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Abstract Gelatinous zooplankton (Cnidaria, Ctenophora, and Urochordata, namely, Thaliacea) are
ubiquitous members of plankton communities linking primary production to higher trophic levels and
the deep ocean by serving as food and transferring “jelly‐carbon” (jelly‐C) upon bloom collapse. Global
biomass within the upper 200 m reaches 0.038 Pg C, which, with a 2–12 months life span, serves as the lower
limit for annual jelly‐C production. Using over 90,000 data points from 1934 to 2011 from the Jellyfish
Database Initiative as an indication of global biomass (JeDI: http://jedi.nceas.ucsb.edu, http://www.bco‐
dmo.org/dataset/526852), upper ocean jelly‐C biomass and production estimates, organism vertical
migration, jelly‐C sinking rates, and water column temperature profiles from GLODAPv2, we
quantitatively estimate jelly‐C transfer efficiency based on Longhurst Provinces. From the upper 200 m
production estimate of 0.038 Pg C year−1, 59–72% reaches 500 m, 46–54% reaches 1,000 m, 43–48% reaches
2,000 m, 32–40% reaches 3,000 m, and 25–33% reaches 4,500 m. This translates into ~0.03, 0.02, 0.01, and
0.01 Pg C year−1, transferred down to 500, 1,000, 2,000, and 4,500 m, respectively. Jelly‐C fluxes and
transfer efficiencies can occasionally exceed phytodetrital‐based sediment trap estimates in localized open
ocean and continental shelves areas under large gelatinous blooms or jelly‐Cmass deposition events, but this
remains ephemeral and transient in nature. This transfer of fast and permanently exported carbon
reaching the ocean interior via jelly‐C constitutes an important component of the global biological soft‐tissue
pump, and should be addressed in ocean biogeochemical models, in particular, at the local and
regional scale.

1. Introduction

Biological oceanic processes, primarily carbon production in the euphotic zone, sinking and remineraliza-
tion, govern the global biological carbon soft‐tissue pump (Buesseler et al., 2007). Sinking and laterally
transported carbon‐laden particles fuel benthic ecosystems at continental margins and in the deep sea
(Koppelmann & Frost, 2008; Robinson et al., 2010). Marine zooplankton play a major role as ecosystem
engineers in coastal and open ocean ecosystems because they serve as links between primary production,
higher trophic levels, and deep‐sea communities (Lebrato et al., 2012; Robinson et al., 2010; Robison
et al., 2005). In particular, gelatinous zooplankton (Cnidaria, Ctenophora, and Chordata, namely,
Thaliacea) are universal members of plankton communities that graze on phytoplankton and prey on other
zooplankton and ichthyoplankton. They also can rapidly reproduce on a time scale of days and, under favor-
able environmental conditions, some species form dense blooms that extend for many square kilometers
(Condon et al., 2013). These blooms have negative ecological and socioeconomic impacts by reducing com-
mercially harvested fish species (Pauly et al., 2009), limiting carbon transfer to other trophic levels (Condon
et al., 2011), enhancing microbial remineralization, and thereby driving oxygen concentrations down close
to anoxic levels (Frost et al., 2012).

The global biomass of gelatinous zooplankton, herein collectively referred to as “jelly‐carbon” (jelly‐C),
within the upper 200 m of the ocean amounts to 0.038 Pg C (Lucas et al., 2014). Calculations for mesozoo-
plankton (200 μm to 2 cm) suggest about 0.20 Pg C (Moriarty & O'Brien, 2013). The short life span of most
gelatinous zooplankton, from weeks up to 2 to 12 months (Ceh et al., 2015; Raskoff et al., 2003), suggests
biomass‐production rates above 0.038 Pg C year−1, depending on the assumed mortality rates, which in
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many cases are species‐specific. This is much smaller than global primary production (50 Pg C year−1) (Field
et al., 1998), which translates into export estimates close to 6 Pg C year−1 below 100 m (Moore et al., 2004;
Siegel et al., 2014), depending on the method used. Globally, gelatinous zooplankton abundance and distri-
bution patterns largely follow those of temperature and dissolved oxygen as well as primary production as
the carbon source (Lucas et al., 2014). However, gelatinous zooplankton cope with a wide spectrum of envir-
onmental conditions, indicating the ability to adapt and occupy most available ecological niches in a water
mass. In terms of Longhurst regions (biogeographical provinces that partition the pelagic environment;
Longhurst, 1995, 1998), the highest densities of gelatinous zooplankton occur in coastal waters of the
Humboldt Current, NE U.S. Shelf, Scotian and Newfoundland shelves, Benguela Current, East China and
Yellow Seas, followed by polar regions of the East Bering and Okhotsk Seas, the Southern Ocean, enclosed
bodies of water such as the Black Sea and the Mediterranean, and the west Pacific waters of the Japan seas
and the Kuroshio Current (Brotz et al., 2012; Condon et al., 2012; Lucas et al., 2014). Large amounts of jelly‐C
biomass that are reported from coastal areas of open shelves and semienclosed seas of North America,
Europe, and East Asia come from coastal stranding data (e.g., http://www.jellywatch.org/).

Large amounts of jelly‐C are quickly transferred to and remineralized on the seabed in coastal areas, includ-
ing estuaries, lagoons and subtidal/intertidal zones (reviewed in Lebrato et al., 2012), shelves and slopes
(Billett et al., 2006; Lebrato & Jones, 2009; Sweetman & Chapman, 2011), the deep sea (Smith et al.,
2014), and even entire continental margins such as in the Mediterranean Sea (Lebrato, Molinero, et al.,
2013). Jelly‐C transfer begins when gelatinous zooplankton die at a given “death depth” (exit depth), con-
tinues as biomass sinks through the water column, and terminates once biomass is remineralized during
sinking or reaches the seabed, and then decays. Jelly‐C per se represents a transfer of “already exported” par-
ticles (below the mixed later, euphotic or mesopelagic zone), originated in primary production since gelati-
nous zooplankton “repackage” and integrate this carbon in their bodies, and after death transfer it to the
ocean's interior. While sinking through the water column, jelly‐C is partially or totally remineralized as dis-
solved organic/inorganic carbon and nutrients (DOC, DIC, DON, DOP, DIN, and DIP; Chelsky et al., 2015;
Sweetman et al., 2016; West et al., 2009), and any left overs further experience microbial decomposition or
are scavenged by macrofauna and megafauna once on the seabed (Sweetman et al., 2014; Tinta et al.,
2016). Despite the high lability of jelly‐C (Ates, 2017; Sweetman et al., 2016), a remarkably large amount
of biomass arrives at the seabed below 1,000 m. During sinking, jelly‐C biochemical composition changes
via shifts in C:N:P ratios as observed in experimental studies (Frost et al., 2012; Sempere et al., 2000;
Titelman et al., 2006). Yet realistic jelly‐C transfer estimates at the global scale remain in their infancy, pre-
venting a quantitative assessment of the contribution to the biological carbon soft‐tissue pump.

Ocean carbon export is typically estimated from the flux of sinking particles that are either caught in sedi-
ment traps (Asper, 1987) or quantified from videography (Jackson et al., 1997), and subsequently modeled
using sinking rates (Martin et al., 1987). Biogeochemical models (e.g., Gehlen et al., 2006; Ilyina et al.,
2013; Laufkötter et al., 2015) are normally parameterized using particulate organic matter data (e.g., 0.5–
1,000 μm marine snow and fecal pellets) that were derived from laboratory experiments (Ploug et al.,
2008) or from sediment trap data (Gehlen et al., 2006). These models do not include jelly‐C (except larva-
ceans; Lombard & Kiørboe, 2010; Lombard et al., 2010) not only because this carbon transport mechanism
is considered transient/episodic and not usually observed, and mass fluxes are too big to be collected by sedi-
ment traps (e.g., Siegel et al., 2014), but also because models aim to simplify the biotic compartments to facil-
itate calculations. Furthermore, jelly‐C deposits tend not to build up at the seafloor over a long time, such as
phytodetritus (Beaulieu, 2002), being consumed rapidly by demersal and benthic organisms (Sweetman
et al., 2014) or decomposed by microbes (Tinta et al., 2016). The jelly‐C sinking rate is governed by organism
size, diameter, biovolume, geometry (Walsby & Xypolyta, 1977), density (Yamamoto et al., 2008), and drag
coefficients (McDonnell & Buesseler, 2010). Recently, Lebrato, de Jesus Mendes, et al., 2013 determined the
average sinking speed of jelly‐C using Cnidaria, Ctenophora, and Thaliacea samples, which ranged from 800
to 1,500 m day−1 (salps: 800–1,200 m day−1; scyphozoans: 1,000–1,100 m d−1; ctenophores: 1,200–
1,500 m day−1; pyrosomes: 1,300 m day−1). Jelly‐Cmodel simulations suggest that, regardless of taxa, higher
latitudes are more efficient corridors to transfer jelly‐C to the seabed owing to lower remineralization rates
(Lebrato et al., 2011). In subtropical and temperate regions, significant decomposition takes place in the
water column above 1,500 m depth, except in cases where jelly‐C starts sinking below the thermocline. In
shallow‐water coastal regions, time is a limiting factor, which prevents remineralization while sinking
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and results in the accumulation of decomposing jelly‐C from a variety of taxa on the seabed. This suggests
that gelatinous zooplankton transfer most biomass and carbon to the deep ocean, enhancing coastal carbon
fluxes via DOC and DIC, fueling microbial and megafaunal/macrofaunal scavenging communities.
However, the absence of satellite‐derived jelly‐C measurements (such as primary production; Behrenfeld
& Falkowski, 1997) and the limited number of global zooplankton biomass data sets make it challenging
to quantify global jelly‐C production and transfer efficiency to the ocean's interior.

In this study, we use data from the recently published Jellyfish Database Initiative (JeDI: http://jedi.nceas.
ucsb.edu; Condon et al., 2015), public data sets (http://www.bco‐dmo.org/dataset/526852), and global bio-
mass estimates of the upper ocean (Lucas et al., 2014) to model jelly‐C transfer efficiency based on
Longhurst biogeographical provinces. We estimate exit depths for individual gelatinous zooplankton phyla
based on field vertical migration data. Combining these data with published sinking rates (Lebrato, de Jesus
Mendes, et al., 2013) and vertical temperature profiles (compiled fromGLODAPv2; Key et al., 2015) allow us
to calculate remineralization curves and jelly‐C transfer efficiency globally. Calculations use over 90,000
data points from 1934 to 2011 as a global representation, across the different phyla, and include separate
values for each Longhurst Province. Using two different model functions, the aim of this study is to quanti-
tatively address global biomass and jelly‐C transfer efficiency, as well as the gelatinous zooplankton contri-
bution to the sinking compartment of the biological soft‐tissue pump. Our results suggest a high importance
of including jelly‐C transfer efficiency in the next generation of local and regional biogeochemical models, to
consistently account for its potential role in global calculations.

2. Methods
2.1. Data Sources

In this study, gelatinous zooplankton and jelly‐C refer to mesozooplankton (0.2 to 20 mm), macrozooplank-
ton (20 mm to 20 cm), and megazooplankton (20 to 200 cm), following the Sieburth et al. (1978) scale. The
majority of the observations of sinking jelly‐C concern the macrozooplankton and megazooplankton.
Gelatinous zooplankton biomass data originated from the Jellyfish Database Initiative (JeDI http://jedi.
nceas.ucsb.edu; Condon et al., 2012), which is a global synthesis project that provides a public data set of
nearly 500,000 data points, including quantitative, categorical, and presence‐absence data for the last
400 years (see Lucas et al., 2014, for details; Figure 1). This project has a number of public databases in their
open directories, including vertical migration data, which were accessed through http://www.bco‐dmo.org/
dataset/526852, and then arranged for modeling purposes in a CSV file (Figure 2; Appendix A). Readers can
access data in the format used in this publication at the NOAA National Center for Environmental
Information (NCEI) under Accession Number 0207402 in https://data.nodc.noaa.gov/cgi‐bin/iso?id=gov.
noaa.nodc:0207402. A limitation of the JeDI data set is that it does not cover the entire ocean (<50%), and
it is also biased toward the Northern Hemisphere (43% vs. 23%) (Figure 1). The Southern Ocean, the West
Pacific, the South East Pacific, and the South Atlantic are not well represented. This means that our jelly‐
C transfer efficiency total estimations from the upper‐ocean gelatinous biomass (starting total production
of 0.038 Pg C year−1) are strongly conservative (see section 4). Although jelly‐C exists below 200 m in the
mesopelagic zone, for the purpose of this study we only used data from the upper 200 m because data from
deeper depths are of poor quality and unreliable (Lucas et al., 2014). We do not use coastal stranding data in
any of our calculations, all data are from the open ocean. Biomass data (in mg C m−3) are calculated from
abundance data following biometric equations (Lucas et al., 2011). These conversion factors are used
because they were the most complete database at the time this study was developed and they were ready
to be applied to our model. We acknowledge that there are more recent compilations of gelatinous zooplank-
ton carbon estimations (Andersen et al., 2016) that could slightly reshape our modeled estimates. Biomass
data are then classified as maximum andmean biomass by Longhurst Province, and finally further classified
by phylum (Chordata, Cnidaria, and Ctenophora; Lucas et al., 2014; Figure 1; Appendix B).

2.2. Data Mining and Use in the Model

In order to estimate transfer efficiency, we calculate jelly‐C microbial decay ratios between 1 and 0 to
describe jelly‐C remineralization profiles, which are based on vertical temperature profiles, species‐specific
sinking speeds, and empirical decay rates, for each Longhurst Province. For biomass data, mean and max-
imum values have been extracted from field data reported by Lucas et al. (2014) for the 43 Longhurst
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Figure 1. Global summary of gelatinous biomass and how jelly‐C fits in the biological pump. (a) Upper ocean (200 m) depth‐integrated global gelatinous zooplank-
ton biomass on 5° grid cells displayed over the Longhurst Provinces modeled (light‐blue/empty means no data available). Data are replotted as per Lucas et al.
(2014) to model jelly‐C export per Longhurst Province under John Wiley and Sons License Number 4575870755047. (b) A schematic representation of the
biological pump and the biogeochemical processes that remove elements from the surface ocean by sinking biogenic particles including jelly‐C. The diagram is
adapted from a JGOFS U.S. cartoon to accommodate and describe jelly‐C sinking and export. Symbols are courtesy of the Integration and Application Network
(http://ian.umces.edu/symbols/).
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Provinces. Next, carbon transfer efficiency was calculated using combinations of exit depth (b0) and
remineralization profiles (see below for details). The original data in Appendix B and Table S1, S2, S3,
and S4 were extracted from Lucas et al. (2014) under John Wiley and Sons License Number 4575870755047.

Temperature data were extracted from the GLODAPv2 database (Key et al., 2015) (Figure 2; Appendix C)
and classified according to latitude and longitude ranges of the 43 Longhurst Provinces and averaged into
one representative vertical temperature profile per province (Appendices A and B). The representative tem-
perature profiles are based on 50 to 100 temperature profiles per province, covering as much area as possible
and spread out as evenly as possible using the same relative distance between profiles to avoid uneven
weighting of areas within provinces with different densities of available temperature profiles. We acknowl-
edge that a single Longhurst Province can have many different temperature profiles owing to the geographic
range it occupies (Figure 2). Average seabed depth was also calculated from the GLODAPv2 database to feed
the model with an end depth (b1) (Appendices A and B).

Based on the range of jelly‐C sinking speeds (Lebrato, de JesusMendes, et al., 2013), we calculatemean global
biomass export for nominal sinking speeds of 500, 1,000, and 1,500 m day−1. Subsequently, assumed taxon‐
specific sinking speeds are used to obtain export estimates per phylum: Chordata (800 and 1,200 m day−1),
Cnidaria (900 and 1,100mday−1), and Ctenophora (500 and 1,300mday−1). Finally, a uniform sinking speed
of 1,000m day−1 is applied for all taxa to provide global biomass export estimates (Appendix B; Tables S1 and
S2).We recognize that species‐specific jelly‐C sinking speeds could improve the calculations, but to the best of
our knowledge, these estimates are the only ones available to date. We assume that carcasses sink in one
piece, but we acknowledge potential fragmenting during sinking, which can change the sinking rate and also
affect remineralization rate since smaller particles have larger surface area to volume ratio.

For exit depth (“death depth” = b0) (Figure 2) calculations, we assume that gelatinous zooplankton stay
within their vertical migration depth range and do not undergo major predation. Since different species,
classes, and phyla have different vertical migration ranges, and it is practically impossible to know at which
depth they are dying, we assume that their deepest point of migration matches b0. The selection of a deep b0

Figure 2. Latitudinal jelly‐C exit depths and temperature profiles. (a) Detailed jelly‐C exit depths (b0) vs. latitude for Chordata (Salpidae/Thaliacea), Cnidaria
(Hydrozoa/Scyphozoa), and Ctenophora (Nuda/Tentaculata), including all available observations and the averaged b0 data used per Longhurst Province
(details in Appendix C). (b) Representative vertical temperature profiles using GLODAPv2 data (Key et al., 2015) for each of the individual 43 Longhurst Provinces,
used to model jelly‐C export (details in Appendix B). Line colors correspond to latitude bands: Subpolar and Polar (blue), Temperate (green), and Subtropical and
Tropical (red). Deepest temperature data coincide with the seabed depth, which allow calculating remineralization curves.
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was made on the assumption that jelly‐C does not stay floating in the surface, although in some cases it
might, e.g., arriving to the shelves/neritic/beach areas. We think jelly‐C, in general, starts sinking at depth
because when organisms die, they are in a moribund state for a long time, slowly/passively sinking, until
they eventually die off and sink faster. This has been observed in cruises/fieldwork around the world, and
is often commented in cruise reports that find intact jelly‐C at the seabed (e.g., Billett et al., 2006;
Cacchione et al., 1978; Lebrato & Jones, 2009). Data are arranged geographically to match Longhurst
Provinces and because variability exists in the number of b0 estimates per province (column “N° depths‐
counts” in Appendix B), depths (typically >50 depths per province) were averaged to provide a single
“Longhurst death depth” per phylum and province (Figure 2, Appendices A and B). These estimates
should be reliable for biomass data from b0 = 200–600 m, but we are apprehensive when it comes to
biomass data deeper than b0 = 600 m due to poor or insufficient data (Lucas et al., 2014).

2.3. Model Development

The original model equation used to describe jelly‐C transfer efficiency employs a decay rate (k, equation (1))
with exponential dependence on temperature (Lebrato et al., 2011). The model does not account for con-
sumption influencing the decay rate, although it is known that jelly‐C are further consumed by other organ-
isms. The exponential relation is founded thermodynamically because many metabolic rates correlate
exponentially with temperature, e.g., in aerobic heterotrophs the metabolic rate equals the respiration rate
(Brown et al., 2004). Yet, when applying an exponential temperature equation (equation (2)), very quick bio-
mass decay occurs at high temperatures based on a high bacterial remineralization coefficient (decay rate k)
that may or may not be realistic. Experimental observations at the upper end of the temperature range used
here (about 30 °C) are lacking. To account for this uncertainty, we approach this issue by introducing an
alternative equationwith k depending linearly on temperature (equation (3)) to reduce the effect of high tem-
peratures on the biomass decay rates (Lebrato et al., 2011, and references therein, Figure 3, Appendices D and
E). Results are presented for both equations to provide a range of jelly‐C transfer efficiencies. Lastly, we com-
pare both equations under different field (latitudinal) temperature conditions (Figure 2, Appendix D).

dM
dt

¼ –k Tð Þ·M: (1)

Jelly‐C decay is calculated following first order kinetics with a decay constant (k) depending exponentially
(r2 = 0.98) or linearly on temperature (T), where T is represented by a gradient (exponential equation (2))

Figure 3. Temperature dependency equations and remineralization curves. (a) Decay rates (k) for exponential and linear
temperature dependencies used to estimate jelly‐C export curves in the 43 Longhurst Provinces. The linear equation is
used to reduce the very high decay rates occurring at high temperatures when using the exponential function. For both
curves r2 = 0.98. (b) Both curves are compared using polar, temperate, and tropical temperature data to exemplify how
they differ in terms of jelly‐C transfer efficiency. Data for Nemopilema nomurai are from Iguchi et al. (2006), for Perphylla
perphylla from Titelman et al. (2006), for Thalia democratica and for other Salps are from Sempere et al. (2000), and for
phytoplankton from Sudo et al. (1978) and Fujii et al. (2002).
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or a mean (linear equation (3)). While kmay be expected to vary with organism size (Titelman et al., 2006),
temperature accounts for 98% of the variability in k (equation (2); Figure 3a), even though the data encom-
pass a wide range of sizes (0.1–1 kg wet weight). Solving equation (1) results in a jelly‐C transfer efficiency
(ratio) [M (zR):M (zD)] that relates initial biomass [M (zD)], sinking from a given depth (zD = death
depth = b0) with temperature T (zD), to a final biomass [M (zR)], arriving at end depth (b1 = zR) with tem-
perature T (zR), where zR and T (zR−1) are the end depth (seabed) and temperature in the water column,
respectively. The depth zD was obtained from the lower range of taxa vertical migration data (Figure 2).
The data were independently collected and calculated per Longhurst Province and then applied in equa-
tions (2) and (3) below.

Jelly‐Cmicrobial decay ratios were estimated by solving (equation (1)) piecewise, dividing depth ranges into
discrete depth intervals (Longhurst Province‐specific; see Appendix B) using the two parameterizations for k
below (Figure 3). In equations (2) and (3), C is Sinking Speed and KT(i) is the local temperature gradient
between depths zi−1 and zi. Underlying assumptions, calculations, and derivations of the solutions are avail-
able in Appendix E:

1. Exponential equation:

k Tð Þ ¼ 0:140 day−1 e0:145°C−1T zð Þ: (2)

Solution: M zið Þ
M zi−1ð Þ ¼ e

−
0:140day−1e0:145°C

−1T zi−1ð Þ
0:145°C−1KT ið ÞC e0:145°C

−1KT ið ÞΔzi –1
� �

;Δzi ¼ zi−zi−1:

2. Linear equation:

k Tð Þ ¼ 0:064°C−1 day−1 T zð Þ þ 0:02 day−1: (3)

Solution: M zið Þ
M zi−1ð Þ ¼ e−

Δzi
C 0:064°C−1day−1 T zi−1ð ÞþKT ið Þ

2 Δzi
� �

þ0:02day−1
� �

:

In both cases transfer efficiency is calculated as the product of the individual decay ratios of all depth
intervals:

M zRð Þ : M zDð Þ ¼ ∏
i¼1

nM zið Þ : M zi−1ð Þ; (4)

where n is the number of depth intervals in each Longhurst Province and the local transfer efficiencyM (zi):
M (zi–1) is obtained with k(T) from either equation (2), for exponential temperature dependence, or equa-
tion (3), for linear temperature dependence. An EXCEL spreadsheet is provided in the supplementary mate-
rial (Appendix D) with the solution of equations (2)–(4), where users can type in their own data (Table 1;
Appendix D).

2.4. Global Jelly‐C Biomass Transfer Efficiency Estimations

In order to work out a global estimate of jelly‐C arriving at the seabed, based on transfer efficiency, we
grouped all Longhurst provinces data into three latitudinal bands, polar (66° to 90°, N and S), temperate
(66° to 23°, N and S), and tropical (23° to 0°, N and S), using Appendix B to classify jelly‐C biomass per
Longhurst province and per latitudinal band. Then we averaged the representative vertical temperature pro-
files of all provinces in each latitude band to obtain one representative profile for each latitude band. Using
the initial global standing stock of jelly biomass, M (zR) = 0.038 Pg C from Lucas et al. (2014), we conserva-
tively assume that organisms die after 1 year. Thus, our estimates remain an approximation given the short
life span of many species, usually less than 1 year (Ceh et al., 2015; Raskoff et al., 2003). Regional biomass
percentages are attributed to all Longhurst Provinces per latitudinal band, to determine how much biomass
each latitudinal band contributes to the global standing stock of the database. The overall jelly‐C biomass
percentages are polar ~20%, temperate ~35%, and tropical ~45%. Using these percentages as initial biomass
per latitudinal band plus the vertical temperature profiles, a constant sinking speed ofC= 1,000m day−1 and
an exit depth of 100 m is used to determine the amount of jelly‐C biomass transferred to each depth interval
down to 6,000 m. Total jelly‐C biomass transferred is reported below as the sum of the biomass per latitude
band at each depth level. A single sinking speed and a single exit depth are chosen for the global estimation
as an average of all the different scenarios encountered for all taxa, provinces, and sinking speeds
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3. Results

Most b0 data (over 95%) in the database are within the upper 1,000 m, over 80% within 600 m (Figure 2;
Appendices A and B). Only at a few latitudes we find b0 deeper than 600 m, which we exclude from further
analysis. In most Longhurst Provinces and phyla, b0 lies within the upper 200 m, with some exceptions near
500 m. The averaged temperature profiles reflect our division of the Longhurst Provinces into tropical, tem-
perate, and polar latitude bands, with permanent, seasonal, and absent thermoclines, respectively (Figure 2;
Appendix C). We consider all export to below the permanent thermoclines as permanently exported to the
ocean interior. Except for polar regions, temperature profiles converge between 3°C and 8°C below 1,000 m,
with a semiconstant temperature below. The use of exponential and linear equations of decay rate (k) vs.
temperature results in different microbial decay ratios for polar and tropical but not for temperate latitudes.

Jelly‐C transfer efficiency depends on initial biomass, initial depth, end depth, sinking speed, and the tem-
perature dependence (exponential is preferred for mechanistic reasons) (Figure 4). The microbial decay ratio
is very sensitive to the exit depth (b0 = 100, 500, or 1,000 m) and end depth, which largely determine how
much jelly‐C arrives at the seabed (transfer efficiency >20% in most cases) (Figure 4). Varying sinking speed
at b0 between 500 and 1,500 m day−1 changes howmuch jelly‐C is transferred from b0 to the seabed by 5% to
15%. The equation for the temperature dependency (exponential or linear) also affects the estimated jelly‐C
transfer efficiency, with changes between 5% and 15% for the same b0 and sinking speed (Figure 4). The lar-
gest remineralization within the water column occurs in tropical regions, followed by temperate and polar
regions. In most polar regions, remineralization is minimal, with over 70% of jelly‐C arriving at the seabed.
The same patterns are observed when using phylum‐based ratios, but differences exist among the phyla
(Figure 5). Each phylum has its own b0 per Longhurst province, which is reflected in the remineralization
curves (Figure 5). Most remineralization occurs above 1,000 m, irrespective of b0 and sinking speed, with
low remineralization rates below.

Jelly‐C (mg Cm−3) maxima per Longhurst Province are used to determine biomass transfer efficiency under
a mass deposition event scenario, as when a blooming population of gelatinous zooplankton completely col-
lapses (Figure 6). Simulations for each phylum with multiple sinking speeds show that large quantities of
jelly‐C can reach the seabed at anytime and anywhere, irrespective of latitude, depth, sinking speed, b0,

Table 1
Preview of the Excel Spreadsheet to Work Out Microbial Decay Ratios and Biomass for any Kind of Initial Conditions Using the Exponential and Linear Methods
(Appendix S4)

Interval i (m) Depths (m) Temp. (°C) KT M/M0 interval zD‐zR (m) M/M0 final Depth (m) Biomass (mg C m−3)

EXPONENTIAL

b0 b1 tb0 tb1 Gradient C = 1,300 1 0 20.000

0–100 0 100 27.00 24.00 −0.030 0.645 0–100 0.645 100 12.907

100–200 100 200 24.00 21.00 −0.030 0.753 0–200 0.486 200 9.722

200–500 200 500 21.00 18.00 −0.010 0.576 0–500 0.280 500 5.606

500‐1,000 500 1,000 18.00 13.00 −0.010 0.594 0–1,000 0.167 1,000 3.330

1,000–3,000 1,000 3,000 13.00 8.00 −0.003 0.364 0–3,000 0.061 3,000 1.214

3,000–5,000 3,000 5,000 8.00 4.00 −0.002 0.593 0–5,000 0.036 5,000 0.721

LINEAR

b0 b1 tb0 tb1 Mean C = 1,300 1 0 20.000

0–100 0 100 27.00 24.00 25.500 0.881 0–100 0.881 100 17.613

100–200 100 200 24.00 21.00 22.500 0.894 0–200 0.787 200 15.742

200–500 200 500 21.00 18.00 19.500 0.746 0–500 0.587 500 11.749

500–1,000 500 1,000 18.00 13.00 15.500 0.678 0–1,000 0.398 1,000 7.961

1,000–3,000 1,000 3,000 13.00 8.00 10.500 0.345 0–3,000 0.137 3,000 2.745

3,000–5,000 3,000 5,000 8.00 4.00 6.000 0.537 0–5,000 0.074 5,000 1.475

Note. Depth, temperature, and sinking speed parameters to change depending on working needs (EXCEL file in Appendix S4). z0 = Exit depth (“death depth”); T
(z) = Temperature at depth z; KT = Temperature gradient between individual depths;M/M0 = Microbial decay ratio between two adjacent depths; C = Sinking
rate (m day−1); zD‐zR = Accumulated depth interval;M/M0 final = Multiply individual microbial decay ratios to integrate the previous remineralization inter-
vals; Biomass = Use initial biomass as a function of M/M0 and then multiply by the previous number to integrate the remineralization intervals.
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or temperature dependence, assuming no major consumption from pelagic organisms (the percentage
consumed is not known). During large bloom events in specific areas, with peaks from 1–5 g C m−3 to
greater than 10 g C m−3 (averages per Longhurst province range from 5 to 15 mg C m−3), most jelly‐C
biomass reaches the seabed (50% to 90%, Appendix C). Surprisingly, water depth (b1) is not a limiting
factor and model predictions show that large quantities of jelly‐C (>50% of original biomass) can arrive at
5,000 m and even deeper. In general, Cnidaria and Urochordata have the highest transfer efficiency,
followed by Ctenophores. In some specific areas, Cnidaria have biomass maxima of ~20 g C m−3, of
which over 9 g C m−3 arrives at 5,000 m, but the average per Longhurst Province remains below
20 mg C m−3. Given that in many oceanic areas, the seafloor is much shallower than 5,000 m, especially
at continental margins, a large fraction of the jelly‐C is transferred to the seafloor under a mass deposition
event sinking at high speed (Figure 6). The only exceptions are shallow shelves where jelly‐C could be
remineralized or resuspended and mixed upward later during winter mixing.

Estimates of mean and maximum jelly‐C biomass reaching the seabed differ between Longhurst Provinces,
in some cases by several orders of magnitude (Figure 7; Tables S1 and S3). Variations between phyla range
from near zero in some provinces to one or two orders of magnitude in others, reflecting the extreme com-
plexity of jelly‐C spatial distribution and transfer efficiencies (Figure 8; Tables S2 and S4). The total transfer
of global jelly‐C biomass across tropical, temperate, and polar regions also varies with the water depth being
used as a target depth and temperature dependence used. Assuming a (conservative) global ocean total esti-
mate of 0.038 Pg C year−1 (Lucas et al., 2014), jelly‐C biomass transfer summed over all areas is 0.022–
0.027 Pg C year−1 at 500 m, 0.016–0.018 Pg C year−1 at 1,000 m, and 0.009–0.012 Pg C year−1 at 4,500 m

Figure 4. Global jelly‐C transfer efficiencies using exponential and linear temperature dependencies. The microbial decay ratio (zD) is calculated for individual
averaged temperature profiles obtained from GLODAPv2 (Key et al., 2015) using data from 43 individual Longhurst Provinces. The plots use a matrix of three
sinking speeds (500, 1,000, and 1,500 m s−1) and three exit depths (b0) (100, 500, 1,000 m) to represent most field scenarios. The colored lines indicate the averaged
polar (blue), temperate (green), and tropical (red) profiles.
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(Figure 9). Jelly‐C transfer to deeper than 4,500 m and export of biomass to the seafloor occur
regularly (<0.010 Pg C).

4. Discussion
4.1. Transfer Efficiency of Sinking Jelly‐C

Organic carbon originating in primary production follows three major pathways when sinking in the water
column: (i) transfer to higher trophic levels during zooplankton grazing/filtering/consumption, (ii) export to
depth via zooplankton fecal pellets/housings/biomass, and (iii) export through sinking of intact phytoplank-
ton cells (phytodetritus) andmarine snow/aggregates (Legendre, 1990; Peinert et al., 1989; Pilskaln &Honjo,

Figure 5. Phylum‐province specific jelly‐C transfer efficiencies using exponential and linear temperature dependencies. The microbial decay ratio (zD) is d for indi-
vidual averaged temperature profiles obtained from GLODAPv2 (Key et al., 2015) using data from 43 Longhurst Provinces. The plots use a matrix of two sinking
speeds (phylum‐specific using published data) and the 43 Longhurst Province specific exit depths (b0) (see Figure 2) to represent as accurately the field scenarios.
The colored lines indicate the averaged polar (red), temperate (green), and tropical (blue) profiles.
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Figure 6. Phylum‐province specific jelly‐C biomass remineralization curves to show potential for seabed mass deposition. A summary of mean and maximum
export values can be checked in Tables S1, S2, S3, and S4 and in Appendix B. Curves are calculated using exponential and linear temperature dependencies for
individual average temperature profiles obtained from GLODAPv2 (Key et al., 2015) using data from the 43 Longhurst Provinces. The plots use a matrix of two
sinking speeds (phylum‐specific using published data) and the 43 Longhurst Province specific exit depths (b0) (see Figure 2) to represent as accurately the field
scenarios. For ID of the Longhurst Provinces vertical profiles see Figure 2b.

Figure 7. Solutions for exponential and linear temperature dependencies. The solutions are shown for start (100 m) and end (seabed) maximum andmean biomass
for the 43 Longhurst Provinces using a matrix of three sinking speeds (C= 500, 1,000, and 1,500 m day−1), and one exit depth (b0 = 100m) representing the average
of the euphotic zone. Biomass in several provinces exceeds the axis maximum, which values can be checked in Tables S1 (exponential) and S3 (linear).
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Figure 8. Solutions for exponential and linear temperature dependencies. The solutions are shown for start (phyla‐province specific) and end (seabed) maximum
andmean biomass for the 43 Longhurst Provinces using one sinking speed (C= 1,000 m day−1) and specific exit depth (b0 = specific; see Figure 2 and Appendix C).
Biomass in several provinces exceeds the axis maximum, which values can be checked in Tables S2 (exponential) and S4 (linear).
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1987). The jelly‐C export contributes to pathway (i) by grazing, and to pathway (ii) as one of the major routes
for particles reaching the deep ocean and the seabed.

Most knowledge about pathways (ii) and (iii) comes from sediment trap measurements at various depths
that reflect particles originating in primary and secondary production, detritus, fecal material, or even mate-
rial already processed by gelatinous zooplankton. For technical reasons, most sinking jelly‐C (corpses, live
bodies, decaying material) does not reach the traps and this flux is thus not quantified. Trap data are then
extrapolated via parameterizations in global models (Honjo et al., 2008; Martin et al., 1987). About 5% to
25% of global net primary production (~50 Pg C year−1; Field et al., 1998) is transferred from the euphotic
zone to below 200 m (Buesseler, 1998; Schlitzer, 2000), and about 1% to 3% reaches the deep‐sea below
3,000 m. Other estimates suggest that less than 15% of organic carbon leaving the euphotic zone reaches
depths greater than 1,000 m because the remainder is remineralized or consumed at shallower depths
(Buesseler et al., 2007; Buesseler & Boyd, 2009; Marsay et al., 2015). Open ocean sediment trap data (e.g.,
Buesseler et al., 2007) reveal total export ratios out of the euphotic zone between 0.20 and 0.50 at 500 m, indi-
cating high remineralization rates, while theMartin curve predicts an export ratio of ~0.27 at 500m. Detailed
open ocean sediment trap investigations (summarized in Buesseler & Boyd, 2009) reach the same conclu-
sion: between 80% and 90% of the carbon leaving the euphotic zone is remineralized above 1,000 m, and
not more than 20% of the particulate carbon (POC) reaches 500 m. There is also a large contribution from
fecal pellets, e.g., of copepod‐ and euphausiid‐dominated zooplankton communities adding up in some cases
to >90% of the total particulate organic carbon export (Belcher et al., 2017; Clarke et al., 1998).

Considering the different transfer efficiencies associated with pathways (ii), in particular the contribution of
jelly‐C, and (iii), the question arises: What are the major controls of transfer efficiency, and what are the
implications, e.g., in zooplankton communities dominated by jelly‐C, copepods, or euphausiids?
Microbially mediated decay rates for copepod fecal pellets and marine snow range from 0.08 to 0.21 day−1

(Ploug et al., 2008; Ploug & Grossart, 2000), and for phytodetritus from 0.05 to 0.30 day−1 (Fujii et al.,
2002; Sudo et al., 1978; Sweetman et al., 2014). While these decay rates are much lower than those associated
with jelly‐C (Figure 3), the phytodetritus and fecal particles and aggregates also remain much longer in the
euphotic zone, owing to lower sinking velocities (from <1–100 m day−1 for phytodetritus, Mei et al., 2003, to
between 100 and 500m day−1 for fecal particles, reviewed by Turner, 2002). Hence, more time is available for
remineralization and grazing, facilitating recycling (Huston & Deming, 2002), and preventing efficient

Figure 9. Solutions for exponential and linear temperature dependencies. (a) Averaged temperature profiles used to model global ocean jelly‐C export from the
upper 200 m (see section 2 for assumptions). (b) The numerical profiles show estimations (exponential and linear) of transferred jelly‐C per latitude and depth
(seabed) based on a total/initial production of 0.038 Pg C year−1 (1 Pg = 1015) from the upper 200m (Lucas et al., 2014), assuming turnover once a year (conservative
since gelatinous zooplankton tend to live 2 to 6 months; see section 4).
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transfer to deeper water masses. The loss of carbon from the jelly‐C via respiration and finite growth effi-
ciency when acquiring carbon via grazing is considered only implicitly. For scyphozoans, at maximal growth
rate, respiration reaches roughly 66% of assimilation, while production reaches 34%, with a net growth effi-
ciency ranging from 35% to 37% (Fraser, 1969; Olesen et al., 1994). For salps, net growth efficiency is above
40% (Madin & Purcell, 1992; Zeldis et al., 1995). The associated carbon losses are all implicitly contained in
our estimated flux profiles.

The factors controlling the transfer of phytodetritus, marine snow/aggregates, and small zooplankton fecal
pellets from the euphotic zone to depth are interrelated processes, such as aggregation, disaggregation,
microbial activity, scavenging, predation, detritus production, and mineral ballasting (De La Rocha &
Passow, 2007). The transfer efficiency of jelly‐C in pathway (ii) as Cnidaria, Ctenophora, and Thaliacea is
estimated at 80% (Polar), 40% (Temperate), and 60% (Tropical) at 1,000 m and 50% (Polar), 20%
(Temperate), and 30% (Tropical) at 4,000 m (Figure 9). In certain areas, jelly‐C transfer efficiencies below
3,000 m are about one order of magnitude higher than estimates for other pathways, but the jelly‐C fluxes
remain transient in nature.

Our findings do not argue against the importance of phytoplankton‐ and smaller zooplankton‐derived car-
bon, which is much larger than jelly‐C, but demonstrate a higher transfer efficiency of the jelly‐C export flux
than some carbon vectors in certain areas, and situations, in particular around large gelatinous blooms and
mass deposition events (e.g., Figure 6). Remineralization and downward‐transfer of primary and secondary
production by phytoplankton and small zooplankton behaves differently and should be considered sepa-
rately from jelly‐C, even though all ultimately originate from the same carbon source. While phytoplankton,
fecal, and marine snow particles are heavily remineralized in the upper water column in relatively close
proximity to the atmosphere, jelly‐C is quickly transferred to the deep ocean (except in shallow shelf seas),
contributing greatly to the deep‐ocean pools of DOC and DIC.

A jelly‐C dominated zooplankton community, which often occurs at the local and regional scale, not only
increases the transfer efficiency via sinking (dead) jelly‐C biomass, but also via active jelly‐C fecal pellets pro-
duction during bloom events (Bruland & Silver, 1981; Caron et al., 1989; Henschke et al., 2019; Iversen et al.,
2016; Perissinotto & Pakhomov, 1998). Jelly‐C fecal pellets are rich in carbon and nitrogen, are slowly
degraded by microbes (Caron et al., 1989; Iversen et al., 2016), and sink fast, in some cases faster than
2,000 m day−1 (doliolids and salps; Turner, 2002). Jelly‐C fecal pellets contribute greatly to the total organic
carbon flux at various depth intervals (100 to 2,000 m), between 30% and 60% on average, depending on the
location (Pakhomov et al., 2002; reviewed by Gleiber et al., 2012; Henschke et al., 2019; Turner, 2002).
Although jelly‐C fecal pellets and biomass transfer contribute significantly to the vertical flux of organic car-
bon, both pathways are highly intermittent, restricted to jelly bloom events and subsequent collapses.
Including the pathways associated with jelly‐C in local and regional models, and potentially in global carbon
export models, should be considered a high priority.

4.2. Ecological Consequences of Fast Jelly‐C Transfer

Jelly‐C and other particulate carbon fluxes contribute greatly to the food demands of both pelagic and
benthic organisms. Jelly‐C in situ benthic measurements reveal in some cases C and N fluxes of 96% and
160% of the phytodetrital C and N, respectively, arriving at the seabed in the same area (Sweetman &
Chapman, 2015). This exemplifies our estimates of maximal jelly‐C biomass transfer efficiency for mass
deposition events, transferring sudden large pulses of jelly‐C to the seabed (Figure 6). During a mass‐
deposition event, starting from 400–500 mg C m−3, considerable amounts of jelly‐C biomass
(>100 mg C m−3) reach the seabed anywhere due to the relatively low decay rates at the low temperatures
below the thermocline. In some temperate and in all polar regions, between 50% and 80% of the upper ocean
jelly‐C biomass reaches the seabed, thus transferring most of the carbon leaving the exit depth (Figure 6).
Deep‐sea long‐term monitoring of jelly‐C deposition supports some of our model estimates, e.g., Smith
et al. (2014) report nearly 40 mg of salp‐derived jelly‐C m−2 d−1 arriving at 3,400 m in the northeastern
Pacific during their 6‐month study period. For 2 months, the salp jelly‐C covered 90% of the seafloor, and
benthic megafaunal organisms increased sevenfold in density after the peak of jelly‐C deposition.

An increased jelly‐C transfer efficiency has ecological consequences derived from the sinking of large carcass
quantities, and the accumulation of the biomass at various depths. We could not find published numerical
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estimates of jelly‐C biomass being consumed by other organisms, which would slightly decrease the transfer
efficiency. Pelagic consumption rates would need to be estimated prior to implementing in future models.
Jelly‐C is first consumed in the water column either as living organisms or upon dying and during sinking.
The list of pelagic organisms known to consume jelly‐C is growing (20% to 40% of the diet in some species,
and up to 80% in others), especially after the increasing use of Stable Isotope Analyses, and includes tuna,
billfish, mackerel and penguin species, sun fish, turtles, fish larvae, and juveniles, just to name a few
(Cardona et al., 2012; Hays et al., 2018; Llopiz et al., 2010; Sampey et al., 2007; Thiebot et al., 2017). Jelly‐
C is also consumed by microbes during the initial sinking stages via preferential N‐rich gelatinous biomass
consumption, leaving behind carbon‐enriched jelly‐C (Tinta et al., 2016). The presence of jelly‐C can also
trigger changes in bacterial community structure (Titelman et al., 2006). The influence of sinking jelly‐C
on the microbial loop is likely rather ephemeral owing to the high sinking speed of jelly‐C. On its way to
the seafloor, jelly‐C is often partly scavenged (Lebrato & Jones, 2009; Sweetman et al., 2014), but it can also
arrive intact (Billett et al., 2006). The response of benthic macrofaunal/megafaunal communities to depos-
ited jelly‐C is largely unknown, except for baited experiments (Dunlop et al., 2017; Sweetman et al., 2014)
and fixed stations at single depths (Smith et al., 2014). Part of the jelly‐C is eventually consumed and remi-
neralized by bacteria after arrival at the seabed (Sweetman et al., 2016; Titelman et al., 2006), leading to shifts
in dissolved nutrients and carbon (Chelsky et al., 2015) and decreased oxygen levels (Pitt et al., 2009; West
et al., 2009). Before microbes respire jelly‐C at the seabed, much of it is often rapidly consumed by megafau-
nal organisms including fish, crustaceans, echinoderms, and arthropods (Lebrato & Jones, 2009; Smith et al.,
2016; Sweetman et al., 2014). To what extent episodic jelly‐C falls can affect macrofaunal and megafaunal
communities remains unknown, but it is expected to exert a temporarily strong ecological effect in areas
where jelly‐C falls with a high transfer efficiency create sudden patches of food at the seabed (Ruhl, 2007).

4.3. Toward Including Jelly‐C Transfer Efficiency in Biogeochemical Models

The jelly‐C biomass transfer efficiency estimates rely on a model which depends strongly on the assumed
gelatinous biomass decay rate (k), and its temperature dependence according to the exponential or linear
solution (Figure 3). The exponential temperature dependency has a theoretical foundation in thermody-
namics, but there is no theoretical support for the linear dependency. However, the exponential solution pre-
dicts very high decay rates at high temperatures, which suggest very fast biomass dissolution in the upper
water column, similar to particle flux studies (Martin et al., 1987). This phenomenon may apply to certain
jelly‐C biomass types (ctenophores, hydrozoans, certain salps), but such results are not commonly observed
in the field (Sweetman et al., 2016; Titelman et al., 2006). In fact, benthic surveys show that carcasses from
different phyla/species can arrive almost intact in shape at the seabed (Billett et al., 2006; Lebrato & Jones,
2009; Smith et al., 2014). Therefore, until a larger data set on jelly‐C biomass decay rates is produced from a
range of robust laboratory or field decay experiments at various temperatures across several gelatinous zoo-
plankton taxa, it remains unclear whether exponential or linear formulations should be used. High jelly‐C
decay rates at high temperatures imply increased microbially mediated decomposition during the initial
sinking stages from 100 to 500 m, whereas decay rates slow down below due to lower temperatures. Jelly‐
C biomass from deeper water masses, e.g., from the mesopelagic zone, starts from a deeper b0, which trans-
lates into reduced decay rates with the potential to arrive in a more intact condition at the seabed.

Jelly‐C biomass transfer efficiency is highly dependent on sinking rate. Owing to the large size of the car-
casses, most sink faster than 800 m day−1, and we assume a global mean of 1,000 m day−1 (Lebrato,
Molinero, et al., 2013). Yet the sinking rate could also be affected by the remineralization itself and carcass
fragmentation (affecting remineralization rate too; Frost et al., 2012), which will make sinking speed vari-
able. Another factor not considered in this study is that jelly‐C “particles” have a wide range of sizes, from
milligrams to many kilograms, thus decay rates could be higher in smaller particles, which has not been con-
sidered owing to the absence of empirical data. To date, only the study of Titelman et al. (2006) on jellyfish
has considered decay rate as a function of size, suggesting that the temperature effect is dominant over size,
at least for very large particles such as jelly‐C. For smaller particles, size and temperature both are critical
during remineralization (Brown et al., 2004; Cavan et al., 2017). Yet this has only been tested at low tempera-
tures. Experiments need to address decay rates including the size component in a temperature range com-
parable to the ocean at various latitudes to accurately target a wide variety of gelatinous zooplankton
groups. These aspects cannot be accounted for in this study because there are no experimental studies
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linking sinking rate, remineralization, fragmentation, and size. Fast sinking guarantees quick jelly‐C trans-
fer from 1,000 m down to 4,000–5,000 m. Transfer profiles differ among Longhurst Provinces, as they are
based on the corresponding temperature profiles. The most efficient transfer from the euphotic zone occurs
in polar regions (Figure 4) due to low temperatures in the whole water column, preventing major decay.
When b0 is below the euphotic zone and the relatively warm thermocline, e.g., 500 or 1,000 m, the jelly‐C
transfer efficiency is similar across all latitudes. This is because the strong thermoclines in the upper ocean
at temperate and tropical Longhurst provinces govern the jelly‐C remineralization profiles (Figures 2 and 4).
When grouping organisms by taxa and species, jelly‐C export per Longhurst Province has a taxon‐ or species‐
specific component, which is presently difficult to determine. We acknowledge a variable jelly‐C sinking
speed and a variable b0 in the upper 500 m (Figure 5) depending on life history, which we have tried to
account for as much as possible using wide ranges for sinking rate and b0. Deep jelly‐C export originating
at greater depths is difficult to assess because no reliable biomass and b0 data exist below 200–500 m, which
could be used to estimate deep carbon export and transfer efficiency. This is somewhat unfortunate because
large gelatinous zooplankton populations do live deeper than 500 m in the mesopelagic and bathypelagic
zones (Robinson et al., 2010).

Other aspects to consider are that if a jelly‐C sinking event is from a population living below 500 m, the car-
bon flux derives from already exported carbon from the upper ocean (potentially reprocessed already by
other gelatinous zooplankton), since export flux is commonly defined at carbon being exported below
150 m. Since all jelly‐C ultimately derives from primary production, the actual effect of fast sinking jelly‐C
is an acceleration of the transfer between the upper 500 m and the deep ocean, thus an increased transfer
efficiency. The amounts of jelly‐C and microbial decay rates defined here as well as the high sinking speeds
guarantee an accelerated carbon transfer to the deep ocean. It also needs to be considered that scyphozoans
net growth efficiency is above 30% (Fraser, 1969; Olesen et al., 1994), and that for salps, it is above 40%
(Madin & Purcell, 1992; Zeldis et al., 1995), which constitutes a loss of fixed carbon from upper levels, that
is then not exported to depth. Corrected for the Longhurst Province area, 59–72% of the jelly‐C leaving the
upper 200 m arrives at 500 m, 46–54% at 1,000 m, 43–48% at 2,000 m, 32–40% at 3,000 m, and 25–33% at
4,500 m. The ~0.038 Pg C year−1 upper ocean gelatinous zooplankton production translates into about
0.02–0.03, 0.02, and 0.01 Pg C year−1 being transferred down to 500, 2,000, and 4,500 m, respectively
(Figure 9). The jelly‐C biomass production rate of 0.038 Pg C year−1 can be considered conservative consid-
ering that the JeDI database covers less than 50% of the global ocean. This previously ignored carbon export
flux is significant compared to total ocean carbon export as estimated from sediment‐trap data, permanently
transferred to the ocean interior, i.e., below the permanent thermocline, and thus forms an important com-
ponent of the global biological soft‐tissue pump to be urgently considered in local, regional, and potentially
global biogeochemical models.

Appendix A

Raw collection depth data used to work out exit depths (b0) (Figure 2). Original data belong to the Jellyfish
Database Initiative (JeDI: https://jedi.nceas.ucsb.edu), including public data sets (https://www.bco‐dmo.
org/dataset/526852)

Appendix B

Raw metadata and phylum data used in all calculations. Original biomass data belong to Lucas et al. (2014)
and are used under John Wiley and Sons License Number 4160191181614. The rest was newly compiled
from the Jellyfish Database Initiative (JeDI: https://jedi.nceas.ucsb.edu), including public data sets (http://
www.bco‐dmo.org/dataset/526852).

Appendix C

GLODAPv2 spreadsheet with the original depth and temperature profiles used to work out export ratios for
individual Longhurst Provinces.
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Appendix D

Excel spreadsheet to work out microbial decay ratios and biomass using any kind of initial conditions using
the exponential and linear solutions (Table 1). There is also a comparison between polar, temperate, and tro-
pical latitudes to show how the exponential and linear solutions change depending on the input
temperature profiles.

Appendix E

Exponential and linear equation full solutions on the model parameterizations.
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