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Abstract of thesis presented to the senate of Universiti Putra Malaysia in fulfilment 
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COCKLE SHELL-DERIVED NANO CARRIER FOR ARA-C IN THE 

TREATMENT OF ACUTE MYELOID LEUKAEMIA 

By 

MUSTAFA SADDAM GHAJI 

June 2018 

Chairman :   Professor Md Zuki bin Abu Bakar, PhD 

Faculty :   Veterinary Medicine

Leukemia is a cancerous disease of bone marrow and blood in which acute form 

progresses more rapidly than the chronic form.  The major therapeutic approaches of 

different cancer types are limited to conventional chemotherapy such as (Ara-C) which 

suffers less specific, high toxicity and short half-life, multidrug resistance and 

selectivity, narrow therapeutic index and significant increases in high dose distribution 

to healthy cells or tissues. Targeting anticancer drug delivery system has the potential 

to overcome these significant drawbacks by improving chemotherapy drug efficacy, 

specific tumor targeting, enhance accumulation in tumor tissues or cells and minimize 

the systemic toxicity. Nanoparticles as drug delivery system enable unique approaches 

to cancer treatment. Over the last two decades, a large number of nanoparticle delivery 

systems have been developed for cancer therapy including organic and inorganic 

materials. Cockle shells (Anadara granosa) are found to be a rich natural resource for 

calcium carbonate aragonite. In this study, the cockle shell-derived calcium carbonate 

aragonite nanoparticles (CCANPs) were used as a carrier for Cytarabine (Ara-C) as a 

unique approach for cancer treatment. Nanoparticles were spherical-shaped when 

CCANPs was synthesized using the combination of chemical and mechanical method. 

The morphology and compositions of the products were characterized by Field 

Emission Scanning Electron Microscope (FE-SEM), Transmission Electron 

Microscope (TEM), Energy Dispersive X-ray (EDX), X-Ray Diffraction (XRD), 

Fourier Transform Infra-Red (FT-IR) and zeta potential. The anti-leukemia drug (Ara-

C) was loaded into CCANPs. The spectrophotometer was used with a wavelength UV-

invisible, to estimate the amount of loading and release profile of Ara-C. The results 

showed that the drugs (Ara-C) could be efficiently loaded into the CCANPs, and 

furthermore, the fast and sustained release of Ara-C was observed from the 

nanocarriers at pH 4.8 and slow release at pH 7.4, which shows pH-dependent 

properties. The nanoparticles were used as a carrier against HL-60 

human leukemia cells (in vitro study) and for cancer therapy in a murine xenograft 

model (SCID mice) (in vivo study). The in vitro evaluation showed IC50 values upon 
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72 hours of treatment with pure Ara-C was 5μg/mL, and Ara-C loaded CCANPs was  

2.5μg/mL. Apoptosis was demonstrated by Cell Counting Reagent (SF), Flow 

Cytometry (FCM), Methylene blue (MB) and Fluorescent Microscope (FM) where 

apparently cellular uptake of Ara-C/CCANPs through endocytosis indicating a dose 

and time-dependent response relationship. Morphological observations by SEM 

revealed microvilli disappearance, cell shrinkage, membrane blebbing and the 

formation of apoptotic bodies, which confirmed both Ara-C and half dose of Ara-

C/CCANPs induced apoptosis of HL-60 cells. In brief, Ara-C loaded CCANPs are 

more effective than pure Ara-C to human leukemia (HL-60) cells. In vivo study 

revealed that CCANPs nanocarrier significantly enhances the effects of Ara-C on 

AML through blood smear, bone marrow smear and histopathological survey for vital 

organs (heart, liver, lung, spleen and kidney) for severe combined immunodeficient 

(SCID) mice. The pharmacokinetic study showing significant effect between pure 

Ara-C 50mg/kg group, 100mg/kg CCANPs loaded with 50mg/kg Ara-C and half dose 

of loaded drug (25/50 mg/kg), the rate of release of the drug in the plasma was slow 

in the two groups of the drug-loaded compared to the pure drug. The study revealed a 

new biodegradable, biocompatible, non-toxic to health and pH-sensitive, CCANPs 

with a feasible promising potential for targeted delivery carriers of antitumor drugs. 

The results established strong evidence that CCANPs has excellent properties that 

make it an ideal candidate for biological drug delivery systems. 

 

  



© C
OPYRIG

HT U
PM

 

iii 

 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

PEMBAWA NANO BERASASKAN KULIT KERANG UNTUK ARA-C 

DALAM RAWATAN LEUKIMIA MYELOID AKUT 

Oleh 

MUSTAFA SADDAM GHAJI 

Jun 2018 

Pengerusi :   Profesor Md Zuki bin Abu Bakar, PhD 

Fakulti :   Perubatan Veterinar 

Leukemia adalah penyakit kanser sumsum tulang dan darah dimana bentuk akut 

merebak lebih pantas dari bentuk kronik. Pendekatan rawatan utama untuk jenis 

kanser yang berlainan adalah terhad kepada kemoterapi seperti (Ara-C) konvensional 

yang kurang spesifik, tinggi toksisiti dan berjangka hayat yang pendek, bersifat 

memilih dan rintangan drug pelbagai, indeks terapeutik yang sempit dan peningkatan 

pengedaran dos yang tinggi kepada sel atau  tisu yang sihat. Sistem penyampaian drug 

antikanser  yang disasarkan berpotensi untuk mengatasi permasalahan ini dengan 

meningkatkan keberkesanan drug kemoterapi, sasaran tumor yang spesifik, 

meningkatkan pengumpulan drug pada tisu atau sel tumor dan mengurangkan toksisiti 

sistemik. Nanopartikel sebagai sistem penyampaian drug memungkinkan pendekatan 

unik kepada rawatan kanser. Selama dua dekad yang lalu, sebahagian besar sistem 

penyampaian nanopartikel untuk terapi kanser telah dicipta termasuk penggunaan 

bahan organik dan bukan organik. Kulit kerang (Anadara granosa) merupakan sumber 

aragonit kalsium karbonat yang tinggi. Di dalam kajian ini, nanopartikel aragonit 

kalsium karbonat dari kulit kerang (CCANPs) digunakan sebagai pengangkut untuk 

Cytarabine (Ara-C) sebagai pendekatan unik rawatan kanser. Nanopartikel yang 

terhasil daripada gabungan kaedah mekanikal dan kimia adalah berbentuk sfera. 

Morfologi dan komposisi CCANPs telah dikenalpasti melalui Mikroskop 

Pengimbasan Pelepasan Medan (FE-SEM), Mikrsokop Transmisi Elektron (TEM), X-

ray Penyerak Tenaga (EDX), Transformasi Fourier Spektroskopi Infra Merah (FTIR) 

dan Potensi Zeta. Drug anti-leukemia (Ara-C) telah dimuatkan ke dalam CCANPs. 

Spektrofotometer dengan gelombang bebas ultra-ungu telah digunakan untuk menilai 

jumlah muatan dan profil pelepasan Ara-C. Keputusan menunjukkan drug Ara-C 

boleh dimuatkan secara berkesan ke dalam CCANPs dan sebagai tambahan, pelepasan 

Ara-C daripada pengangkut nano adalah pantas dan berterusan pada pH 4.8 dan 

perlahan pada pH 7.4, di mana ini menunjukkan sifat kecenderungannya terhadap pH. 

Pengangkut nanotelah digunakan sebagai pengangkut melawan sel leukemia manusia 

HL-60 (kajian in-vitro) dan rawatan kanser menggunakan model xenograf mencit 
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(CISD) (di dalam kajian in-vivo). Penilaian in-vitro menunjukkan nilai IC50 selepas 

rawatan selama 72 jam dengan Ara-C adalah 5 µg/ml dan Ara-C/CCANPs adalah 2.5 

µg/ml. Proses apoptosis telah ditunjukkan melalui reagen Pengiraan Sel (SF), 

Sitometer Aliran (FCM), Methylene Biru (MB) dan Mikroskopi Flouresens (FM) di 

mana telah jelas pengambilan selular Ara-C/CCANPs ialah melalui endositosis yang 

menunjukkan perhubungan respon dos dan masa. Pemerhatian morfologi melalui 

SEM menunjukkan kehilangan mikrovili, pengecutan sel, pembengkakan membran 

dan pembentukan jasad apoptosis yang mengesahkan kedua-dua Ara-C dan Ara-

C/CCANPs separa dos berjaya menghasilkan apoptosis ke atas HL-60. Secara ringkas, 

ARA-C/CCANPs adalah lebih sitotoksik dari Ara-C ke atas sel leukemia HL-60. 

Kajian in-vivo menunjukkan pengangkut nano CCANPs berjaya meningkatkan 

(P<0.05) kesan Ara-C ke atas Myeloid Leukemia Akut melalui calitan darah, dan 

sumsum tulang serta kajian histopatologi pada organ-organ utama (jantung, hati, limpa 

dan buah pinggang) dalam mencit   berdefisit keimunan gabungan teruk (SCID). 

Kajian farmakokinetik menunjukkan perbezaan ketara di antara kumpulan Ara-C 50 

mg/kg, kumpulan Ara-C/CCANPs 50/100 mg/kg dan separuh dos Ara-C/CCANPs 

25/50mg/kg. Kadar pelepasan drug ke dalam plasma adalah perlahan di dalam dua 

kumpulan drug-termuat (Ara-C/CCANPs) dibandingkan dengan drug yang asli (Ara-

C). Kajian ini mendedahkan bahawa CCANPs adalah biodegradabel, bioerasi, sensitif-

pH dan kurang toksik yang berpotensi sebagai pembawa nano untuk drug anti-kanser 

yang disasarkan. Hasil kajian menunjukkan bahawa CCANPs telah terbukti 

mempunyai sifat yang cemerlang dan merupakan calon bahan yang sesuai digunakan 

untuk sistem pengangkutan drug biologi.   
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CHAPTER 1 

1 INTRODUCTION 

1.1 General Background 

Cancers develop from an uncontrolled growth of body cells and can develop from any 

part of the body. Any tissue from any part of the body can become cancerous provided 

the necessary factors needed for its propagation are in place (Folkman, 1996). 

Leukemia is a cancerous condition which primarily affects the blood and bone 

marrow. In the case of acute myeloid leukemia (AML), it develops from the bone 

marrow and in most cases, spread to the blood system. AML can also migrate from 

the bone marrow to the spleen, the central nervous system, the liver, the testicles, and 

the lymph nodes (Valent et al., 2007). The global rate of leukemia cases in 2012 was 

put at 4,000,000, resulting in 3,000,000 deaths. A large number of people in the USA 

(around 24,500, made up of 14,300 males and 10,200 females) were predicted to die 

from leukemia-related conditions in 2017 (Siegel et al., 2017). AML is the commonest 

form of adult leukemia, which despite the intimidating statistics regarding its 

associated mortality and morbidity, the treatment options is still unsuccessful in its 

management. Chemotherapy, which aims at killing the dividing cells over time to 

restore the normal blood count of normal cells, has been the only option for AML 

management; but, chemotherapy is a highly toxic procedure which lacks specificity. 

Nano-carriers are a new method of improving the specificity of chemotherapeutic 

agents and reducing their toxicity level. Based on this, cockle shell (Anadara 

granosa)-derived calcium carbonate aragonite nanoparticles (CCANPs) was produced 

and used as a drug carrier in this study. The size of nanoparticles (NPs) was within the 

transitional zone between the corresponding bulk materials and the individual atoms 

or molecules. This helps to alter the material’s physicochemical properties and present 

a chance to increase the uptake capability and interaction with biological tissues. In 

the living cells, the combination of these events can have an adverse impact 

biologically, which otherwise, would not have been possible with the same material 

in a larger form (Moore, 2006). Calcium and its derivatives are the most vital 

components of teeth and bone, in fact, the osseous tissues of bone are primarily 

composed of inorganic calcium-derived composite materials (Bandyopadhyay-Ghosh, 

2008). Calcium carbonate (CaCO3) is the commonest calcium derivative with the 

longest history of applications in various fields, such as in the plastics, paper, paint, 

food, inks, and pharmaceutical industries (Biradar et al., 2011). In the modern times, 

CaCO3 has attracted medical attention owing to its high applicability. It is a cost-

effective, safe, biocompatible, resorptive, accessible, and osteoconductive material 

(Biradar et al., 2011). Owing to its pH sensitivity and relatively slow degradation, it 

can be used as an agent for the controlled release of active substances such as drugs to 

maintain their tolerable serum concentration and for targeted delivery over time (Qian 

et al., 2011). This study focused on the synthesis, characterization, and application of 

CCANPs as an agent for the in vivo and in vitro controlled release of Ara-C to targeted 

cancer tissues. 
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1.2 Problem Statements 

Acute leukemia is an aggressive form of cancer that requires immediate treatment. 

AML multimodal chemotherapy is used to re-establish and normalize blood and bone 

marrow cell numbers and morphology. Ara-C is a traditional chemotherapeutic agent 

for the management of all types of leukemia (Gökbuget et al., 2011). It is similar to 

most cancer chemotherapies which target the S-phase of cell division (healthy and 

cancer cells). The strategy requires a prolonged period of cell exposure to highly toxic 

concentrations of the agents for cancer treatment (Gökbuget et al., 2011; Hamada et 

al., 2002). However, the activity of Ara-C is decreased by its rapid deamination to the 

biologically-inactive metabolite, uracil (Hamada et al., 2002). This rapid deamination 

led to a search for effective formulations of Ara-C that cannot be deaminated, but still, 

exhibit better pharmacokinetic parameters and protection for Ara-C. The chemical 

therapies for AML are often limited in their use by high systemic toxicity and low 

specificity. Drug delivery through carrier systems is presumed to avoid their side 

effects through a controlled biodistribution. These carriers can contribute towards the 

control of leukemia metastasis. A new natural approach at nano-scale needs to be 

developed which ensures an efficient and enhanced drug delivery for AML treatment. 

1.3 Hypothesis 

i. CCANPs is a biocompatible and non-toxic to normal cells in normal pH.

ii. CCANPs can be used as nano-carrier in the management of AML.

iii. CCANPs reduce effective dose of Ara-C into half.

iv. CCANPs loaded Ara-C has therapeutic effects on reduced metastasis HL-60

human cells to other organs.

1.4 Research Question 

i. What is the in vitro drug release profile and biocompatibility of CCANPs

loaded Ara-C?

ii. How safe is CCANPs loaded Ara-C on the biological system in vivo?

iii. How effective CCANPs loaded Ara-C in the treatment Acute Myeloid

leukaemia?

iv. How CCANPs loaded Ara-C can reduce metastasis AML in other body

organs?

v. How CCANPs loaded Ara-C can reduce the dose of Ara-C?
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1.5 Objectives of the Study 

1.5.1 Main Objective 

This study was conducted with the aim of investigating the effectiveness of CCANPs 

loaded Ara-C in the treatment of AML. 

1.5.2 Specific Objectives 

i. To synthesise and characterize CCANPs, and evaluate the in-vitro release 

profile of CCANPs loaded Ara-C. 

ii. To determine the CCANPs loaded Ara-C in the treatment HL-60 human cells 

in vitro. 

iii. To determine the pharmacokinetic of CCANPs loaded Ara-C in vivo. 

iv. To evaluate the effectiveness of CCANPs loaded Ara-C in the treatment of 

AML in SCID mice-induced AML in vivo. 
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