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Abstract: Volcanic archipelagos are a source of numerous on- and offshore geohazards, 

including explosive eruptions and potentially tsunamigenic large-scale flank-collapses. Fogo 

Island in the southern Cape Verdes is one of the most active volcanoes in the world, making 

it both prone to collapse (as evidenced by the ca. 73 ka Monte Amarelo volcanic flank-

collapse), and a source of widely-distributed tephra and volcanic material. The offshore 

distribution of the Monte Amarelo debris avalanche deposits and the surrounding 

volcaniclastic apron were previously mapped using only medium-resolution bathymetric data. 

Here, using recently acquired, higher resolution acoustic data, we revisit Fogo’s flank-

collapse, and find evidence suggesting that the deposition of hummocky volcanic debris 

originating from the failed eastern flank most likely triggered the contemporaneous, multi-

phase failure of pre-existing seafloor sediments. Additionally, we identify, for the first time, 

multiple mass-transport deposits in the southern part of the volcaniclastic apron of Fogo and 

Santiago based on the presence of acoustically chaotic deposits in parametric echo sounder 

data and volcaniclastic turbiditic sands in recovered cores. These preliminary findings 

indicate a long and complex history of instability on the southern slopes of Fogo and suggest 

that Fogo may have experienced multiple flank collapses.  
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Introduction 

Volcanic archipelagos are home to numerous on- and offshore hazards such as changes in sea 

level, storms, volcanic eruptions, slope instabilities, large flank-collapses, and tsunamis 

(Casalbore 2018). These events can have devastating consequences for people, nature, and 

infrastructure, both onshore and offshore. A variety of internal and external factors can 

precondition and trigger flank instabilities. These include dyke and sill intrusions; volcanic 

eruptions and tremor; earthquakes; flank over-steepening; the weight of new volcanic 

material on the island flanks; weakening of the volcanic edifice by weathering and 

hydrothermal activity; and, for smaller landslides, by the effects of wave, wind and storm 

activity (e.g. Siebert 1984; Begét & Kienle 1992; Murray & Voight 1996; McGuire 1996, 

2003; Tibaldi 2001; Cervelli et al. 2002; Casalbore et al. 2011, 2015; Gross et al. 2014; Clare 

et al. 2018). Such factors occur over timescales ranging from seconds to thousands of years, 

and are globally widespread (McGuire 1996; Blahůt et al. 2019). 

The volume of volcanic flank-collapses varies significantly, but can be as large as thousands 

of cubic kilometres, e.g. in the Hawaiian archipelago (Moore et al. 1989). Many such events 

have volumes in the order of tens to hundreds of cubic kilometres, e.g. at Nisyros Volcano in 

the Aegean Sea (Tibaldi et al. 2008; Livanos et al. 2013); in the Lesser Antilles Arc (Lebas et 

al. 2011; Le Friant et al. 2015; Brunet et al. 2016); in the Canary Islands (Krastel et al. 2001; 

Masson et al. 2002; León et al. 2017); and in the Cape Verde Islands (Masson et al. 2008). 

However, even comparatively small-volume volcanic flank-collapses, such as the 0.22-0.3 

km
3
 Anak Krakatau flank-collapse in December 2018 (Grilli et al. 2019), may result in 

catastrophic tsunamis. The hazard potential of such flank-collapses is widely recognized, but 

the magnitude, and therefore hazard potential, of the tsunamis that can be triggered by flank-

collapses is heavily debated (e.g. Moore & Moore 1984; Goff et al. 2014; McMurtry et al. 

2004; Watt et al. 2012a; Ramalho et al. 2015; Paris et al. 2018). 

Other factors that can contribute to the instability of slopes offshore are the deposition of 

centi- to decimetre-thick discrete layers of volcanic ash across a wide region and the presence 

of buried turbidites in the volcanic apron. Studies in lacustrine settings (e.g. Wiemer et al. 

2015; Moernaut et al. 2019) and on active offshore margins (e.g. Harders et al. 2010; 

Lafuerza et al. 2014; Hornbach et al. 2015; Kuhlmann et al. 2016; Sammartini et al. 2018) 

have indicated a relationship between tephra layers or turbidites and slide failure planes. 

Although the exact nature of this relationship is disputed (Wiemer & Kopf 2016), it is 

thought that tephra could behave as “weak layers” – layers of inherently lower strength than 

adjacent layers, which are thereby prone to failure (Locat et al. 2014). Using core logging, 

sedimentological, and geotechnical data from the IODP Expedition 340, Lafuerza et al. 

(2014) showed that low hydraulic conductivity of hemipelagic sediments offshore Martinique 

(Lesser Antilles) could cause low rates of dewatering in turbidites and tephra layers, allowing 

excess pore fluid pressures to persist at depth. Moreover, Hornbach et al. (2015) suggested 

that even small changes in the stress regime of these layers, such as that resulting from 

regional strain and grain reorganization during the compaction of sediments, might trigger 

motion. Effectively, results from IODP 340 showed that sand layers (i.e. tephra ash and 
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turbidites), as well as boundaries between sand and mud layers, may act as multiple 

decollement surfaces that promote and enhance the mobility of landslide deposits (Le Friant 

et al. 2015). 

Geological Setting 

The Cape Verdes archipelago, offshore West Africa (Figure 1), is the surface expression of a 

mantle hotspot (Crough 1978; Holm et al. 2008; Ramalho et al. 2010). The island of Fogo, in 

the southern part of the archipelago, is one of the most active oceanic intraplate volcanoes in 

the world, having erupted 28 times in the last 520 years (Ribeiro 1960; Torres et al. 1997; 

González et al. 2015). Such volcanically active areas are well known to be associated with 

seismicity and the southern Cape Verdes are no different, recording frequent volcano-tectonic 

earthquakes (Grevemeyer et al. 2010; Faria & Fonseca 2014; Vales et al. 2014). Sediment 

cores collected in the region provide evidence of at least 43 large, explosive eruptions in the 

area in the last 150 kyr (Eisele et al. 2015), attesting to Fogo’s vigorous volcanic activity. 

Such frequent volcanic activity, along with the accumulation of volcanic deposits on the 

submarine flanks, means that Fogo’s flanks are potentially unstable and prone to collapsing. 

An up-to-1 km high, semi-circular depression (Bordeira), open to the east on central Fogo, 

was interpreted by Day et al. (1999) as the scar of a large flank-collapse, referred to as 

“Monte Amarelo” (Figure 2). Other authors, however, interpret the same morphology as two 

partially overlapping volcanic calderas that were later cut by a flank-collapse that affected the 

eastern portion of the edifice (Torres et al. 1997; Brum da Silveira et al. 1997; Madeira et al. 

2008; Martínez-Moreno et al. 2018). Fogo’s Monte Amarelo flank-collapse, however, is 

strongly supported by the presence of a preserved lateral ramp at Espigão (Brum da Silveira 

et al. 1997), and a debris avalanche deposit located between the islands of Fogo and Santiago 

(Le Bas et al. 2007; Masson et al. 2008) (Figures 2, 3). Using a combined magnetotelluric- 

and multibeam-based approach, Martínez-Moreno et al. (2018) estimated a volume of 110 

km
3
 for the Monte Amarelo debris avalanche deposit. This estimate corresponds well with 

previous bathymetric-based estimates, which ranged between 80 and 160 km
3
 (Le Bas et al. 

2007; Madeira et al. 2008; Masson et al. 2008). Tsunami deposits found on the nearby 

islands of Santiago and Maio indicate that the Monte Amarelo flank-collapse was 

tsunamigenic, with the resulting tsunami achieving a run-up in excess of 270 m above coeval 

sea level on Santiago (Ramalho et al. 2015; Madeira et al. 2019). The exact age of the 

collapse, however, is the topic of ongoing debate. On the basis of 
3
He geochronology of lava 

flows from Fogo, Foeken et al. (2009) first estimated the collapse to have occurred between 

62 and 123 ka. Paris et al. (2011) suggested a narrower window of 86 to 124 ka, based, 

respectively, on Ar/Ar ages of lava flows from Fogo thought to be post-collapse, and U-Th 

dating of corals from tsunami deposits on Santiago. More recently, based on the results of 

cosmogenic 
3
He dating of tsunami megaclasts from Santiago Island, Ramalho et al. (2015) 

proposed that the collapse and ensuing tsunami took place between 65 and 84 ka, with a most 

probable age of 73 ± 7 ka. This agrees, within uncertainty, with the age recently reported by 

Maderia et al. (2019; 78 ± 0.9 ka) for a set of tsunami deposits found on the coast of Maio 

Island. Dating of turbidite material attributed to tsunami-triggered sediment transport along 
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the flanks of Fogo and Brava islands, however, led Eisele et al. (2015) to favour an older age 

of 86-117 ka. Finally, and most recently, Marques et al. (2019) suggested a much younger 

age of 43-59 ka, based on K/Ar dating of Fogo lava flows that they considered to be pre- and 

post-collapse. 

Whether Fogo has collapsed only once or multiple times is also the subject of discussion 

(Day et al. 1999; Ramalho et al. 2015; Martínez-Moreno et al. 2018; Marques et al. 2019). 

Subsequent eruptions on Fogo have largely been constrained to the central and eastern parts 

of the island, and a prominent stratovolcano – Pico do Fogo – presently rises to 2829 m above 

sea level within the landslide scar (Figure 2; Torres et al. 1997). 

Objectives 

A detailed analysis of the distribution of the landslide deposits and failure mechanism are 

critical for constraining the hazard linked to the collapse of a volcanic flank. Moreover, this 

characterization is crucial for tsunami hazard modelling, given that the mode, volume and 

run-out of a collapse will have a profound effect on the resulting tsunami waves (Grilli et al. 

1997; Abadie et al. 2012; Watt et al. 2012a). The offshore distribution of the Monte Amarelo 

flank-collapse debris (i.e. debris avalanche deposits) and the surrounding volcaniclastic apron 

were previously mapped using only medium-resolution (100 m grid cell size) multibeam 

bathymetric data (Masson et al. 2008). Consequently, the distribution of the debris avalanche 

deposits, and of any additional slope instabilities in the area, are still poorly constrained. As 

Fogo’s volcanic flank-collapse likely triggered a megatsunami with a recognizable impact on 

the adjacent islands’ coastlines (Paris et al. 2011, 2018; Ramalho et al. 2015; Madeira et al. 

2019), a full characterization of this landslide and its related volume is crucial for improving 

numerical models of tsunami generation, propagation and inundation, and for constraining 

the hazard potential associated with large, tsunamigenic volcanic flank-collapses. 

Here, using recently acquired multibeam bathymetric data (50 m grid cell size) in conjunction 

with parametric sediment echo-sounder data and sediment gravity cores, we revisit the Monte 

Amarelo volcanic flank-collapse and consider general slope stability in the southern distal 

region of the volcanic apron. We aim to (i) map out the lateral extent and characterise the 

acoustic nature of the Monte Amarelo debris avalanche deposits; (ii) identify possible 

additional landslides on the slopes south of the islands of Fogo and Santiago; and (iii) 

consider the related preconditioning and triggering processes. 

Data and methodology 

The data presented in this paper were collected during R/V Meteor cruise M155 (May - June 

2019; Krastel et al. 2019) and are supplemented by multibeam bathymetric data collected 

during R/V Meteor cruise M80/3 (Hansteen et al. 2014). The bathymetric data from both 

cruises were acquired using hull-mounted Kongsberg EM120 (M80/3), EM122 (M155) and 

EM710 (M155) multibeam echo-sounders. The EM120/EM122 system has a swath coverage 

of up to 150° and a nominal sonar frequency of 12 kHz, and is designed to perform seabed 

mapping to full ocean depth. During cruise M155, the swath width was reduced to 120° in 
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order to increase the quality and resolution of the data. The EM710 system has a swath 

coverage of up to 140°, and a nominal sonar frequency of 70 to 100 kHz. As such, the 

EM710 was only used in water depths less than 700 m close to the islands of Fogo and 

Santiago. All bathymetric data were filtered for outliers and manually edited. The data from 

all cruises and multibeam systems are combined and gridded at 50 m. 

Parametric sediment echo-sounder data were collected using a parametric ATLAS DS-3/P70 

system (Parasound). This system has an opening angle of 4° and operates at primary high 

frequencies of 18.5 kHz and 22.5 kHz, resulting in a parametric low frequency of 4 kHz. The 

vertical resolution of this system is in the decimeter range. All depth scales on Parasound 

images presented in this study were calculated using a constant velocity of 1500 m/s. 

Sediment cores were collected during cruise M155 using a gravity corer with tube lengths of 

3 to 15 m. These cores were visually described onboard, and smear slides were analyzed to 

obtain further microscopic information about the core mineralogy, texture and composition. 

Dating and further geochemical and sedimentological analysis of these cores is ongoing and 

will form the basis of future work on the subject. 

Results 

The Monte Amarelo debris avalanche deposits (MTD-A) 

The Monte Amarelo deposits proximal to Fogo (MTD-A; distribution shown in Figure 3a) are 

characterized by overlapping diffraction hyperbolae (Figure 3b). This hummocky character is 

typical of debris avalanche deposits from volcanic flank-collapses (Siebert 1984). The 

sedimentary drape covering MTD-A is relatively thin (<1.5 m thick) or not imaged, and is 

often characterized by two strong, positive reflections. Irregularly shaped blocks that are up 

to 100 m higher than the surrounding seafloor are present within the landslide debris (Figure 

2). Further away from Fogo, the hummocky topography is less prevalent in the bathymetric 

data, despite the presence of diffraction hyperbolae in the Parasound data. This highlights a 

decrease in the size of the hummocks with distance from the island. We note a progressive 

transition in the acoustic signature of the deposits from a hyperbolic facies with metre-scale 

acoustic penetration (Figure 3b), to a mounded facies draped by ~1.5 m of sediment 

characterized by the aforementioned prominent double reflections (Figure 3d). In a few 

places, these double reflections are replaced by a succession of finely stratified layers (inset 

of Figure 3c). 

Distal deposits related to the Monte Amarelo volcanic flank-collapse (MTD-B) 

Southwards, with increasing distance from Fogo, the acoustic character of the Monte 

Amarelo deposits changes from being hyperbolae-dominated to being characterised by an 

acoustically transparent/semi-transparent facies (Figure 3d; hereafter referred to as MTD-B; 

distribution shown in Figure 3a). In the northern reaches of MTD-B, the upper surface of the 

deposits is undulating, with metre-scale variations in depth over wavelengths of tens to 

hundreds of metres (Figure 3d). The overlying sedimentary drape mantles the surface of the 

deposits and a strong internal reflector is imaged in places within the deposits (Figure 3d). 
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This internal reflector clearly contrasts with the overlying transparent facies, separating it 

from the lower semi-transparent facies. In the northern and western reaches of MTD-B, this 

internal reflector is either clearly imaged or not present at all, and the base of the lower part 

of MTD-B is not resolved (Figure 3d). 

In the eastern and southern reaches of MTD-B, the aforementioned internal reflector is 

continuous over a relatively long distance (Figure 3e). In these areas, a thicker sedimentary 

drape (up to ~4 m thick), containing multiple strong reflections alternating with relatively 

thin, transparent layers, overlies MTD-B. The upper surface of MTD-B is diffuse and 

undulating in parts. The base of MTD-B is marked by a prominent reflection that has a similar 

acoustic signature, although of lower amplitude, as the double reflector that overlies the 

deposits. A series of well-stratified sediments is imaged below the base of MTD-B (Figure 

3e). At the eastern lateral margin of MTD-B, the internal reflector within the slide deposits is 

more diffuse (Figure 3e). The lowermost part of MTD-B remains transparent in nature, but 

remnant stratifications are imaged in some areas of the uppermost part. The eastern boundary 

is gradational over two to three km, and is marked by a progressive thinning of the 

transparent facies, and an increase in stratification within the deposits (Figure 3e). 

Constraining the thickness and lateral extent of MTD-B is challenging. In the northern 

reaches, where the strong internal reflector is imaged, the base of the deposits is not resolved 

by the acoustic system (Figure 3c). This means that only the thickness of the upper 

transparent facies related to MTD-B (up to ~7 m thick, but variable) can be estimated. In its 

eastern and southern extents, however, the bases of the upper and lower units of MTD-B are 

imaged, leading to thickness estimates of 4-6 m and 5-15 m for the upper and lower units, 

respectively (Figure 3e). The large spacings between the Parasound profiles in the central and 

southern parts of the working area, south of Fogo and Santiago, mean that we cannot 

constrain the thickness of the deposits in these areas with certainty. In addition, MTD-B 

deposits might extend beyond the limits of the surveyed area, especially to the west and south 

(Figure 3a). 

Additional mass wasting events on the shallow slopes south of Fogo and Santiago 

Visual analysis of gravity cores taken in the southern part of the volcaniclastic apron of Fogo 

and Santiago reveals mud- and nanofossil-rich facies interbedded with multiple sand units 

that are defined by parallel and cross-laminated, seldom normally-graded beds (Figure 4). 

These sandy intervals generally range from fine to coarse sand deposits, and are typically of 

centi- to decimetre scale (Figure 4b). Microscopic analyses show that these shallow sandy 

turbidites are predominantly of volcaniclastic (volcanic lithics that are mostly lava fragments, 

tachylitic to brown glass, crystal fragments), and/or mixed volcaniclastic-bioclastic 

composition, rather than solely bioclastic. 

Multibeam-bathymetry and sediment echo-sounder data on the shallow slopes south of Fogo 

and Santiago reveal multiple morphological steps and several mass transport deposits 

(MTDs; Figure 5). These additional MTDs are characterized by acoustically transparent 

and/or hyperbolic facies and occur both above and below MTD-B. Several of these MTDs are 
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exposed at the surface and have remobilized previously failed sediments, including those of 

MTD-B (e.g. Figure 5, 6). However, as for MTD-B, their full lateral extent is generally poorly 

constrained due to large profile spacings and their possible continuation outside the surveyed 

area. The morphological steps vary in length, height, strike, and orientation (Figure 5a), but 

are typically near-vertical (Figure 5c, d). In the following section, we describe the character 

of, and relation between, several of these features in more detail. 

Tectonic escarpments along the western and eastern margins 

A series of escarpments is imaged to the west, along the western margin of MTD-B, and 

stretching between 40 and 110 km south of Fogo (Figure 5a, b). The most prominent 

escarpment is orientated roughly north-south and extends across ~55 km. It is ~50 m high and 

near vertical (Figure 5c). Monte Amarelo MTD-B deposits are imaged on the eastern side 

(footwall) of this step. On the western (hanging wall) side, the sediments are characterized by 

a semi-transparent facies with a hummocky upper surface (hereafter referred to as MTD-X; 

Figure 5c). In places, a pair of strong reflectors is identified within the sedimentary drape that 

overlies MTD-X. Proximal to the escarpment, the base of MTD-X cannot be resolved. Further 

west of the scarp, however, stratified sediment is imaged below the base of MTD-X (inset 1 of 

Figure 5c). The lateral extent of MTD-X is constrained to both the north and east by the 

morphological steps (Figure 5b, c), resulting in a minimum area of 900 km
2
 for MTD-X. 

Southern Scour Complex 

A prominent, elongated scour-shaped feature is evident in the central part of the southern 

distal region (hereafter referred to as the Southern Scour Complex (SSC), Figure 6a). This 

feature is ~60 km long and covers an area of ~340 km
2
. The western and eastern sides of the 

SSC are constrained by up-to-40 and 55 m high escarpments, respectively (Figure 6). In 

Parasound data crossing the complex, acoustically transparent facies with a strong internal 

reflector characterizing the Monte Amarelo MTD-B is evident on both the eastern and 

western sides of the SSC (Figure 6b, c). In the central part of the SSC (Figure 6c), acoustically 

transparent MTDs with some internal structure are covered by ~3 m of stratified sediment. In 

the northern part, the material within the SSC is characterized by a semi-transparent facies 

with a hummocky upper surface, and the deposits are largely exposed at the surface (Figure 

6b). An additional instability is visible on the eastern side of the SSC (hereafter referred to as 

the Eastern Scour (ES); Figure 6d). The ES reaches a thickness of up to 35 m thick in its 

centre, and covers an area of ~120 km
2
. Parasound data across the ES show that this failure 

primarily remobilized the Monte Amarelo MTD-B deposits in this region along the same 

basal glide plane as MTD-B (Figure 6d). To the south, the SCC is fan-shaped, with fingers of 

unfailed stratified sediments standing up to ~20 m above failed sediment (Figure 6d). Semi-

transparent deposits characteristic of MTD-B are imaged on the tops of these stratified 

fingers. 
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Discussion 

The two-fold nature of Fogo’s Monte Amarelo flank-collapse 

Based on the difference in their acoustic character, we distinguish between two main types of 

deposits related to the Monte Amarelo volcanic flank-collapse: hummocky, debris avalanche 

deposits proximal to Fogo (MTD-A), and finer-grained, acoustically transparent landslide 

deposits (MTD-B) at greater distances from Fogo that were previously not recognized (Figure 

3). The blocky debris avalanche deposits of MTD-A cover a surface area of 3,180 km
2
. If we 

also include the region in which the size of the hummocks decreases with distance from the 

source (marked by the yellow shaded region in Figure 3a), this increases the total area of 

MTD-A to 6,820 km
2
; more than four times the previous estimate (~1,470 km

2
; Masson et al. 

2008). As the base of the volcanic debris avalanche deposits is not resolved by the Parasound 

data, we cannot, at this stage, revisit estimates of the volume involved.  

Monte Amarelo MTD-B is characterised by an acoustically transparent to semi-transparent 

facies that is overlain by a series of two to four strong reflectors (Figure 3, 5c, 6b-d). A 

prominent, internal reflection is clearly observed in places within the deposits; separating 

MTD-B into two main parts (Figure 3 d, e). The uppermost section is of relatively constant 

thickness (4-6 m). Contrastingly the thickness of the lower part of MTD-B is highly variable 

(up to 15 m thick). Interestingly, the upper and lower parts of MTD-B have a similar areal 

distribution within the volcaniclastic apron; covering a minimum of 18,400 km
2
 (upper) and 

19,500 km
2
 (lower) (Figure 3a). This implies minimum volumes of 92 km

3
 (upper) and 195 

km
3
 (lower), assuming average thicknesses of 5 m (upper) and 10 m (lower). Their similar 

distribution implies that the upper and lower parts of MTD-B might share the same source or, 

at least, be genetically linked. We therefore infer that the upper and lower part of MTD-B 

might have been emplaced (almost) contemporaneously. The absolute timing of these two 

phases, however, remains unclear. Of particular interest is whether these two failures 

occurred as two phases of the same event, or as two distinct events separated by some time. 

Further analytical work on the sediment cores will help to reveal more information about the 

nature of the prominent internal reflection, along with the relative timing of these two 

depositional episodes. 

A similar two-fold nature of volcanic flank-collapse deposits – hummocky debris avalanche 

deposits accompanied by acoustically transparent to seismically chaotic deposits with a 

comparatively smooth upper surface – has also been reported for flank-collapses at other 

locations, including in the Lesser Antilles (Watt et al., 2012a, b; Le Friant et al. 2015; Brunet 

et al. 2016); at La Réunion (Indian Ocean; Lebas et al. 2018); and at Ritter Island (Papua 

New Guinea; Karstens et al. 2019; Watt et al. 2019). Drilled cores retrieved during IODP 

Expedition 340 in the Lesser Antilles indicated that widespread, seismically chaotic deposits 

(interpreted as equivalent to our MTD-B) primarily consist of hemipelagic mud interbedded 

with a combination of tephra, volcaniclastic layers, or bioclastic turbiditic deposits, which 

have undergone varying degrees of deformation (Le Friant et al. 2015; Brunet et al. 2016). 

To explain these findings, Le Friant et al. (2015) proposed a failure model where the loading 

of seafloor sediment by volcanic debris avalanche deposits triggered sediment destabilization 
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and progressive downslope-propagating failure along a decollement. In this way, the 

deformation can propagate great distances away from the flank collapse, affecting seafloor 

sediments that were otherwise stable (Le Friant et al. 2015). The acoustic character of our 

MTD-B bears a strong resemblance to the seismically chaotic deposits in the Lesser Antilles. 

We, therefore, interpret MTD-B to be the result of the failure of pre-existing seafloor 

sediments following the loading of the Monte Amarelo debris avalanche deposits (MTD-A). 

A history of mass-wasting and remobilisation in the southern Cape Verdes 

Repeated mass-wasting events at Fogo? 

Preliminary stratigraphic correlations based on visual similarities of cores in the southern 

distal part of the working area indicate at least seven volcaniclastic or mixed volcaniclastic-

bioclastic sandy turbidite layers above and below the Monte Amarelo flank-collapse deposits 

(Figure 4). These turbidite layers are dominated by mafic glass, crystals and lava fragments, 

which, based on their petrography, suggests that they originated from Fogo volcano. This 

indicates that smaller mass-wasting events may have occurred at Fogo in addition to the 

Monte Amarelo volcanic flank-collapse, as also recently suggested by Marques et al. (2019). 

Correlation and origin of these volcaniclastic deposits will, however, be verified by future 

analytical work on the sediment cores. 

Regional tectonic and volcanic influences south of Fogo? 

The multiple fault-related escarpments and MTDs identified in the acoustic data south of 

Fogo further highlight a long and complex history of instability and slope failure in the region 

(Figure 5). Ramalho et al. (2010) found that the island of Santiago has uplifted at a rate of 

~100 m/Myr over the past 4 Myr, and attributed this uplift to a combination of magmatic 

intrusions under or within the island edifice, together with episodic swell-wide uplift that 

affected the whole archipelago. Although geologically recent uplift has not been reported at 

Fogo, the neighbouring island of Brava has experienced one of the most dramatic intrusion-

related uplift trends of any ocean island in the world, with up to 400 m of uplift in the last 1.8 

Ma (Madeira et al. 2010). The presence of such widespread uplift across the archipelago – 

and particularly around the southern Cape Verdes – thus suggests that the series of 

escarpments and landslides observed on the slopes south of Fogo may be the surface 

expression of a combination of regional tectonics, associated with the growth of the Cape 

Verdes hotspot swell, and crustal intrusions in the vicinity of the islands. As several of the 

exposed faults have landslide deposits on their hanging wall side, we interpret that these 

MTDs are most likely the results of movement along the faults and, as such, the result of neo-

tectonic activity. 

The Southern Scour Complex (SSC), which is exposed at the seafloor, post-dates the Monte 

Amarelo flank-collapse (Figure 6). Monte Amarelo MTD-B deposits are imaged on the 

footwall east of the SSC (Figure 6b-d), and on the tops of the unfailed, stratified fingers at the 

southern extent of the SSC (Figure 6d). This indicates that the SSC formed after the Monte 

Amarelo flank-collapse, remobilizing MTD-B. In the northern and eastern parts of the SSC, 

acoustically transparent mass-wasting deposits are exposed at the seafloor, highlighting more 
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recent mass wasting and remobilization of MTD-B (Figure 6b). We interpret the more recent 

mass-wasting deposits in the northern and eastern parts of the SSC as evidence of 

retrogressive development of the SSC in these directions (Figure 6e). 

The presence of fault-related escarpments on the slopes south of Fogo, frequent volcanic 

episodes at Fogo (Ribeiro 1960; Torres et al. 1997), and ongoing uplift at the neighbouring 

islands of Santiago and Brava (Madeira et al. 2010; Ramalho et al. 2010), together imply the 

occurrence of frequent earthquakes in the past. The volcanic activity at Fogo has resulted in 

the widespread deposition of numerous tephra layers (Eisele et al. 2015). Subsequent 

earthquake shaking may have resulted in liquefaction of overlying layers, which, together 

with sedimentary over-pressure following further sediment deposition, can help to 

precondition the shallow slopes for failure (Moernaut et al. 2019). Even small changes in the 

stress regime of tephra layers have been found to be able to trigger failure (Hornbach et al. 

2015). Consequently, it is possible that some of the MTDs observed on the shallowly dipping 

slopes south of Fogo, and unrelated to escarpments, may result from such a process. Future 

work, particularly on the sediment cores collected during cruise M155, will help to shed light 

on the sources and processes responsible for the MTDs mapped on the shallow slopes south 

of Fogo and Santiago. 

Implications and Conclusions 

In this study, we revisited the Monte Amarelo volcanic flank-collapse of Fogo Island and 

found that the deposition of the debris avalanche material may have triggered subsequent 

failures of pre-existing seafloor sediments in (at least) two phases. This is similar to what has 

been observed in the Lesser Antilles (Le Friant et al. 2015; Brunet et al. 2016), at La Réunion 

(Lebas et al. 2018), and at Ritter Island (Karstens et al. 2019; Watt et al. 2019). It is not yet 

clear whether these two phases of seafloor sediment failure were synchronous as a result of a 

single flank-collapse, or if they reflect multiple, distinct events. The question of whether the 

main flank-collapse occurred as a single or as multiple events is of utmost importance for 

tsunami modelling because the volume and timing of individual failures are the main factors 

controlling the tsunamigenic potential (Løvholt et al. 2015). Water depth and landslide 

kinematics play a key role in controlling the tsunamigenic potential of a subaqueous landslide 

(Watts et al. 2000; Ward, 2001; Watt et al. 2012a; Harbitz et al. 2014). As MTD-B occurred 

in depths exceeding 3,000 m, we consider that its influence on the resulting tsunami 

magnitude was negligible, and that only the hummocky debris avalanche deposits (MTD-A) 

contributed to the megatsunami that inundated nearby islands. 

Multibeam bathymetric, sediment echo-sounder, and sediment gravity core data acquired 

during cruise M155 of R/V Meteor provide seafloor evidence that show, for the first time, the 

presence of multiple additional mass-wasting events on the shallow slopes south of Fogo. 

Turbidite sands recovered in the cores have a volcaniclastic or mixed volcaniclastic-bioclastic 

composition, which suggests that prevailing mass-transport processes in the region may be 

dominated by volcanic eruptions or volcanic mass-wasting events. However, it is also 

possible that some of the additional mass-wasting events are unrelated to flank-collapse 

events or submarine failures, and could instead have been generated by sedimentary 
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overpressure and/or by the presence of a mechanically weak layer such as tephra or 

turbidites. Further analytical work is required to verify the sources of these events on the 

shallow slopes south of the Cape Verdean archipelago. As these layers are thin, have limited 

lateral extent, and occurred on low-gradient slopes in deep water, we consider their 

associated tsunamigenic potential to be low. 
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Figure captions 

Fig. 1. (a) Location of the Cape Verdes offshore West Africa. Box outlines the region 

presented in b. (b) Multibeam bathymetric data collected during R/V Meteor cruises M155 

and M80/3 overlain on GEBCO2019 (British Oceanographic Data Centre, www.gebco.net) 

bathymetry of the southern Cape Verdean archipelago. Black lines show the locations of 

Parasound profiles collected during cruise M155 of R/V Meteor. (c) Location of the newly 

acquired Parasound data and of the gravity cores collected during cruise M155. 

Fig. 2. High-resolution, multibeam bathymetry data highlighting the hummocky nature of the 

Monte Amarelo debris avalanche deposits (MTD-A) proximal to Fogo. (a) Compilation of the 

M155 and M80/3 multibeam bathymetry data overlain on GEBCO2019 bathymetry and 

DEM topography of Fogo Island. (1) Espigão escarpment; (2) Bordeira escarpment (dotted 

black line) is regarded as either the Monte Amarelo headwall scarp (Day et al. 1999), or the 

edge of a caldera (Madeira et al. 2008; Martinez-Moreno et al. 2018); (3) Monte Amarelo 

headwall scarp (dotted pink line; Madeira et al. 2008; Martínez-Moreno et al. 2018); dashed 

black line: previously estimated extent of the Monte Amarelo debris avalanche deposits 

(Masson et al. 2008); solid white line: revised extent of the Monte Amarelo debris avalanche 

deposits (MTD-A); dashed white line: transitional zone where the size of the hummocks 

decreases with distance from the source. (b) Enlarged view of the hummocky topography of 

the Monte Amarelo debris avalanche deposits. Note the angular shape and variable size of the 

hummocks. 

Fig. 3. (a) Map showing the distribution of the debris avalanche deposits (MTD-A), the 

acoustically transparent/seismically chaotic MTD-B associated with the Monte Amarelo flank 

collapse, and a transitional zone where the size of the hummocks decreases with distance 

from the source. The lateral extent of MTD-B may extend further south and west of the 

surveyed area. Dashed black line: previous mapped extent of the Monte Amarelo deposits 

(Masson et al. 2008); Grey line: eastern margin of the upper part of MTD-B. Solid black 

lines: location of the Parasound lines shown in (b) to (e). (b-e) Parasound profiles 

highlighting the acoustic character of (b) MTD-A, (c) the transitional zone, and (d-e) MTD-B. 

See the text for discussion on the nature of these deposits. 

Fig. 4. (a) Compilation of sediment gravity cores retrieved south of Fogo and Santiago during 

M155 showing preliminary stratigraphic correlations based on visual analysis. Dashed red 

lines: correlations between different volcaniclastic sand layers (V1-V7); Dashed blue lines: 

correlation of background sediment layers (reddish-brown horizons) that helped to correlate 

the volcaniclastic sand layers. The location of these cores is shown in Figure 1c. (b) Zoom of 

gravity core M155_38 (62-168 cm) showing the visually identified volcaniclastic layers V1-

3. 

Fig. 5. (a) Multibeam data overlain on GEBCO2019 bathymetry highlighting the presence of 

multiple fault-related escarpments and volcanic features on the shallow slopes south of Fogo. 

Additional mass-transport deposits are also identified in the Parasound data and coloured 

according to their burial depth (see legend). Solid red lines: location of the Parasound profiles 
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shown in (c) and (d). (b) Multibeam data showing the nature of the fault-related escarpments 

on the slopes south of Fogo and Santiago in more detail. (c) Parasound profile crossing one of 

the most striking escarpments visible on the western side (see 5b), highlights the relation 

between tectonic processes and landsliding in the area. Monte Amarelo MTD-B deposits 

(eastern side) are remobilised across the escarpment. (d) Parasound profile crossing an 

escarpment in the southern reaches of the working area highlights acoustically transparent 

MTDs at varying depths.  

Fig. 6. Southern Scour Complex (SSC). (a) Multibeam data highlighting the surface 

morphology of the Southern Scour Complex and the extension of the Eastern Scour (dashed 

white line). The location of Figure 6a with respect to the other features discussed in this 

article is shown in Figure 5. (b-d) Parasound profiles crossing the SSC showing a complex 

relationship between former and more recent landsliding processes, along with the variable 

acoustic character of the deposits and of the adjacent unfailed material. (e) Conceptual model 

showing the proposed retrogressive development of the SSC towards the north and east. 

Numbers 1-3 highlight the sequence of events. 
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