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Abstract. The influence of sea surface warming on convective activity over Europe and 
Northern Eurasia is estimated from sensitivity model experiments by an atmospheric general 
circulation model, ECHAM5, with prescribed boundary conditions (“warm” and “cold” sea 
surface). Convective activity is analysed by using various indices (thermodynamic, dynamic, 
and composite). It is shown that warmer sea surface leads to a general increase in the 
thermodynamic indices that is broadly consistent with observations. Particularly, the observed 
increase in CAPE over the eastern part of the Mediterranean Sea, the Black Sea, and Eastern 
Europe is well reproduced in the sensitivity experiments. At the same time, the shear and 
helicity instability indices depend little on sea surface warming. The experiment with only 
Mediterranean and Black Seas warming tends to overestimate the increase in the 
thermodynamic indices near these seas and underestimate the increase in the other regions. 
There are several regions (the Iberian Peninsula, Mongolia, and Northern China) where the 
observations show a decrease in the convective indices. These negative changes are not 
reproduced in the model experiments, because their nature is, apparently, not related to sea 
surface warming.  

1. Introduction
The convective processes over Europe and Northern Eurasia become more prominent, which is
manifested in an increase of the convective cloudiness [1-4], convective precipitation [5-8], the
occurrence of thunderstorms [9], and severe convection environments [10-12]. In particular, Figure 1
shows the difference in CAPE (convective available potential energy) between 2000–2012 and 1979–
1999 in the summer season based on ERA-Interim data [13]. With some regional exceptions, both the
mean and frequency of exceeding the threshold tend to increase in the second period.

These changes may depend on different factors including thermodynamics (e.g., increase in the 
surface temperature and humidity, changes in the lapse rate [14,15]), dynamics (e.g., changes in 
cyclones and activity of atmospheric fronts [16-18], moisture convergence [19,20]), and microphysics 
(e.g., influence of aerosols [21]). In turn, both local and global warming and moistening of the lower 
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atmosphere can be important. In particular, an important role of warm seas (the Mediterranean, Black, 
and Caspian seas) in the formation of strong tornadoes [22-24] and heavy convective precipitation 
events [25, 26] over Europe and Northern Eurasia was highlighted. It should be noted that the largest 
increase of the CAPE (Fig.1) is observed above the Eastern Mediterranean, Black, and Caspian Seas. 
The role of different factors in changes of the convective activity in the Eurasian midlatitudes should 
be quantitatively estimated for increasing our ability to predict severe convective events and project 
their changes in the 21st century. 

Figure 1. Difference between 2000–2012 and 1979–1999 of (a) summer-mean CAPE and (b) 
frequency of CAPE>1000 J kg-1 in summer based on ERA-Interim reanalysis data. Only significant 
changes are shown (see the definition of significant changes in Section 2). 

One of the approaches to discriminate the role of different factors is to analyze specially designed 
sensitivity model experiments [25-27]. Particularly, Meredith and co-authors [25] used model 
simulations with warm and cold SST and highlighted the enhancement of local lower tropospheric 
instability due to the current warmer Black Sea. This enhancement triggers deep convection and 
increases precipitation by more than 300% between warm and cold SSTs during single events, as in 
July 2012 near the town of Krymsk [25]. A similar approach was used to estimate the influence of 
Mediterranean Sea warming on extreme precipitation formation in Europe [26].  

In this study, the impact of sea-surface warming (global ocean warming and the Mediterranean and 
Black Seas only warming) on the convective activity changes over Northern Eurasia and Europe is 
estimated based on sensitivity experiments with the atmospheric general circulation model (AGCM). 
Convective activity in the atmosphere is estimated based on analysis of various convective indices. 
The approach for analysis of convective indices using the results of global climate model simulation 
was used previously for the USA [28,29], Australia [30,31], and Europe [32]. 

2. Data and method
We analyzed three numerical experiments with the AGCM ECHAM5 that are identical except for sea-
surface temperature (SST) and sea ice concentration (SIC). The control experiment was forced
globally with monthly climatological fields of 1970–1999 SST and SIC [26] (so-called ‘cold ocean
experiment’, CO). In the warm Mediterranean experiment (WM), the warmer 2000–2012 SST
climatology was employed only in the Mediterranean and Black Seas. In the global warm experiment
(‘warm ocean’, WO), the ECHAM5 was forced globally with monthly climatological fields of 2000–
2012 SST and SIC. For each experiment, a 40-member ensemble of one year was computed. The
model was integrated at a relatively high horizontal resolution for a global atmosphere model of T159
(approximately 75 km) and with 31 vertical levels. Forcing conditions for all experiments were taken
from the Hadley Centre Sea Ice and Sea Surface Temperature dataset [33]. Radiative and greenhouse
gas forcing was fixed to the present-day levels [26].
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Based on 6-hour model data, various convective instability indices were calculated including 
thermodynamic (CAPE, CIN) [34-36] and dynamic indices (SRH, DLS) [37,38], as well as composite 
parameters (WMAXSHEAR, EHI) [35,39] and a simplified index 3D [40,41] (Table 1).  

Table 1. Analysed convective indices. 

Index (acronym) Index (full name) Formula Threshold 

CAPE*, J Kg-1 Convective available 
potential energy 

0, 100, 1000, 
2500 

CIN*, J Kg-1 Convective inhibition 10, 30, 
50 

SRH, m2 s-2 Storm relative helicity 160, 300, 400 

DLS, m s-1 Deep layer shear DLS = ∆V500–950 20, 30, 40 
WMAXSHEAR, m2 s-2 WMAXSHEAR WMAXSHEAR = DLS × (2CAPE)–1/2 300, 450, 600 
EHI Energy-helicity index EHI = CAPE×SRH / 160 000 1, 2, 3 

3D, ºC Dewpoint, depression 
of dewpoint index 3D = Dsurf – DDsurf 15.5, 17, 19 

The following notation is used: LFC – height of level of free convection, EL – height of equilibrium level, 
Tv,parcel – virtual temperature of a specific parcel, Tv,env – virtual temperature of the environment, D – dew 
point temperature, DD – depression of dew point temperature, V – wind speed. Subscripts denote vertical 
levels (surf – near surface; 950 and 500 – height of corresponding geopotential height). 

* Mean-level (ML) (1 km) and most-unstable (MU) CAPE and CIN were calculated.

We estimated the difference in the index values (mean, maximum, frequency of exceeding 
thresholds) between a pair of experiments (WO–CO, WM–CO, WO–WM) calculated for 40 modeled 
summer months (June, July, August). The significance of the difference was estimated based on the 
non-parametric Mann-Whitney U-test (the difference was called significant for p-values ≤0.05) [42]. 
In addition to the experiments with the ECHAM5 model, data from ERA-Interim reanalysis (for 
1979–2012) were used as well. 

3. Results
The warmer Global Ocean favors warmer and more humid near-surface air, which results in a
significant increase of the CAPE (ML and MU), WMAXSHEAR, and 3D indices (both the means and
frequencies of exceeding the threshold (Figures 2–4)). Exceeding of higher thresholds (e.g., 2500J kg–1

for CAPE and 600 m2 s–2 for WMAXSHEAR) also occurs much more often in the WO experiment
(not shown).

The increase in the thermodynamic convective indices is especially pronounced over marginal seas 
of the Atlantic and Pacific Oceans (the Mediterranean, Black, Baltic, Japan, and Okhotsk Seas), which 
broadly corresponds to the observed changes of CAPE (Figure 1). The greatest increase of CAPE is 
found in the Black Sea and Eastern Mediterranean in both the reanalysis and sensitivity model 
simulations. The observed increase of CAPE over Europe (Figure 1) can be attributed to the influence 
of sea surface warming. Specifically, both the ML CAPE and MU CAPE (their means and frequencies 
of exceeding the threshold) are significantly larger in this region in the WO experiment compared to 
the CO. On the contrary, no positive statistically significant difference of the CAPE between the WO 
and CO over eastern China is revealed in the observations. No negative WO–CO difference of the 
CAPE and 3D was found, which is in contrast to the reanalysis data that show a decrease of the CAPE 
over the Iberian Peninsula, Mongolia, and Northern China (Figure1).   
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Figure 2. Difference between WO and CO for summer means of various indices: (a) ML CAPE, (b) 
MU CAPE, (c) MU CIN, (d) 3D, (e) SRH, (f) DLS, (g) ML EHI, (h) ML WMAXSHEAR. Only 
significant difference is shown. 
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Figure 3. Difference between WO and CO for the frequency of exceeding  the threshold in summer 
for different indices: (a) ML CAPE>1000 J kg–1, (b) MU CAPE > 1000 J kg–1, (c) MU CIN < 30 J kg–

1, (d) 3D > 15.5 ºC, (e) SRH > 160 m2 s–2, (f) DLS > 20 m s–1, (g) ML EHI > 1, (h) ML 
WMAXSHEAR > 300 m2 s–2. Only significant changes are shown. 
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Figure 4. Differences between WO and CO (a, b), WM and CO (c, d), WO and WM (e, f) for the 
frequency of exceeding the threshold in summer for different indices: (a, c, e) MU CAPE>100 J kg–1 
and MU CIN < 50 J kg–1, (b, d, f) MU CAPE>1000 J kg–1 and MU CIN < 30 J kg–1. Only significant 
changes are shown. 
 

The wind shear and helicity indices (their summer means and frequencies of exceeding the 
threshold) do not exhibit significant changes between the CO to the WO (Figures 2 and 3).    

Sea surface warming results in changes in convective inhibition. Large values of CIN (i.e., more 
than 100 J kg–1) prevent the development of convection. Although the mean CIN is generally larger in 
the WO than in the CO (except for the eastern part of the Mediterranean Sea) (Figure 2), the frequency 
of a very low CIN is also larger in the WO (Figure 3). If these low-CIN environments co-occur with a 
high-CAPE, this likely initiates a severe storm [28]. The frequency of such environments is 
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significantly larger in the WO experiment as compared to the CO (Fig. 4a, b) in many regions 
(primarily over the marginal seas of the Atlantic and Pacific Oceans and Eastern Europe).  

Only the Mediterranean and Black Sea surface warming (the WM experiment) results in a larger 
(as compared to the WO) increase of such indices as CAPE, 3D, and WMAXSHEAR (their means and 
frequency of exceeding the threshold) and the frequency of low-CIN/high-CAPE environments in 
these regions, and a lower increase (or even decrease) in other regions (Figures 4c-f).  

4. Conclusions
In this paper, sensitivity experiments were performed to estimate the role of sea surface warming in
convective activity over Europe and Northern Eurasia. The convective instability indices were
calculated with 6-hour data from three model experiments with different boundary conditions (warm
global ocean, cold global ocean, and cold ocean – warm Mediterranean and Black Seas).

A comparison of the results of the sensitivity experiments has shown that warmer sea surface leads 
to a general increase in the thermodynamic convective instability indices. This increase is broadly 
consistent with observations. Particularly, the sensitivity experiments reproduce well the observed 
increase in CAPE over the eastern part of the Mediterranean Sea, the Black Sea, and Eastern Europe. 
The 3D and WMAXSHEAR indices grow as well in the WO experiment compared to the CO. The 
shear and helicity instability indices depend little on sea surface warming. The WM experiment shows 
a greater (compared to the WO) increase in the thermodynamic indices in these very regions and a 
smaller increase (or even decrease) in the indices in the other regions. In particular, the observed 
increase in CAPE in Eastern Europe cannot be explained by the warming of the Mediterranean and 
Black Seas alone. Note that the above-presented results are preliminary, and further analysis is 
required. 

The reanalysis data show a decrease in the convective indices in several regions (the Iberian 
Peninsula, Mongolia, and Northern China). These negative changes are not reproduced in the model 
experiments, because their nature is, apparently, not related to sea surface warming. For instance, a 
decrease in the lapse rate may prevail here over an increase in the surface temperature. Further 
research is needed to establish the causes of these changes. For instance, sensitivity experiments with 
interactive greenhouse gases should be carried out to clarify the role of lapse rate changes in the 
convective activity variability. Given the scale of convective phenomena, it is desirable to use regional 
climate models [43] or dynamic downscaling of the AGCM [44].  
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