

the time required to achieve a P80 of 600 µm. 

ü To validate the calculated grinding time, a sample of the ore was ground for the estimated 

time and the product sized to confirm that the target had been reached. 

The mill product for each ore was then sieved into two size fractions (-600+250 µm, -250 

µm, were obtained by sieving). A sub-sample of each size fraction was analyzed by MLA and 

TIMA-X. 

 

3.5.3 Characterization of concentration products 

Concentrates and tailings were analyzed on a size-by-size basis using chemical analysis, 
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XRD and liberation data (MLA and TIMA-X). This was done to obtain the key mineralogical 

parameters (recovery, grade, and liberation) and to identify and understand the behavior of the 

valuable minerals in each stream obtained by the concentration process. Figure 3.8 illustrates the 

path used for this characterization. 

The liberation data measured using MLA and TIMA-X on particle less than 600 µm basis. 

Overall stream liberation was calculated based on the distribution of the mineral across each size 

fraction and the liberation within those size fractions. As described in previous chapter, In the 

context of concentration, particles that contain more than 80% of the valuable mineral by weight 

are considered concentrated and for this reason the ‘liberated’ class includes all particles that 

contain greater than 80% by weight of the mineral of interest. 

 

3.5.3.1 Quantifying Ta and W bearing 

As described in the literature review, the identification and concentration of tantalum and 

tungsten carriers is complex. The inability to adequately describe tantalum and tungsten 

deportment for the ores, i.e. differences between the calculated analysis from XRD, MLA and 

TIMA-X measurement and the chemical analysis for tantalum and tungsten; was the main driver 

for performance the Level 2 and Level 3 characterization protocols. The objective of Level 2 

characterization was to identify the presence of tantalum and tungsten in the sample, while the 

objective of Level 3 characterization was to identify the remaining hosts for tantalum and tungsten 

that were still not able to be accounted for, by Level 1 and 2. 

In this study, MLA was able to identify Ta and W-bearing minerals in these ores 

which are present on the mineral reference library. The approach for identification of unknown 

Ta - W minerals from complex Penouta low-grade and Mittersill ores, was a combination of 

manual and auto SEM, EMPA, XRD and XRF analysis, which were used with the primary 

objective of identifying tantalum and tungsten - bearing minerals that had previously been 

classified as “unknown”. The first step in the analysis was to perform elemental mapping using 

EMPA, to detect any associations between tantalum, tungsten and other key elements, such as 

Nb, Sn, epidote and others. The objective here was to find any relationship between tantalum, 

tungsten and other elements to assist in the identification of potential minerals hosts for the 

unaccounted for tantalum and tungsten. The second step in the analysis was to search for particles 

containing grains with high BSE intensity. Grains that contain Ta and W are brighter than the 

grains that contain gangue minerals, which usually have a low BSE value. These bright grains 

were identified qualitatively using EDS, which was applied in the center of the grain to search for 

the spectra that contained tantalum and tungsten.  

For Penouta ore, CGM (Columbite Group Mineral) usually occur as grains of less than 

250 µm with variable composition, consisting of tantalite and columbite distributed in the same 
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grain following different patterns. The most common textural pattern is presented as grains with 

a Nb-rich core and a Ta-rich rim. 

The third step was to confirm statistically the presence of new tantalum and tungsten 

minerals, using an auto SEM-EDS.  

Finally, using X-ray fluorescence (XRF) and X-ray diffraction (XRD) was used to 

investigate the presence of any other tantalum and tungsten minerals that had not been identified 

through the previous techniques mentioned.  

The process is complete when the tantalum analysis modulation (MLA, TIMA-X, XRD 

and chemical analysis) is adequate, after including tantalum and tungsten in the modulation, were 

identified as part of Level 3 analysis. 

 

3.5.4 Physical separation of the ores 

For each ore, a different flow sheet configuration was used, based on the information 

obtained from the mineralogical characterization. In some cases, some of the strategies for 

concentrate tantalum and tungsten minerals that were discussed in the literature review were 

adopted; in all cases the flow sheet was optimized to achieve a Ta and W recovery over 80 % and 

mill product (shaking table feed) size target beginning with a (P80) of 600 µm. The screened 

samples under 600 µm was transferred from the laboratory batch ball and rod mill to the 

laboratory scale shaking table (Figure 3.8). At this point, selective or concentrate was undertaken, 

depending on the tantalum and tungsten bearing in the ore. 

 

 
Figure 3.8. Wilfley – Holman shaking table used for the experiments with the Penouta materials. 
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3.5.4.1 General Batch concentration procedure 

The general batch concentration procedure is described in the following lines: 

ü The ore was ground at the required P80 using the ball and rod mill at 130 g/min with the 

required grinding time. After the ore was ground, grinding rate were measured and 

recorded. 

ü The milled sample was then transferred to a shaking table (Wilfley – Holman), bottom-

driven batch shaking table, and fresh water was used to wash the solid sample through 

the shaking table. The flow rate of liquid and sample were measured and recorded. 

ü The feed flow rate was adjusted to the required target for concentration using the hooper. 

When the feed flow rate was adjusted, with a feed rate of 75 kg/hr and a stoke rate of 280 

RPM, the ores where obtained from the sieves were concentrated by shaking table. 

ü The required screened samples for the ores were introduced into the shaking table 

according to the feed flow rate required for each test, with a 5-minute interval between 

them to allow time for collecting the concentrate and tailing material.  

ü The total number of concentrates and tailings varied according to the ores, depending on 

the grade and the strategy used to concentrate the ores. Concentrates and tailings material 

were typically collected after each test with shaking table.  

ü Each concentrates product, and all concentrates and tailings were collected and dried. 

 

3.5.4.2 Concentration strategies 

a) Pre-concentration 

Pre-concentration tests were performed to determine the characteristics of the valuable 

minerals, angle of the table and feed flow rate in the ores. The procedures described in this section 

were used in each test. 

ü 1 kg aliquots of the ore were ground in a laboratory ball and rod mill for about10 minutes. 

ü The screened sample was introduced to the shaking table and fresh water was introduced. 

ü The concentrates were collected after 2, 4, 6 and 8 minutes. Only the concentrate products 

of the ore through MLA and TIMA-X and the tailing products through XRD were 

analyzed due to the nature of the tantalum and tungsten grades. 

 

b) Changing grind size  

Finer P80s were tested for the ores; a P80 of 600 µm and 250 µm was examined. These 

extra analyses were made due to the results received from the mineralogical characterization, 

indicating that the grain sizes of some of the minerals of interest in the ore were finer and required 

finer grinding to obtain the necessary degree of liberation. Figures 3.9, 3.10 and 3.11 shows the 
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particle size distribution (PSD) for the Penouta ore (open pit), Penouta tailings and Mittersill ores. 

The P80 of different steps from milling products feed to the shaking table, for the ore was 

measured using dry sieving. 

 

 
Figure 3.9. Particle size distribution for the Penouta ore (open pit) using dry sieving instrument with 95% 

confidence. 

 

Figure 3.10. Particle size distribution for the Penouta tailings using dry sieving instrument with 95% 
confidence. 
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Figure 3.11. Particle size distribution for the Mittersill ore using dry sieving instrument with 95% 

confidence. 

 

3.5.4.3 Experimental design  

To improve the concentration results with the Penouta and Mittersill ores, a factorial 

design was proposed and used, aiming to improve understanding of the key concentration 

parameters that affect the concentration response of the ores. For this study, the 80 percent passing 

size of the shaking table feed and the collected sample (concentrate and tailings) were tested. The 

results are described in the Chapters 4 and 5 for Penouta ore. In the cases of the shaking table, the 

method of changing of the flow rate of liquid and sample, angle and tilt “one factor at a time” was 

used to find the best conditions for obtaining optimal recoveries and grades for the ores. This 

approach helped to find the best flow sheet configuration which contained the procedure for 

preparing the shaking table and using the feed flow rate and the proper angles to allow the 

concentrate of this ore. When the best flow sheet was achieved for the ores replicate tests were 

performed to obtain an estimate of the experimental error. 

 

3.6 Concentration analysis  

3.6.1 Batch shaking table test 

There are a number of parameters that can be calculated and used to assess the outcomes 

of a batch shaking table test. These calculations are used to understand the concentration response 

of key minerals and to provide explanations as to their appearance in either the concentrate or 
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tailings streams. These calculations can be performed on an unsized or size-by-size basis, using 

mass balanced data (Ozcan, 2019).  

In each test, the overall mineral (concentrate and tailings) and water recoveries were 

calculated as well as the rate constants for each test, and the entrainment value based on the 

following equations.  

Ø The final recovery (R) is defined as the recovery of the valuable mineral in the concentrate 

out of the total mineral present in the feed (eq. 3-1) 

𝑅 = 	%	×	'	×	())	
*	×	+

                                 (3-1)          

Where; 

R: Final recovery [%], 

C: Total amount of concentrate [g], 

c: Valuable grade in concentrate [%], 

F: Total amount of feed [g], 

f: Valuable grade in feed [%]. 

 
Ø The water recovery (RW) is calculated as (eq 3-2)  

																											𝑅, = 	,-	
,.
	× 	100                                  (3-2)   

where; 

RW: Water recovery [%], 

Wc: Water mass flow present in the concentrate [g], 

Wf: Water mass flow present in the feed [g], 

 

3.6.2 Size-by-size and Size-by-liberation analysis 

Size-by-size and size-by-liberation analyses were performed for each of the concentrate 

products. Calculation of mineral recovery-by-size was performed using the equation (3-3)  

																		𝑅1,3 = 	
%4,5	
*4,5

                                                (3-3)       

Where Ci,j and Fi,j are the flow of particle size “i” and mineral liberation class “j” 

in the concentrate and feed respectively.  

The liberation classes used in this thesis work are based on particle composition 

and are divided into the following classes: liberated (containing more than 80% of the 

mineral of interest), binary composites (containing the mineral of interest and one other 

mineral) and ternary composites (containing the mineral of interest and at least two other 

minerals). 
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3.7 Errors from measurements and calculations 

There are many sources of error when concentration experiments are carried out. 

Examples of these sources of errors are sampling, feed preparation, assaying, by operator, 

machine and others. It is important to understand the contribution of these errors to 

uncertainties in the experimental results which will impact on the interpretations made 

from the data. 

 

3.7.1 Propagation of error analysis of recovery distribution 

A propagation of error analysis was performed with respect to overall recovery 

values (Ozcan, 2019). The analysis is acquired from the recovery expression given by 

Equation 3.1. 

The expression for the specific error of the flotation recovery can be estimated 

using Equation 3.4 (Riquelme, 2014). 

𝐸𝑟𝑟𝑜𝑟9 = 	
:;
:<
∗ 𝑆𝐷%@ +

:;
:-
∗ 𝑆𝐷'@ +

:;
:<B

∗ 𝑆𝐷*@ +
:;
:.
∗ 𝑆𝐷+@              (3-4) 

The standard deviation (SD) was assumed as 5%, and R is recovery. The partial 

derivatives can be directly computed as shown in eq. 3-5 to 3-8:  
:;
:<
= %

*+
                                 (3-5) 

    :;
:-
= 	 '

*+
                                 (3-6) 

    :;
:<B

= 	 *
*C+

                              (3-7) 

    :;
:.
= 	 +

*+C
                                (3-8) 

 

3.7.2 Confidence limits 

Confidence limits at 95% confidence were used for estimating the confidence in 

the mineralogical parameters. It was calculated as the Equation 3-9 (Riquelme, 2014):  

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒	𝑙𝑖𝑚𝑖𝑡𝑠 = 	µ ± :
√Q
∗ 1.96        (3-9) 

Where;  

µ: average  

∂: standard deviation  

n: number of observations or analysis 
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3.7.3 Stereological Correction 

Stereological correction of the distribution of linear grades is a very important problem 

when dealing with both the measurement and prediction of mineral liberation. It is comparatively 

easy to measure the distribution of linear grades in a sample of mineralogical material in 

particulate form. In fact, it was measurements made by Jones (1977) that provided much of the 

impetus for research in mineral liberation that has been undertaken during the past 20 years. 

By contrast, measurement of the distribution of volumetric particle composition directly 

by particle fractionation is usually difficult and often impossible. However, the measurement of 

liberation is not the only application for making the stereological correction. In 1979 King showed 

that it is possible to predict the linear grade distribution that will be obtained when a binary ore is 

comminuted, and the application of the stereological correction extends the prediction to the full 

distribution of particle volume grade (Schneider, 1995). 

The stereological correction is required because a linear probe through multiphase 

particulate material will report a significantly larger fraction of liberated intercepts than there are 

liberated particles. The entire linear distribution is considerably more dispersed than the 

volumetric distribution of grades that generates the linear distribution. 

The stereological correction procedure has been known, at least in principle, for particle 

populations of a single size (King, 1982). 

Optimization of mineral processing operations requires knowledge of the spatial 

distribution of valuable minerals in the multiphase ore particles. Accurate mineral liberation 

analysis enables us to avoid overgrinding, which reduces the cost and energy required in the 

comminution process. In addition, accurate mineral liberation analysis also gives assessment of 

mineral processing products and helps to suggest action to improve the separation efficiency 

(Wang et. al., 2018). 

In general, the liberation distribution, also known as volume grade distribution and 

liberation spectrum, is obtained by 2D examining resin mounted, sectioned, and polished particle 

sections. These two-dimensional (2D) observations are conducted using a traditional microscope 

(Wills, 2006) or scanning electron microscopy/energy dispersive X-ray spectroscopy 

(SEM/EDX) based automatic analyzer such as mineral liberation analyzer (Sandmann, 2015). 

This 2D approach inevitably result in stereological bias in the liberation distribution, because a 

liberated particle always appears like a liberated section, whereas a multi-phased particle may 

appear as liberated section (Gaudin, 1939).  

Some approaches have been proposed to avoid this error and directly obtain three-

dimensional (3D) liberation information by X-ray computed tomography (Videla et al., 2007) and 

serial particle sectioning (Schneider et al., 1991). These approaches have proven successful at a 

research stage but have not been applied because of inadequate analysis speed, cost, and accuracy 
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of mineral identification. Therefore, stereological correction, in which the 3D liberation 

distribution is estimated from 2D data obtainable by sectional analysis, has attracted extensive 

interest (Ueda et al., 2017). 

Latti and Adair (2001) have investigated the significance of stereological bias in a 

multiphase, natural ore and ascertains whether computer generated theoretical particles accurately 

represent natural textures. 

Herbst et. al. (1988) and King and Schneider (1998) proposed a correction method 

converting 11 or 12 classes of 2D liberation distribution into their 3D counterparts using a kernel 

function. This method requires a separation test with a high degree of accuracy to determine the 

kernel function. Given that the kernel function may be influenced by the particle’s texture and 

being unrealistic to determine the kernel for each mineral sample, a systematic study on the 

influence of the particle texture on the kernel function is required (Ueda et al., 2017). 
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Chapter IV  
Results 
 

Chapter 4 describes the results of the mineralogical, concentration product 

characterization and mineral liberation modelling of Penouta ore (open pit) and Penouta tailings 

and Mittersill ores. The ore characterization identified the presence of Ta and W - bearing 

minerals including coarse grained of quartz in Penouta ore and hornblende and pyrite in 

Mittersill ore. Mineralogical analysis of preconcentration test samples indicated that columbite-

group minerals (CGM) are the most abundant Nb-Ta rich phases in the Penouta leucogranite. 

Scheelite is the only W-bearing mineral from the Mittersill ore. Other phyllosilicate minerals as 

muscovite and chlorite occur in minor amounts. These results together with the mineralogical 

characterization indicated that selective physical separation would be an appropriate processing 

route for these ores. An experimental design was used to optimize some of the shaking table 

conditions. The concentration products were studied on an overall and size-by-size basis, with 

the final flowsheet producing a rougher concentrate that Penouta ore contained 103 ppm of Ta, 

at a recovery of 52 wt. % for columbite-group minerals (CGM) and in the Mittersill ore, W content 

is 2260 ppm at a recovery of 87 wt. %. 
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4.1 Penouta deposit 

In the following section, the results of the ore and mill product characterizations are 

discussed, with emphasis on understanding the liberation of the valuable minerals that needed to 

be recovered through concentration and mineral liberation modelling of the ore. As explained in 

Chapter 3, mineralogical characterization was used for this ore. 

 

4.1.1 Chemical composition of the Penouta deposit 

The Penouta leucogranite from the open pit area shows a range from 81 to 140 ppm Ta 

and 50 to 64 ppm of Nb (Alfonso et al., 2018). The sample used in this study has between 103 

ppm of Ta, 81 ppm of Nb, 383 ppm of Sn and 35 ppm of W. Radioactive elements are present in 

small amounts, 2.40 ppm of Th and 2.48 ppm of U (Table 4.1). 

 

Table 4.1. Chemical composition of samples from the leucogranite of Penouta. 

Oxides (Wt%) Pen-13 Pen-14 Pen-15 Pen-Tot 
SiO2 69.10 70.38 73.38 74.90 
Al2O3 17.67 17.95 15.70 15.30 
FeO 0.46 0.48 0.54 0.67 
MnO 0.03 0.03 0.05 0.05 
CaO 0.10 0.11 0.13 0.15 
MgO 0.03 0.03 0.02 0.04 
K2O 3.38 4.23 4.79 0.03 
Na2O - 5.59 - 5.14 
P2O5 0.03 0.02 0.03 0.03 
Total 90.80 93.23 94.63 99.46 
Traces (ppm)     

Nb 53.9 63.8 51.1 81 
Ta 81.3 140 92.6 103 
Sn 131 569 373 569 
W 104 105 2.4 35 
U 1.4 1.6 1.4 2.5 
Th 2.8 3.3 2.2 2.4 
Pb 6.8 7.8 6.4 - 
Li 120 129 133 130 
Rb 901 1070 1350 966 
Cs 32.8 43.4 64.2 64 
Ba 40 87 16 16 
Be 150 125 158 - 
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4.1.2 Mineralogical characterization of the Penouta deposit  

4.1.2.1. Petrography 

Textural characteristics of tantalum ores from granitic rocks usually are important for the 

processing planning. The texture of the rock and the characteristic texture of the columbite-group 

minerals (columbite-tantalite) will define the behavior of this material during comminution. 

The Penouta leucogranite is a homogeneous microgranular rock of creamy nearly white 

color in which a white mass and mm-sized grey quartz grains are differentiated. The rock is 

relatively soft and easily o crush with the hammer. Under the microscope the rock has an 

inequigranular snowball texture with large grains of quartz, about 1 mm in size, included in a 

matrix of other grains of less than 0.5 mm constituted by quartz, K-feldspar (microcline), albite 

and muscovite. Occasionally, K-feldspar and muscovite also occurs in relatively large crystals. 

Locally, kaolinite can be present in major amounts. Minor contents of garnet (spessartine), 

tourmaline, zircon, monazite, beryl, cassiterite, and Nb-Ta oxide minerals were also observed. 

Under the petrographic microscope Ta-rich minerals appear as crystals, usually smaller than 300 

µm in liberated particles or associated mainly with quartz and muscovite (Figure 4.1). 

 

 
Figure 4.1. Petrographic images of the rare metal leucogranite from the Penouta deposit where columbite-group 

minerals (CGM) are associated with quartz (Qtz), muscovite (Ms) and albite.  a) general view; b, c) snowball texture, 
d) megacrystal of k-feldspar within a quartz, albite and muscovite matrix; e) CGM associated with muscovite; f) 

CGM associated with quartz. 
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4.1.2.2 Tantalum-bearing oxide minerals 

A detailed characterization of Nb-Ta oxide minerals from Penouta is presented in (López 

Moro et al., 2017; Llorens González et al., 2017; and Alfonso et al., 2018). Nb and Ta occur 

mainly in minerals of the CGM. This group is constituted by a solid solution of columbite and 

tantalite, with a general formula of (Fe,Mn)(Nb,Ta)2O6 and four end members: columbite-(Fe), 

FeNb2O6; columbite-(Mn), MnNb2O6; tantalite-(Fe), FeTa2O6 and tantalite-(Mn), MnTa2O6.  

CGM occur as platy crystals usually lower than 200 µm, with an average size of 80µm. 

Crystals usually constitute isolated grains but are occasionally associated with quartz, muscovite, 

plagioclase, cassiterite, zircon and other Nb-Ta rich minerals as wodginite and microlite. These 

minerals usually exhibit a zoned texture with Nb-rich cores and Ta-rich rims (Figure 4.2). 

 

 
Figure 4.2. Columbite group minerals from the Penouta open pit leucogranite showing the most common texture, 

with, concentric zoning; (e-f), patchy zoning. Dark grey, columbite-(Mn); bright grey. tantalite-(Mn). 

 

Occasionally this zonation is progressive, but in other cases there is a sharp boundary 

between them, so that the Ta rich phase could be considered as an overgrowth. Moreover, these 

rims are partially dissolved (Figure 4.3). Oscillatory zoning also occurs, with multiple bright Ta-

rich, and dark Nb-rich bands. Reverse zoning, where the core is Ta-rich and rims are Nb-rich 

(Lathi, 1987) is quite abundant. This zoning is relatively common in Nb-Ta group minerals 
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(Belkasmi et al., 2000; Neiva et al., 2008; Abdalla et al., 2009; Anderson et al., 2013). Irregular 

patchy zoning is also present, as is usual in CGM from pegmatitic occurrences (Alfonso et al., 

1995; Tindle and Breaks 2000; Uher et al., 2007). In other cases, these minerals exhibit 

convoluted zoning or are homogeneous. Zoning often shows a complex combination of different 

types, such as oscillatory and patchy. Patchy zonation is interpreted as evidence for replacement 

involving partial resorption of an early columbite and the generation of a more Ta-rich 

composition usually along the margins of crystals (Abdalla et al., 1998). 

 

 
Figure 4.3. Back-scattered SEM images of CGM from the Penouta leucogranite: (a) typical zoned crystal with a Nb 

rich core (dark) and a Ta-rich rim (bright); (b) columbite crystal with an overgrowth of tantalite; (c) columbite-
tantalite with patchy zoning (d) Columbite with a rim of tantalite; (e) reverse oscillatory zoning, with a dissolution 

texture in the innermost Ta-rich phase; (f) columbite with a Ta replacement. 

 

Many of the CGM exhibit corrosion or dissolution with sponge-like textures that affect 

to columbite and especially to the tantalite rims. This corrosion destroys columbite that is replaced 

by tantalite. Similar dissolution textures are evidenced in other Nb-Ta minerals from pegmatites 

(eg. Wise and Brown, 2010; Dill et al., 2015).  
Chemical composition of 490 points of CGM from approximately 130 crystals was 

determined (Table 4.2). Atomic compositions and ratios were calculated and plotted on the 

columbite quadrilateral, where most compositions are tantalite-(Mn) and columbite-(Mn) (Figure 

4.4). The Mn/(Mn+Fe) ratio varies between 0.33 and 0.97 and the Ta/(Ta+Nb) ratio between 0.07 
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and 0.93. These values are typical of highly evolved magmatic systems. Two clusters can be 

observed, both at Mn/(Mn+Fe) = 0.8, one at Ta/(Ta+Nb) = 0.1-0.2 and the other at Ta/(Ta+Nb) 

= 0.5-0.8, that correspond to the cores and rims of the crystals, respectively. The TiO2 content is 

lower than 0.5 wt.%, except in one grain, where TiO2 ranges from 2.17 to 2.76 wt.%. This grain 

is also relatively Y-rich, varying from 1.09 to 1.30wt.% Y2O3. 
 

Table 4.2. Representative chemical composition of CGM from the Penouta Open Pit. Clm= columbite-(Mn); tmn= 
tantalite (Mn); clf= columbite-(Fe).  

Oxides, wt.% P1 P2 P3 P4 P5 P6 P7 P8 

 clm clm clf clm tnm tnm tnm tnm 
WO3 0.23 0.11 0.52 0.33 0.19 0.16 0.33 0.43 
Ta2O5 19.13 20.47 30.22 47.29 55.80 57.69 63.55 69.87 
Nb2O5 61.06 60.17 50.46 33.87 27.33 24.21 19.52 13.57 
TiO2 0.04 0.02 0.06 0.10 0.00 0.09 0.12 0.00 
UO2 0.00 0.02 0.00 0.31 0.04 0.24 0.00 0.11 
ThO2 0.00 0.00 0.00 0.22 0.00 0.00 0.08 0.00 
Sc2O3 0.14 0.16 0.07 0.01 0.08 0.37 0.30 0.01 
SnO2 0.06 0.08 0.10 0.11 0.18 0.22 0.22 0.24 
Fe2O3 0.52 0.34 0.14 1.12 0.29 1.28 0.71 0.34 
FeO 2.86 3.07 9.80 7.74 1.63 2.14 7.55 3.38 

MnO 16.35 16.16 8.68 8.53 14.48 12.98 7.65 11.36 
Total 100.41 100.60 100.05 99.65 100.02 99.38 100.03 99.31 

    Atomic contents     
W6+ 0.015 0.007 0.034 0.024 0.015 0.012 0.025 0.035 
Ta5+ 1.259 1.352 2.099 3.580 4.374 4.603 5.195 5.972 
Nb5+ 6.673 6.599 5.827 4.263 3.560 3.211 2.653 1.928 
Ti2+ 0.007 0.003 0.011 0.022 0.000 0.021 0.028 0.000 
U4+ 0.000 0.001 0.000 0.019 0.003 0.016 0.000 0.008 
Th4+ 0.000 0.000 0.000 0.014 0.000 0.000 0.006 0.000 
Sc3+ 0.012 0.016 0.022 0.028 0.046 0.055 0.058 0.065 
Sn4+ 0.015 0.017 0.008 0.001 0.011 0.048 0.040 0.000 
Fe3+ 0.095 0.062 0.027 0.235 0.063 0.285 0.149 0.080 
Fe2+ 0.577 0.622 2.094 1.803 0.393 0.523 1.898 0.888 
Mn2+ 3.347 3.321 1.878 2.011 3.535 3.226 1.948 3.024 

CATSUM 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 
 

 
Columbite group minerals are relatively poor in minor elements (Table 4.3). Microprobe 

analyses reveal variable contents of Sn and W, usually lower than 1 wt. %, although they can 

occasionally reach 2.71 and 2.54 wt.%, respectively. Ca, Y, U, and Th are negligible. ZrO2 content 

is up to 0.28 wt.% and HfO2 up to 0.16 wt.%. Sb and Bi are below the detection limits of the 

EMPA. 
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Table 4.3. Representative chemical composition of CGM and tapiolite from the Penouta leucogranite. MT, tantalite-
(Mn); FT, Ferrotantalite; MC, columbite-(Mn); Tp, tapiolite. 

 Oxides P31 P42 P91 P94 P112 P117 P119 P120 P143 

 (wt. %) MT FT MT MT MT MT MC MC Tp 
WO3 0.31 0.32 0.26 0.15 0.41 0.24 0.35 0.21 0.41 
Ta2O5 67.82 66.47 64.64 52.20 55.08 65.41 44.92 19.28 76.42 
Nb2O5 15.47 16.68 18.54 30.04 27.61 17.94 36.57 60.71 5.77 
TiO2 0.00 0.00 0.05 0.00 0.23 0.07 0.06 0.05 0.11 
UO2 0.02 0.35 0.10 0.09 0.00 0.29 0.30 0.08 0.16 
ThO2 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 
Sc2O3 0.20 0.24 0.22 0.19 0.22 0.22 0.17 0.04 0.24 
ZrO2 0.07 0.28 0.07 0.04 0.04 0.09 0.02 0.00 0.07 
HfO2 0.04 0.16 0.03 0.05 0.00 0.00 0.00 0.00 0.04 
SnO2 0.76 0.27 0.02 0.07 0.04 0.16 0.20 0.08 1.18 
Fe2O3 0.38 0.43 1.29 0.95 0.37 0.74 0.21 0.37 0.70 
FeO 1.48 7.92 4.72 0.95 3.35 2.81 7.97 3.52 12.36 
MnO 13.30 7.09 10.04 14.96 12.75 12.13 9.02 15.70 1.29 
CaO 0.03 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 
PbO 0.12 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.05 
Total   99.99 100.22 100.00 99.73 100.11 100.14 99.78 100.04 98.80 

    Atomic contents      
W6+    0.025 0.026 0.020 0.011 0.031 0.019 0.025 0.013 0.009 
Ta5+  5.685 5.528 5.304 4.029 4.295 5.393 3.357 1.274 1.715 
Nb5+ 2.156 2.306 2.529 3.855 3.579 2.459 4.544 6.668 0.215 
Ti2+   0.000 0.000 0.012 0.000 0.050 0.016 0.012 0.009 0.007 
U4+   0.001 0.024 0.007 0.006 0.000 0.020 0.018 0.004 0.003 
Th4+ 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 
Sc3+ 0.054 0.063 0.057 0.047 0.054 0.057 0.040 0.009 0.017 
Zr4+ 0.010 0.042 0.010 0.006 0.006 0.013 0.003 0.000 0.003 
Hf4+ 0.004 0.014 0.003 0.004 0.000 0.000 0.000 0.000 0.001 
Sn4+   0.104 0.037 0.003 0.009 0.005 0.021 0.024 0.008 0.043 
Fe3+ 0.088 0.099 0.293 0.203 0.080 0.169 0.043 0.068 0.043 
Fe2+    0.382 2.025 1.191 0.231 0.803 0.713 1.833 0.715 0.853 
Mn2+    3.472 1.836 2.566 3.597 3.096 3.115 2.100 3.231 0.090 
Ca2+    0.009 0.000 0.004 0.000 0.001 0.002 0.001 0.000 0.000 
Pb2+ 0.010 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.001 
CATSUM 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 3.000 
Ta/(Ta+Nb) 0.725 0.706 0.677 0.511 0.545 0.687 0.425 0.160 0.888 
Mn/(Fe+Mn) 0.881 0.464 0.633 0.892 0.778 0.779 0.528 0.805 0.091 

 

Ferrotapiolite 

Tapiolite is rare; only one crystal of 10 µm was detected as an inclusion in cassiterite. Its 

chemical composition shows a Ta/(Ta+Nb) ratio of 0.89 and Mn/(Mn+Fe) ratio of 0.11. 
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Figure 4.4. Chemical composition of CGM from the Penouta open pit in the columbite quadrilateral (Alfonso, 2018) 

and two illustrative SEM images. Clm, columbite-(Mn); tnm, tantalite-(Mn). 

 

Microlite  

Microlite, (REE,U,Y,Ca,Na)2(Ta,Nb)2O6(O,OH), usually is present in Penouta as crystals 

of few microns in size. Primary euhedral microlite crystals are rare; this mineral usually occurs 

as a late phase associated to CGM. In most cases microlite is enclosed to tantalite and cassiterite 

(Figure 4.5).  
According to the MLA data only 12 wt.% of the microlite crystals are free, whereas 24 

wt.% were in contact with tantalite and 14 wt.% with cassiterite. Representative compositions of 

microlite are given in Table 4.4. Microlite is always Ta-rich, Ta/(Ta + Nb) values varying between 

0.91 and 0.99. Its composition ranges from 64.00 to 80.27 wt.% of Ta2O5 and 2.36 to 16.92 wt.% 

of Nb2O5, TiO2 reaches 0.25 wt.% and SnO2 varies between 0.38 and 3.44 wt.%. The occupation 

of the A site varies considerably; Ca is the most abundant cation, up to 11.89 wt.%, but U and Pb 

can also be important, with up to 6.01 and 8.46 wt.%, respectively. Plumbomicrolite occurs as a 

thin rim around microlite (Figure 4.5). Na2O contents reaches 5.86 wt.%, whereas SnO reaches 3 

wt.%. Fluorine is present in low amounts, up to 0.17 wt.%. Sb and Bi were not detected. 

 

Wodginite 

Wodginite, Mn(Sn,Ta)(Ta,Nb)2O8, occurs associated with cassiterite and tantalite (Figure 

4.6, 4.7 and 4.8) as late replacements or inclusions. The differentiation between ixiolite and 

wodginite is based on the structure, but stoichiometric criteria can also be used (Wise et al., 1998). 
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As shown in Table 4.5, most analyses fit well with the formula of wodginite. The B and C sites 

are completed and only A site values are slightly lower than that of the ideal formula (Table 4.5). 

This can be due to the presence of lithium or vacancies (Ercit et al., 1992a). 

 

 
Figure 4.5. Back-scattered SEM images of Na-Ta oxides from the Penouta leucogranite: (a) columbite–tantalite 
crystal with microlite (Microl) enclosed (bright); (b) microlite crystal; c) uranmicrolite hosted in columbite; d,e) 
microlite replacement of columbite with bright rims composed of plumbomicrolite (Pb-Microl); f) uranmicrolite 

rimming microlite enclosed in a fracture of a CGM. 

 

 
Figure 4.6. and Wodginite (Wdg) from the Penouta open pit leucogranite hosted in CGM. 
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Table 4.4. Representative chemical composition (wt. %) of microlite from the Penouta leucogranite. 

Sample P034 P037 P132 P057 P202 P2036 P2037 P2026 
WO3    0.33 0.22 0.43 0.40 0.25 0.25 0.17 0.35 
Ta2O5  75.00 75.15 74.63 73.78 71.72 71.02 71.30 70.41 
Nb2O5  3.10 2.92 2.95 3.36 5.20 5.50 5.34 4.94 
TiO2   0.06 0.07 0.08 0.10 0.25 0.14 0.17 0.12 
UO2    1.48 1.31 1.71 6.07 1.51 0.26 0.19 1.49 
ThO2 0.00 0.00 0.00 0.00 0.00 0.47 0.39 0.05 
Sc2O3 - - - - - 0.13 0.15 0.25 
ZrO2 - - - - - 0.00 0.15 0.14 
HfO2 - - - - - 0.00 0.00 0.07 
CaO    10.87 10.92 10.53 9.56 0.88 11.36 11.51 11.03 
Y2O3 0.12 0.00 0.05 0.16 0.00 0.00 0.00 0.00 
MnO    0.16 0.09 0.28 0.41 0.55 0.05 0.10 0.13 
FeO 0.24 0.68 1.43 0.25 0.71 0.09 0.10 0.11 
SnO   1.91 1.88 1.72 0.93 2.67 2.99 2.61 2.56 
PbO 0.18 0.15 0.06 0.26 8.46 0.09 0.17 0.04 
Na2O   5.92 5.72 5.74 4.40 0.03 4.94 5.11 4.63 
F - - - - 0.07 0.13 0.15 0.12 
OH 0.78 0.78 0.60 1.01 4.76 0.85 0.08 0.85 
O=F     -0.97 -0.94 -0.94 -0.95 
Total   100.14 99.88 100.21 100.69 96.08 97.34 96.75 96.33 
 

  Atomic contents    
Ca2+ 1.062 1.070 1.035 0.941 0.085 1.108 1.119 1.092 
Y3+ 0.006 0.000 0.002 0.008 0.000 0.000 0.000 0.000 
U4+   0.030 0.027 0.035 0.124 0.030 0.005 0.004 0.031 
Th4+ 0.000 0.000 0.000 0.000 0.000 0.010 0.008 0.001 
Pb2+ 0.004 0.004 0.002 0.006 0.206 0.002 0.004 0.001 
Sn2+ 0.070 0.068 0.063 0.038 0.108 0.122 0.106 0.105 
Na+ 1.047 1.014 1.021 0.784 0.005 0.872 0.899 0.829 
Fe2+ 0.018 0.052 0.110 0.019 0.054 0.007 0.008 0.009 
Mn2+ 0.012 0.007 0.022 0.032 0.042 0.004 0.008 0.010 
ΣA site 2.250 2.242 2.289 1.953 0.530 2.129 2.155 2.08 
W 0.008 0.005 0.010 0.009 0.006 0.006 0.004 0.008 
Nb 0.128 0.121 0.122 0.140 0.213 0.226 0.219 0.206 
Ta 1.861 1.869 1.862 1.844 1.765 1.758 1.759 1.769 
Ti 0.004 0.005 0.006 0.007 0.017 0.010 0.011 0.008 
Zr - - - - 0.000 0.000 0.007 0.006 
Hf - - - - 0.000 0.000 0.000 0.002 
ΣB site 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 
F- - - - - 0.020 0.038 0.042 0.035 
OH- 0.477 0.476 0.367 0.620 2.875 0.517 0.503 0.524 
Oxygens 6.523 6.524 6.633 6.380 4.105 6.445 6.455 6.441 
Σanions 7.000 7.000 7.000 7.000 7.000 7.000 7.000 7.000 
Ta/(Ta+Nb) 0.94 0.94 0.94 0.93 0.89 0.89 0.89 0.90 
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Table 4.5. Representative chemical composition (wt. %) of wodginite from the Penouta leucogranite. 

  PW1 PW2 PW3 PW4 PW5 PW6 
WO3    0.49 0.36 0.39 0.35 0.17 0.21 
Ta2O5  61.85 62.02 61.35 63.52 63.27 63.69 
Nb2O5  7.51 7.05 7.40 6.20 7.23 6.10 
TiO2   0.11 0.09 0.21 0.08 0.05 0.08 
UO2    0.10 0.00 0.00 0.207 0.00 0.05 
ThO2 0.00 0.00 0.00 0.00 0.00 0.05 
Sc2O3 0.21 0.08 0.14 0.14 0.08 0.11 
ZrO2 0.37 0.55 0.40 0.54 0.44 0.46 
HfO2 0.67 0.77 0.46 1.00 0.63 0.47 
CaO    0.04 0.06 0.05 0.04 0.06 0.06 
MnO    5.17 5.63 5.07 9.03 8.18 6.60 
FeO 6.1 5.65 6.31 1.87 3.05 4.53 
SnO2   14.83 15.31 16.26 14.36 15 15.32 
Fe2O3 1.53 1.40 1.17 1.77 1.57 1.44 
PbO 0.13 0.03 0.00 0.00 0.20 0.15 
Total   99.10 98.99 99.21 99.11 99.93 99.33 
   Atomic contents    

Mn2+ 1.828 1.996 1.785 3.239 2.878 2.349 
Fe2+ 2.129 1.984 2.193 0.662 1.060 1.591 
Ca2+ 0.018 0.016 0.020 0.018 0.026 0.029 
U4+ 0.009 0.000 0.000 0.020 0.000 0.004 
Th4+ 0.000 0.000 0.000 0.000 0.000 0.005 
Pb2+ 0.014 0.003 0.000 0.000 0.022 0.017 
ΣA site 3.998 3.999 3.999 3.938 3.986 3.995 
Sn4+ 2.761 2.874 3.015 2.712 2.779 2.871 
Ti4+ 0.035 0.029 0.064 0.026 0.016 0.024 
Fe3+ 0.481 0.442 0.366 0.437 0.491 0.455 
Ta5+ 0.491 0.422 0.368 0.541 0.523 0.457 
Sc3+ 0.078 0.029 0.050 0.050 0.028 0.042 
Hf4+ 0.080 0.092 0.055 0.121 0.074 0.057 
Zr4+ 0.075 0.111 0.082 0.112 0.090 0.095 
ΣB site 4.000 4.000 4.000 4.000 4.000 4.000 
Ta5+ 6.530 6.758 6.568 6.774 6.623 6.820 
Nb5+ 1.417 1.204 1.391 1.187 1.358 1.159 
W6+ 0.053 0.039 0.043 0.038 0.019 0.023 
ΣC site 8.000 8.001 8.002 7.999 7.999 8.002 
CATSUM 15.998 16.001 16.001 15.937 15.986 15.997 

 

According to the classification criteria of Ercit et al. (1992b), most of the analysed 

wodginite group minerals are wodginite, and only some compositions are ferrowodginite,. Ta2O5 

ranges from 48.36 to 65.35 wt.%., SnO2 from 14.63 to 19.37, MnO from 4.36 to 10.91.W is 

usually less than 1 wt.% but it can reach up to 4.19 wt. %. The W content is correlated with the 

total Fe (Figure 4.7). Hf and Zr are present in relatively high contents, up to 1.34 wt.% of HfO2 
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and 1.29 wt.% of ZrO2. The average Zr/Hf ratio is about 0.7. Such high contents have only been 

reported in Černý et al. (2007) for granitic pegmatites. In contrast with Černý et al. (2007) there 

is a slight correlation here between the Ta/(Ta+Nb) and Hf/(Hf+Zr) (Figure 4.8). 

 
Figure 4.7. Compositions of wodginite-group minerals in the (Nb,Ta)–(Sn,Ti,Fe3+)–(Fe,Mn) diagram (atomic ratios). 

 

 
Figure 4.8. Correlation between the Ta/(Ta + Nb) and Hf/(Hf + Zr) in wodginite from Penouta ore. 

 

Cassiterite 

Cassiterite is the main oxide mineral in the Penouta leucogranite. It occurs as subhedral 

to euhedral crystals usually no longer than 200 µm. Under BSE cassiterite seems to be 

homogeneous in appearance. However, the chemical composition varies. Two generations can be 

recognized. The first generation consist in homogeneous crystals nearly pure in composition, 

whereas in the second-generation Ta can reach up to 8.51 wt.% Ta2O5, and Nb content is up to 

1.94 wt.% Nb2O5. As usual in greisens and veins from granites Fe is dominant over Mn (Černý 
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and Ercit, 1989), reaching 1.45 wt.% and 0.20 wt.%, respectively. In granitic pegmatites the 

presence of Nb and Ta within cassiterite is attributed to the typical substitution scheme (Fe, Mn)2+ 

+ 2(Nb,Ta)5+ ↔ 3(Sn,Ti)4+, or tapiolite substitution (Černý et al., 1985, 1991), then the 

(Fe+Mn)/(Nb+Ta) ratio is in a 1:2 proportion (Černý et al., 2004). Most analyses from the Penouta 

cassiterite show the 1:2 ratio attributed to the tapiolite substitution (Figure 4.9a). 

The cassiterite grains are often rich inclusions of Nb-Ta-rich minerals (Spilde and 

Shearer, 1992). Similarly, wodginite inclusions have been also found in other deposits (Masau et 

al., 2000; Černý et al., 2007; Rao et al., 2009). Masau et al (2000) described Hf-Zr-rich wodginite 

formed by exsolution from cassiterite, which was favoured by its high Zr and Hf contents. In the 

present study the Hf and Zr contents are relatively high in wodginite, suggesting a possible similar 

origin. However, inclusions of CGM in cassiterite constitute discrete grains probably trapped 

when cassiterite formed after CGM, as in other occurrences (Martins et al., 2011). 

Cassiterite is the most abundant ore mineral in Penouta and occurs as homogeneous 

subhedral to anhedral grains. The chemical composition shows a high Ta content, up to 9 wt.% 

of Ta2O5.  

 

 
Figure 4.9. Cassiterite composition from the Penouta leuogranite: (a) plot in the (Ti + Sn +W)–(Fe + Mn + Sc)–(Nb + 

Ta) triangle; (b) in the columbite quadrilateral (atomic ratios). 
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4.1.3. Characterization of the processed tantalum ores 

The development of a rougher concentration flow sheet for Penouta ore (open pit) was 

driven by the mineralogical characterization that is described in the previous section, which 

provided the mineralogical attributes needed for developing an appropriate flow sheet to recover 

tantalum from this complex Penouta low-grade tantalum ore. Also, it is important to mention that 

concentration tests were performed through two different flowsheets in this ore, being also a base 

to understand the behavior of this ore.  

 

4.1.3.1 Size distribution characteristics of the sample 

v particle size distributions (PSD) 

The particle size distributions obtained after grinding using HPGR and a BM, or only a 

BM, are similar (Figure 4.10). After the HPGR grinding 40 wt.% of the material is smaller than 

600 µm. From this, 31.8 wt.% is lower than 250 µm, and 8.8 wt.% is in the range 250–600 µm. 

Finally, only 11 wt % of the material is coarser than 600 µm. In the BM product, 22.8 wt % of 

processed material is higher than 600 µm, and about 61 wt % is lower than 250 µm. According 

to Reference (Kazerani Nejad and Sam, 2017), when the HPGR unit was in an open circuit 

together with a BM, it had no significant effect on the fineness of the final comminuted product. 

However, in the present investigation, the BM combined with a previous step of HPGR produces 

a finer end product than with the BM alone. 

 

 
Figure 4.10. Particle size distribution curves for the feed and ground products. 
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v Mineral grain size  

The mineral grain size information (Figure 4.11) illustrates that the Tantalum minerals 

show a finer grain size distribution when compared to the cassiterite and columbite minerals 

present in the ore. The tantalum mineral grains show a P80 of 99.53 µm, followed by columbite 

(P80 of 112.84 µm) and then by cassiterite (P80 of 153.16 µm), while microlite, which is the 

other tantalum carrier in this ore, has a P80 of 64.47 µm (Appendix C). 

 

 
Figure 4.11. Mineral grain size distribution for Penouta ore (open pit). 

 

4.1.3.2 Modal mineralogy 

Preliminary estimation of modal mineralogy for this case study (preconcentration 

sample) was carried out for Penouta (open pit) determined by MLA (Figure 4.12). The figure 

shows that the concentrate mineralogy was represented predominantly by cassiterite (53.61 

wt.%), followed by spessartine (5.13 wt.%). Lesser amounts of albite (5.13 wt.%) and Fe_oxide 

(2.40 wt.%) were found. Other silicate minerals determined by MLA are garnets of spessartite 

type (Appendix D). 

The modal mineralogy of concentrates from open pit of Penouta was also determined by 

TIMA-X (Figure 4.13) and the composition of the resulting tailings was obtained by XRD. The 

combination of both techniques is useful to obtain a complete mineralogical characterization. 

XRD ensures representativeness in coarse-grained samples, thus it measures millions of particles, 

as a result of the grinding sample to less than 60 µm. However, this technique only can detect 

minerals in concentration over than 1 wt.% (Hill et. al., 1993). Thus, these techniques are 

complementary and often the combination of both is necessary to obtain satisfactory results. 
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Figure 4.12. Modal mineralogy for grinding products for Penouta ore (open pit). 

 

Albite is the most abundant mineral in all fractions of –250µm, whereas quartz is the 

dominant in concentrates from the coarser fractions of the final processes (C4 and C6) and the 

equivalent ratios in tailings (T4 and T6). K-feldspar is microcline, as indicated by the XRD data 

and by the presence of the grid twining. This mineral occurs in variable amounts being more 

abundant in concentrate products of coarser size, with 7-10 wt.% in products of size less than 250 

µm and 15-50 wt.% in products between 250 and 600 µm. 

 

 
Figure 4.13. Modal mineralogy of the grinding products. C1 to C6 are the concentrates analyzed by TIMA and in 

tailings (T1-T6) determined by XRD. 
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Optical and XRD allowed determining that K-feldspar is microcline. This is 

homogeneously distributed except that in the fraction of –250µm obtained from the HPGR 

grinding, which has a lower content. Muscovite contents is considerably different in concentrates 

and tailings. The most significant difference between the mineralogical data obtained from 

TIMA-X and XRD is about muscovite. The sheet structure of this mineral makes the 

quantification difficult in the analysis of sections and also in XRD estimations. Muscovite is 

usually overestimated in XRD analyses due the preferential orientation of crystals (Moore, 1989). 

Other studies also found discrepancies in the content of micas between the results provided by 

both techniques (Rahfeld, 2018). 

Minor minerals have been included in Figure 4.13 as other minerals. These are mainly 

beryl, phosphates, such as apatite, xenotime and monazite, and scheelite, pyrite, hematite and 

ilmenite. The composition of minerals in the tailings after the gravity concentration of Nb-Ta 

minerals is presented in Table 4.6. Albite is the most abundant mineral the tailing products finer 

than 250µm, whereas quartz is predominant in products of +600 µm (T7 and T8). In the size 

fraction of 250-600 µm, although the obtained quartz contents were higher in the tailings, they 

vary proportionally with those from the respective tailings. 

 
Table 4.6. Semiquantitative mineral composition of the product tailings determined by XRD. 

Mineral (Wt.%) T1 T2 T3 T4 T5 T6 T7 T8 
Quartz 7 14 10 48 10 43 62 37 
Albite 60 41 51 15 51 11 15 30 

Microcline 7 21 23 12 11 20 13 14 
Muscovite 20 20 14 22 23 21 7 16 
Kaolinite 4 4 2 4 5 3 1 1 

Beryl 2  - - - - - 2 
 

4.1.3.3 Morphology and texture of particles 

The mineral composition maps of the Nb-Ta rich minerals (Figure 4.14) show their 

morphology and mineral association. Although columbite and tantalite usually occur in the same 

particle, tantalite occurs in particles smaller than those of columbite. This is also partly evident in 

the images due to a possible stereological error. 

An essential parameter for mineral processing is the shape of the ground particles and 

this can be influenced by the methods used for comminution (Vizcarra, 2010). HPGR produced 

a higher surface than other comminution devices, such as jaw crushers (Han, 2012). In the ground 

Penouta ore using HPGR the particles exhibit higher angularity than that obtained from the BM 

and then, a larger specific surface (Figure 4.15). 
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Figure 4.14. TIMA false color image of columbite-tantalite from concentrate of less than 250µm obtained from the 

ground material using the ball mill.  

 

 
Figure 4.15. TIMA false color images for comparison of shape of the cassiterite-rich particles in the 250-600 size 

fraction obtained (a) with HPGR and (b) BM. 

 

4.1.3.4 Mineral associations 

The mineral associations indicated if there was tantalum that tended to be associated with 

problematic minerals (cassiterite or quartz minerals for the concentration process). The results in 

Figure 4.16 show that tantalum is associated mainly with Kaolinite (44.4%), followed by quartz 

and to a lesser extent with muscovite (16.5%) and others. Cassiterite has highest free surface 
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compared to other ore minerals (Figure 4.16) due to the higher grain size of this mineral. 

 

 
Figure 4.16. Mineral association in the Penouta tailings resulted of the processing of the Penouta open pit material in 

this study. 

 
The most common mineral association with CGM are quartz, muscovite and kaolinite. 

Most mixed particles consist of columbite and tantalite together with cassiterite, quartz, 

muscovite and K-feldspar. Often tantalite is enclosed into cassiterite (Figure 4.17). Tantalite is 

2.2 to 2.7 times more liberated than columbite, probably due to the lower grain size of this mineral.  

The columbite-tantalite liberated particles are between 66 and 78 %. Most of the non-liberated 

columbite-tantalite particles are binary, where this mineral is mainly associated with muscovite 

or quartz, and less frequently with feldspar. A significant amount of tantalite from the open pit 

can occur associated with kaolinite. These results are significant for the optimization of the 

comminution and recovering process (Appendix E).  

The preconcentration assessment showed that none of the minerals present in the ore 

exhibited natural concentrated. The MLA analyzed a total of 68,218 grains, with 70,194 particles 

measured for the size fraction - 250 µm, were measured. The measurements on the size fractions 

were used to determine the key mineralogical attributes, such as modal mineralogy, elemental 

deportment, and texture, which were needed for the ore characterization. 

Cassiterite is liberated in most of the particles (73-81 %). In other particles it is associated 

with muscovite (about 8%) or quartz (4.4%), Mn,Fe,Al oxides (4.2%) and K-feldspar (2.1%). 
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Figure 4.17. Representative pseudo-color particle maps showing mineral association of CGM from Penouta ore (open 

pit). Scale bar: 200 µm. 

 

These CGM grains are mainly associated with albite, quartz, muscovite and cassiterite 

(Figure 4.18). The locking properties of ores from the Penouta open pit are highly dependent on 

the relationship between the mineral and particle sizes. The free surface indicates those minerals 

that are not surrounded by others. This is the highest in cassiterite compared to the other ore 

minerals (Table 4.7), due to the higher grain size of this mineral. In the CGM, as often they 

constitute crystals with a columbite core with a tantalite rim, tantalite presents more free surface 

than columbite. In the case of microlite and wodginite, these minerals are few microns in size and 

usually they are genetically associated with columbite and tantalite (Alfonso et. al., 2018), thus 

in most cases they are locked in these minerals and also in albite and cassiterite. CGM and 

cassiterite association occurs mainly in coarse particles, where usually tantalite is in contact or 

included in cassiterite. 
 

 
Figure 4.18. Mineral locking of CGM from the Penouta Open Pit. 
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Table 4.7. Free surface of ore minerals from the Penouta open pit. 

Mineral (wt.%) C1 C2 C3 C4 C5 C6 
Cassiterite 84.06 48.55 87.97 71.05 82.38 67.66 
Columbite 45.62 11.13 50.39 30.13 52.40 13.44 
Tantalite 50.45 18.66 53.59 23.65 48.19 26.17 
Microlite 8.38 1.96 26.29 0.39 26.59 0.00 
Wodginite 5.72 1.07 11.66 0.18 14.20 0.43 

 

Key findings of mineralogical characterization  

According to the information obtained through the mineralogical characterization, the ore 

should be processed through physical separation, but considering that tantalum is present mainly 

as solid solution in CGM, a tantalum concentrate is needed to recover CGM. The degree of 

liberation at a P80 of 250 microns for the mineral of interest is adequate for obtaining a good 

concentrate response (based on the information presented in Table 4.7). 

 

4.1.4 Metal distribution 

The chemical composition of concentrates and tailings obtained in this study is shown in 

Table 4.8. Nb and Ta occur in significant amounts in all the particle size fractions obtained in the 

experiments. After the HPGR grinding the Ta content is similar in both fraction sizes (less and 

more than 250 µm), whereas in the BM always the smaller fraction is Ta-richer; Ta-rich minerals 

move to the concentrate, remaining in the tailing a minor amount. Similar behavior exists for Nb 

and Sn. However, in the size fraction of +250 µm higher contents are in the tailings, especially in 

the case of products obtained from the HPGR grinding, where 80 ppm remain in the tailings. 

Tailings of product with size +600 µm are poor in Nb and Ta, but still have high Sn contents, 

336-528 ppm. 

The mineral content of the ore minerals was determined by TIMA and a theoretical 

composition was also calculated from the chemical composition data of the different fractions 

(Table 4.8). As columbite and tantalite are the main Ta-Nb bearing phases, all Ta was assigned 

to tantalite and all Nb is in columbite. The TIMA results show that the most abundant ore mineral 

in the concentrates is cassiterite, followed by tantalite and columbite; determined from the 

chemical composition were calculated assuming that all Ta is in tantalite and all Nb is in 

columbite. The contents of microlite and wodginite have not been considered due to the low 

significance of their content.  

The tantalite/columbite ratio in the calculated minerals is between 1.2 and 1.4 in the 

concentrates and significantly lower in the tailings especially in tailings of +600 µm, where it is 

from 0.5 to 0.9. This could be due to the fact that in the gravity concentration tantalite moves 
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more easily to the heavy fraction (density of tantalite-(Mn) is 8.1) than columbite (density of 

columbite-(Mn) is 5.28).  

The tantalite contents determined by TIMA are higher, whereas the Nb contents are 

similar in both determinations (Figure 4.19). The tantalite /columbite ration is double, in the cases 

of the lower particle size. This could be due to the stereological error produced during the analysis 

of image sections (Spencer, 2000; Ueda, 2017). 

 

 
Figure 4.19. Comparison of the columbite content of the grinding products determined by TIMA and from the 

chemical composition. 

 
Table 4.8. Chemical composition and mineralogy of the grinding products of the Penouta ore.  

        Chemical composition (ppm)  Mineralogy (wt.%) 

Grinding 
method 

       (Normative)   (TIMA-X) 
Size 
(µm) Sample Type Sn Nb Ta Cst Tn Cl Tn/Col Cst Tant Cl Tn/Cl 

HPGR –250 PN-1 C1 3010 1080 1980 0.38 0.28 0.23 1.22 0.39 0.72 0.24 3.07 
HPGR +250 PN-3 C2 - 1030 1990 - 0.28 0.22 1.29 1.81 0.58 0.19 3.02 

HPGR+BM –250 PN-5 C3 - 1435 2720 - 0.39 0.30 1.26 1.30 0.63 0.28 2.26 
HPGR+BM +250 PN-7 C4 - 635 1355 - 0.19 0.13 1.42 3.76 0.06 0.04 1.43 

BM –250 PN-9 C5 - 2550 5000 - 0.71 0.54 1.31 1.99 1.13 0.58 1.96 
BM +250 PN-11 C6 - 905 1895 - 0.27 0.19 1.40 3.23 0.11 0.07 1.68 

HPGR –250 PN-2 T1 67 14 30 0.01 0.00 0.00 1.43     
HPGR +250 PN-4 T2 224 58 80 0.03 0.01 0.01 0.92     

HPGR+BM –250 PN-6 T3 88 17 30 0.01 0.00 0.00 1.18     
HPGR+BM +250 PN-8 T4 131 45 40 0.02 0.01 0.01 0.59     

BM –250 PN-10 T5 118 23 40 0.01 0.01 0.00 1.16     
BM +250 PN-12 T6 132 49 50 0.02 0.01 0.01 0.68     

HPGR+BM +600 PN-19 T7 528 42 30 0.07 0.00 0.01 0.48     
BM +600 PN-20 T8 336 46 60 0.04 0.01 0.01 0.87         
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4.1.5 Work index and energy consumption 

The work index of the studied ore ranges from 6.30 to 38.00 kWh/t, according to the 

particle size of the feed. The increase in the work index indicates a change in the consumed energy 

of the ore during the grinding. As was seen before, most of the liberated Ta has a size smaller 

than 100 µm, and about 80% of the liberated Ta has a size smaller than 100 µm. This has a 

negative impact on the milling energy costs. From a size smaller than 100 µm, with the progress 

of Ta liberation production, the increase in the ore work index increases the energy consumption 

per ton of milled ore. This information helps determine the optimum operational conditions of 

mineral liberation in order to reduce energy consumption. 

In order to evaluate the relationships between the work index and the degree of tantalum 

liberation in the processed material, the cumulative distribution of the liberated tantalum with the 

class mean size and the work index is shown in Figure 4.20. These relationships can be explained 

by the fact that almost all liberated tantalum mineral is in fine fractions, which causes the work 

index and energy consumption to increase. 

 

 
Figure 4.20. Dependence of work index on the cumulative distribution of scheelite content in the material. 

 

4.1.6 Simulation and Predication of Mineral Liberation for Penouta ore (open pit) 

4.1.6.1 Mineral liberation analysis (MLA) 

The mineral liberation analysis (MLA) results from Penouta ore (open pit) also were 

represented in particle size and grade to intervals in front of mass fraction. In each interval there 

are some particles measured. Intervals without these particles class result is zero. It is necessary 

to consider that the analyzed samples are concentrates from the processes explained in the 
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previous point, and these are statistical processes. The Penouta concentrates represent 0,02% of 

the total initial sample. The total content of Ta in the original sample is low, 103 ppm, and then, 

it should be concentrated in order to analyze a high number of particles. 

The Penouta mineral liberation distribution density (Figure 4.21) indicates that the CGM 

particles liberated are smaller than 250 microns and most of them have a grade of more than 70%. 

There is not clear at which size the total CGM liberation starts, but it is probably below 20 

microns. This size is not a realistic industrial size, for this reason the plant concentrate will be 

limited (see Appendix A). 
 

 
Figure 4.21. Predicted liberation as a function of particle size after comminution of Penouta ore (open pit). 

 

4.1.6.2 Mineral liberation by TIMA-X 

In the present study an ore is considered as liberated when represents >90 vol. % of the 

particle volume. The TIMA analyzer provided the liberation characteristics of ores from the 

different steps of the treatment. The degree of columbite-tantalite liberation depends on the 

particle size (Figure 4.22). The highest degrees of liberation are achieved in particles smaller than 

250 µm that have been comminuted with the combination of HPGR and BM, especially in the 

case of cassiterite where in this case the 84 wt.% is liberated compared to 69.76 wt.% when only 

used BM (Table 4.9). 
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In the fraction of less than 250 µm about 65 wt.% of the columbite-tantalite minerals are 

liberated, whereas, only 25-30 wt.% is liberated in particles larger than 250 µm. This is caused 

by the grain size of CGM, which usually is lower than 200 µm.  
 

 
Figure 4.22. Distribution of the Nb-Ta rich minerals in the concentrate material from the Penouta open pit according 

to particle size and grade classes. 

 

Correction of the distribution of linear grades is important to the prediction of mineral 

liberation. The linear grade distribution that is obtained, when a binary ore is comminuted can be 

predicted, and the application of the stereological correction extends the prediction to the full 

distribution of particle volume grade (King, 1979). To describe the populations of particles with 

different mineral content a distribution function will used. This distribution function is based on 

the beta distribution that is used in mathematical calculations. Three groups of particle 

populations can be distinguished: liberated particles of gangue, liberated particles of ore, and the 
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particles that are all composed of mixtures of the two minerals. The distribution of mineral grades 

over the third group is called the interior grade distribution, and the beta distribution function is 

used as a model. 

 
Table 4.9. Liberation of cassiterite and CGM from the Penouta open pit leucogranite. Grade is reported in volume %, 

and minerals content in wt.%. 
 Casssiterite Columbite-group minerals 

 HPGR+BM BM HPGR+BM BM 

Grade –250 +250 –250 +250 –250 +250 –250 +250 

<10 0.08 0.14 0.10 0.16 1.20 17.51 1.79 15.37 

10-20 0.00 0.79 0.00 0.00 1.39 16.64 0.18 10.56 

20-30 0.44 1.79 0.55 4.14 1.07 15.66 2.79 18.68 

30-40 0.00 3.96 0.88 1.86 2.25 11.83 2.06 22.01 

40-50 0.11 4.84 1.96 2.46 1.43 9.24 2.30 0.00 

50-60 0.34 4.38 0.63 0.56 1.77 10.58 3.10 13.48 

60-70 3.53 16.02 5.42 8.40 8.85 1.57 8.37 0.10 

70-80 7.35 16.76 2.71 4.23 10.32 2.70 6.49 0.00 

80-90 4.21 22.74 17.98 40.83 19.82 5.51 21.88 2.97 

>90 83.95 28.59 69.76 37.36 51.90 8.76 51.04 16.83 
   

 

The modelling results are shown in Figure 4.23, where it is a comparison between the 

cumulate mass from the experimental data and the simulated data of the results.  

The simulated data have been obtained with back calculation with experimental data and 

using the beta distribution. King (2012) and Schneider (1995) proposed beta distribution as an 

alternative in order to understand the behavior the mineral liberation. The results show a better 

agreement in some interval sizes than in others. The complete results from these back calculations 

are in the Table reported in Appendix B. The n, g, gM, L0 and L1 are experimental data and they 

represent the number of particles, average grade, average grade without L1, mass fraction when 

the grade is 0% and 100% respectively. αM and βM are the beta function parameters. The variance 

of the distribution (σ2)M and the γ parameter (calculated by αM and βM) are also shown in these 

tables. The below equations show how γ and (σ2)M have been calculated according the beta 

distribution features. 

The parameters αM and βM are related to the mean and the variance through the 

expressions: 

 

𝛼" =	𝑔"	𝛾                        (4-2) 

𝛽" = 	(1 − 𝑔")	𝛾              (4-3) 

𝛾 = ,-./0,-.12/(32).

(32).
             (4-4) 
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Figure 4.23. Cumulative distribution function for a description of mineral liberation in the Penouta ore (open pit) for 

different sizes. 

 

With these dates, the density (ρ(g)) and cumulative mass (P(g)) modelling equation can 

be written. Below there is the general formulation of these equations. 
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𝑃(𝑔) = F
0 ≤ 𝑔 < 1 𝐿: + (1 − 𝐿: − 𝐿<)	

<

∫ ,=.>?(</,)@.>?C,?
D

∫ 𝑥J./<,
: (1 − 𝑥)K./<𝑑𝑥

𝑔 = 1 1
    (4-6) 

 

The parameter αM and βM define the performance of the distribution, and they can 

transform the function from bell-shaped to U-shaped. For the Penouta ore (open pit) the 

distribution in the range of 0-180 µm is U-shaped and only in two last graphs (180-240 µm) from 

Figure 4.23 change to the bell shaped. This is good approximation and show that the fine particles 

have better distribution than the coarse particles. The sample are in the U-shaped, but the 

parameters αM and βM changes in the sample. They decrease when the particle size increase 

(Figure 4.24). 

The variation of distribution function parameters with a constant liberation rate constant 

was investigated, and the results are shown in Figure 4.24. The values of αM and βM seem to 

satisfy a linear relationship while the liberation rate is constant, with correlation coefficients of 

0.90 and 0.89, respectively. It follows that αM and βM values may be predicted from the liberation 

rate constant as follows: 

αM = −0.11x + 1.30 (4-7) 

βM = −0.07x + 0.99 (4-8) 

 

The relationship can be further interpreted to show that finer particles are expected for 

high αM and βM values. This agrees with what is displayed in Figure 4.24. 

 

 
Figure 4.24. Beta distribution parameters of Penouta open pit sample for a description of mineral liberation. The 

potential tendency line is indicated. 

 

4.1.7 Key findings 

A comprehensive mineralogical assessment was undertaken using Level 2 

characterization. The mineralogical characterization supported the use of a concentration process 

to recover and liberation modelling of tantalum through the production of a tantalum concentrate. 

The key findings for Penouta ore (open pit) are summarized below: 
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1) Gangue mineralogy was represented mainly by kaolinite and quartz in this case study. The 

gangue mineralogy did not pose any significant issues with regard to the selection of concentrate 

as the separation process for liberation modelling.  

2) Tantalum occurred mainly as solid solution in Sn-Ta (99% of the tantalum in the mill product 

from the mineralogical characterization). Therefore, the concentration process was developed to 

target the recovery of CGM.  

3) From mineral liberation models, it was found that tantalum was well liberated in the mill 

product and a small proportion of the tantalite was present in the coarser size fractions which 

show poor liberation of tantalum, which resulted in the incorporation of mainstream inert 

grinding. 

4) The grain size of the CGM minerals was relatively fine. Du to these minerals had represented 

a recovery target, the mill product size may have been a consideration in the development of the 

flow sheet because a much finer product sizing would have been needed.  

5) The beta distribution resulted in an increase of fine fractions indicating that a proportion of the 

tantalum in the physical separation feed was fine. 

This case study shows that cassiterite, which in almost all processing of base metal ores 

is considered as gangue, can be the most important mineral. It can carry the valuable element, 

which transforms this gangue mineral into the most important mineral to be recovered. Enhancing 

the recovery of cassiterite was supported by the mineral characterization for this ore, which was 

the most important stage for understanding the deportment of tantalum prior to concentration 

testing.  

A combination of feed flow rate, shaking table tilt and angle, and stock rate of the table 

and the concentration procedure were used to improve the tantalum grade and recovery. As a 

result of these conditions, a tantalum recovery of 46.28% with a grade of 103 ppm was obtained 

from the ore, through batch rougher separation tests performed in one stage. 

The liberation study by size indicated that cassiterite was mainly recovered in the 

liberated form, followed by binary composites and, to a lesser extent, as ternary composites. The 

main losses of this mineral were as binary composites in the 106 µm fraction (-180 µm+38 µm) 

and the size fraction below this one. 
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4.2 Penouta tailings 

The Penouta tailings used methodology Level 1 to characterize this material that still is 

rich in ore minerals. The analytical procedures used were chemical analysis and mineralogy 

determined by XRD, optical microscopy and mineral liberation analyzer. In the following 

sections the output of these techniques is described. 

 
4.2.1 Particle size distribution  

The samples obtained from the tailings were sieved in 13 different sizes. The weight % 

retained fraction of two representative samples of the trench area is indicated in (Table 4.10). 

 
Table 4.10. Particle size distribution of sample 7 and 8 from Balsa Grande. 

Size (mm) Sample 7 (wt%) Sample 8 (Wt%) 

>2 3.56 4.02 

1.7-2.00 6.22 5.18 

1.25-1.70 16.08 11.65 

1.00-1.25 12.04 10.45 

0.71-1.00 13.12 13.09 

0.6-0.71 6.52 7.85 

0.5-0.6 3.10 3.48 

0.4-0.5 5.71 7.12 

0.3-0.4 7.70 8.99 

0.25-0.3 3.94 4.68 

0.16-0.25 9.57 9.46 

0.063-0.16 8.20 6.24 

<0.063 4.24 1.10 
 

4.2.2 Chemical composition 

Ta content is highly variable in the different types of materials from Penouta. The 

greisens dump has 10-18 ppm of Ta, the Balsa Pequeña tailings has 79-215 ppm Ta. Results of 

samples obtained from different heights in the pit test of Balsa Grande, the richest area are in 

Table 4.11 (Pen-7 to Pen-10). The residue from the pilot plant that tested with raw materials from 

Balsa Grande also was analyzed and it has 20.3 ppm. 

The composition of Penouta tailings, is similar to the Penouta open pit, and Size-by-size 

analysis of a bulk representative sample (Table 4.12) indicated that the – 160 µm size fraction 

had the highest tantalum analysis, while the coarse size fraction evaluated (+ 600 µm) had the 

lowest tantalum analysis. Ta content is varying from 40 - 226 ppm, Nb from 40 - 123 ppm and 
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Sn from 186 - 1110 ppm. 

The composite sample used in this study has about 95 ppm of Ta. After laboratory 

concentration, the Ta content in the waste from the tailings sample was 20 ppm Ta. The Ta content 

varies with the grain size as demonstrated the analyses of the different size fractions. The Nb and 

Sn contents follow the same trend (Figure 4.25). The bulk analysis for U and Th showed a low 

content of these elements, while the fine size fractions are highly enriched, thus, they can be 

concentrated in the Ta concentrate. 
 

Table 4.11. Chemical composition of Balsa Grande samples from Penouta tailings. 

Oxides (Wt%) Pen-7 Pen-8 Pen-9 Pen-10 

SiO2 80.65 59.26 76.59 74.45 

Al2O3 9.30 10.35 9.01 11.56 

TiO2 0.05 0.05 0.10 0.03 

FeO 0.68 0.82 1.13 0.73 

MnO 0.08 0.10 0.26 0.12 

CaO 0.06 0.07 0.06 0.06 

MgO 0.12 0.12 0.18 0.08 

K2O 4.65 5.07 3.80 5.92 

P2O5 0.02 0.02 0.02 0.03 

Total 95.60 75.87 91.16 92.98 

Traces (ppm) 
    

Nb 40 85.9 123.5 69.5 

Ta 44 160 226 107 

Sn 186 559 1110 312 

W 417 321 292 228 

U 2.2 3 3.2 3.3 

Th 2.9 4 3.5 3.6 

Pb 9.2 10.3 13.8 13.3 

Rb 1200 1310 891 1470 

Cs 49.7 56.3 43.3 59.6 

Ba 192 235 267 98 

Be 275 242 235 189 
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Figure 4.25. Variation of Ta, Nb and Sn with the particle size of the Penouta tailings. 

 
Table 4.12. Chemical composition by fraction size (mm) of sample Pen-8 for Penouta tailings. 

Size (mm) 
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Oxides (Wt%) 

SiO2 88.14 92.63 69.53 85.15 88.78 75.52 77.66 76.59 75.31 72.95 70.81 69.32 58.62 

Al2O3 6.27 3.65 3.38 4.12 6.44 10.54 11.19 12.83 14.25 14.79 14.93 17.18 26.83 

TiO2 0.10 0.02 0.02 0.02 0.03 0.07 0.07 0.07 0.07 0.07 0.07 0.05 0.05 

FeO 1.20 0.55 0.53 0.64 0.69 0.78 0.78 0.87 0.95 1.02 1.00 0.86 0.85 

MnO 0.07 0.07 0.06 0.05 0.07 0.09 0.07 0.09 0.12 0.14 0.18 0.20 0.13 

CaO 0.06 0.04 0.01 0.04 0.04 0.03 - - 0.06 - - 0.07 0.03 

MgO 0.20 0.05 0.05 0.07 0.08 0.13 0.12 0.15 0.15 0.15 0.13 0.12 0.12 

K2O 2.11 1.13 1.13 1.69 3.52 6.62 7.33 8.60 8.88 8.46 7.33 6.48 5.21 

P2O5 0.03 - - - 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.04 0.05 
Total 98.18 98.14 74.70 91.78 99.69 93.81 97.24 99.22 99.80 97.60 94.48 94.31 91.88 

Traces (ppm)             
Nb 28.3 33 23.4 31 32.7 37.8 34.5 35.7 43.2 51.7 69.6 839 408 

Ta 37.2 37.6 25.6 37.2 40.8 49.9 38.9 37.5 43.7 55.3 102 995 785 

Sn 299 286 222 212 235 251 175 190 215 223 273 2980 2940 

W 780 839 486 327 355 300 522 307 206 341 178 12.6 8.9 

U 2.7 2.2 2 1.8 1.8 1.9 1.6 13.2 1.5 1.6 1.8 7.2 11 

Th 2.6 1.6 2.5 1.5 2 2.5 5.6 3.4 2.4 2.4 3.3 14.2 23.9 

Pb 40.3 - 21.2 19.1 10.6 23.4 16.2 20.7 25 21.7 23.3 35.8 18.8 

Rb 532 289 268 378 754 1470 1430 1960 2190 2060 1890 1620 1310 

Cs 47.6 34.6 21.2 22.6 34.9 60.4 58.1 80.7 91.3 94.1 88.4 76.7 67.4 

Ba 116 73 38 49 70 112 85 110 120 116 120 111 84 

Be 818 814 348 204 119 121 92 114 130 156 203 158 34 
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4.2.3 Mineralogical characterization 

4.2.3.1 Bulk mineralogy 

In the Penouta tailing the distribution of minerals is largely dependent of the particle size 

fractions. A semiquantitative determination by XRD using sieved samples from the tailing (Figure 

4.26) shows that quartz is most abundant in the coarse particle size fraction, K-feldspar is more 

abundant in the medium size fractions, whereas albite and kaolinite are concentrated in the 

smallest fractions. The mineral distribution depends on the hardness of the minerals and the 

original texture. Quartz has the highest hardness of the major minerals and a significant amount 

occurs in grains of 1-2 mm. However, plagioclase is constituted of thinner crystals. Kaolinite is 

the product of alteration of feldspars and it is a clay mineral with a maximum grain size of few 

microns. 

 
Figure 4.26. XRD diagrams that show the mineralogical composition of different particle size fractions in which the 
composite sample of the tailing was divided. Qtz, quartz; Ab, albite; FK, K-feldspar; Ms, muscovite; kln, kaolinite. 

 

4.2.3.2 Tantalum-bearing oxide minerals 

The ta-rich minerals are similar than those from the open pit. Most of oxides are mainly 

members of the CGM. CGM. Textures are similar than in the previous presented ores, with the 

most common textural pattern constituted by grains with a Ta-rich core and a Nb-rich rim (Figure 

4.27). The EMPA results indicate that most CGM are classified as manganocolumbite and 
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manganotantalite. Columbite-tantalite crystals are usually zoned with a Nb-rich core and a Ta-

rich rim; in other cases, crystals exhibit convoluted and patchy zonings (Figure 4.27), which is 

the result of the variation in the Ta/(Ta+Nb) ratio, being the Mn/(Mn+Fe) moderate, always with 

predominance of Mn. 

 

 
Figure 4.27. Columbite group minerals from the Penouta ore showing different textures: (a, b), concentric zoning; (c, 

d), patchy zoning. MC, manganocolumbite; MT, manganotantalite. 

 

Microlite and wodginite, occur in minor amounts. Cassiterite is the most abundant ore 

mineral and occurs as homogeneous subhedral to anhedral crystals. Chemical composition shows 

a high Ta content, up to 9 wt.% of Ta2O5.  

 

4.2.4 Characterization of the processed tantalum ores from tailings 

As noted in the literature review, bulk concentration is used when there is a low 

concentration of base metal tantalum minerals in the ore. Accordingly, based on the mineralogical 

characterization, the concentration, was selected as the most appropriate concentration strategy 

to be used for recovering tantalum from these tailings.  

Various concentration strategies were used to finally achieve the best processing flow 

sheet for this ore. The preliminary flow sheets and the operational conditions from the different 

batch tests were presented in Chapter 3. The first step was to perform the preconcentration test; 

various samples were tested to find the best concentration conditions for the tantalum minerals; 

then the incorporation of the ore minerals concentration was achieved, the shaking table setup 
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step was done; and finally, the amount of the appropriate flow rate to the flow sheet aimed to 

obtain a higher recovery and grade as a final product. 

 

4.2.4.1 Quantitative automated mineralogy  

To obtain the quantitative mineralogy, mineral liberation analysis (MLA) was used. This 

technique provided the characterization of 6481 grains and 21344 particles from a concentrate 

obtained from the tailings of the ancient exploitation of the Penouta mine. The results of EMPA 

were used to create the data base for the MLA mineral identification. Mineral distribution was 

mapped for visual appreciation and observation of shapes and texture (Figure 4.28). All size 

fractions were used to estimate the key mineralogical attributes, such as modal mineralogy, 

elemental classification, and texture for the ore. 

 

 
Figure 4.28. Representative pseudo-color particle maps from the Mineral Liberation Analysis of Penouta tailings. 

 

4.2.4.2 Size distribution characteristics of the sample 

v particle size distributions (PSD) 

The particle size distributions (PSD) of the various stages of the sample are shown in 

Figure 4.29. For the laboratory test work, the particle size distribution for the sieved samples 
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resulted from the grinding stages as well as for the particle sized material with cumulative passing 

of the samples from sieving of the sample. The PSDs are broad with a shallow slope, although 

the ball mill PSD of tailing are steeper than those of the open pit. The size range for this work 

was selected to compare the two sample types in a size region where there is some overlap 

between the usages of the ball mill, with a relatively coarse feed size for ball mill. The particle 

size distribution in the concentrate varies according to the grade in CGM. In the sample, particles 

of liberated CGM have an average size <120 µm, whereas size from those with a CGM grade 

from 67 to 99 wt. % ranges from 150 to 250µm. 

 

 
Figure 4.29. Particle size distributions of samples milled in the laboratory; tailings sample as determined by 

screening. 

 
v Mineral grain size 

The mineral grain size distributions of all columbite group minerals (CGM) minerals 

using MLA were grouped together to improve the number of observations and the confidence 

limits were evaluated. The graph in Figure 4.30 shows that most columbite and tantalite crystals 

are less than 150 µm, being those of tantalite slightly smaller than columbite. The tantalum 

minerals had a mineral grain size with a P80 of approximately 121 µm, this type of particle is 

expected as the size fraction measured was -250+100 µm. Pittard, 2010 also argue that when 

mineralogical analysis is performed in small or trace constituents, that is the case of this thesis 

i.e., tantalum; the key constituent is distributed on a small scale in the material to be sampled. 

Therefore, “liberated or not, the coarsest grains of such constituent must be measured and placed 

into the context of their average (Pitard, 2010). 

Therefore, in this case fine grains are considered to be properly chosen. Indeed, this was 

confirmed with the concentration results and the stepped in the graph helped to choose the grain 

size (Appendix C). 
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Figure 4.30. Grain size of ore minerals from the Penouta tailings determined by MLA. 

 
v Mineral recovery by size 

For analysis of mineral recovery-by-size for Penouta tailings, modal mineralogy from the 

MLA was used, because it provides a good reconciliation between the chemical analysis and the 

MLA’s elemental analysis. Note that elemental analysis provides the total concentration of 

elements from various minerals in which they exist. In this ore, Ta analysis represented the total 

concentration from the contributions of CGM minerals. Figure 4.31 shows the mineral recovery-

by-size graph for the combined tantalum minerals for this ore. 

 

 
Figure 4.31. Size distribution of CGM-rich and liberated particles. 
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to the well-known inverted U shape usually displayed in these types of analysis (Figure 4.31). 

Different zones can be identified in the graph as fine, intermediate and coarse zones. The finest 

zone (-100 µm) had the highest recovery for tantalum (free), the intermediate zone (-200+100 

µm) illustrated a moderate decrease in the recovery (90-99%). 

 

4.2.4.3 Modal Mineralogy 

The MLA analysis of Penouta tailings identified the presence of approximately 55 

different minerals (see Appendix D) with quartz, cassiterite, Fe_oxides and muscovite as the most 

abundant minerals. These results were consistent with XRD analysis. The most abundant ore 

mineral is cassiterite (10.15 wt. %), followed by tantalite (2.0 wt. %), columbite (1.35 wt. %) and 

microlite (0.11 wt. %). The columbite tantalite ratio is 0.7 for the tailing material (Figure 4.32). 

Although wodginite was determined by EMPA, it was not detected with MLA; it could be because 

this mineral is too similar to columbite-tantalite in terms of BSE contrast and energy dispersive 

spectrum. Several sulphides were determined; the most abundant was pyrite, with 0.7 wt. %. 

Other silicate minerals determined by MLA are garnets of spessartite type, with 4 wt. %, albite, 

with 2.3 wt.% and k-feldspar, with 2.41 wt.% and kaolinite, with 1.93 wt.%. 

 

 
Figure 4.32. Modal mineralogy of Penouta tailings. 

 

4.2.4.4 Mineral association 

Analysis of the elemental deportment for Penouta tailings focused on Ta carriers due to 

the presence of large grains of columbite, cassiterite and other Ta-bearing minerals identified 

using both XRD and MLA. The MLA data indicates the ratio of columbite and tantalite that is 
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liberated or located in binary and ternary particles. As the CGM are a combination of columbite 

and tantalite, the CGM particles liberated are the sum those minerals when they are completely 

liberated and those binaries that contain only both minerals. The classification of these particles 

shows that 33.4 wt.% of tantalite completely liberated and about 51.00 wt.% there are in the binary 

particles (Table 4.13). The mineral association information was used to find if there were any Ta 

minerals that tended to associate with any minerals that may be considered problematic in a 

concentration context e.g. muscovite. It was also used to establish if any Ta minerals were 

associated with minerals which were recoverable by concentration, to assist with design of a 

processing strategy (Appendix E).  

Mineral association with CGM depends on the particle grade of this mineral. When CGM 

are in a low grade, they usually are associated with cassiterite, whereas in the particles with more 

than 90 wt.% of CGM, they are mainly associated with muscovite, but also other minerals occur, 

as quartz, feldspar and kaolinite (Figure 4.33).   
 

 
Figure 4.33. False color images showing the minerals association of CGM for the Penouta ore (a, open pit; b, 

tailings). 
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The mineral association of CGM is quite different in the tailing and in the open pit. In the 

tailing, cassiterite is most important; this is probably due to the former exploitation of cassiterite. 

Iron oxides, or hydroxides, are more abundant in the tailing, whereas kaolinite predominates in 

the open pit. Most of this iron oxides are not appeared as minerals and it could be the crashed 

particles from the mechanical machines which used during the previous processing of the ore. 

 
Table 4.13. Classification of the ore, containing particles from Penouta tailings determined by Mineral Liberation 

Analysis. 

Particles (wt.%)  Columbite Tantalite 
Liberated  16.6 33.4 
Total Binary  63.62 51.0 
Total Ternary  19.6 15.6 
Total (Lib+Bin+Tern)  100 100 
Liberated CGM 76.46 66.3 

 

Tantalite is 2.2 to 2.7 times more liberated than columbite, probably due to the lower 

grain size of this mineral.  The columbite-tantalite liberated particles are between 66 and 78 %. 

Most of the non-liberated columbite-tantalite particles are binary, where this mineral is mainly 

associated with muscovite or quartz, and less frequently with feldspar. A significant amount of 

tantalite from the open pit can occur associated with kaolinite. These results are significant for 

the optimization of the comminution and recovering process.  

 
Table 4.14. Liberation and mineral locking of columbite group minerals (CGM) from Penouta tailings. 

Weight % locked in... Columbite Tantalite 
Liberated (%) 16.60 33.38 
Columbite  - 32.94 
Tantalite 59.86 - 
Microlite 0.02 1.05 
Cassiterite 0.11 1.15 
Quartz 1.45 3.93 
Albite 0.00 0.34 
Plagioclase 0.00 0.00 
K-Feldspar 0.35 1.27 
Almandine 0.00 0.00 
Spessartine 0.00 0.12 
Biotite 0.00 1.46 
Muscovite 0.20 4.24 
Chlorite 0.00 0.01 
Kaolinite 0.00 0.73 
Mn,Fe,Al oxides 1.06 2.43 
Zircon 0.53 0.00 
Monazite 0.01 0.00 
Xenotime 0.00 0.00 
Crandallite 0.00 0.01 
Pyrite 0.00 0.00 
Other 19.79 16.94 
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Cassiterite is liberated in most of the particles (73-81 %). In other particles it is associated 

with muscovite (about 8 %) or quartz (4.4 %), Mn,Fe,Al oxides (4.2 %) and K-feldspar (2.1 %). 

The results of a concentration feed characterization illustrate the status of the ore prior to 

a concentration test, allowing understanding of the final requirements for grinding in order to 

develop a flow sheet for processing this complex low-grade tantalum ore. 

For Penouta tailings, the degree of liberation (Table 4.14) by mass of CGM minerals were 

analyzed at different size fraction of liberation and then was estimated using mineral liberation 

modelling and simulation methods. 

Tantalite presented a higher degree of liberation when compared with columbite. For the 

Ta, the change in the degree of liberation for the Penouta tailings at different sizes was modeled. 

It was found that the finer size has a higher amount of Ta. This supports that coarse grinding (+ 

600 µm) will allow reasonable Ta recoveries with the use of shaking table as the primary treatment 

for this ore. 

 

Key findings of mineralogical characterization  

The results from characterization of the ore resulted in the following key findings:  

The valuable element of CGM was accounted for by tantalum, columbite and other 

minerals (shown in Table 4.13).  

Tantalum in the -250 µm fraction of the ore is mainly associated with cassiterite, followed 

by muscovite, and in lesser extension also other minerals occur, as quartz, feldspar and kaolinite 

to Ta minerals, being these the tantalum carriers. Complex textures are present in the fine 

particulates (- 120 µm) analyzed and include features such as rimming minerals and intergrowth 

textures. 

The mineral grain size for tantalum minerals (-150 µm size fraction) was fine in the ore 

characterization samples, due to the presence of large grains of tantalite (with a P80 of 121 µm) 

indicating fine grinding would be required to achieve sufficient levels of liberation for physical 

separation; this was supported by liberation analysis of the shaking table feed. 

The information gained from the mineralogical characterization of this ore suggested that 

selective concentrate would be appropriate to recover the tantalum minerals. The selection of 

proper factor (flow rate, shaking table angle and stock rate) would selectively handle the tantalum 

minerals concentrate relative to the CGM present, noting that the ore contained base metal 

cassiterite. 

 

4.2.5 Work index and energy consumption 

Figure 4.34 show the relationships between the work index and the degree of tantalum 
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liberation in the processed material, the cumulative distribution of the liberated tantalum with the 

class mean size and the work index. The work index of the studied tailings ranges from 14.43 to 

33.21 kWh/t, according to the particle size of the feed. From the figure, most of the liberated 

CGM has a size smaller than 200 µm, and about 80% of the liberated tantalum has a size smaller 

than 150 µm. The increase in the work index indicates a change in the consumed energy of the 

ore during the grinding. This has a negative impact on the milling energy costs. From a size 

smaller than 150 µm, with the progress of tantalum liberation production, the increase in the ore 

work index increases the energy consumption per ton of milled ore. This information helps 

determine the optimum operational conditions of mineral liberation in order to reduce energy 

consumption. 

 

 
Figure 4.34. Dependence of work index on the cumulative distribution of Ta content in the material. 

 

4.2.6 Simulation and Predication of Mineral Liberation for Penouta tailings 

The main objective of the mineral liberation modelling was to investigate how the 

Penouta tailings ore would respond to concentration during a reprocessing, by using a 

combination of preconcentration and a factorial experimental design (to optimize grind size, 

concentration rate and minimize energy). 
 

4.2.6.1 Mineral Liberation analysis (MLA)  

A predictive liberation model was developed using a CGM ore and the gangue minerals. 

The calculation of distribution density and modelling of liberation is shown in Figure 4.35. Using 
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mineral liberation analyzer data, differential mass of all samples at different grade classes and 

size fractions were determined. From the figures the observed liberation size is -200 µm, due to 

this range represent the population of 80 % of the liberated particles. In the tailing, 99.2 wt.% of 

the particles do not contain CGM. Most of the particles-bearing CGM are or considerably rich 

(>90 wt% or poor (<10 wt% CMG). As Figure 4.35 shows, in most CGM particles with less than 

10 wt.% CGM the predominant mineral is cassiterite. Textural observations indicate that these 

are cassiterite particles that contain small inclusions of CGM. Although this grade class represent 

0.7 wt.% of the bulk leucogranite, it has about 0.03 wt.% of the total CGM (see Appendix A).  

 

 
Figure 4.35. Distribution of the concentrate particles according their CGM grade classes, and particle size from 

Penouta tailings. 

 

To complete the liberation distribution shown in Figure 4.35, Eq. (4-6) and the extent 

data were used to calculate the linear grade distribution of the CGM and liberated particles. The 

modeled values are compared with the measured distributions for eight size fractions (Figure 

4.36).                   
The parameters α and β of the beta distribution function were calculated using the 

MATLAB, which are shown as cumulative distributions (Figure 4.36). Series of mineral 

liberation function equation were calculated based on this extracted data (Appendix B). These 
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the experiment data as shown in the Figure 4.36. When the particle size is distinctly smaller than 

the sizes of the mineral grains, the tendency for liberated and nearly liberated particles to appear 

is greatly enhanced and the beta distribution function reflects this tendency by exhibiting a strong 

U-shape (King, 2012). This is good approximation and it happened in the all fractions (0-200 

µm). Otherwise, the distribution is bell-shape. 
 

 
Figure 4.36. Cumulative distribution vs grade class of ore for eight cases in different particle sizes for Penouta 

tailings. The difference between the simulated and experimental data is shown. 

 

To describe the mineral liberation distribution for different particle size the distribution 
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density of the sample shows that changing from bell-shaped to U-shaped occurred from lower 

graphs (180-200 µm) to upper graphs (20-60 µm) and It was not repeated for the size fraction of 

lower than 20 µm. Modelling results are shown in Figure 4.36 for the tantalum ore, where these 

is a comparison of the cumulative mass from the experimental data with the simulated data in 

different size class. The results show a reasonable fit to data in almost all interval sizes. In most 

cases the curves should superimpose upon each other, if αM and βM values are normalizable. 

Reasonable fitting is observed in almost all interval size, indicating that the calculated liberation 

could be a good approximation if the cumulative distribution is correct. Also, from Figure 4.36, 

it can be seen that the sample show a typical behavior as the distribution function do not depend 

on the particle size. The parameter g was from zero to one. 

The variation of distribution function parameters with a constant liberation rate constant 

was investigated, and the results are shown in Figure 4.37. The values of αM and βM seem to 

satisfy a linear relationship while the liberation rate is constant, with correlation coefficients of 

0.95 and 0.89, respectively. It follows that αM and βM values may be predicted from the liberation 

rate constant as shown in Eq. 4-9 and 4-10. 

αM = −0.40x + 5.34 (4-9) 

βM = −0.63x + 7.70 (4-10) 

The relationship can be further interpreted to show that finer particles are expected for 

high αM and βM values. This agrees with what is displayed in Figure 4.37. 

 

 
Figure 4.37. Beta distribution parameters of Penouta tailings sample for a description of mineral liberation. The 

potential tendency line is indicated. 

 

Key findings 

Modelling liberation of Penouta tailings was undertaken with the aim of developing a 

concentration flow sheet based on the key mineralogical characterization identified; these 

included:  

1) Gangue mineralogy is represented by CGM, mainly cassiterite followed by quartz. The low 
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occurrences of minerals also indicated that this ore could be classified as a low-grade ore. No 

potentially problematic gangue minerals in the context of concentrate were identified.  

2)  Modelling liberation observed that the liberation size is -200 µm, due to this range represent 

the population of 80 % of the liberated particles. In the tailing, 99.2 wt.% of the particles do not 

contain CGM. Most of the particles-bearing CGM are or considerably rich (>90 wt% or poor (<10 

wt% CMG). The grain sizes of the tantalum minerals are fine, indicating that it would be 

necessary to grind the shaking table feed to a fine size in order to achieve liberation.  

3) The results show a reasonable fit to data in almost all interval sizes. In most cases the curves 

should superimpose upon each other, if αM and βM values are normalizable. Reasonable fitting is 

observed in almost all interval size, indicating that the calculated liberation could be a good 

approximation if the cumulative distribution is correct. 

The use of selective concentrate for recovering a rich tantalum rougher concentrate was 

successfully undertaken for this complex low-grade tantalum ore from Penouta. The results 

obtained demonstrate that the use of the concentrate process for this type of ore is appropriate, 

using a combination of ball mill and shaking table feed particle size distribution (P80 of 191 µm) 

to obtain a tantalum concentrate with a grade of 103 ppm and a recovery between 66 and 78 %.  
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4.3 Mittersill ore 

In the following section, the results of the Mittersill ore characterization are discussed 

with the emphasis on understanding the scheelite deportment and the liberation of the scheelite 

minerals that were the recovery targets in concentration.  

The discussion begins with the most relevant results from chemical analysis and a 

description of the protocol that was developed to find the scheelite minerals that were initially 

identified from MLA analysis. This was then used to inform the standard modelling liberation of 

scheelite from Mittersill ore. This protocol, together with the other tools used in the 

characterization, provides an overall picture of the mineralogical characteristics and mineral 

liberation modelling for this ore. 

 

4.3.1 Chemical composition 

The chemical composition of the whole sample from the Mittersill processing plant is 

presented in Table 4.15. In the sample, the high content of MgO, FeO, and CaO is indicative that 

tungsten is associated with calc-silicate rocks. The W content is 2260 ppm, which indicates a 

medium-grade deposit. It also contains 7.17% CaO, 59.30% SiO2, and 12.25% Al2O3. The W 

content for the concentrate and tailings material that resulted from physical separation is 3.52% 

and 0.13%, respectively. 

 
Table 4.15. Chemical composition of the sample from the Mittersill processing plant. 

Oxides SiO2 Al2O3 MnO TiO2 FeO MgO CaO Na2O K2O MnO P2O5 LOI Total 
(wt.%) 59.30 12.25 0.14 0.74 6.96 5.94 7.17 2.77 1.30 0.79 0.09 1.55 99.00 

 

4.3.2 Size distribution characteristics of the sample 

v particle size distributions (PSD) 

The cumulative particle size distributions (PSDs) of the various streams of the flowsheet 

are shown in Figure 4.38. For the test work, the PSDs are broad with a shallow slope, although 

the shaking table feed, feed and mill product sample PSDs are steeper than the feed. About 53% 

of the mill material is smaller than 250 µm, and about 43% of the milled material in the shaking 

table feed is smaller than 106 µm. The measured particle size distribution shows that 80% of the 

concentrated material is approximately smaller than 106 µm. It was found that fine particles are 

strongly dominant in the shaking table feed data compared to analytical sieving. 
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Figure 4.38. Particle size distribution of the feed, mill product, concentrate, and tailings of the ore sample obtained 

from gravity separation. 

 

v Mineral grain size 

The MLA data provide information on the size of all the measured particles. It is possible 

to determine the distribution of scheelite in the different particle size fractions and its liberation 

grade. Scheelite is significantly concentrated in the −250 + 106 µm size fractions. This is because 

scheelite grains occur naturally in these grain sizes of the ore deposit. The MLA-estimated 

scheelite grain size in the gravity concentrate is shown in Figure 4.39 (Appendix C).  

 

 
Figure 4.39. Mineral grain size distribution of scheelite from the sample determined by MLA. 
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The average grain size is 106 µm, and most grains are <250 µm. This information, 

coupled with the findings from the particle size distribution section, indicates that about 20% of 

scheelite grains are resistant to grinding and fractures in W-bearing. Figure 4.39 also shows the 

grain size distribution of the tailings. Almost all grains are <125 µm in the tailings and would 

require further grinding for sufficient liberation. This would significantly improve the liberation 

characteristics of scheelite and prove that coarser grinds can achieve sufficiently liberated 

scheelite. This suggests that coarse complex particles containing scheelite in the tailings are more 

difficult to grind, which may provide opportunities for concentrations at even coarser particle 

sizes. 

 
4.3.3 Modal mineralogy  

A combination of XRD and MLA analyses enabled a successful characterization of the 

mineralogy of the ore-bearing sample. Overall, 55 minerals were identified (Appendix D). 

The averaged results of XRD and MLA measurements in the feed, concentrate, and 

tailings are presented in Table 4.16. The sample contained a similar content in hornblende and 

titanite in the concentrate and tailings. Actinolite and plagioclase content was highly variable. 

Expectedly, quartz concentrations above 17 wt.% were found in tailings, and about 7 wt.% 

concentrate minerals were found in the ore. 

 
Table 4.16. Modal mineralogy of the whole sample, concentrate, and tailings determined by X-ray powder diffraction 

(XRD) and mineral liberation analysis (MLA). 

Mineral (wt.%) Density XRD MLA 
Ore Tailings Concentrate Tailings Concentrate 

Scheelite 6.01 0.35 0.20 17.01 0.85 17.82 
Quartz 2.62 15.30 15.37 6.74 17.13 7.50 

Plagioclase 2.68 22.30 22.42 7.90 28.27 8.39 
K-feldspar 2.56 4.50 4.54 0.51 2.87 0.49 
Hornblende 3.23 33.00 27.95 20.79 28.47 20.18 
Actinolite 3.04 6.40 6.24 1.00 - - 
Pyroxene 3.40 1.00 8.02 3.20 9.08 2.91 

Vesuvianite 3.40 - 0.98 0.27 - 0.22 
Epidote 3.45 4.30 1.00 15.47 0.42 14.88 
Biotite 3.09 7.70 5.90 2.92 6.22 1.80 

Muscovite 2.82 - 2.15 0.30 1.76 0.28 
Chlorite 2.65 4.90 - 0.29 - 0.41 
Titanite 6.01 - 1.63 3.50 1.51 3.64 
Fe oxide 2.62 - 0.02 0.31 0.04 0.17 
Apatite 2.68 - 0.18 0.45 0.22 0.60 
Calcite 2.56 - 1.50 0.63 1.45 0.70 
Fluorite 3.23 - 0.02 0.04 0.02 0.04 

Fe sulfide 3.04 - 1.10 17.35 1.06 18.20 
Chalcopyrite 3.40 - 0.02 0.75 0.03 0.83 
Arsenopyrite 3.40 - - 0.11 - 0.13 

Total  99.75 99.24 99.54 99.40 99.19 
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Scheelite is the only W-bearing mineral from the studied ore which was reported in MLA 

and XRD. The observation of the ore under UV light allowed the scheelite grains to be 

differentiated. All of them exhibit a bluish luminescence, which is typical when this mineral has 

a low content of molybdenum (Rozendaal, 2014). Other phyllosilicate minerals such as muscovite 

occur in minor amounts. Epidote, K-feldspar, and titanite are also present. The gangue mainly 

comprises quartz, plagioclase, hornblende, pyroxene, and biotite (Figure 4.40). 

 

 
Figure 4.40. Modal mineralogy of the concentrate determined by MLA for Mittersill ore. 
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as a pyroxene phase, and thus its composition is similar to other pyroxenes, such as augite. 
SEM images show that in the comminuted sample, a high number of scheelite grains are 

liberated. In other grains, it is associated with other minerals in binary, ternary, or multi-

component particles (Figure 4.41). 

 

 
Figure 4.41. SEM-BSE images of the scheelite concentrate: (a) binary particle of scheelite and hornblende, and (b) 

multi-component particle. Sch, Scheelite; Hnb, hornblende; Qtz, quartz; Ab, albite; Fl, fluorite. 

 
Figure 4.42 represents a color image of an area of the MLA of the concentrate sample. 

The image shows that the mineral association varies considerably according to the particle size 

fractions. Scheelite and pyrite are more concentrated in the fine fractions (Figure 4.42).  

 

 
Figure 4.42. Mineral liberation analysis image showing the characteristics of minerals. 

 
The number of characterized particles in the concentrated and tailing samples was 58,162 

and 66,248, respectively. In the most basic liberation analysis method, mineral discrimination is 

only based on BSE grey level contrast, and the liberation data are generated through image 

analysis (European Commission, 2017). In the present case, scheelite shows a high contrast with 
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the other possible mineral phases, and it is possible to produce a basic method to calculate the 

scheelite minerals with a high rate of concentrated scheelite. 

The liberation characteristics of scheelite in the concentrated sample are shown in Figure 

4.43. More than 87 wt.% of scheelite is liberated, and about 11.2 wt.% occurs in binary particles 

(Appendix E). In most cases, scheelite constitutes particles associated with epidote, quartz, and 

hornblende (Figure 4.43). 

 

 
Figure 4.43. Mineral liberation of scheelite and association of non-liberated scheelite grains. 

 
Key findings of mineralogical characterization  

The mineralogical characterization of the Mittersill ore was complex because it required 

a high level in conjunction with the modelling results to finally understand the nature of the 

scheelite deportment. As a number of analytical and microscopic techniques were used for the 

ore, a protocol was developed to systematically identify W and even unknown W minerals not in 

the MLA library. In terms of W deportment, epidote, quartz and hornblende are the main scheelite 

carriers.  

The gangue mineralogy indicated that quartz is the main non-sulphides gangue mineral 

present, followed by plagioclase (albite). It is possible that these could produce problems via 

inadequate dispersion and increased flow rate or shaking table angle for a given percentage of 

minerals. The textures present in the ore are complex, particularly with respect to the fine-grained 

nature of the scheelite minerals. As a consequence, the liberation level for the combined scheelite 

minerals in the rougher feed at a P80 of 250 µm was high (87%) indicating a finer separation feed 

size is needed to liberate the scheelite minerals adequately for physical separation to be effective.  

Due to the nature of the scheelite minerals present selective physical separation was 

selected. As with the Mittersill ore, a combination of shaking table set up and feed rate is an 

important factor in enhancing the recovery of the scheelite minerals. 
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4.3.5 Work index and energy consumption 

The work index of the studied ore ranges from 8.02 to 15.07 kWh/t, according to the 

particle size of the feed. The increase in the work index indicates a change in the consumed energy 

of the ore during the grinding. As was seen before, most of the liberated scheelite has a size 

smaller than 125 µm, and about 80% of the liberated scheelite has a size smaller than 110 µm. 

This has a negative impact on the milling energy costs. From a size smaller than 125 µm, with 

the progress of scheelite liberation production, the increase in the ore work index increases the 

energy consumption per ton of milled ore. This information helps determine the optimum 

operational conditions of mineral liberation in order to reduce energy consumption. 

The relationships between the work index and the degree of scheelite liberation in the 

processed material, the cumulative distribution of the liberated scheelite with the class mean size 

and the work index have been plotted in Figure 4.44. These relationships can be explained by the 

fact that almost all liberated sheelite is in fine fractions, which causes the work index and energy 

consumption to increase. The material is a calk-silicate, so scheelite is associated with more than 

60% quartz and epidote (Figure 4.43). They are the hardest minerals in the material. Therefore, 

the work index for the deposit ore may be predicted based on the quartz and epidote content of 

the material (Wikedzi et. al., 2018). 

 

 
Figure 4.44. Dependence of work index on the cumulative distribution of scheelite content in the material. 
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The concentrate of the gravity separation was selected for analysis of scheelite liberation. 

MLA reported data by size and liberation classes of scheelite mineral, which was finely ground 

and medium grade, used for the characterization in the flowsheet of this work. Using mineral 

liberation analysis data, the differential mass of the concentrated material with different grades of 

scheelite has been calculated. Mineralogical characterization was performed by the MLA 

technique and the stream samples was sized into 13 size classes from 0 to 260 µm using sieve 

analysis. The distribution of the concentrate mineral (scheelite) by particle size and liberation 

classes in terms of mass percentage, which was obtained from the data reported by MLA. Here, 

the highest mineral fractions belong to the medium size and highly liberated particles (5.65%) 

and less liberated particles (2.32%). 

Figure 4.45 illustrates how scheelite treatment has resulted in a distribution of the ore 

from the low to high grade of liberation classes in the material. To calculate the distribution 

density, simulation, the range of 0 – 260 µm was divided into a particle size segments with 

intervals of 20 µm and liberation grade classes of >0–10, 10– 20 . . ., 90–<100 and 100 (Appendix 

A). In the concentrated sample the liberated scheelite is distributed along with the different size 

classes as shown in Figure 4.45. The categories presented here are based on the combined 

fractional area of scheelite, although all particles considered contain one or more scheelite grains. 

Particles that contain scheelite show a bimodal distribution with a large amount of 

concentrate in the >0 to 10% of scheelite grade (Figure 4.45a). However, the amount of scheelite 

in these particles is small, thus a low quantity of ore would be obtained if they were liberated. 

The other accumulation of particles containing scheelite is formed by particles with a scheelite 

grade higher than 90%, where all of them can be considered as liberated.  

The 3D diagram (Figure 4.45) indicates that liberated scheelite represents 15% of total 

mass of the concentrate and about 0.13% of the tailings. It is possible to recover the scheelite 

phases, with reasonable efficiency, by the use of gravity concentration. 

In order to describe the particle populations with different mineral contents, a distribution 

function based on the beta distribution was carried out (King, 2012). 

The equation (4-6) is used as the basis for the calculation of distribution grades when the 

distribution linear grades are known (King, 2012 and Zhang, 2012). By the use of equation (4-6) 

and back calculation technic in MATLAB, other parameters such as αM and βM have been 

calculated separately which is prepared in the table in (Appendix B). The n, g̅, gM, L0 and L1 are 

experimental data and they represent the number of particles, average grade, average grade 

without L0 and L1 on their edges, αM and βM are the beta function parameters. 
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Figure 4.45. Predicted liberation as a function of the particle size with the differential mass and particle grade after 

comminution and gravity separation. (a) concentrate and (b) tailings resulted from this separation. 

 

To complete the liberation distribution shown in Figure 4.45, Eq. (4-6) and the extent 

data were used to calculate the linear grade distribution of the scheelite and liberated particles. 

The modeled values are compared with the measured distributions in Figure 4.46 for eight size 

fractions. 
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Figure 4.46. Cumulative distribution vs grade class of ore for eight cases in different particle sizes. The difference 

between the simulated and experimental data is shown. 

 
The back calculated grade distributions must match the measured distributions, giving 

the experiment data as shown in the Figure 4.46. This is good approximation and it happened in 

the fine fractions (0-80 µm).  Otherwise, the distribution is bell-shape. To describe the mineral 

liberation distribution for different particle size the distribution density of the sample shows that 

changing from bell-shaped to U-shaped occurred from lower graphs (200-240 µm) to upper 

graphs (0-80 µm). 

Modelling results are shown in Figure 4.46 for the scheelite ore, where there is a 

comparison of the cumulative mass from the experimental data with the simulated data in different 

size class. The results show a better fit to data in some interval sizes than the others (e.g. the 

interval of 140-160 µm). In most cases the curves should superimpose upon each other, if αM and 
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βM values are normalizable. A reasonable agreement is observed in almost all interval size, 

indicating that the calculated liberation could be a good approximation of that of the cumulative 

distribution is correct. From Figure 4.46, it can be also seen that the sample shows a typical 

behavior as the distribution function do not depend on the particle size. The parameter g was from 

zero to one. 

The sample is from bell-shape to U-shape, and the parameters αM and βM decrease when 

the particle size increase (Figure 4.47). This allows fitting of αM and βM values into Eq. (4-6) by 

back calculation technique and hence calculating the model parameters. In this case, the 

parameters n, g, gM, L0 and L1 and g were determined by fitting Eq. (4-6) to αM and βM values for 

each fraction size using the back-calculation function in MATLAB. This is an optimization 

procedure which searches for the best combination of these parameters that minimizes the error 

between experimental and simulated αM and βM values. 

The variation of distribution function parameters with a constant liberation rate constant 

was investigated (Appendix B), and the results are shown in Figure 4.47. The values of αM and 

βM seem to satisfy a linear relationship while the liberation rate is constant, with correlation 

coefficients of 0.90 and 0.92, respectively. It follows that αM and βM values may be predicted from 

the liberation rate constant as follows: 

αM = −0.05x + 0.79 (4-11) 

βM = −0.04x + 0.64 (4-12) 

The relationship can be further interpreted to show that finer particles are expected for 

high αM and βM values. This is in agreement with what is displayed in Figure 4.47. 

 

 

Figure 4.47. Beta distribution parameters of ore obtained for description of mineral liberation of scheelite. 

 

 

4.3.7 Key findings 

Penouta ore was characterized primarily by using step 3 mineral characterization. This is 
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deportment of those scheelite minerals that could not be identified in the previous steps of mineral 

characterization. The protocol for identifying the scheelite deportment was primarily devised to 

improve the understanding of scheelite deportment. During this process the associations was 

found between scheelite and other minerals. These were incorporated in the MLA mineral 

liberation modelling and used to reanalyze the data. By using the insights gained from 

mineralogical characterization in combination with the results that were being achieved in the 

modelling liberation, it was possible to quantify the scheelite deportment in this ore. 

In terms of processing, the difficulty in quantifying the scheelite deportment and the after 

a long investigation of the mineralogical behavior of the ore, in terms of grain size and texture, it 

was possible to achieve a recovery of 87% of scheelite with a grade of 2260 ppm, after allowing 

increased liberation of scheelite minerals from a reduction in the size distribution of the ore from 

coarse grains to the fine grains. 

At the conclusion of this case study, it can be demonstrated that a full understanding of 

the application of mineralogical analysis combined with modelling liberation can be used to 

obtain an acceptable separation using physical separation for this ore. 

The size distribution and the liberation of scheelite allow a good estimation of the mineral 

distribution in the concentration feed. Suitable agreement between the experimental and 

simulated data was achieved by using a grain size distribution. 

Using the beta distributions, the extent and the linear grade distribution of liberated 

particles have been calculated. The calculated values are compared with the measured 

distributions for eight size fractions. 
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Chapter V  
Discussion 
 

This chapter discusses the key mineralogical characteristics for the three ores - two of 

them came from the same deposit and the other one came from different deposit - and their impact 

on the development of an effective physical separation strategy. Based on the knowledge gained 

through the mineralogical characterization and the liberation modeling, a new concept of 

processing for Ta and W ores is introduced. 
 

5.1. Context 

 The main driver for this work was to identify the key mineralogical liberation 

characteristics for the ores from Penouta and Mittersill, so that an effective beneficiation process 

to recover tantalum ore and scheelite could be developed. Different questions were raised during 

the identification of these attributes, which became key to understanding the behavior of these 

ores during the gravimetric separation process. These questions are answered in this Chapter, 

which demonstrates how the characteristics of the different ores influence the development of an 

effective separation process. 

 

5.2 Systematic approach developed to characterize tantalum and tungsten ores 

As discussed in the literature review, there is currently no established methodology for 

carrying out systematic mineralogical characterization during processing tantalum and tungsten 

ores from low-grade deposits. Here a proposal of the systematic application of a series of 

characterization tools to identify the tantalum and scheelite deportment and other key 

mineralogical attributes in complex low-grade and intermediate ores is presented.  

The most common microscopic techniques used for characterization of tantalum and 

tungsten ores are XRD, optical microscopy, SEM-based analyses and EMPA. Based on these 

techniques, the proposed framework to characterize systematically the minerals is presented in 

Figure 5.1. It consists of three steps of characterization. The first phase, Level 1 uses all the 

techniques that are routinely used to find the mineralogical characterization required to develop 

a process design. The behavior of the valuable minerals must be identified because it is the key 

factor that helps during the mineral processing to identify the issues that can cause the losses of 
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the tantalum and tungsten ores, which will go to the tailing fraction during the processing. 

 

 
Figure 5.1. Systematic approach for identifying mineralogical characterizes. 

 

Level 1 represents a complete physical and mineralogical characterization of the material 

that reaches the processing plant from the mine. If the tantalum ore and scheelite deportment is 

not in amount enough to be completely characterized by Level 1, then the characterization of 

these materials has to be complemented with their characterized from a concentration process 
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material after different methods of processing is developed. Finally, the level 3 represents the 

quantification of the ores. This quantification allows to determine the characteristics of liberation 

and also the grade of concentrates and tailings.   

 

5.3 Key mineralogical characteristics 

As the key mineralogical characteristics were established i.e. modal mineralogy, 

elemental deportment, texture (mineral association and grain size) and liberation of the ores, it 

became possible to develop a flow sheet design for processing the ores. The way in which each 

of the characteristics impacted on the development of an effective physical separation strategy is 

discussed in the following sections. 

 

Tantalum ore: In order to characterize the tantalum ore deportment, different characterization 

Level 1 was required for the ore. For the Penouta tailings Level 1 analysis show different in 

texture, from which it was determined that the predominant tantalum carriers for the ore were 

cassiterite and quartz which account for more than 60% of the tantalum in the ore. For the Penouta 

ore (open pit) all 3 Levels analysis were required due to the fine-grained nature of the ore and the 

more complex associations of CGM minerals. 

In the development of a physical separation flowsheet for each ore, the Ta deportment 

was critical in determining the most appropriate separation suite to use for each ore. The Ta and 

W carriers were very different for the ores indicating that different physical separation strategies 

i.e. flow sheet design and shaking table schemes, were needed to recover tantalum and scheelite 

from the ores. 

For Penouta deposit, complete characterization is important due to the presence of 

different valuable minerals which should recover as much as possible. In Penouta it was possible 

to recover Sn from cassiterite and Ta from CGM. The concept of ore and gangue minerals is 

variable during the years, whereas a gangue mineral can become an ore if, the mineral prices 

increase or the developing of the technology to recover the gangue minerals move to reach more 

efficient of it. 

Whole-rock Ta distribution in the Penouta granite exhibits a progressive Ta enrichment 

upwards in the granite sheet. Evidence of the saturation of columbite-tantalite was not attained; 

if it had been, a depletion in Ta contents would have occurred once this mineral phase reached its 

saturation, as CGM contain Ta, an essential structural constituent (ESC) in these mineral phases 

(López Moro et al., 2017). There is petrographically evidence, however, of the occurrence of 

CGM from the bottom to the top of the Penouta granite body and an external origin (assimilated 

or residual minerals) can be ruled out (Figure 5.2). 
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Figure 5.2 Variation with depth in the Penouta deposit: (a) Ta content in granite; (b) Ta content in cores of CGM; (c) 

Ta vs. Ta/Nb; and (d) Ta/Nb variation observed from bottom to top in the granite (Alfonso et al., 2018). 

 

Tungsten ore: For the Mittersill ore also Level 1, Level 2 analysis was required as the majority 

of the scheelite was present at ppm levels in the ore. 

The beneficiation process of scheelite and wolframite ores generally consists of pre-

concentration after crushing and grinding, followed by roughing, cleaning and final purification 

stages to produce a concentrate with 65–75% WO3, to meet the requirements of international 

trading (Krishna, 1996; Lassner and Schubert, 1998). 

Rod milling of scheelite has a benefit compared to ball milling according a study by Li 

and Gao (2017), which concluded that the rod milled scheelite particles are deemed to be more 

hydrophobic and have a higher flotation recovery due to stronger interaction with the collector 

and easier attachment to air bubbles (Yang, 2018). 

The mineralogical characterization of the Mittersill ore was required to develop the 

modeling results to finally understand the nature of the scheelite characteristics. A number of 

analytical and microscopic techniques were developed to identify W. In terms of W minerals, 

epidote, quartz and hornblende are the main scheelite carriers.  
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v Mineral distribution  

The gangue is important to characterize so that any minerals can potentially interfere with 

physical separation. The gangue mineralogy indicated that quartz is the main gangue mineral 

present, followed by plagioclase (albite). 

 

Tantalum ore: In the Penouta ore (open pit), cassiterite is the most abundant mineral in all 

fractions while in the Penouta tailings, quartz as a gangue being dominant from the concentrate 

material. A comparison of the modal mineralogy of the Penouta deposit is shown in Figure 5.3 

and 5.4. 

Due to the concentration process were followed in the open pit and in the tailings 

materials were different and this last was less accurate and still large amounts of quartz and other 

silicates remain in it, with eliminating of the low dense mineral from the material it was possible 

to describe the distribution of gangue and REE-rich minerals in the materials (Figure 5.4). The 

results show that the cassiterite still is most abundant in the materials and it shows a higher amount 

in Penouta open pit compared with the tailings. The amount of iron oxide is higher in the tailings, 

that it could be because of the old exploitation of cassiterite that during the process the iron 

cuttings of mechanical equipment remain in the tailings (Figure 4.28). An abundance of REE-rich 

and spessartine as a gangue mineral existed in those of the material which show higher amount 

in the tailings. 

 

 
Figure 5.3. Modal mineralogy for Penouta open pit, Penouta tailings. 
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Figure 5.4. Modal mineralogy for Penouta open pit, Penouta tailings (include REE-rich minerals). 

 

Tungsten ore: For the Mittersill ore, a large presence of amphibole with the same amount in the 

concentrate and tailings material have been reported. The amphibole mineral is most prevalent in 

the Mittersill ore. Quartz and albite show a higher amount in the tailings compared to the 

concentrate minerals in the Mittersill ore (Figure 5.5). 

 

 
Figure 5.5. Modal mineralogy for proceed Mittersill ore (concentrate and tailings). 

 

0

10

20

30

40

50

60

70

80

90

100

Penouta ore (open pit) Penouta tailings

M
in

er
al

 A
bu

nd
an

ce
 (%

)

Columbite Tantalite Microlite Cassiterite
Almandine Spessartine Fe_oxide Fe-Al_oxide
Zircon REE-rich Pyrite_or_pyrrhotite

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Concentrate Tailings

M
in

er
al

 A
bu

nd
an

ce
 (%

)

Amphibole Fe_sulfide Epidote Quartz Albite Plagioclase

Clinopyroxene Titanite Biotite K_Feldspar Chlorite Muscovite



Chapter V Discussion 
 

Sarbast Ahmad Hamid 150 

In the context of physical separation, the gangue matrix does not present any obvious 

minerals that could potentially be detrimental to physical separation. Due to the hardness of 

quartz, it is possible to produce problems via increasing consumed energy for a given percentage 

of scheelite minerals. 

 

v Texture of ores  

Hilden and Powell (2017) describe that the better models are needed to describe and 

simulate the process of mineral liberation: the extent to which minerals are released from their 

host rock upon breakage. The degree of liberation and the composition of the particle fragments 

is the product of both the breakage mechanisms and the texture of intact rocks. If the relationship 

between texture and liberation can be modeled successfully, this information can be used to 

optimize size-reduction and mineral extraction processes to maximize the value extracted from 

the ore. The term ore texture is used in this thesis to encompass a broad range of material 

characteristics including the mineralogical composition of the samples, grain size and size 

distribution, shape distribution, irregularity of the grain boundaries, spatial distribution of the 

grains, and associations between minerals (Jones, 1987). The complex nature of rock textures 

means that real ores are difficult to model or describe quantitatively (Barbery, 1991; Andrews 

and Mika, 1975). The wide range of grain morphologies present complicates even simple features 

such as grain size (Evans et al., 2012). 

 

Tantalum ore: one of the most striking features of back-scattering images of CGM is the 

occurrence of a large number of micro holes, frequently grouped, and within areas with a marked 

Nb depletion and Ta enrichment relative to surrounding blackish areas of the crystal. These 

textures have been cited in many other occurrences (e.g. Galliski et al., 2008; Wise and Brown, 

2010; Zhu et al., 2015), are known as ‘sponge-like’ textures and resemble textures related to 

overprinting processes in an environment enriched in fluids during their formation. However, the 

origin of this fluid is an open issue but could be linked to the evolution of the magma itself or 

processes unrelated to the magmatic process. 

Ta-rich minerals, such as microlite, tapiolite and wodginite, are extremely scarce in the 

deposit and occur specifically in the apical zone of the leucogranite. Texturally, they seem to be 

late mineral phases, nucleated on previous CGM crystals and to resemble secondary minerals. 

 

Tungsten ore: the texture of scheelite and symbiotic quartz (e.g., variable oscillating zonation 

revealed by cathodoluminescence; CL), can reveal the growth history of minerals and reflect fluid 

characteristics (Brugger et al., 2000). In situ major and trace element analysis of scheelite by 

electron microprobe (EPMS) and laser ablation inductively coupled plasma mass spectrometry 

(LA-ICP-MS) can reveal fluid features, evolutionary history and system dynamics (Bau et al., 
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1991; Ghaderi et al., 1999; Brugger et al., 2002; Peng et al., 2005). 

The textures present in the Mittersill ore are complex, particularly with respect to the 

fine-grained nature of the scheelite minerals. As a consequence, the liberation level for the 

combined scheelite minerals in the rougher feed at a P80 of 250 µm was high (87%) indicating a 

finer separation feed size is needed to liberate the scheelite minerals adequately for physical 

separation to be effective. 

 

5.3.1 Mineralogical drivers for physical separation  

The terms ”fines” and ”very fines” can be applied to particles less than 100 µm and 20 

µm, respectively, according to the size classification proposed by Sivamohan and Forssberg 

(1985). In order to increase the recovery for low grade and finely disseminated mineral deposits, 

many separation operations need to improve the liberation of minerals by grinding them to very 

fine sizes (Miettinen et al., 2010). 

This section explains how the mineralogical drivers, deportment and grain size, 

influenced the physical separation each of the ores. Deportment in this context relates to the 

deportment of valuable minerals based on their response to physical separation i.e. they are 

classified as concentrate valuable minerals (which include all of the tantalum and scheelite) and 

tantalum and scheelite occurring in solid solution. In this case Penouta ore (open pit) contains 

concentrate Ta-bearing minerals as carriers, however, the grain size of these minerals is relatively 

small and, from a metallurgical perspective, ultrafine grinding was required and was the 

motivation for decreasing the size of the shaking table feed to -250 µm. Penouta tailings also 

contains concentrate Ta-bearing minerals as carriers and, based on the fine grain size of these 

minerals the standard grind size for concentrate was adequate to recover Ta. Mittersill ore 

contained scheelite as the main W carrier; liberation studies indicate that the degree of scheelite 

liberation at a P80 of 600 µm was not enough to recover scheelite and in addition, the distribution 

of scheelite by size indicated that a large proportion of the scheelite was present in finer size 

fractions. Therefore, a modification of the grinding procedure was introduced, to reduce physical 

separation feed size to -250 microns. 

Since the 1990s some experimental studies have been carried out on fine tungsten 

recovery by gravity separation methods (Traore et al., 1995; Wells, 1991). A multi-gravity 

separator (MGS) was evaluated through testing using a fine scheelite ore with a particle size of 

−100 µm (Traore et al., 1995). The design and optimization of fine gravity concentration circuits 

were described using some heavy minerals including scheelite and wolframite (Wells, 1991). 

However, most investigations on fine scheelite and wolframite beneficiation focused on flotation. 

Due to the nature of the scheelite minerals present selective physical separation was 

selected. As with the Mittersill ore, a combination of shaking table set up and feed rate is an 
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important factor in enhancing the recovery of the scheelite minerals. 

The mineralogical drivers provide insights into the likely behavior of the tantalum and 

tungsten-bearing minerals found in each of the ores during concentration and how this can be 

used to develop a framework for assessing the processing of each ore. 

The information from mineralogical characterization resulted in the creation of different 

concentration flowsheets for each of the ores which were able to achieve the target recovery (over 

80%). 

 

5.4 Consequences for physical separation and mineral liberation 

Figure 5.6 and 5.7 show graphs of the cumulative tantalum and tungsten recovery (x-

axis) versus cumulative grade (y-axis) for each ore. For the Penouta ore it can be seen that Penouta 

ore (open pit) concentrate has a slightly lower grade than the concentration in Penouta tailings, in 

the higher grade than the cumulative grade decreases as expected in this type of graph. The final 

recovery of tantalum for Penouta tailings is 33% at a grade of 127 ppm. The grade recovery curve 

for the Penouta ore is also shown in Figure 5.5. The trend that is presented for tantalum illustrates 

that between concentrates of two ores, there is a gap which represents the effect of the shaking 

table concentrate used in this physical separation process that aims to maximize the Ta recovery 

through a CGM concentrate, which has an average grade of Ta approximately 103 ppm, 

representing the maximum tantalum grade that could be achieved theoretically. 

 

 
Figure 5.6. Grade – recovery curves of Ta for Penouta ore (open pit) and Penouta tailings. 
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the shaking able feed contributes to the higher grade seen in this ore, in comparison to the Penouta 

tailings, due to the increased entrainment of gangue mineral resulting in a final Ta grade. Despite 

Penouta also containing cassiterite minerals the grade is higher as a consequence of the fine 

grinding required to achieve liberation, which as a consequence increased entrainment of CGM 

minerals and reduced rougher concentrate grade. The lowest final rougher concentrate was 

achieved with the Penouta ore (open pit) which was limited by Ta occurrence at ppm levels in 

CGM. The occurrence of the cassiterite in Penouta tailings also required the use of a physical 

separation stage to ensure adequate recovery of Ta. 

 

 
Figure 5.7. Grade – recovery curves of W for Mittersill ore. 

 

The beneficiation recovery rate for the Mittersill ore has been estimated at 75–85% 

(Yong, 2018). The final recovery of scheelite for Mittersill ore is 87.2% at a grade of 2880 ppm. 
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ore has the highest grade due to the presence of scheelite with a high scheelite composition. 
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between this quasi liberation state and no liberation occurs between 40 and 180 microns. The 

presence of very few liberated or quasi liberated particles is due to that naturally mineral grains 

occur in these range size fraction. In the figure, the basic liberation characteristics of the Penouta 

ore can be observed, like the slow transition from unliberated to quasi liberated, and also the fast 

transition from quasi liberated to liberated at the end, giving rise to the liberation model 

modifications. 

The measured size/differential mass in the Penouta tailings is shown in Figure 5.9. In 

Penouta tailings, CGM minerals were recovered in the liberated about (50% of the total) followed 

by binary composites with cassiterite. 

 

 
Figure 5.8. Liberation by size for Penouta ore (open pit). 

 

 
Figure 5.9. Liberation by size for Penouta tailings. 
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The main losses of Ta were in the liberated form in the coarsest size fraction, while the 

composites particles containing Ta caused losses in the – 250 + 220 µm size fractions. 

In this ore the particles are comparatively finer, with approximately 35% of the particles 

smaller than 160 µm, due to the comminution. In the ore, a significant fraction of liberated 

particles is generated, and the bulk of these particles are found below 120 µm. This small 

"liberation size" characterizes the difficulty of processing the Penouta tailings. 

For Mittersill ore, W minerals were mainly recovered as liberated particles. The main 

losses of scheelite were in the coarsest size fraction for liberated and in binary composite with 

quartz and epidote which is considered non-concentrate. Also, most of the liberated scheelite is 

in the size lower than 200 µm and about 80% of the liberated scheelite is in the size lower than 

110 µm (Figure 5.10). 

Most particles are high grade and liberated particles. Some contamination from larger, 

lower grade particles is observed, and this is probably due to ineffective concentrate in the shaking 

table. 

 

 
Figure 5.10. Liberation by size for Mittersill ore. 
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1991; Barbery and Leroux, 1988) proposed a liberation model based on the texture of the parent 

rock. The ore texture, i.e. the distribution of valuable mineral and gangue within the parent rock 

was described by a covariance function. 

King (2001) and Barbery (1991) describe the grade distribution of composite particles 

may be evaluated which is generally approximated by a beta distribution. Zhang and Subasinghe 

(2013) developed a model using the volumetric grade distribution of comminuted particles. 

To complete the measurements through the streams involved in these separation 

processes with the new perspective that only this kind of detailed liberation analysis can provide, 

the measured size and grade distribution in all concentrates stream of the three ores is shown in 

Chapter 4. These information from concentrates complete, together with beta distribution 

functions, the liberation prediction, and mineral liberation modelling and simulation. 

The objective of the simulation is primarily to reproduce, to the greatest accuracy, the 

measured size and grade distributions in the flow sheet of these thesis. There are six streams in 

the circuit for which measured and simulated results are available, namely the ball mill, the 

concentrate and the tailing, shaking table feed, and underflow and overflow streams, around the 

all flow sheet. The simulated size distributions in the streams above are compared to the adjusted 

size distributions, which represent measured data, in Figure 4.23, 4.36 and 4.46. There is excellent 

agreement between simulated and measured size distributions in every stream, with the exception 

of some coarser size, which could not be fully reproduced by simulation. The measured size 

distribution in the coarser size is considerably coarser than the corresponding simulated size 

distribution and loss of some interval grades. It is possible that the smallest particles were favored 

during sampling, either due to the random sampling point, located under the physical separators 

at a difficult point to reach from the flowsheet, or due to the relatively high-water flow rate in the 

stream and its low solids content in the feed stream. 

However, it is very important to point out that if the stream had not been analyzed for its 

grade distribution, it would be possible to match the measured size distribution by simulation 

almost perfectly. This is because the grade distributions impose a tight constraint on the 

parameterization of the unit operations, and consequently, the simulation becomes considerably 

more realistic, and any sampling error more apparent. 

 

5.6 Stereological correction of grade distributions for mineral liberation 

The stereological correction is required because a linear probe through multiphase 

particulate material will report a significantly larger fraction of liberated intercepts than there are 

liberated particles. The entire linear distribution is considerably more dispersed than the 

volumetric distribution of grades that generates the linear distribution (Schneider, 1995). 

As far as, multi-phase liberation data are still normally obtained from polished particle 
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sections using scanning electron microscopy systems such as MLA and QEMSCAN. 2D data 

from polished sections can be tessellated (Gay, 2004a; van der Wielen and Rollinson, 2016) or 

fragmented for example using finite element modeling (Wang, 2015) to calculate liberation 

statistics. Optical methods using polished sections of intact rock specimens and drill core can also 

be used to obtain 2D texture data (Lane et al., 2008; Klichowicz and Lieberwirth, 2016). Mineral 

identification and discrimination with 2D methods are reliable and accurate, however, the 

liberation estimates are subject to stereological bias (Spencer and Sutherland, 2000). 

Liberation data which shown in chapter 4 as cumulative distribution per liberation size 

class, where liberation size classes are describe the distribution in two-dimensional (2D). 

Interestingly, and perhaps surprisingly, the difference that presence in the cumulative liberation 

trends of the measured which are shown as two-dimensional dataset and that of the three 

dimensional, “simulated” dataset is small for Penouta (open pit) and Mittersill ore of the valuable 

minerals investigated. These trends are illustrated in Figures 5-11, 5-12, and 5-13. 

Figure 5-11, conceptually shows the liberation distribution, which is a cumulative 

fraction of the total mass of particles comprising a proportion x which created between two curves 

of the total mass of particles. The head and ends of the distribution correspond to the degrees of 

liberation of the ores, respectively. The figure shows that the two datasets are similar. Both the 

two-dimensional and three-dimensional datasets confirm the liberation state of tantalum in the 

Penouta ore (open pit).  

 

 
Figure 5.11. 2D liberation distributions based on liberation distribution and, on class mean size of particles, and 3D 

liberation distributions for Penouta ore (open pit). 
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internal structure of rocks (Miller and Lin, 2004). However, more than a hundred specimens may 

need to be scanned to representatively characterize an ore (Evans et al., 2012) which is costly and 

has rarely been performed. Moreover, current tomography techniques are limited in their ability 

to identify and discriminate between different mineral phases, noting however that CT techniques 

are constantly being improved (Hilden and Powell, 2017). 

 

 
Figure 5.12. 2D liberation distributions based on liberation distribution and, on class mean size of particles, and 3D 

liberation distributions for Penouta tailings. 

 

 
Figure 5.13. 2D liberation distributions based on liberation distribution and, on class mean size of particles, and 3D 

liberation distributions for Mittersill. 
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An equivalent dataset for tantalum is presented in Figure 5-12 and it was shown that the 

2D measured and 3D simulated datasets are similar but there is an area between two curves that 

shows the higher error in the tailings sample. 

Figure 5-13 shows the results for tungsten ore. The 2D measured and 3D simulated 

datasets are alike and these indices ranged between zero and one and vanished to zero for particle 

systems without any stereological bias in the Mittersill ore and a similar trend of Penouta ore 

(open pit) is again witnessed between the 2D measured and 3D constructed datasets. 

The data presented in Figures 5-11, 5-12, and 5-13 suggest that, for the ores type and 

texture studied in this work, there is not a large difference between the 2D and 3D measurements 

and true liberation distributions. It needs to be noted that the textures displayed in these datasets 

are those of real ores. It may, therefore, be concluded that for of ore textures, the stereological 

bias may, in fact, be very small. In such cases, the use of an adjustment procedure will be extra 

and could even provide an incorrect result (Latti and Adair, 2001). 
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Chapter VI  
Conclusions 
 

This thesis sought to address the following hypothesis: 

Key mineralogical factors (mineral locking, liberation, and association) can be determined using 

a systematic application of mineralogical characterization tools, from which an effective gravity 

separation strategy for low-grade tantalum ores and intermediate scheelite ore can be developed 

and directed to the implementation of a procedure to solve the integral equation for mineral 

liberation modelling that relates to the linear grade distribution. 

 

To assess the above hypothesis, a framework of analysis was developed and the 

conclusions drawn from these investigations are presented below. The objectives as described in 

Chapter 1 and how they were achieved are discussed in the following sections. 

The ores studied in this work were all characterized using the standard procedures for 

chemical and mineralogical characterization. Chemical characterization was carried out on an 

unsized and size by-size basis for the ore feed, while the mineralogical characterization was based 

on standard mineralogical characterization techniques using different particle sizes for each 

technique. These included XRD, optical microscopy, SEM, EMPA, and automated quantitative 

mineralogy (MLA) to characterize the ore mineralogy from the ores. For the run of mine ore, 

Level 1 characterization was sufficient to fully identify the key mineralogical parameters and 

indicated that tantalum occurred mainly in the CGM minerals. 

Results from the separation test work and mineral liberation modelling were used in 

combination from the insights gained from chemical and mineralogical characterization to 

understand fully the behavior of the ores. Most of the tantalum was present as CGM minerals, 

and, in minor amounts in cassiterite. However, a minor amount of tantalum occurs in muscovite, 

which is a low density mineral and is released with the gangue during gravity separation, 

rendering this component of the tantalum non-recoverable. The distribution of tantalum among 

minerals together with the extremely fine-grained nature of the remaining tantalum minerals made 

it challenging to develop the final flow sheet for Penouta ore. 

The level 1 of characterization approach was developed specifically to identify minerals 

that were associated with the only W-bearing mineral, scheelite, in the Mittersill run of mine 

material and to create the MLA mineral reference library. This required detailed examination of 
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the samples using XRD, which in addition to hornblende, actinolite was identified and 

incorporated into the mineral reference library. In the MLA, actinolite was not reported; probably 

it was identified as a pyroxene phase, thus, its composition is similar than other pyroxenes, such 

as augite. 

The results of combining and applying the different techniques of mineralogical 

characterization allowed for the development of a systematic methodology to identify unknown 

tantalum minerals that may have been missing from conventional ore microscopic routines used 

for ore mineralogy. 

Once the ore characterization was done, the information regarding modal mineralogy, 

mineral association, mineral locking, textures, particle and grain size of the ores was established, 

it was possible to propose adequate strategies for ore treatment, through a gravity separation 

process at laboratory scale to obtain a rougher concentrate with the required characteristics. 

Typical separation strategies are in use to recover tantalum and scheelite. The selective separation 

that aims to selectively valuable minerals and to then concentrate intermediate and low-grade 

metals. This technique was successfully used, where suitable in this research to produce rougher 

concentrates. The challenges in the development of the gravity separation flow sheets were 

adequate preparation of the shaking table feed and selection of the appropriate flow rate scheme 

to produce a rougher concentrate that met the required characteristics. For the Penouta and 

Mittersill ores, the focus was on selective concentrate because of the occurrence of valuable 

minerals in the ores as discrete minerals and the absence of other sulphides minerals.  

This work has shown that it is possible to use gravity separation as a separation technique 

for low-grade complex tantalum and scheelite ores, by selecting appropriate feed preparation and 

shaking table set up addition strategies which are based on understanding the key mineralogical 

attributes of the ore. 

In the present work, the beta distribution function model and King’s solution to the solve 

equation were tested. The test ores for the experimental validation has been done. The main 

conclusion was that the geometrical texture parameter cannot be measured in one absolute size 

class. A more detailed understanding of this textural parameter is required, and further studies 

must be carried out in this direction. 

The Penouta ore is very favorable for liberation studies, with respect to composition and 

texture, to which the symmetric physical separation responded very well. The sampling strategy 

was successful and the results in general are excellent. The simulation opens up the possibility 

for significant improvement in the existing flowsheet with respect to physical separation recovery 

and grinding efficiency. 

A reliable procedure was developed for mineral liberation data obtained by MLA and 

image analysis. This was an essential requirement to the main task because it would have been 

impossible to measure, by classical separation fractionation methods, the liberation of minerals 
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in the many samples that were necessary. The calculation procedure was confirmed by 

experimental liberation data that was generated in the laboratory and by data obtained from beta 

distribution function calculation. 

It is suggested that the methodologies developed in this work can be applied to other 

complex tantalum and scheelite deposits to validate the usefulness of the approach. One of the 

areas of further work recommended for the methodology is the refinement of the MLA 

measurement settings to target finely grained tantalum and scheelite minerals. This would involve 

to prepare a complete data base with the list of minerals and their chemistry.  

An investigation into the effects of the minerals associated with tantalum ores, such as 

muscovite, in low-grade tantalum ores, to determine the limits of the processing efficiency, is also 

recommended.  

Other processing routes, such as magnetic separation, could be investigated for these ores 

in order to determine what the most suitable method for processing these ores is.  

In terms of water in the physical separation, it is suggested that the ores should be treated 

by shaking table using the water from the recirculate in the plant.  

The contribution of this liberation study to the understanding of the liberation problem, 

including measurement and prediction, is significant, when considering the state of the art when 

this study started. It could have a significant impact in mineral processing technology in the 

future. 

In view of the importance of liberation effects in the efficient concentration of the ores, 

it is recommended that future effort be directed towards the measurement of specific MLA 

analysis in different stages of processing in the flowsheet for these ore types. 
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Table A.1. Grade distribution by particle size and liberation (differential mass) for Penouta ore (open pit). 

Mass (wt.%) Grade class (%) 
 Size Class (µm) 100 99-90 89-80 79-70 69-60 59-50 49-40 39-30 29-20 19-10 10->0 

< 20 0.1793 0.00395 0.0026 0.0026 0.001569 0.00154 0.000854 0.001449 0.001194 0.00166 0.002843 
20-40 1.51568 0.11027 0.06429 0.0452 0.026847 0.02338 0.023612 0.019143 0.017269 0.03222 0.08121 
40-60 4.36475 0.96633 0.43142 0.237 0.132162 0.12032 0.09315 0.090356 0.108815 0.13873 0.403129 
60-80 5.58289 3.08389 1.09023 0.5726 0.312958 0.20372 0.149959 0.108298 0.177636 0.21797 1.089973 

80-100 4.33882 4.22444 1.31766 0.6871 0.348184 0.21747 0.162986 0.172883 0.191746 0.21496 1.461715 
100-120 2.40129 4.00552 0.97565 0.4648 0.356059 0.14939 0.240401 0.244365 0.212118 0.35988 1.886739 
120-140 0.89916 4.12663 1.22521 0.6198 0.377292 0.3619 0.127567 0.234835 0.358329 0.42707 2.835737 
140-160 0.69008 4.0741 1.59544 0.6926 0.224957 0.19705 0.206885 0.347559 0.505892 0.27565 3.126782 
160-180 0.47592 4.23216 1.72874 0.9592 0.382025 0.13769 0.22657 0.187831 0.030576 0.48431 4.1941 
180-200 0.26591 2.65744 0.78191 0.5716 0.198712 0.16141 0.293965 0.083812 0 0.44943 3.577796 
200-220 0 1.24492 0 0.1767 0.114114 0.15293 0.133941 0.115532 0 0 2.743742 
220-240 0 0.15553 0.13038 0 0 0 0 0.078343 0 0.15331 0.908928 
240-260 0 0 0 0 0 0 0 0 0 0 0 

 
 
 

Table A.2. Grade distribution by particle size and liberation (differential mass) for Penouta tailings. 

Mass (wt.%) Grade class (%) 
 Size Class (µm) 100 99-90 89-80 79-70 69-60 59-50 49-40 39-30 29-20 19-10 10->0 

< 20 0.06405 0.00257 0.00075 0.00111 0.00106 0.00039 0.00100 0.00124 0.00047 0.00083 0.00257 
20-40 0.27614 0.02023 0.02119 0.01062 0.00941 0.00000 0.00966 0.00448 0.00307 0.00251 0.00735 
40-60 0.98004 0.23365 0.14734 0.06970 0.05182 0.01145 0.01563 0.00580 0.01393 0.01130 0.12042 
60-80 1.86253 1.41327 0.23805 0.05364 0.02175 0.03637 0.00000 0.00000 0.00000 0.00000 0.46140 

80-100 2.82729 3.75560 0.81347 0.26337 0.14861 0.05485 0.10414 0.06938 0.00000 0.00000 1.31651 
100-120 3.49702 5.87398 0.98476 0.00000 0.00000 0.00000 0.00000 0.11794 0.00000 0.07986 1.33886 
120-140 2.85529 4.93637 0.86847 0.50514 0.14299 0.12442 0.00000 0.00000 0.00000 0.08337 2.42956 
140-160 0.95518 6.55419 0.91914 0.30964 0.45036 0.16708 0.28942 0.22223 0.00000 0.31420 5.67467 
160-180 0.00000 4.53500 0.83327 0.32551 0.33849 0.00000 0.22634 0.27129 0.00000 0.19784 3.75474 
180-200 0.00000 2.75018 0.67210 0.00000 0.00000 0.00000 1.04192 0.28386 0.00000 0.73192 3.37991 
200-220 0.00000 1.93551 0.81136 0.00000 0.65761 0.47590 0.42550 0.00000 0.43811 0.00000 6.35983 
220-240 0.00000 0.00000 0.00000 0.87913 0.00000 0.00000 0.00000 0.00000 0.58774 0.00000 0.00000 
240-260 0.00000 1.40859 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 3.02776 
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Table A.3. Grade distribution by particle size and liberation (differential mass) for Mittersill ore. 

Mass (wt.%) Grade class (%) 
 Size Class (µm) 100 99-90 89-80 79-70 69-60 59-50 49-40 39-30 29-20 19-10 10->0 

< 20 0.25230 0.01324 0.00291 0.00129 0.00078 0.00110 0.00164 0.00119 0.00131 0.00178 0.00283 
20-40 2.06631 0.17606 0.04780 0.05102 0.03572 0.04312 0.03425 0.02623 0.03974 0.02824 0.13116 
40-60 3.64043 0.68406 0.17836 0.11645 0.08060 0.07228 0.07814 0.02509 0.06097 0.10948 0.21648 
60-80 4.71506 1.24819 0.24502 0.04658 0.06721 0.02004 0.03267 0.03317 0.05204 0.08078 0.34765 

80-100 5.31945 2.44746 0.20515 0.15824 0.08022 0.02072 0.01942 0.05358 0.07081 0.03895 0.71463 
100-120 5.15052 3.68636 0.09848 0.03688 0.11597 0.00000 0.00000 0.02899 0.00000 0.02519 0.65307 
120-140 5.64925 3.66308 0.20256 0.37134 0.00000 0.08786 0.00000 0.17213 0.00000 0.00000 1.24475 
140-160 4.89057 3.16260 0.00000 0.12141 0.10757 0.12630 0.09006 0.00000 0.07081 0.00000 1.94500 
160-180 3.42261 6.31990 0.33896 0.00000 0.15302 0.00000 0.00000 0.00000 0.12889 0.00000 2.32433 
180-200 2.01419 5.37223 0.30136 0.00000 0.00000 0.20797 0.00000 0.00000 0.00000 0.14270 1.59444 
200-220 2.13394 3.11985 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.50337 
220-240 3.80202 1.05969 0.47473 0.00000 0.00000 0.00000 0.00000 1.63392 0.00000 0.26549 1.18753 
240-260 1.45549 2.17102 0.00000 0.00000 0.00000 0.48482 0.00000 0.00000 0.39127 0.00000 2.05611 
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Table B.1. Beta distribution function parameters for Penouta ore (open pit). 

Size Class 
(µm) 0-20 20-40 40-60 60-80 80-100 100-120 120-140 140-160 160-180 180-200 200-220 220-240 

Parameter 
n 591 1355 1880 1788 1102 604 426 299 228 113 48 13 

L0 0.893 0.907 0.868 0.816 0.778 0.756 0.737 0.726 0.689 0.711 0.731 0.828 

L1 0.096 0.071 0.081 0.081 0.071 0.051 0.020 0.016 0.011 0.008 0.000 0.000 

g 0.102 0.083 0.113 0.151 0.175 0.171 0.160 0.162 0.173 0.139 0.088 0.038 

gM 0.563 0.556 0.632 0.680 0.687 0.624 0.577 0.568 0.540 0.466 0.326 0.219 

αM 1.400 1.200 0.850 0.810 0.700 0.600 0.400 0.312 0.253 0.217 0.149 0.232 

βM 1.076 0.880 0.750 0.670 0.580 0.460 0.400 0.320 0.242 0.272 0.332 0.210 

 
 
 

 
Table B.2. Beta distribution function parameters for Penouta tailings. 

Size Class 
(µm) 0-20 20-40 40-60 60-80 80-100 100-120 120-140 140-160 160-180 180-200 200-220 220-240 

Parameter 
n 48 42 65 67 97 73 53 58 30 20 19 4 

L0 0.934 0.920 0.854 0.845 0.846 0.893 0.926 0.922 0.952 0.959 0.941 0.992 

L1 0.056 0.061 0.086 0.071 0.047 0.031 0.018 0.005 0.000 0.000 0.000 0.000 

g 0.061 0.074 0.127 0.133 0.124 0.091 0.056 0.045 0.027 0.019 0.019 0.004 

gM 0.516 0.676 0.675 0.741 0.724 0.787 0.670 0.543 0.563 0.453 0.315 0.542 

αM 7.546 5.700 5.500 5.375 5.500 3.600 2.900 3.000 1.600 1.000 0.700 0.500 

βM 4.500 4.200 3.700 4.400 3.600 4.000 2.500 2.300 2.000 1.000 0.400 0.600 
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Table B.3. Beta distribution function parameters for Mittersill ore. 

Size Class 
(µm) 0-20 20-40 40-60 60-80 80-100 100-120 120-140 140-160 160-180 180-200 200-220 220-240 

Parameter 
n 217 605 356 180 137 94 67 51 50 32 18 10 

L0 0.938 0.942 0.936 0.930 0.914 0.915 0.915 0.928 0.910 0.911 0.918 0.894 

L1 0.056 0.044 0.045 0.048 0.051 0.046 0.046 0.035 0.029 0.024 0.029 0.065 

g 0.060 0.052 0.057 0.064 0.076 0.076 0.073 0.056 0.072 0.070 0.061 0.081 

gM 0.686 0.564 0.648 0.717 0.707 0.775 0.688 0.568 0.694 0.700 0.612 0.388 

αM 0.82 0.75 0.60 0.57 0.56 0.44 0.34 0.30 0.20 0.21 0.19 0.27 

βM 0.55 0.65 0.55 0.47 0.40 0.34 0.27 0.20 0.18 0.25 0.18 0.12 
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Table C.1. Mineral grain size distribution of columbite from Penouta ore (open pit). 

Sieve Size P1-P2 - Retained 
Wt% 

P1-P2 - Cum. Retained 
Wt% 

P1-P2 - Cum. Passing 
Wt% 

300 0.00 0.00 100.00 
250 0.60 0.60 99.40 
212 0.37 0.96 99.04 
180 1.13 2.09 97.91 
150 3.85 5.94 94.06 
125 6.79 12.74 87.26 
106 11.35 24.09 75.91 
90 12.27 36.36 63.64 
75 16.33 52.69 47.31 
63 14.81 67.49 32.51 
53 11.78 79.27 20.73 
45 7.49 86.76 13.24 
38 5.04 91.79 8.21 
32 3.25 95.05 4.95 
27 1.90 96.95 3.05 
22 1.24 98.19 1.81 
19 0.58 98.76 1.24 
16 0.46 99.22 0.78 
13.5 0.31 99.53 0.47 
11.4 0.20 99.73 0.27 
9.6 0.13 99.86 0.14 
8.1 0.07 99.93 0.07 
6.8 0.03 99.96 0.04 
5.7 0.02 99.98 0.02 
4.8 0.01 99.99 0.01 
4.1 0.01 99.99 0.01 
3.4 0.00 99.99 0.01 
2.9 0.00 100.00 0.00 
2.4 0.00 100.00 0.00 
2 0.00 100.00 0.00 
1.75 0.00 100.00 0.00 
1.45 0.00 100.00 0.00 
1.2 0.00 100.00 0.00 
0.52 0.00 0.00 0.00 
0 0.00 0.00 0.00 
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Table C.2. Mineral grain size distribution of tantalite from Penouta ore (open pit). 

Sieve Size P1-P2 - Retained 
Wt% 

P1-P2 - Cum. Retained 
Wt% 

P1-P2 - Cum. Passing 
Wt% 

212 0.00 0.00 100.00 
180 0.36 0.36 99.64 
150 3.17 3.52 96.48 
125 5.64 9.17 90.83 
106 7.49 16.66 83.34 
90 8.25 24.92 75.08 
75 14.16 39.08 60.92 
63 13.59 52.67 47.33 
53 13.06 65.73 34.27 
45 9.33 75.06 24.94 
38 7.62 82.68 17.32 
32 5.24 87.92 12.08 
27 3.65 91.57 8.43 
22 2.89 94.46 5.54 
19 1.46 95.92 4.08 
16 1.28 97.20 2.80 
13.5 0.97 98.17 1.83 
11.4 0.71 98.88 1.12 
9.6 0.36 99.24 0.76 
8.1 0.26 99.50 0.50 
6.8 0.16 99.66 0.34 
5.7 0.13 99.79 0.21 
4.8 0.07 99.86 0.14 
4.1 0.08 99.94 0.06 
3.4 0.03 99.97 0.03 
2.9 0.03 100.00 0.00 
2.4 0.00 100.00 0.00 
2 0.00 100.00 0.00 
1.75 0.00 100.00 0.00 
1.45 0.00 100.00 0.00 
1.2 0.00 100.00 0.00 
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Table C.3. Mineral grain size distribution of microlite from Penouta ore (open pit). 

Sieve Size P1-P2 - Retained 
Wt% 

P1-P2 - Cum. Retained 
Wt% 

P1-P2 - Cum. Passing 
Wt% 

180 0.00 0.00 100.00 
150 6.54 6.54 93.46 
125 0.00 6.54 93.46 
106 2.93 9.47 90.53 
90 0.00 9.47 90.53 
75 4.73 14.19 85.81 
63 6.62 20.81 79.19 
53 7.09 27.90 72.10 
45 6.18 34.07 65.93 
38 4.92 38.99 61.01 
32 8.74 47.74 52.26 
27 7.21 54.94 45.06 
22 7.43 62.37 37.63 
19 5.22 67.59 32.41 
16 6.26 73.86 26.14 
13.5 5.79 79.65 20.35 
11.4 4.11 83.76 16.24 
9.6 2.74 86.49 13.51 
8.1 3.32 89.82 10.18 
6.8 2.78 92.59 7.41 
5.7 1.96 94.56 5.44 
4.8 1.67 96.23 3.77 
4.1 2.01 98.24 1.76 
3.4 0.77 99.01 0.99 
2.9 0.97 99.98 0.02 
2.4 0.00 99.98 0.02 
2 0.02 99.99 0.01 
1.75 0.00 99.99 0.01 
1.45 0.01 100.00 0.00 
1.2 0.00 100.00 0.00 
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Table C.4 Mineral grain size distribution of cassiterite from Penouta ore (open pit). 

Sieve Size P1-P2 - 
Retained Wt% 

P1-P2 - Cum. 
Retained Wt% 

P1-P2 - Cum. Passing 
Wt% 

355 0.00 0.00 100.00 
300 0.13 0.13 99.87 
250 0.26 0.38 99.62 
212 2.40 2.79 97.21 
180 6.93 9.72 90.28 
150 11.50 21.21 78.79 
125 10.22 31.44 68.56 
106 8.07 39.51 60.49 
90 8.20 47.70 52.30 
75 10.55 58.25 41.75 
63 10.03 68.28 31.72 
53 8.47 76.76 23.24 
45 6.65 83.40 16.60 
38 5.19 88.59 11.41 
32 3.90 92.49 7.51 
27 2.59 95.08 4.92 
22 2.02 97.10 2.90 
19 0.89 97.99 2.01 
16 0.75 98.74 1.26 
13.5 0.54 99.28 0.72 
11.4 0.36 99.64 0.36 
9.6 0.15 99.79 0.21 
8.1 0.09 99.88 0.12 
6.8 0.05 99.93 0.07 
5.7 0.03 99.96 0.04 
4.8 0.02 99.98 0.02 
4.1 0.01 99.99 0.01 
3.4 0.00 99.99 0.01 
2.9 0.00 100.00 0.00 
2.4 0.00 100.00 0.00 
2 0.00 100.00 0.00 
1.75 0.00 100.00 0.00 
1.45 0.00 100.00 0.00 
1.2 0.00 100.00 0.00 
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Table C.5. Mineral grain size distribution of columbite from Penouta tailings. 

Sieve Size P3 - Retained 
Wt% 

P3 - Cum. Retained 
Wt% 

P3 - Cum. Passing 
Wt% 

300 0.00 0.00 0.00 
250 0.00 0.00 100.00 
212 2.93 2.93 97.07 
180 0.00 2.93 97.07 
150 8.02 10.94 89.06 
125 11.19 22.14 77.86 
106 12.66 34.80 65.20 
90 17.83 52.63 47.37 
75 19.34 71.97 28.03 
63 10.42 82.39 17.61 
53 6.81 89.20 10.80 
45 4.08 93.29 6.71 
38 1.49 94.78 5.22 
32 1.78 96.56 3.44 
27 1.01 97.56 2.44 
22 0.87 98.43 1.57 
19 0.40 98.83 1.17 
16 0.44 99.27 0.73 
13.5 0.30 99.57 0.43 
11.4 0.16 99.74 0.26 
9.6 0.11 99.85 0.15 
8.1 0.06 99.91 0.09 
6.8 0.04 99.95 0.05 
5.7 0.03 99.98 0.02 
4.8 0.01 99.99 0.01 
4.1 0.01 100.00 0.00 
3.4 0.00 100.00 0.00 
2.9 0.00 100.00 0.00 
2.4 0.00 100.00 0.00 
2 0.00 100.00 0.00 
1.75 0.00 100.00 0.00 
1.45 0.00 100.00 0.00 
1.2 0.00 100.00 0.00 
0.52 0.00 0.00 0.00 
0 0.00 0.00 0.00 
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Table C.6. Mineral grain size distribution of tantalite from Penouta tailings. 

Sieve Size P3 - Retained 
Wt% 

P3 - Cum. Retained 
Wt% 

P3 - Cum. Passing 
Wt% 

212 0.00 0.00 100.00 
180 1.45 1.45 98.55 
150 4.61 6.06 93.94 
125 11.66 17.72 82.28 
106 10.81 28.53 71.47 
90 12.29 40.82 59.18 
75 17.59 58.41 41.59 
63 12.00 70.41 29.59 
53 7.64 78.05 21.95 
45 5.14 83.19 16.81 
38 4.05 87.24 12.76 
32 3.36 90.60 9.40 
27 1.99 92.59 7.41 
22 1.97 94.56 5.44 
19 1.09 95.66 4.34 
16 1.30 96.95 3.05 
13.5 0.95 97.90 2.10 
11.4 0.59 98.49 1.51 
9.6 0.42 98.91 1.09 
8.1 0.33 99.24 0.76 
6.8 0.20 99.44 0.56 
5.7 0.20 99.64 0.36 
4.8 0.11 99.76 0.24 
4.1 0.13 99.89 0.11 
3.4 0.05 99.94 0.06 
2.9 0.06 100.00 0.00 
2.4 0.00 100.00 0.00 
2 0.00 100.00 0.00 
1.75 0.00 100.00 0.00 
1.45 0.00 100.00 0.00 
1.2 0.00 100.00 0.00 
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Table C.7. Mineral grain size distribution of microlite from Penouta tailings. 

Sieve Size P3 - Retained 
Wt% 

P3 - Cum. Retained 
Wt% 

P3 - Cum. Passing 
Wt% 

180 0.00 0.00 0.00 
150 0.00 0.00 100.00 
125 13.79 13.79 86.21 
106 0.00 13.79 86.21 
90 20.08 33.87 66.13 
75 15.05 48.92 51.08 
63 15.82 64.74 35.26 
53 2.80 67.53 32.47 
45 3.90 71.44 28.56 
38 1.16 72.60 27.40 
32 3.10 75.70 24.30 
27 3.78 79.48 20.52 
22 4.36 83.85 16.15 
19 2.71 86.56 13.44 
16 2.17 88.73 11.27 
13.5 2.20 90.93 9.07 
11.4 2.48 93.41 6.59 
9.6 1.06 94.47 5.53 
8.1 1.53 96.00 4.00 
6.8 1.00 97.00 3.00 
5.7 1.07 98.07 1.93 
4.8 0.43 98.50 1.50 
4.1 0.79 99.29 0.71 
3.4 0.37 99.65 0.35 
2.9 0.34 100.00 0.00 
2.4 0.00 100.00 0.00 
2 0.00 100.00 0.00 
1.75 0.00 100.00 0.00 
1.45 0.00 0.00 0.00 
1.2 0.00 0.00 0.00 
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Table C.8. Mineral grain size distribution of cassiterite from Penouta tailings. 

Sieve Size P3 - Retained 
Wt% 

P3 - Cum. Retained 
Wt% 

P3 - Cum. Passing 
Wt% 

355 0.00 0.00 100.00 
300 1.67 1.67 98.33 
250 3.10 4.77 95.23 
212 6.06 10.83 89.17 
180 9.44 20.27 79.73 
150 9.95 30.23 69.77 
125 12.71 42.94 57.06 
106 11.95 54.89 45.11 
90 10.59 65.48 34.52 
75 11.00 76.47 23.53 
63 6.81 83.28 16.72 
53 5.33 88.62 11.38 
45 2.86 91.48 8.52 
38 2.25 93.73 6.27 
32 1.76 95.48 4.52 
27 1.14 96.62 3.38 
22 1.05 97.67 2.33 
19 0.64 98.31 1.69 
16 0.52 98.83 1.17 
13.5 0.46 99.28 0.72 
11.4 0.31 99.59 0.41 
9.6 0.15 99.74 0.26 
8.1 0.10 99.84 0.16 
6.8 0.05 99.89 0.11 
5.7 0.05 99.94 0.06 
4.8 0.03 99.97 0.03 
4.1 0.02 99.98 0.02 
3.4 0.01 99.99 0.01 
2.9 0.01 100.00 0.00 
2.4 0.00 100.00 0.00 
2 0.00 100.00 0.00 
1.75 0.00 100.00 0.00 
1.45 0.00 100.00 0.00 
1.2 0.00 100.00 0.00 
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Table C.9. Mineral grain size distribution of scheelite from Mittersill ore (concentrate). 

Sieve Size M1-M2 - Retained 
Wt% 

M1-M2 - Cum. Retained 
Wt% 

M1-M2 - Cum. Passing 
Wt% 

850 0.00 0.00 100.00 
710 8.85 8.85 91.15 
600 2.04 10.90 89.10 
500 4.06 14.96 85.04 
425 2.90 17.86 82.14 
355 2.82 20.68 79.32 
300 1.41 22.09 77.91 
250 2.99 25.08 74.92 
212 4.24 29.32 70.68 
180 5.36 34.67 65.33 
150 8.31 42.98 57.02 
125 9.32 52.30 47.70 
106 6.85 59.15 40.85 
90 7.20 66.35 33.65 
75 6.86 73.21 26.79 
63 5.68 78.89 21.11 
53 4.68 83.57 16.43 
45 3.89 87.46 12.54 
38 3.09 90.56 9.44 
32 2.74 93.30 6.70 
27 2.10 95.40 4.60 
22 1.87 97.27 2.73 
19 0.88 98.15 1.85 
16 0.73 98.89 1.11 
13.5 0.53 99.42 0.58 
11.4 0.31 99.72 0.28 
9.6 0.12 99.84 0.16 
8.1 0.07 99.91 0.09 
6.8 0.03 99.94 0.06 
5.7 0.03 99.97 0.03 
4.8 0.01 99.98 0.02 
4.1 0.01 99.99 0.01 
3.4 0.00 99.99 0.01 
2.9 0.00 100.00 0.00 
2.4 0.00 100.00 0.00 
2 0.00 100.00 0.00 
1.75 0.00 100.00 0.00 
1.45 0.00 100.00 0.00 
1.2 0.00 100.00 0.00 
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Table C.10. Mineral grain size distribution of scheelite from Mittersill ore (tailings). 

Sieve Size W1-W2- Retained 
Wt% 

W1-W2 -Cum. Retained 
Wt% 

W1-W2-Cum. Passing 
Wt% 

1000 0.00 0.00 100.00 
850 51.21 51.21 48.79 
710 0.00 51.21 48.79 
600 29.55 80.76 19.24 
500 0.00 80.76 19.24 
425 0.00 80.76 19.24 
355 0.00 80.76 19.24 
300 0.00 80.76 19.24 
250 9.31 90.07 9.93 
212 0.00 90.07 9.93 
180 2.82 92.89 7.11 
150 2.23 95.12 4.88 
125 3.95 99.07 0.93 
106 0.00 99.07 0.93 
90 0.59 99.66 0.34 
75 0.00 99.66 0.34 
63 0.00 99.66 0.34 
53 0.00 99.66 0.34 
45 0.00 99.66 0.34 
38 0.14 99.80 0.20 
32 0.00 99.80 0.20 
27 0.00 99.80 0.20 
22 0.05 99.84 0.16 
19 0.00 99.84 0.16 
16 0.04 99.89 0.11 
13.5 0.04 99.93 0.07 
11.4 0.01 99.94 0.06 
9.6 0.03 99.97 0.03 
8.1 0.01 99.98 0.02 
6.8 0.01 99.99 0.01 
5.7 0.01 99.99 0.01 
4.8 0.00 100.00 0.00 
4.1 0.00 100.00 0.00 
3.4 0.00 100.00 0.00 
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Table D.1. Modal mineralogy of minerals from Penouta ore (open pit). 

Mineral P1-P2 - Wt% P1-P2 - Area% P1-P2 - Area (µm) P1-P2 - Particle Count P1-P2 - Grain Count 
Unknown 0.00 0.97 1505065.05 3981 4774 
Columbite 6.53 6.43 9971280.11 3972 4441 
Tantalite 20.09 19.76 30654437.08 19729 28804 
Microlite 0.25 0.21 328237.98 1485 2501 
Cassiterite 53.61 41.27 64027634.38 30444 32534 
Scheelite 0.08 0.07 105852.88 41 45 
Quartz 1.98 4.01 6221986.32 5426 6597 
Albite 2.56 5.18 8036720.33 6733 7810 
Plagioclase 0.05 0.09 138804.24 412 454 
K-Feldspar 0.87 1.81 2816021.49 2355 2846 
Clinopyroxene 0.00 0.00 1199.09 5 5 
Almandine 0.50 0.63 976590.27 840 1059 
Spessartine 5.13 6.52 10116091.05 3831 4607 
Vesuvianite 0.00 0.00 7347.52 32 33 
Rhodonite 0.01 0.01 20128.07 4 4 
Epidote 0.01 0.01 22672.48 8 17 
Zoisite 0.02 0.03 44575.56 51 54 
Hornblende 0.03 0.05 78561.77 51 52 
Staurolite 0.15 0.22 334759.86 1118 1306 
Biotite 0.05 0.09 132428.59 425 494 
Muscovite 1.66 3.12 4836162.11 5339 7977 
Chlorite 0.03 0.05 72341.35 466 641 
Kaolinite 1.52 3.10 4805417.71 9101 12533 
Titanite 0.00 0.00 4940.34 7 10 
Rutile 0.01 0.01 16618.53 22 23 
Fe_oxide_or_hydroxide 2.40 2.48 3845167.01 3331 5184 
Ilmenite 0.02 0.03 40897.30 15 15 
Mn-Al_oxide_or_hydroxide 0.01 0.02 25441.86 52 84 
Mn-Fe_oxide_or_hydroxide 0.02 0.02 31621.78 60 83 
Fe-Al_oxide_or_hydroxide 0.17 0.23 362784.37 1293 2489 
Fe-Zn_oxide_or_hydroxide 0.00 0.00 2209.21 23 25 
Apatite 0.02 0.03 41614.95 20 20 
Cryptomelane 0.04 0.04 67704.72 56 72 
Zircon 1.30 1.48 2299899.82 1366 1473 
Monazite_LREE-rich 0.05 0.05 74001.63 56 59 
Monazite_MREE-rich 0.16 0.16 256000.11 282 325 
Xenotime 0.12 0.14 212124.21 275 324 
Crandallite-Sr 0.05 0.07 101137.51 312 340 
Rhabdophane-Th 0.01 0.02 30350.70 66 96 
Pyrite_or_pyrrhotite 0.24 0.25 394482.65 308 324 
Chalcopyrite 0.01 0.01 11563.46 27 28 
Arsenopyrite 0.01 0.01 19329.42 12 13 
Sphalerite with mediumFe 0.01 0.01 11109.02 16 16 
Native Bi 0.01 0.04 61439.31 39 39 
Iron 0.03 0.17 264031.54 205 439 
Total 100.00 100.00 155154448.67 70194 136042 
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Table D.2. Modal mineralogy of minerals from Penouta tailings. 

Mineral P3 - Wt% P3 - Area% P3 - Area (µm) P3 - Particle Count P3 - Grain Count 
Unknown 0.00 0.60 1117443.99 2468 3853 
Columbite 1.35 0.81 1517575.64 404 522 
Tantalite 2.01 1.21 2259155.50 1055 2159 
Microlite 0.11 0.06 107618.90 199 345 
Cassiterite 10.15 4.76 8911491.43 2943 3463 
Scheelite 0.80 0.43 806670.43 155 202 
Quartz 42.12 51.93 97181179.96 7628 8458 
Albite 2.43 3.00 5611365.99 1322 1548 
Plagioclase 0.17 0.20 380876.46 163 177 
K-Feldspar 2.41 3.05 5698409.14 940 1279 
Almandine 0.66 0.51 946891.99 1160 1792 
Spessartine 4.35 3.37 6302710.05 804 1683 
Vesuvianite 0.10 0.10 182470.92 19 22 
Rhodonite 0.09 0.08 153065.09 63 173 
Epidote 0.04 0.03 61488.80 38 79 
Zoisite 0.03 0.03 48953.47 56 83 
Hornblende 0.01 0.01 16758.02 128 154 
Staurolite 0.66 0.57 1069689.61 788 1084 
Biotite 1.51 1.57 2947064.27 1031 2030 
Muscovite 7.45 8.53 15970845.34 1851 3024 
Chlorite 0.59 0.65 1213089.99 750 1504 
Kaolinite 1.93 2.40 4484853.46 1196 2026 
Titanite 0.02 0.01 28056.01 8 9 
Rutile 0.29 0.22 406977.48 158 244 
Fe_oxide_or_hydroxide 8.23 5.18 9684945.04 7790 13575 
Ilmenite 0.46 0.31 584058.12 159 245 
Mn-Al_oxide_or_hydroxide 1.17 0.95 1774003.19 237 733 
Mn-Fe_oxide_or_hydroxide 0.63 0.41 772504.24 368 1180 
Fe-Al_oxide_or_hydroxide 1.13 0.93 1736995.63 1927 3575 
Fe-Zn_oxide_or_hydroxide 0.15 0.09 177355.10 123 209 
Apatite 0.26 0.26 487114.04 56 68 
Cryptomelane 5.14 3.78 7069036.62 561 1657 
Dolomite 0.01 0.01 17666.89 6 6 
Fluorite 0.03 0.03 64514.65 4 5 
Barite 0.01 0.00 9014.55 16 26 
Zn_sulphate 0.16 0.12 228094.83 20 80 
Zircon 0.64 0.45 835795.05 295 312 
Monazite_LREE-rich 0.25 0.16 291849.08 118 149 
Monazite_MREE-rich 0.13 0.08 151094.35 116 192 
Xenotime 0.15 0.10 192713.80 71 97 
Crandallite-Sr 0.06 0.05 84494.23 96 137 
Rhabdophane-Th 0.00 0.00 110.24 4 5 
Pyrite_or_pyrrhotite 0.66 0.42 794105.86 144 183 
Chalcopyrite 0.02 0.01 24949.17 63 231 
Arsenopyrite 0.71 0.38 711271.90 103 136 
Sphalerite with mediumFe 0.10 0.08 158480.12 21 43 
Bismuthinite 0.03 0.01 24701.71 15 18 
Iron 0.41 1.32 2463509.25 852 1253 
Total 100.00 100.00 187129340.43 21696 62547 
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Table D.3. Modal mineralogy of minerals from Mittersill ore (concentrate). 

Mineral M1-M2 - Wt% M1-M2 - Area% M1-M2 - Area (µm) M1-M2 - Particle Count M1-M2 - Grain Count 
Unknown 0.00 0.25 430961.53 1122 1544 
Columbite 0.00 0.00 0.00 0 0 
Tantalite 0.00 0.00 4843.60 29 32 
Microlite 0.00 0.00 616.42 10 12 
Cassiterite 0.00 0.00 1658.03 11 11 
Scheelite 17.82 10.20 17294737.55 6644 6921 
Quartz 7.50 9.82 16651584.32 1661 2922 
Albite 4.72 6.20 10511275.61 766 1093 
Plagioclase 3.67 4.69 7961429.62 1229 2056 
K-Feldspar 0.49 0.65 1108575.68 422 1253 
Clinopyroxene 2.91 2.94 4984835.79 864 910 
Almandine 0.05 0.04 64024.21 110 129 
Spessartine 0.00 0.00 6062.94 3 3 
Vesuvianite 0.22 0.22 379695.37 443 530 
Rhodonite 0.00 0.00 0.00 0 0 
Epidote 0.04 0.04 64595.64 112 146 
Zoisite 14.84 15.46 26217065.79 16677 19190 
Hornblende 20.18 23.93 40588387.92 18932 22178 
Staurolite 0.07 0.07 112170.04 380 523 
Biotite 1.80 1.99 3379317.13 819 1333 
Muscovite 0.28 0.34 584809.52 219 339 
Chlorite 0.41 0.48 810899.87 552 945 
Kaolinite 0.00 0.01 9232.77 54 57 
Titanite 2.64 2.61 4424424.27 7619 10950 
Rutile 0.06 0.05 82161.29 88 100 
Fe_oxide_or_hydroxide 0.17 0.11 191584.45 636 814 
Ilmenite 0.04 0.03 51119.93 61 66 
Gahnite 0.00 0.00 233.97 3 3 
Mn-Al_oxide_or_hydroxide 0.00 0.00 89.99 1 1 
Mn-Fe_oxide_or_hydroxide 0.00 0.00 461.19 5 5 
Fe-Al_oxide_or_hydroxide 0.02 0.01 23410.38 99 118 
Fe-Zn_oxide_or_hydroxide 0.01 0.00 6859.34 37 42 
Apatite 0.60 0.64 1090839.04 1046 1153 
Cryptomelane 0.00 0.00 0.00 0 0 
Calcite 0.65 0.82 1393653.16 216 274 
Dolomite 0.07 0.09 147573.57 25 25 
Fluorite 0.04 0.04 70487.60 54 220 
Zircon 0.02 0.01 21180.93 257 295 
Pyrite_or_pyrrhotite 18.20 12.49 21180507.15 9555 10235 
Chalcopyrite 0.63 0.52 880377.35 1271 1447 
Arsenopyrite 0.13 0.07 125090.07 56 58 
Sphalerite with mediumFe 0.01 0.01 18332.81 20 20 
Cobaltite-Ni 0.06 0.03 57124.38 33 33 
Pentlandite-Co 0.01 0.01 16130.35 43 53 
Molybdenite 0.06 0.04 64444.91 132 164 
Bismuthinite 0.28 0.12 202164.79 156 179 
Native Bi 0.01 0.04 72289.61 102 120 
Iron 0.01 0.05 85873.30 112 143 
Total 100.00 100.00 169582193.28 60267 91826 
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Table D.4. Modal mineralogy of minerals from Mittersill ore (tailings). 

Mineral Wt% Area% Area (µm) Particle Count Grain Count 
Albite 18.58 20.11 28067032.00 10642 11890 
Ankerite 0.26 0.24 340600.00 149 168 
Anorthite 5.60 5.80 8097356.00 7605 10125 
Apatite 0.23 0.21 289052.00 367 384 
Arsenopyrite 0.00 0.00 204.00 2 2 
Arsenopyrite (Co, Ni enriched) 0.00 0.00 164.00 1 1 
Augite 9.24 7.71 10761116.00 8827 10929 
Betafite 0.06 0.04 56160.00 700 718 
Biotite 5.09 4.65 6494876.00 4143 4833 
Bismuthinite 0.00 0.00 664.00 10 12 
Calcite 1.59 1.66 2322108.00 1047 1140 
Chalcopyrite 0.03 0.02 31896.00 65 70 
Cummingtonite (aph) 0.25 0.21 299900.00 400 551 
Epidote 0.40 0.33 455760.00 1526 1888 
Fluorite 0.03 0.03 40332.00 43 51 
Gypsum 0.00 0.00 164.00 2 2 
Hematite 0.05 0.03 37880.00 113 150 
Hornblende 33.87 33.13 46221988.00 36149 41105 
Ilmenite 0.00 0.00 4144.00 8 8 
Manganite 0.00 0.00 0.00 0 0 
Molybdenite 0.01 0.01 7172.00 16 19 
Muscovite 2.13 2.14 2988080.00 2145 3050 
Orthoclase 2.15 2.39 3331740.00 1685 2522 
Orthoclase_altered 0.08 0.09 131372.00 628 951 
Pentlandite 0.01 0.00 5440.00 65 70 
Pyrite 0.10 0.05 75840.00 79 83 
Pyrrhotite 0.77 0.47 659548.00 807 840 
Quartz 16.62 17.96 25058764.00 8191 9340 
Rutile 0.01 0.00 6060.00 23 30 
Scheelite 0.13 0.06 87516.00 90 94 
Serpentine 1.15 1.36 1897368.00 2245 3008 
Sphalerite with hiFe 0.00 0.00 488.00 4 4 
Titanite 1.51 1.23 1719980.00 4087 5615 
Zircon 0.01 0.00 6152.00 97 103 
Aluminum 0.00 0.00 1512.00 6 6 
Cement 0.01 0.01 18720.00 114 140 
Steel 0.01 0.00 4400.00 21 22 
Unknown 0.00 0.00 0.00 0 0 
Total 100.00 100.00 139533628.00 66248 109989 
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Table E.1. Mineral association of columbite from Penouta ore (open pit). 

Columbite Weight% locked in... P1-P2 - Binary Particle (%) P1-P2 - Ternary+ Particle (%) 
Unknown 0.00 0.00 
Low_Counts 0.00 0.00 
No_XRay 0.00 0.00 
Tantalite 59.31 12.34 
Microlite 0.00 0.13 
Cassiterite 0.72 0.41 
Scheelite 0.00 0.00 
Quartz 0.49 0.98 
Albite 0.28 1.44 
Plagioclase 0.07 0.00 
K-Feldspar 0.07 0.33 
Clinopyroxene 0.00 0.00 
Almandine 0.02 0.02 
Spessartine 0.10 0.03 
Vesuvianite 0.00 0.00 
Rhodonite 0.00 0.00 
Epidote 0.00 0.00 
Zoisite 0.00 0.00 
Hornblende 0.00 0.00 
Staurolite 0.10 0.11 
Biotite 0.01 0.05 
Muscovite 0.40 1.29 
Chlorite 0.00 0.01 
Kaolinite 0.27 0.65 
Titanite 0.00 0.00 
Rutile 0.00 0.00 
Fe_oxide_or_hydroxide 0.12 0.24 
Ilmenite 0.00 0.00 
Gahnite 0.00 0.00 
Mn-Al_oxide_or_hydroxide 0.00 0.00 
Mn-Fe_oxide_or_hydroxide 0.00 0.00 
Fe-Al_oxide_or_hydroxide 0.00 0.07 
Fe-Zn_oxide_or_hydroxide 0.00 0.01 
Apatite 0.00 0.00 
Cryptomelane 0.00 0.00 
Zn_sulphate 0.00 0.00 
Zircon 0.19 0.40 
Monazite_LREE-rich 0.00 0.00 
Monazite_MREE-rich 0.04 0.07 
Xenotime 0.00 0.00 
Crandallite-Sr 0.07 0.03 
Rhabdophane-Th 0.00 0.01 
Pyrite_or_pyrrhotite 0.09 0.04 
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 Table E.2. Mineral association of tantalite from Penouta ore (open pit). 

Tantalite Weight% locked in... P1-P2 - Binary Particle (%) P1-P2 - Ternary+ Particle (%) 
Unknown 0.00 0.00 
Low_Counts 0.00 0.00 
No_XRay 0.00 0.00 
Columbite 16.49 4.44 
Microlite 1.15 0.56 
Cassiterite 2.81 1.44 
Scheelite 0.00 0.00 
Quartz 4.81 1.68 
Albite 2.57 1.17 
Plagioclase 0.05 0.05 
K-Feldspar 1.32 0.73 
Clinopyroxene 0.00 0.00 
Almandine 0.03 0.03 
Spessartine 0.03 0.02 
Vesuvianite 0.00 0.00 
Rhodonite 0.00 0.00 
Epidote 0.00 0.00 
Zoisite 0.00 0.00 
Hornblende 0.00 0.00 
Staurolite 0.33 0.10 
Biotite 0.07 0.02 
Muscovite 3.75 1.21 
Chlorite 0.02 0.00 
Kaolinite 5.34 1.67 
Titanite 0.00 0.00 
Rutile 0.00 0.00 
Fe_oxide_or_hydroxide 0.18 0.31 
Ilmenite 0.00 0.00 
Gahnite 0.00 0.00 
Mn-Al_oxide_or_hydroxide 0.00 0.00 
Mn-Fe_oxide_or_hydroxide 0.02 0.00 
Fe-Al_oxide_or_hydroxide 0.05 0.03 
Fe-Zn_oxide_or_hydroxide 0.00 0.00 
Apatite 0.00 0.00 
Cryptomelane 0.00 0.00 
Calcite 0.00 0.00 
Dolomite 0.00 0.00 
Fluorite 0.00 0.00 
Barite 0.00 0.00 
Zn_sulphate 0.00 0.00 
Zircon 0.43 0.20 
Monazite_LREE-rich 0.00 0.01 
Monazite_MREE-rich 0.01 0.01 
Xenotime 0.13 0.03 
Crandallite-Sr 0.12 0.05 
Rhabdophane-Th 0.00 0.00 
Pyrite_or_pyrrhotite 0.01 0.00 
Chalcopyrite 0.00 0.00 
Covellite 0.00 0.00 
Arsenopyrite 0.00 0.00 
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Table E.3. Mineral association of microlite from Penouta ore (open pit). 

Microlite Weight% locked in... P1-P2 - Binary Particle (%) P1-P2 - Ternary+ Particle (%) 
Unknown 0.00 0.00 
Low_Counts 0.00 0.00 
No_XRay 0.00 0.00 
Columbite 0.00 4.11 
Tantalite 35.07 20.34 
Cassiterite 16.20 5.38 
Scheelite 0.00 0.00 
Quartz 0.33 1.78 
Albite 0.16 0.70 
Plagioclase 0.00 0.04 
K-Feldspar 0.18 0.47 
Clinopyroxene 0.00 0.00 
Almandine 0.00 0.07 
Spessartine 0.00 0.02 
Vesuvianite 0.01 0.00 
Rhodonite 0.00 0.00 
Epidote 0.00 0.00 
Zoisite 0.00 0.00 
Hornblende 0.00 0.00 
Staurolite 0.03 0.02 
Biotite 0.04 0.01 
Muscovite 0.01 0.65 
Chlorite 0.00 0.00 
Kaolinite 0.36 0.98 
Titanite 0.00 0.00 
Rutile 0.00 0.00 
Fe_oxide_or_hydroxide 0.01 0.09 
Ilmenite 0.00 0.00 
Gahnite 0.00 0.00 
Mn-Al_oxide_or_hydroxide 0.00 0.00 
Mn-Fe_oxide_or_hydroxide 0.00 0.00 
Fe-Al_oxide_or_hydroxide 0.00 0.01 
Fe-Zn_oxide_or_hydroxide 0.00 0.00 
Apatite 0.00 0.00 
Cryptomelane 0.00 0.00 
Calcite 0.00 0.00 
Dolomite 0.00 0.00 
Fluorite 0.00 0.00 
Barite 0.00 0.00 
Zn_sulphate 0.00 0.00 
Zircon 0.00 0.52 
Monazite_LREE-rich 0.00 0.00 
Monazite_MREE-rich 0.01 0.00 
Xenotime 0.00 0.00 
Crandallite-Sr 0.00 0.00 
Rhabdophane-Th 0.00 0.00 
Pyrite_or_pyrrhotite 0.00 0.00 
Chalcopyrite 0.00 0.00 
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Table E.4. Mineral association of cassiterite from Penouta ore (open pit). 

Cassiterite Weight% locked in... P1-P2 - Binary Particle (%) P1-P2 - Ternary+ Particle (%) 
Unknown 0.00 0.00 
Low_Counts 0.00 0.00 
No_XRay 0.00 0.00 
Columbite 0.17 0.06 
Tantalite 2.98 0.71 
Microlite 0.28 0.04 
Scheelite 0.00 0.00 
Quartz 2.52 0.38 
Albite 1.88 0.25 
Plagioclase 0.03 0.00 
K-Feldspar 1.66 0.27 
Clinopyroxene 0.00 0.00 
Almandine 0.08 0.01 
Spessartine 0.08 0.02 
Vesuvianite 0.01 0.00 
Rhodonite 0.00 0.00 
Epidote 0.00 0.00 
Zoisite 0.00 0.00 
Hornblende 0.00 0.00 
Staurolite 0.09 0.03 
Biotite 0.04 0.00 
Muscovite 4.52 0.49 
Chlorite 0.04 0.00 
Kaolinite 0.75 0.25 
Titanite 0.00 0.00 
Rutile 0.00 0.00 
Fe_oxide_or_hydroxide 0.39 0.29 
Ilmenite 0.00 0.00 
Gahnite 0.00 0.00 
Mn-Al_oxide_or_hydroxide 0.03 0.00 
Mn-Fe_oxide_or_hydroxide 0.00 0.00 
Fe-Al_oxide_or_hydroxide 0.04 0.04 
Fe-Zn_oxide_or_hydroxide 0.00 0.00 
Apatite 0.00 0.00 
Cryptomelane 0.00 0.00 
Calcite 0.00 0.00 
Dolomite 0.00 0.00 
Fluorite 0.00 0.00 
Barite 0.00 0.00 
Zn_sulphate 0.00 0.00 
Zircon 0.11 0.03 
Monazite_LREE-rich 0.00 0.00 
Monazite_MREE-rich 0.01 0.00 
Xenotime 0.03 0.00 
Crandallite-Sr 0.02 0.00 
Rhabdophane-Th 0.00 0.00 
Pyrite_or_pyrrhotite 0.01 0.00 
Chalcopyrite 0.00 0.00 
Covellite 0.00 0.00 
Arsenopyrite 0.00 0.00 
Sphalerite with mediumFe 0.02 0.00 
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Table E.5. Mineral association of columbite from Penouta tailings. 

Columbite Weight% locked in... P3 - Binary Particle (%) P3 - Ternary+ Particle (%) 
Unknown 0.00 0.00 
Low_Counts 0.00 0.00 
No_XRay 0.00 0.00 
Tantalite 59.86 12.99 
Microlite 0.02 0.05 
Cassiterite 0.11 0.31 
Scheelite 0.00 0.05 
Quartz 1.45 1.67 
Albite 0.00 0.14 
Plagioclase 0.00 0.00 
K-Feldspar 0.35 1.19 
Clinopyroxene 0.00 0.00 
Almandine 0.00 0.08 
Spessartine 0.00 0.23 
Vesuvianite 0.00 0.00 
Rhodonite 0.00 0.00 
Epidote 0.00 0.07 
Zoisite 0.00 0.00 
Hornblende 0.00 0.00 
Staurolite 0.00 0.07 
Biotite 0.00 0.05 
Muscovite 0.20 1.07 
Chlorite 0.00 0.00 
Kaolinite 0.00 0.28 
Titanite 0.00 0.00 
Rutile 0.00 0.00 
Fe_oxide_or_hydroxide 0.85 0.78 
Ilmenite 0.00 0.00 
Gahnite 0.00 0.00 
Mn-Al_oxide_or_hydroxide 0.00 0.00 
Mn-Fe_oxide_or_hydroxide 0.00 0.00 
Fe-Al_oxide_or_hydroxide 0.21 0.10 
Fe-Zn_oxide_or_hydroxide 0.00 0.00 
Apatite 0.00 0.00 
Cryptomelane 0.00 0.00 
Calcite 0.00 0.00 
Dolomite 0.00 0.00 
Fluorite 0.00 0.00 
Barite 0.00 0.00 
Zn_sulphate 0.00 0.00 
Zircon 0.53 0.37 
Monazite_LREE-rich 0.01 0.14 
Monazite_MREE-rich 0.00 0.00 
Xenotime 0.00 0.00 
Crandallite-Sr 0.00 0.06 
Rhabdophane-Th 0.00 0.00 
Pyrite_or_pyrrhotite 0.00 0.00 
Chalcopyrite 0.00 0.00 
Covellite 0.00 0.00 
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 Table E.6. Mineral association of tantalite from Penouta tailings. 

Tantalite Weight% locked in... P3 - Binary Particle (%) P3 - Ternary+ Particle (%) 
Unknown 0.00 0.00 
Low_Counts 0.00 0.00 
No_XRay 0.00 0.00 
Columbite 32.94 8.05 
Microlite 1.05 0.54 
Cassiterite 1.15 0.27 
Scheelite 0.00 0.10 
Quartz 3.93 2.19 
Albite 0.34 0.27 
Plagioclase 0.00 0.00 
K-Feldspar 1.27 1.17 
Clinopyroxene 0.00 0.00 
Almandine 0.00 0.06 
Spessartine 0.12 0.05 
Vesuvianite 0.00 0.00 
Rhodonite 0.00 0.00 
Epidote 0.00 0.01 
Zoisite 0.00 0.00 
Hornblende 0.00 0.00 
Staurolite 0.87 0.06 
Biotite 1.46 0.02 
Muscovite 4.24 1.54 
Chlorite 0.01 0.00 
Kaolinite 0.73 0.20 
Titanite 0.00 0.00 
Rutile 0.00 0.00 
Fe_oxide_or_hydroxide 1.62 0.92 
Ilmenite 0.00 0.00 
Gahnite 0.00 0.00 
Mn-Al_oxide_or_hydroxide 0.04 0.01 
Mn-Fe_oxide_or_hydroxide 0.00 0.02 
Fe-Al_oxide_or_hydroxide 0.77 0.02 
Fe-Zn_oxide_or_hydroxide 0.00 0.00 
Apatite 0.00 0.00 
Cryptomelane 0.00 0.00 
Calcite 0.00 0.00 
Dolomite 0.00 0.00 
Fluorite 0.00 0.00 
Barite 0.00 0.00 
Zn_sulphate 0.00 0.00 
Zircon 0.00 0.07 
Monazite_LREE-rich 0.00 0.01 
Monazite_MREE-rich 0.00 0.00 
Xenotime 0.00 0.00 
Crandallite-Sr 0.01 0.00 
Rhabdophane-Th 0.00 0.00 
Pyrite_or_pyrrhotite 0.00 0.00 
Chalcopyrite 0.00 0.00 
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Table E.6. Mineral association of microlite from Penouta tailings. 

Microlite Weight% locked in... P3 - Binary Particle (%) P3 - Ternary+ Particle (%) 
Unknown 0.00 0.00 
Low_Counts 0.00 0.00 
No_XRay 0.00 0.00 
Columbite 0.20 1.05 
Tantalite 4.84 10.72 
Cassiterite 7.83 3.28 
Scheelite 0.00 0.00 
Quartz 3.62 2.15 
Albite 0.00 0.14 
Plagioclase 0.00 0.00 
K-Feldspar 0.00 0.13 
Clinopyroxene 0.00 0.00 
Almandine 0.00 0.11 
Spessartine 0.06 0.14 
Vesuvianite 0.00 0.00 
Rhodonite 0.00 0.00 
Epidote 0.00 0.00 
Zoisite 0.00 0.00 
Hornblende 0.00 0.00 
Staurolite 0.00 0.00 
Biotite 0.14 0.00 
Muscovite 0.00 0.01 
Chlorite 0.00 0.00 
Kaolinite 0.01 0.01 
Titanite 0.00 0.00 
Rutile 0.00 0.00 
Fe_oxide_or_hydroxide 0.01 1.04 
Ilmenite 0.00 0.00 
Gahnite 0.00 0.00 
Mn-Al_oxide_or_hydroxide 0.00 0.01 
Mn-Fe_oxide_or_hydroxide 0.00 0.00 
Fe-Al_oxide_or_hydroxide 0.00 0.00 
Fe-Zn_oxide_or_hydroxide 0.00 0.00 
Apatite 0.03 0.00 
Cryptomelane 0.00 0.00 
Calcite 0.00 0.00 
Dolomite 0.00 0.00 
Fluorite 0.00 0.00 
Barite 0.00 0.00 
Zn_sulphate 0.00 0.00 
Zircon 0.06 1.50 
Monazite_LREE-rich 0.00 0.00 
Monazite_MREE-rich 0.00 0.00 
Xenotime 0.00 0.00 
Crandallite-Sr 0.00 0.00 
Rhabdophane-Th 0.00 0.00 
Pyrite_or_pyrrhotite 0.00 0.00 
Chalcopyrite 0.00 0.00 
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Table E.8. Mineral association of cassiterite from Penouta tailings. 

Cassiterite Weight% locked in... P3 - Binary Particle (%) P3 - Ternary+ Particle (%) 
Unknown 0.00 0.00 
Low_Counts 0.00 0.00 
No_XRay 0.00 0.00 
Columbite 0.19 0.06 
Tantalite 0.78 0.07 
Microlite 0.52 0.03 
Scheelite 0.00 0.00 
Quartz 4.42 0.59 
Albite 1.00 0.02 
Plagioclase 0.00 0.01 
K-Feldspar 2.09 0.12 
Clinopyroxene 0.00 0.00 
Almandine 0.05 0.02 
Spessartine 0.07 0.03 
Vesuvianite 0.00 0.00 
Rhodonite 0.00 0.00 
Epidote 0.00 0.00 
Zoisite 0.00 0.00 
Hornblende 0.00 0.00 
Staurolite 0.73 0.05 
Biotite 0.08 0.00 
Muscovite 8.36 0.56 
Chlorite 0.05 0.00 
Kaolinite 0.58 0.16 
Titanite 0.00 0.00 
Rutile 0.00 0.00 
Fe_oxide_or_hydroxide 2.37 0.22 
Ilmenite 0.00 0.00 
Gahnite 0.00 0.01 
Mn-Al_oxide_or_hydroxide 0.69 0.32 
Mn-Fe_oxide_or_hydroxide 0.00 0.16 
Fe-Al_oxide_or_hydroxide 1.19 0.12 
Fe-Zn_oxide_or_hydroxide 0.00 0.00 
Apatite 0.00 0.00 
Cryptomelane 0.07 0.14 
Calcite 0.00 0.00 
Dolomite 0.00 0.00 
Fluorite 0.00 0.00 
Barite 0.00 0.00 
Zn_sulphate 0.00 0.00 
Zircon 0.00 0.01 
Monazite_LREE-rich 0.00 0.00 
Monazite_MREE-rich 0.00 0.00 
Xenotime 0.00 0.00 
Crandallite-Sr 0.00 0.00 
Rhabdophane-Th 0.00 0.00 
Pyrite_or_pyrrhotite 0.00 0.00 
Chalcopyrite 0.00 0.00 
Covellite 0.00 0.00 
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Table E.9. Mineral association of scheelite from Mittersill (concentrate). 

Scheelite Weight% locked in... M1-M2 - Binary Particle (%) M1-M2 - Ternary+ Particle (%) 
Unknown 0.00 0.00 
Low_Counts 0.00 0.00 
No_XRay 0.00 0.00 
Columbite 0.00 0.00 
Tantalite 0.00 0.00 
Microlite 0.00 0.00 
Cassiterite 0.00 0.00 
Quartz 3.26 0.49 
Albite 0.01 0.22 
Plagioclase 0.02 0.06 
K-Feldspar 0.03 0.01 
Clinopyroxene 0.14 0.05 
Almandine 0.00 0.01 
Spessartine 0.00 0.00 
Vesuvianite 0.01 0.00 
Rhodonite 0.00 0.00 
Epidote 0.01 0.05 
Zoisite 3.35 0.35 
Hornblende 1.92 0.19 
Staurolite 0.27 0.00 
Biotite 0.01 0.05 
Muscovite 0.13 0.04 
Chlorite 0.18 0.09 
Kaolinite 0.00 0.00 
Titanite 0.73 0.03 
Rutile 0.00 0.00 
Fe_oxide_or_hydroxide 0.06 0.01 
Ilmenite 0.00 0.00 
Gahnite 0.00 0.00 
Mn-Al_oxide_or_hydroxide 0.00 0.00 
Mn-Fe_oxide_or_hydroxide 0.00 0.00 
Fe-Al_oxide_or_hydroxide 0.00 0.00 
Fe-Zn_oxide_or_hydroxide 0.00 0.00 
Apatite 0.16 0.00 
Cryptomelane 0.00 0.00 
Calcite 0.29 0.04 
Dolomite 0.00 0.00 
Fluorite 0.05 0.00 
Barite 0.00 0.00 
Zn_sulphate 0.00 0.00 
Zircon 0.00 0.00 
Monazite_LREE-rich 0.00 0.00 
Monazite_MREE-rich 0.00 0.00 
Xenotime 0.00 0.00 
Pyrite_or_pyrrhotite 0.25 0.09 
Chalcopyrite 0.13 0.00 
Molybdenite 0.04 0.00 
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Table E.10. Mineral association of scheelite from Mittersill (tailings). 

Scheelite Weight% locked in... W1-W2 - Binary Particle (%) W1-W2 - Ternary+ Particle (%) 
Unknown 0.40 0.00 
Albite 0.24 0.00 
Ankerite 0.50 0.00 
Anorthite 0.22 0.00 
Apatite 0.00 0.00 
Arsenopyrite 0.00 0.00 
Arsenopyrite (Co, Ni enriched) 0.60 0.00 
Augite 0.05 0.49 
Betafite 3.34 0.22 
Biotite 0.00 0.06 
Bismuthinite 0.44 0.01 
Calcite 3.32 0.05 
Chalcopyrite 8.04 0.01 
Cummingtonite (aph) 1.01 0.00 
Epidote 1.01 0.00 
Fluorite 0.00 0.00 
Gypsum 2.06 0.05 
Hematite 0.66 0.35 
Hornblende 1.74 0.19 
Ilmenite 0.00 0.00 
Manganite 5.44 0.05 
Molybdenite 0.82 0.04 
Muscovite 1.58 0.09 
Orthoclase 2.91 0.00 
Orthoclase_altered 0.84 0.03 
Pentlandite 0.98 0.00 
Pyrite 0.29 0.01 
Pyrrhotite 0.49 0.00 
Quartz 9.88 0.00 
Rutile 0.00 0.00 
Scheelite 0.42 0.00 
Serpentine 13.94 0.00 
Sphalerite with hiFe 0.99 0.00 
Titanite 1.27 0.00 
Zircon 0.00 0.00 
Aluminum 1.12 0.04 
Albite 6.06 0.00 
Ankerite 0.00 0.00 
Anorthite 0.00 0.00 
Apatite 0.00 0.00 
Arsenopyrite 0.40 0.00 
Arsenopyrite (Co, Ni enriched) 0.24 0.09 
Augite 0.50 0.00 
Betafite 0.22 0.00 

 

 

 



Appendix E: Mineral association of minerals information for the ores. 
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