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Abstract  

Comparative analyses of tumorigenic mechanisms of Merkel cell polyomavirus T 
antigens  

Justin A. Wendzicki, PhD 

University of Pittsburgh, 2019 

The work described in this dissertation began in 2013 and is focused on 

characterizing the mechanisms by which Merkel cell polyomavirus (MCV) Large T (LT) 

and small T (sT) antigens induce tumorigenesis through comparative analyses with 

oncoproteins from other tumor viruses. A peptide motif in the C-terminal region of MCV 

LT that bears little sequence homology with other human polyomavirus LT proteins is 

shown to be critical for maintaining stability of the full-length LT protein (Chapter 3). 

Comparison between LT antigens of MCV and SV40 demonstrate that MCV LT in direct 

contrast to SV40 LT is incapable of avidly binding tumor suppressor p53 and inhibiting 

its transactivation capabilities (Chapter 4). Lastly, promiscuous E3 ligase targeting by 

MCV sT through its LT-stabilization domain (LSD) results in the formation of a 

genomically unstable phenotype, a known hallmark of cancer (Chapter 5). Many of 

the features of genomic instability induced by MCV sT such as centrosome 

overduplication parallel what has been observed previously for human papillomavirus 

16 E7 oncoprotein. Overall, these comparative analyses have not only provided 

greater insight into MCV biology and how its T antigens function in causing an 

aggressive cancer like Merkel cell carcinoma (MCC), but they have also revealed new 

avenues for continued study involving MCV T antigens that will continue to move the 

field of tumor virology forward.    
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1.0 Introduction 

1.1 Viruses and cancer 

1.1.1 Origins of tumor virology 

Viruses represent the cause for numerous human diseases due to their potent 

ability to replicate within, disseminate throughout, and devastate host tissues. Although 

many viral infections are acute and short-lived, several viruses have been identified that, 

through persistent infections, drive tumor formation in their hosts. Once the causative link 

between infectious agents and cancer became more widely accepted in the latter half of 

the 20th century, many were hopeful that all human cancers could eventually be linked to 

microbial pathogenesis (1). While continued research revealed that environmental and 

chemical carcinogens were instead responsible for the genetic alterations that cause the 

majority of human cancers, it has been estimated that between 15-20% of human cancers 

have an infectious origin (2, 3). This translates to infectious agents representing the third 

leading cause for cancer worldwide, making them a significant public health burden and 

fruitful area for continued research.  

The field of tumor virology dates back to the early 20th century and the experiments 

of Peyton Rous. He was successful in isolating a filterable agent from a chicken sarcoma 

specimen that, when injected into young chickens, consistently resulted in sarcoma 

formation after a regular length of time. This agent that could be serially passed from 

chicken to chicken was eventually classified as Rous sarcoma virus (RSV) and represents 
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the first tumor virus to be discovered (4, 5). Unfortunately, Rous’s work was initially 

discounted as implausible, scientifically-flawed, and lacking in any relevance to human 

disease (6). This challenge of proving causality between viruses and cancer has since 

become a common thread that runs throughout the history of tumor virology.  

Despite initial skepticism over the work of Rous, the field moved forward in 1933 

when Shope and Hurst successfully isolated a transmissible, filterable agent from warts 

on cottontail rabbits that was capable of producing warts in naïve rabbits (7). Rous and 

Beard then showed that this agent, now known as cottontail rabbit papillomavirus (CRPV), 

could lead to the formation of carcinomas in domestic rabbits, which are non-permissive 

for CRPV infection (8). Concurrently, work in mice led to the discovery of mouse 

mammary tumor virus (9), murine leukemia virus (10), and murine polyomavirus (11). This 

wave of tumor virus discovery continued again in 1960 when Sweet and Hilleman 

identified simian vacuolating virus 40 (SV40) as a contaminant in Salk poliovirus vaccines 

(12). Since its discovery, research involving SV40 has been invaluable for informing our 

understanding of tumor virology, cancer biology, and molecular biology in general.  

1.1.2 Human tumor viruses 

The continuum of tumor virus discovery in the animal kingdom resulted in a shift in 

scientific opinion regarding the potential for viruses to cause cancer. This led to concerted 

efforts to identify viruses responsible for causing cancer in humans, of which seven have 

been discovered to date (Table 1). Epstein, Achong, and Barr identified the first human 

tumor virus Epstein-Barr virus (EBV) in 1964 through work on Burkitt’s lymphoma (13).
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Table 1. Human tumor viruses 

They were able to visualize virus particles by electron microscopy in cell lines derived 

from equatorial African Burkitt’s lymphoma patients. The classification of EBV as a tumor 

virus was met with criticism for decades following its initial characterization. Despite 

mounting evidence of its transforming capabilities (14), scientists wrestled with the 

seeming contradiction that a ubiquitous and asymptomatic viral infection in the global 

population could be the primary cause of a rare cancer endemic to a small region in Africa 

(15, 16). Finally, this controversy was laid to rest in 1997 when the International Agency 

for Research on Cancer (IARC) officially designated EBV a human carcinogen (17), but 

overall this saga underscores the complicated nature of defining causality in tumor 

virology (18). Unlike acute disease, where infection and pathology tend to directly 

coincide, infection with tumor viruses does not directly guarantee subsequent tumor 

development in every host. Rather, many other environmental and genetic factors can 

dictate whether or not a tumor virus infection progresses to oncogenesis. This concept 

Virus Taxonomy 
Year of 

Discovery

Method of 

Discovery
Associated Cancers References

Epstein-Barr virus (EBV)
Herpesvirus 

(dsDNA)
1964 Electron microscopy 

Burkitt's lymphoma, 

nasopharyngeal carcinoma, 

and other lymphomas 

Epstein et al. , 

Lancet , 1964

Hepatitis B virus (HBV)
Hepadnavirus 

(ssDNA /dsDNA)
1965 Serology 

Some hepatocellular 

carcinoma

Blumberg et al. , 

JAMA , 1965

Human T-cell lymphotropic 

virus-I (HTLV-I)

Retrovirus 

(ssRNA+)
1980 Tissue culture Adult T-cell leukemia 

Poiesz et al. , 

PNAS , 1980

High-risk human 

papillomaviruses (HPV) 16 

and 18

Papillomavirus 

(dsDNA)
1983-84 DNA cloning

Most cervical and penile 

cancers and some anogenital 

and head and neck cancers

Durst et al. , 

PNAS , 1983; 

Boshart et al. , 

EMBO J , 1983

Hepatitis C virus (HCV)
Flavivirus 

(ssRNA+)
1989 cDNA cloning

Some hepatocellular 

carcinoma

Choo et al. , 

Science , 1989

Kaposi sarcoma 

herpesvirus (KSHV)

Herpesvirus 

(dsDNA)
1994

Representational 

difference analysis 

(RDA)

Kaposi sarcoma, primary 

effusion lymphoma, and 

some multicentric Castleman 

disease 

Chang et al. , 

Science , 1994

Merkel cell polyomavirus 

(MCV)

Polyomavirus 

(dsDNA)
2008

Digital transcriptome 

subtraction (DTS)
Most Merkel cell carcinoma

Feng et al. , 

Science , 2008
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has shaped our understanding of the multifactorial nature of cancer development and has 

become dogma within the field.   

The identification of the next human tumor virus hepatitis B virus (HBV) was 

preceded by serological studies conducted by Blumberg, beginning in 1965. He found 

that an antigen from blood of an Aboriginal Australian (Au antigen) was highly cross-

reactive with a serum antibody from an American hemophilia patient (19). Further studies 

showed that this antigen was present in blood samples of individuals suffering from serum 

hepatitis, and that the identity of this antigen was the surface antigen of HBV (20). While 

HBV infection is normally asymptomatic or acute, a small percent of infected adults 

develop chronic infections, which are highly associated with the development of 

hepatocellular carcinoma (HCC) (21, 22). Identification of HBV and hepatitis A virus 

(HAV) led to the realization that a subset of transfusion-associated hepatitis cases was 

caused by neither virus, which suggested an unknown pathogen might be the cause (6). 

Using a chimpanzee model for this unknown pathogen, Choo et. al succeeded at 

constructing a cDNA library from nucleic acids present in plasma of infected 

chimpanzees. One of these clones expressed an antigen from an undiscovered flavivirus, 

which was subsequently named hepatitis C virus (HCV) and characterized as the 

causative agent of this subset of serum hepatitis (23, 24). Much like HBV, HCV is 

associated with the development of cirrhosis and chronic inflammation in the liver, both 

of which are major risk factors for the development of HCC (25–27).  

Harkening back to the foundational works of Shope, Rous, and Beard on CRPV, 

those studies and subsequent identification of other animal papillomaviruses suggested 

a potential role for this virus family in human cancers (8, 28, 29). This was confirmed 
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when work led by zur Hausen showed that papillomavirus sequences hybridized with 

DNA from cervical cancer specimens (30, 31). These two unique viral sequences were 

from human papillomaviruses (HPVs) 16 and 18, now classified as high-risk HPVs and 

represent the causative agent of the vast majority of cervical cancers and a significant 

proportion of anogenital and head and neck cancers (32–34).  

Much like the work of Rous prompted the search for papillomaviruses that caused 

human cancer, it was also assumed that one or more retroviruses like RSV must be 

responsible for causing cancer in humans. This led Gallo and colleagues to search for 

retroviruses in leukemia cells, which resulted in the detection of canonical reverse 

transcriptase activity associated with these viruses as well as virus particles in T-cell 

lymphoma cells (35). This first human retrovirus was named human T-cell lymphotropic 

virus-I (HTLV-I), and its causal role in adult T-cell leukemia (ATL) was later confirmed by 

Hinuma et al. and others (36, 37). Similar to the way that EBV plays a causative role in 

the rare cancer Burkitt’s lymphoma in Africa, ATL was initially described as occurring in 

localized pockets throughout Japan (38), underscoring that research on endemic 

diseases like these may be a viable route for the identification of new tumor viruses. 

Kaposi sarcoma (KS), first described in 1872 (39), is one such endemic disease, 

with higher prevalence in the Mediterranean basin and Africa; however, it was the 

explosive outbreak of KS as an AIDS-associated malignancy during the AIDS crisis that 

prompted the search for its underlying cause (40). Determined not to be caused by HIV 

itself, statistics hinted at an undefined sexually-transmitted infection as the etiological 

agent of KS (41). Using the newly-developed technique representational difference 

analysis (RDA), Chang et al. compared DNA fragments from KS tumor tissue with normal 
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tissue, which revealed the presence of a new herpesvirus sequence: Kaposi sarcoma 

herpesvirus (KSHV) (42). Subsequent sequence analysis, biochemical testing, and 

serological testing definitively showed that KSHV was present in both AIDS-associated 

and non-AIDS forms of KS (43–45). A causative role for KSHV in primary effusion 

lymphoma (PEL) and a subset of multicentric Castleman disease has also been 

established (46, 47).  

Chang and Moore succeeded once again in identifying the newest addition to the 

list of human tumor viruses, Merkel cell polyomavirus (MCV). In that study, Feng et al. 

used a bioinformatic-based approach called digital transcriptome subtraction (DTS) to 

identify viral transcripts present in Merkel cell carcinoma (MCC) tumor specimens (48). 

As MCV is the main focus of this dissertation, more detailed descriptions of MCV 

discovery and biology are presented in Section 1.4 (page 29).  

In looking back on the history of tumor virology it becomes clear that researchers 

throughout the past century have relied on the discoveries of their predecessors as a 

continued source of inspiration in the quest to identify new tumor viruses and drive the 

field forward. Apart from the discovery of new tumor viruses, key advancements in the 

field include the development of highly-effective vaccines for HBV and nine HPV family 

members that are the most prevalent in human disease, helping to reduce transmission 

of these viruses and incidence of their associated cancers (49, 50). As science and 

technology continue to develop at lightning speed, it is highly likely that we will see new 

developments in virus discovery and cancer treatment soon, especially if we continue to 

let the first century of tumor virology inform the next.  
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1.2 Polyomavirus biology 

1.2.1 History and discovery 

Polyomaviruses are small, circular, non-enveloped, double-stranded DNA viruses 

with genomes approximately 5.0-5.4 kilobases in length. This virus family contains an 

ever-growing number of members that infect many species throughout the animal 

kingdom, from arthropods, to fish, to mammals. Within their natural hosts, polyomavirus 

infections are generally asymptomatic and controlled by the immune system, but under 

circumstances they can go on to cause pathology and even tumors within their hosts.  

The first discovered member of the polyomavirus family, murine polyomavirus 

(MuPyV), was identified in 1953 by Ludwik Gross through his studies on leukemia in mice, 

who, much like Rous decades before, isolated a filterable agent from mouse leukemia 

cells that was capable of producing tumors upon injection into mice (11). Further 

characterization of this agent and its ability to cause “many tumors” in hosts led to the 

name “polyoma” to describe this virus (51). Less than a decade later, work by Eddy, 

Sweet, Hilleman, and others identified a second polyomavirus as a contaminant in 

poliovirus vaccine preparations which was called simian vacuolating virus 40 (SV40), due 

to its ability to induce the formation of large vacuoles in infected monkey cells (12, 52, 

53). Shortly after its identification, continued work with SV40 showed that it was capable 

of inducing tumors in both immunocompromised mice and newborn hamsters, solidifying 

its classification as a polyomavirus (52, 54). Over the decades that followed, a plethora 

of additional polyomaviruses have been identified that infect a wide array of hosts 

throughout the animal kingdom.  
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The first human polyomaviruses (HPyVs) were identified in 1971 and were named 

by the initials of the patients from which they were isolated: B.K. virus (BKV) and J.C. 

virus (55, 56). Infection with both of these viruses is generally asymptomatic, and neither 

is directly associated with causing tumors in humans (57, 58); however, in the case of 

immunosuppression, both viruses can cause severe pathology in infected patients. BKV 

is associated with the development of nephropathy in renal transplant patients, and JCV 

is responsible for causing progressive multifocal leukoencephalopathy (PML) (59, 60). 

Despite lack of a direct casual association with cancer in humans, the oncogenic potential 

of BKV and JCV has been widely demonstrated in various cell culture and laboratory 

animal models (61).  

Discovery of new HPyVs laid dormant for the following few decades until 2007 

when the discovery of two new polyomaviruses occurred. Both were identified through 

sequence analysis of human respiratory samples and named after the institutes where 

the discovery took place: Washington University polyomavirus (WUV) and Karolinska 

Institute polyomavirus (KIV) (62, 63). Although both viruses were identified from patient 

samples and have a high seroprevalence within the population, neither virus has come to 

be associated with any particular disease in humans (64, 65).  

The advent of more cost-effective deep sequencing approaches was a major factor 

in the discovery of the remainder of the HPyVs, a list that now contains more than a dozen 

members. Merkel cell polyomavirus (MCV) was first identified in 2008 (48) through a high-

throughput sequencing method called digital transcriptome subtraction (DTS). The clonal 

integration pattern of MCV in Merkel cell carcinoma (MCC) tumors is strong evidence for 

causality, and to date MCV remains the only human polyomavirus with a direct causal 



9

relationship with human cancer. HPyV6 and HPyV7 were discovered concurrently 

through rolling circle amplification (RCA) and PCR-based methodologies on human skin 

samples (66). Likewise, an RCA approach was used to amplify viral sequences from a 

trichodysplasia spinulosa (TS) lesion, which led to the discovery of TS polyomavirus 

(TSV) (67). HPyV9 was also discovered through a similar methodology in 2011 (68). 

Three groups independently reported the identification of a new polyomavirus from stool 

samples, which became known as HPyV10 (69–71). Stool sample sequence analysis 

also led to the discovery of the of the eleventh HPyV (HPyV11), or STLPyV (72). The 

twelfth (HPyV12) and thirteenth (NJPyV) human polyomaviruses were isolated from 

gastrointestinal and pancreatic tissues samples, respectively (73, 74). A putative 

fourteenth HPyV was recently identified by sequence analysis of human skin samples 

and termed Lyon IARC polyomavirus (LIPyV) (75). Many of these newly identified HPyVs 

lack a clear causal relationship with human disease (76).   

1.2.2 Phylogeny 

The taxonomic organization of polyomaviruses remains a point of contention in the 

field. While it is generally accepted that all polyomaviruses fall within the family 

Polyomaviridae, assignment of specific genera within that family has been highly 

disputed. This is in part due to the massive expansion in the list of known polyomaviruses, 

which has prompted multiple attempts at phylogenetic re-clustering. As of 2011, the 

polyomavirus study group of the International Committee on Taxonomy of Viruses (ICTV) 

recommended the designation of three polyomavirus genera: Orthopolyomavirus, 

Wukipolyomavirus, and Avipolyomavirus (77). This classification system was amended 



10

Figure 1. A framework for ancient recombination events in major polyomavirus clades. 

In the model, a hypothetical ancient polyomavirus, designated Arche gave rise to separate 
polyomavirus lineages found in arthropods and fish, as well as the mammalian Ortho/Almi 
lineages. The figure depicts Avi and Wuki clades arising after recombination events involving an 
unknown vertebrate-Arche lineage and Ortho-like species. White lollipops represent predicted 
pRb-binding motifs. Yellow bars represent hypothetical metal-binding motifs (CXCXXC or related 
sequences). The absence of metal-binding motifs in Avi small T antigen (sT) proteins suggests a 
different evolutionary origin than the classic metal-binding Ortho/Almi sT. Possible ALTO-like 
ORFs predicted for some Ortho species are shaded gray. (Adapted from Buck et al., 2016) 

again in 2016, when the study group proposed a new approach to classification based on 

host and sequence information for each virus. This new classification system provides for 

four genera: Alpha-, Beta-, Gamma-, and Deltapolyomavirus (78). Advanced sequence 

analysis and continued polyomavirus discovery has led to criticism of the four genera 

model. Work by Buck et al. demonstrates a complex evolutionary history for the 

polyomavirus family, in which early and late regions of the genome have evolved 
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independently and show evidence of recombination, which is inconsistent with the four 

genera model (79). In their proposed evolutionary framework, they show how six major 

polyomavirus clades may have diverged from a common ancestor (Figure 1). Whether 

or not this new framework for polyomavirus classification will be adopted by the ICTV 

remains to be seen.  

Figure 2. Polyomavirus genome organization. 

The prototypical circular dsDNA genome has three main regions: a non-coding control region 
containing the early and late promoters, their transcription start sites and the origin of replication; 
an early region encoding large LT, sT, and an alternatively spliced LT (LT′); and a late region 
encoding the viral capsid proteins VP1, VP2, VP3 and VP4. The reading frames for VP2, VP3 
and VP4 are identical, but alternative translation start sites generate the different proteins. VP4 
has only been confirmed for avian polyomaviruses. Agnoprotein (Agno) is encoded by a late 
transcript from JCV and BKV, but has yet to be confirmed in the new human polyomaviruses. 
(Modified from DeCaprio and Garcea, 2013) 



12

1.2.3 Genome organization 

The polyomavirus genome is composed of circular, chromatinized, double-

stranded DNA and is divided into three main parts: the non-coding regulatory region, the 

early region, and the late region (Figure 2). The non-coding regulatory region (NCRR) is 

the smallest of these three sections and contains the viral origin of replication as well as 

bidirectional promoter and enhancer elements for the other two transcriptional units of the 

virus (80).  

The early region, so called because it is the first to be transcribed, is responsible 

for the production of a number of alternatively-spliced transcripts that encode variable 

tumor (T) antigens (Figure 3). This is accomplished using the host cell splicing machinery 

(81). All polyomaviruses express at least two transcripts from their early region, which 

based on the size of the corresponding proteins they produce are called Large T (LT) and 

small T (sT) (82). Many polyomaviruses also produce one or more accessory T antigens 

that vary in size and apparent function. Some examples include the 57 kT antigen of MCV 

(83), the 17kT antigen of SV40 (84), the tiny T antigen of TSV (85), and the truncated T 

(trunc-T) antigen of JCV (86).  

The late region of polyomaviruses contains the coding regions for the viral capsid 

proteins, which are generated through a combination of alternative-splicing of mRNA and 

internal translation (82). All polyomaviruses encode a major capsid protein VP1 and minor 

capsid proteins VP2 and VP3, which together compose the viral capsid. Avian 

polyomaviruses have been shown to also produce a third minor capsid protein VP4 (87). 

This is not to be confused with the VP4 protein of SV40, which is a viroporin that assists 

in egress from cells and is not a part of the viral capsid structure (88, 89).  
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Figure 3. Early region alternative splicing maps of select human polyomaviruses. 

Colored rectangles indicate coding sequences, whereas dotted lines depicts intronic sequences. 
Different colored rectangles refer to distinct reading frames after splicing events. All T antigens of 
each polyomavirus share the sequence encoded within exon 1. The accessory T antigens also 
share fragments of their respective LT sequences. (Adapted from Gjoerup and Chang, 2010) 

In addition to these two main ORFs, there are some unique gene products made 

by some polyomaviruses that are not common across the entire virus family. For example, 

only murine and hamster polyomaviruses produce a middle T antigen from their early 

region, which is necessary for inducing transformation (90). There is also evidence to 

support that some polyomaviruses code for an alternative T antigen ORF (ALTO) through 

their early region, but the function of such proteins are unknown (91). The late region of 

several mammalian polyomaviruses, including BKV and JCV, encodes for an agnoprotein 

that appears to have variable functions but clearly facilitates a productive life cycle for 

these viruses (92, 93). There is also evidence to support that many polyomaviruses 
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encode micro-RNAs (miRNAs) that are important for regulating early region gene 

expression (94–97). 

Figure 4. Polyomavirus life cycle. 

After entry, viral particles pass through the cytoplasm to reach the nucleus, where the main 
processes of viral replication take place. The first step consists of expression of the early genes 
(blue), particularly LT, which is necessary for replication of the viral genome. This is followed by 
production of the viral capsid proteins (red), which prompts assembly of new virions and their 
release. (Adapted from Topalis et al., 2013) 

1.2.4 Life cycle 

The polyomavirus life cycle is most generally divided into early and late phases 

based on their gene transcription events, but there are also several additional parts of the 

complete life cycle (Figure 4). The polyomavirus life cycle begins upon attachment of the 
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outer viral capsid protein VP1 to cell surface gangliosides or sialylated glycoproteins (98, 

99). The specific attachment and entry factors differ between polyomavirus species. The 

majority of polyomaviruses enter cells through caveolin-mediated endocytosis and traffic 

to the smooth endoplasmic reticulum (ER) by way of microtubule transport (100–102). 

Traffic between the ER and nucleus is not well understood, but it is believed that 

uncoating of the viral genome takes place in the nucleus, where early gene transcription 

takes place. This results in the production of alternatively-spliced transcripts that are 

translated into the canonical T antigens (80). 

The production of the T antigens coincides with the initiation of viral replication. 

This process is directed by LT, a multi-domain protein that possesses several different 

functionalities (98). First, LT through its DnaJ domain and LXCXE-motif targets the 

retinoblastoma (Rb) family of proteins, which creates a transcriptional environment that 

drives cells into S-phase (103, 104). This is critical because polyomaviruses rely on the 

host replication machinery to accomplish their own viral replication. LT then binds to the 

origin of replication on the viral genome through its DNA-binding domain and assembles 

as a double hexamer (105, 106). The C-terminal helicase domains of LT function to 

unwind the viral origin so that it can be accessed by the host replication machinery and 

replication can proceed. These critical functions of LT are discussed in more detail for 

SV40 in Section 1.3 (page 19) and for MCV in Chapter 2 (page 37).  

Following replication of the genome, the late region of the genome is transcribed 

to produce the viral capsid proteins. Polyomavirus capsids are composed of 72 

pentamers of the VP1 protein, with a single VP2 or VP3 monomer per VP1 pentamer that 

coordinate the chromatinized viral genome inside (107, 108). It is generally believed that 
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progeny virions are released through host cell lysis, but there is some evidence to support 

endocytic trafficking to the cell membrane (109).  

1.2.5 Association with disease in humans 

Polyomavirus infections are largely ubiquitous, and it is believed most infections 

are acquired early in life. After an initial period of viremia, polyomaviruses may enter into 

a quiescent state that allows them to chronically persist within their hosts. The precise 

mechanisms governing persistence are not well understood and appear to be specific to 

each virus and the particular tissues they infect (110). Polyomavirus infection tends to be 

largely asymptomatic, but a number of virus-associated pathologies have been described, 

especially in the context of immunosuppression. While many of the human 

polyomaviruses identified to date were originally isolated from disease samples, only five 

have been definitely linked with a direct involvement in human disease: BKV in 

polyomavirus-associated nephropathy (PVAN), JCV in progressive multifocal 

leukoencephalopathy (PML), MCV in Merkel cell carcinoma (MCC), TSV in 

trichodysplasia spinulosa (TS), and HPyV7 in transplant-associated pruritic rash (Figure 

5). There is no evidence that the other human polyomaviruses are causally associated 

with specific human diseases, and in most cases their presence has been deemed as 

incidental, passenger infections (65, 105).  

PVAN is the most common form of BKV-associated disease seen in renal 

transplantation patients, and an increase in incidence since its initial description has been 

observed (111–113). PVAN tends to occur within the first year of transplantation. It is 

believed that aggressive immunosuppressive drug treatment leads to BKV reactivation 
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Figure 5. Immunohistochemical pan-PyV survey on HPyV-associated disease tissues. 

Formalin-fixed paraffin-embedded tissue sections from JCV-related PML, MCV-positive or -
negative MCC, HPyV7-related skin rash lesion, and TSV-related trichodysplasia spinulosa (TS) 
were stained with triple antibody combination for viral T antigens overnight and counterstained 
with hematoxylin. These results illustrate the presence of each virus in their associated disease 
tissues, most strikingly with tumor-specific T antigen staining seen in MCV-positive MCC. Results 
are presented at 10X and 40X magnification. (Republished with permission of ASCI, from Toptan 
et al., 2016; permission conveyed through Copyright Clearance Center, Inc.) 

from a quiescent state in these patients, and progression to PVAN ultimately results in 

kidney graft failure in many cases (114). There is currently no antiviral treatments for 

PVAN, and though cessation of immunosuppressive regimens does help to control 

viremia, it can also lead to graft rejection by the body (115).   

PML is a rare disease of the central nervous system that is characterized by 

demyelination as a result of oligodendrocyte cell death. Oligodendrocytes are responsible 

for myelination in the central nervous system and are the primary cell type infected by 

JCV. This devastating disease produces severe symptoms like visual impairment, 

encephalopathy, and loss of motor function (116). PML is a highly fatal condition, and 



18 

many patients die within 4-6 months of diagnosis (117, 118) The disease is caused by 

JCV reactivation and is most often seen in AIDS patients or other immunocompromised 

individuals (119). There are currently no effective drug treatments for PML. 

MCV as the causative agent of MCC is the only known human polyomavirus that 

has a causal role in cancer in humans (120). MCV is found to be clonally integrated into 

~80% of MCC tumors (48, 121), and tumorigenesis is believed to be driven by expression 

of the viral T antigens in these cases. The relationship between MCV and MCC is 

described in more detail in Section 1.4 (page 29). 

TS is a dysplastic skin disorder characterized by the presence of spicules and 

keratin spines that appear on the face of affected individuals (122). TSV was first identified 

from TS tissue samples (67) and has since been demonstrated to be the causative agent 

of this disorder (123, 124). TSV like most polyomaviruses has a high seroprevalence 

among the general population (125), and TS is generally only seen in immunosuppressed 

individuals. There is currently no specific treatment for TS, but topical antivirals, such as 

cidofovir, have showed some promise in reducing symptoms (126). 

Although, it was first isolated as an incidental skin infection in healthy skin, HPyV7 

has since been shown to be associated with pruritic rash and serum viremia in 

immunosuppressed lung transplant recipients (127). In these cases, HPyV7 was detected 

in both blood and skin samples from the affected area at high copy numbers, indicating 

that these were not cases of incidental infection. Continuing to profile diseased tissues 

for the presence of polyomaviruses especially in the context of immunosuppression may 

not only lead to the discovery of pathological effects for some of the more newly-identified 

human polyomaviruses, it may lead to the discovery of even more polyomaviruses (128). 
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1.3 Mechanistic insights from SV40 T antigens 

Although there is little evidence to support SV40-induced pathology in humans (82, 

129), the vast number of studies that have been conducted with SV40 since its discovery 

have been invaluable to understanding polyomavirus natural biology, polyomavirus-

induced transformation, and cancer biology as a whole. Upon the discovery of new human 

tumor viruses like MCV, SV40 has proven to be an excellent template for comparison in 

order to elucidate the complex biology of these viruses and their roles in tumorigenesis. 

The major focus of this dissertation centers around tumorigenic mechanisms of MCV T 

antigens, and SV40 T antigens serve as a basis for comparison in future chapters. 

Therefore, it is only fitting to include information about some of the most important cellular 

interactors of SV40 T antigens and their roles in tumorigenesis. This remainder of this 

section focuses on the LT and sT antigens of SV40 and the many cellular proteins they 

contact (Figure 6). 

1.3.1 Targeting of retinoblastoma family proteins 

The retinoblastoma (Rb) family of proteins or pocket proteins pRb, p107, and p130 

act as major regulators of transcription in cells and work to control the G1-S phase 

transition of the cell cycle (130). Under normal conditions, these pocket proteins form tight 

complexes with the E2F family of transcription factors to repress the transcription of target 

genes involved in DNA replication, DNA repair, and cell division. At the G1-S phase 

boundary, these pocket proteins become phosphorylated and dissociate from E2F 
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members, which then bind to their target promoters to activate or repress transcription. 

This usually results in progression of the cell cycle (131, 132).  

Figure 6. Functional domains of polyomavirus Large and small T antigens. 

A. The N-terminal DnaJ (J) domain is shared between LT and sT antigens. LT antigen also
contains a Rb-binding LXCXE motif, a TPPK motif, a NLS, a DNA-binding domain (DBD), a
helicase domain, and a host range domain (HR–AH). sT contains an N-terminal J domain followed
by a unique region that contains two zinc-fingers. B. Large T antigen binds many cellular proteins.
The J domain recruits Hsc70 homologues. The region between the J domain and LXCXE motif
has been shown to bind independently to Cul7, Bub1 and IRS1. The LXCXE domain binds to
pocket proteins pRb, p107, and p130. The DBD and helicase domains are required for viral
replication and recruit cellular DNA replication factors to the replicating PyV genome. The C-
terminus of SV40, JCV, and BKV LTs contain a Thr residue that, when phosphorylated, binds to
FBXW7. C. sT binds specifically to the A and C subunits of PP2A. (Modified from DeCaprio and
Garcea, 2013)

Tumor viruses that rely on the host replication machinery to accomplish their own 

viral replication must drive quiescent cells into S-phase in order to complete their life 

cycles, making the Rb family of proteins a prime target of these viruses, including SV40 

(Figure 7A). Rb binding by a viral protein was first described for the adenovirus E1A 
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protein through a conserved LXCXE motif (133). It was subsequently determined that 

SV40 LT is capable of binding all three pocket proteins through its own LXCXE motif (aa 

103-107), the result of which is E2F activation and S-phase transition (134, 135). The

interaction between SV40 LT and Rb family members has been shown to be critical for 

transformation, as LT mutants without a functional LXCXE motif are defective for 

transformation (136–139).  

Figure 7. Manipulation of the host cell machinery by SV40 LT antigen. 

A. Hypophosphorylated pRb blocks G1-S phase transition by binding and inhibiting E2F1/2/3a
transcription factors. p130 also complexes with E2F4-5 transcriptional repressors to block
transcription. SV40 LT binds Rb family proteins via its LXCXE motif, the transcriptional block is
released, and S-phase transition ensues, allowing for replication. B. p53 levels are kept very low
in normal cells by the E3 ubiquitin ligase Mdm2, but phosphorylation (P) and acetylation (Ac) allow
p53 to become an active transcriptional regulator in response to LT-induced cell cycle
dysregulation. LT avoids premature cell death by binding and blocking p53 activity and induction
of apoptosis. (Republished with permission of Annual Reviews Inc., from An et al., 2012;
permission conveyed through Copyright Clearance Center, Inc.)
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1.3.2 Targeting of p53 

One of the most well-known and well-characterized interactors of SV40 LT is the 

tumor suppressor p53, which was actually first identified in a complex with LT (140, 141). 

p53 is a potent transcription factor at the nexus of numerous signaling pathways, including 

DNA damage, nutrient starvation, and cell cycle dysregulation. Activation of p53 in 

response to such stimuli generally results in cell cycle arrest or apoptosis (142, 143). As 

such, functional p53 protein is essential for maintaining genome integrity, which is 

underscored by the fact that it is the most commonly mutated gene in human cancers 

(144). Under steady-state conditions, p53 protein levels within cells are kept low, as it is 

readily targeted for degradation by the E3 ubiquitin ligase Mdm2 (145). Multiple stimuli 

can trigger the activation of p53, by which a series of post-translational modifications 

cause it to dissociate from Mdm2, bind to target gene promoters, and activate 

transcription of multiple genes (146).  

The unscheduled transition to S-phase caused by SV40 LT binding to Rb family 

members is believed to trigger p53 activation, and so p53 inhibition becomes an additional 

critical step in the polyomavirus life cycle to promote replication and prevent premature 

cell lysis (Figure 7B). The interaction between LT and p53 has been broadly mapped to 

a bipartite motif in the C-terminal regions of LT (aa 351-450 and 533-626) (103, 147). 

Crystallographic data regarding this interaction also supports the idea of two large regions 

of interaction, identifying 23 key residues on SV40 LT that directly contact p53 (148). 

Whether or not p53 binding by LT is required for SV40-induced transformation remains 

unclear. While p53 binding by LT is required for immortalization and continued 
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proliferation in many cellular models (147, 149, 150), others have identified p53-binding 

mutant LTs that can still induce transformation (139). 

Binding between SV40 LT and p53 itself is undisputed, but the downstream 

consequences of this interaction are not as clear. There are conflicting reports as to 

whether or not LT through its interactions with p53 prevents its ability to bind DNA and 

activate target promoters (151–153). Others have suggested that inhibition of p53 by 

SV40 may occur independently of direct interaction with LT (154). What is clear, however, 

is that p53 is functionally inhibited in the presence of SV40 LT (155, 156).  

Cells that express SV40 LT also curiously show accumulation of p53 protein (157, 

158), but the reason for this metabolic stabilization is unclear. Some evidence supports 

that accumulation of p53 can have an oncogenic gain of function that promotes 

transformation, as wild-type p53 has been shown to enhance SV40-induced 

transformation (159, 160). A competing theory is that accumulated p53 could promote 

SV40 LT binding to p300, leading to modulation of host transcription (161). This 

interaction is described in more detail below. 

1.3.3 Targeting of p300 and CBP 

CREB-binding protein (CBP) and p300 are scaffold proteins that function as co-

activators of transcription through their histone acetyltransferase (HAT) activity and are 

generally viewed as tumor suppressors (162–164). While histones represent a major 

target of CBP and p300, they are also capable of interacting with and acetylating a 

number of cellular proteins, including p53 (165). 
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Much like pRb, adenovirus E1A was the first viral protein shown to target CBP and 

p300 through its N-terminal region (166). Soon after, SV40 LT was implicated in binding 

CBP and p300 (167, 168), but contrastingly this activity was mapped to the C-terminus of 

LT (169). The binding between LT and CBP/p300 has been shown to also require p53, 

with the three proteins existing as a ternary complex (161, 170). This complex results in 

the acetylation of LT by CBP, which is believed to be important for LT stability (171). 

There are also some reports that LT modulates CBP HAT activity and inhibits CBP/p300 

transcriptional activation (168, 172), both of which could contribute to LT-induced 

transformation. However, due to the indirect nature of these interactions, the precise 

contributions of CBP/p300 binding to SV40 LT-induced transformation have been difficult 

to assess directly (173). 

1.3.4 Additional cellular targets of SV40 LT  

The cellular targets of SV40 described above are some of the most well-

characterized interactors of SV40 LT and are the most relevant to the interpretation of the 

studies presented in the rest of this dissertation. The binding partners described in this 

section are not as integral to the understanding of the data presented in later sections, 

but are still informative for understanding polyomavirus biology and the tumorigenic 

potential of these viruses.  

1.3.4.1 Heat shock cognate protein 70 (Hsc70) 

The N-terminal regions of SV40 T antigens bear sequence homology with the J 

domain of DnaJ molecular chaperones, including the canonical HPDKGG motif (174, 
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175). Through this domain SV40 LT binds Hsc70 and stimulates its ATPase activity (176, 

177). Several studies have shown that the DnaJ domain is critical both in terms of 

facilitating viral replication, but also in terms of inhibition of Rb family members (178–180). 

As such, this domain has been shown to be critical for transformation and the DnaJ 

domain must be present in cis with the Rb-binding motif to elicit transformation (138). 

There is speculation that SV40 LT may direct Hsc70 to act on multiple cellular targets, 

such as p300 and cyclin A, but this remains purely speculative (103).  

1.3.4.2 Bub1 mitotic checkpoint serine/threonine kinase 

Bub1 plays a critical role in the mitotic spindle-assembly checkpoint and as such 

has a defined role in maintaining genome stability (181). SV40 LT binds to Bub1 through 

a conserved WExWW motif in its N-terminal region (aa 89-97), which results in mitotic 

defects (182). LT-Bub1 interaction has thus been associated with the development of 

aneuploidy and chromosomal instability (183). Not surprising, deletion of this binding motif 

on LT has been shown to compromise its transformation efficiency (182).  

1.3.4.3 Cullin 7 

Cullin 7 (Cul7) functions as part of an E3 ubiquitin ligase complex known as the 

Skp-Cullin-F-box (SCF) complex that targets proteins for degradation (184). Binding of 

Cul7 by SV40 LT has been mapped to aa 69-83 in the N-terminus of LT, and LT mutants 

lacking this region are deficient in transformation assays (185, 186). It should be noted 

that this mutation does not disrupt LT binding to other known partners. Whether LT serves 

only to inhibit the natural function of this SCF complex or if it redirects it toward other 

cellular targets remains unknown.  
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1.3.4.4 Insulin receptor substrate 1 (IRS1) 

IRS1 is a key player in the PI3K/Akt pathway of cell cycle regulation, and it is known 

to be dysregulated and mislocalized in several human cancers (187). SV40 LT has been 

shown to interact with IRS1, resulting in its nuclear translocation (188). IRS1 binding has 

also been implicated in SV40-induced transformation (189–191). Binding has been 

generally mapped to the N-terminal region of LT and may overlap with Rb-binding, as an 

LXCXE-mutant LT was also deficient in interacting with IRS1 (192).  

1.3.4.5 F-box/WD repeat-containing protein 7 (Fbw7) 

It has also been reported that SV40 LT is capable of binding to F-box protein Fbw7 

through a motif present in its C-terminal host range domain (193). Fbw7 is also a member 

of the SCF complex, and it recognizes its substrates through specific phosphorylated 

epitopes known as phosphodegrons to target them for degradation (194). Interestingly, 

binding of LT to Fbw7 does not result in its degradation, so it has been proposed that it 

instead acts as a decoy to prevent Fbw7 binding to other cellular targets. Given that the 

natural targets of Fbw7 are involved in cell cycle control, this interaction may have 

implications for both viral replication and transformation, but these relationships have not 

been well studied.  

1.3.5 PP2A targeting by SV40 sT 

In the context of SV40, the sT antigen assists in LT-induced transformation but is 

not sufficient for transformation in its own right. One of the major cellular targets of sT is 

the protein phosphatase complex PP2A. This is a heterotrimeric complex consisting of a 
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scaffold subunit (A), a regulatory subunit (B), and a catalytic subunit (C). PP2A complexes 

have numerous cellular targets, and the identity of the B subunit, of which there are many, 

governs the specificity of the complex for a particular substrate (195). SV40 sT acts on 

PP2A by binding to the A subunit and displacing the B subunit, which leads to a defect in 

enzyme activity (196). The specific B subunits targeted by sT are still being defined (197, 

198), but one known cellular target of sT PP2A targeting is c-myc (199). PP2A targeting 

by sT has also been shown to activate several cellular kinases, including MAPK, Akt, and 

PKC (200–202). Mutations that disrupt PP2A binding by sT show defects in 

transformation in human cell lines (203, 204).  

1.3.6 Permissive vs. non-permissive infections 

Much of this section has focused on the properties of SV40 T antigens that allow 

for cellular transformation, but it is important to note that transformation and 

tumorigenesis are not the goals of tumor viruses. Transformation is simply a standard for 

measuring the oncogenic potential of, in this case, T antigens with the notion that such 

studies will lead to a better understanding of the host proteins and pathways involved in 

preventing oncogenesis. Tumor formation incidentally serves no purpose in the viral life 

cycle, because it occludes the ability of these viruses to replicate and disseminate 

progeny virions (16). Tumorigenesis by these viruses is an unfortunate consequence of 

an error in their natural life cycle, and it often arises from a non-permissive infection.  

In the simplest terms, permissive infections allow for the full completion of the viral 

life cycle from entry to release of new virions, whereas non-permissive infections result in 

a roadblock in the viral life cycle at some point (1). Using SV40 as an example, infection 



28

of African green monkey kidney cells with SV40 represents a permissive infection, 

because the end result is lysis of host cells and release of infectious virions (Figure 8A). 

Infection of rodent cells with SV40, however, represents a non-permissive infection (103). 

This is because, while the early parts of the SV40 life cycle can be accomplished, there 

is a block in these cells in terms of viral genome replication, late gene expression, and 

dissemination. Still, the early events of the SV40 life cycle drive these cells into S-phase, 

which can result in a temporary “transformation” (Figure 8B). As the virus cannot replicate 

within these cells, the number of genome copies per cell is diluted out through multiple 

Figure 8. Results of SV40 infection in different cellular environments. 

A. Infection of permissive cells results in cell death and virion production. B. SV40 infection of
rodent cells induces S-phase entry, but does not result in cell death or virus production. C.
Integration of viral DNA occurs in a very low percentage of non-permissive cells, which then
become stably transformed. (Modified from Ahuja et al., 2005)
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rounds of cell division, and the transforming effects of SV40 are lost (103). There is also 

the possibility for stable transformation of non-permissive cells, but this occurs at a much 

lower frequency (Figure 8C). In this case, after a double-strand DNA break a 

nonhomologous recombination event results in the integration of the viral genome within 

the host genome, from which early region transcripts may still be expressed and the T 

antigens can induce transformation. The infrequency of this entire process serves to 

explain why transformation itself is quite a rare event (1).  

1.4 Merkel cell polyomavirus 

1.4.1 Discovery of MCV 

Merkel cell carcinoma (MCC) is a rare but aggressive form of nonmelanoma skin 

cancer that is believed to originate from mechanoreceptor Merkel cells in the basal layer 

of the skin (205–207). Although it remains a rare cancer, incidence of MCC has increased 

sharply in recent decades, with approximately 1,500 new cases diagnosed each year in 

the United States (120, 208, 209). Despite ongoing research, prognosis for patients with 

MCC remains poor, and mortality rates remain high (209–211)   

 Given that MCC has a higher rate of incidence in elderly, immunocompromised 

individuals, and people with AIDS, it bears striking similarities to other tumors arising from 

a viral etiology, like Kaposi sarcoma (210, 212, 213). Backed with this knowledge, 

researchers at the University of Pittsburgh under the direction of Yuan Chang and Patrick 

Moore developed a bioinformatic approach called digital transcriptome subtraction (DTS) 
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to search for underlying viral sequences in MCC tumor specimens. This technique relies 

on deep sequencing of cDNA (>300,000 reads) from tumor specimens, from which human 

sequences can be computationally subtracted. Using this high-throughput approach, 

Feng et al. were able to identify two critical transcripts that were non-human in nature and 

matched with a database of viral genes. The first transcript bore high homology to known 

polyomavirus T antigen sequences and the second was later shown to align with a portion 

of the viral genome whose full sequence was mapped during the course of the 

investigation. This newly identified polyomavirus was named Merkel cell polyomavirus 

due to its association with MCC tumor specimens (48). 

Figure 9. MCV genome organization. 

Non-coding regulatory region (NCRR): Origin of replication (red) and bidirectional promoter. Early 
gene region: Splice variants for Large T antigen (LT), small T antigen (sT), 57kT antigen (57kT), 
alternative T antigen open reading frame (ALTO), MCV microRNA (miRNA). Late gene region: 
Splice variants for capsid proteins VP1, VP2, and VP3. 
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1.4.2 Genome structure 

Like all polyomaviruses, the MCV genome is composed of early and late coding 

regions, separated by a noncoding regulatory region (Figure 9) (82). The early coding 

region corresponds to the canonical T antigen gene locus of polyomaviruses, from which 

multiple, alternatively-spliced RNA transcripts are generated and expressed as large T 

(LT), small T (sT), and 57kT antigens (83). Examination of an MCV-unique region (MUR) 

in this same stretch led to the identification of an alternative T antigen ORF (ALTO), 

whose gene product is expressed during replication. While the function of the ALTO 

protein remains unknown, its discovery links MCV to other polyomaviruses that also show 

evidence of overprinting in their early coding regions (91).  

The late coding region of MCV encodes the viral capsid proteins VP1, VP2, and 

VP3 (48). Unlike other polyomaviruses, specifically BKV and JCV, MCV does not encode 

a VP4 or agnoprotein (93). In addition to these three major ORFs, MCV also possesses 

a region antisense to the early region that codes for the expression of a single microRNA 

that was first identified through in silico prediction and termed MCV-miR-M1 (96). Further 

in vitro and in vivo studies have confirmed that this microRNA has a regulatory function 

in terms of suppressing LT expression, and evidence suggests it may also be involved in 

immune surveillance by targeting members of the host innate immune response (96, 214). 

1.4.3 Virus life cycle 

The life cycle of MCV during the course of a permissive infection is generally 

consistent with that of known polyomaviruses. However, the attachment and entry 
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process for MCV appears to be unique compared to other polyomaviruses in that it 

requires glycosaminoglycans like heparan sulfate as an initial attachment factor, but 

subsequent entry requires a sialylated glycan like Gt1b (99, 215–217).  

Following entry, the early region of the viral genome is transcribed to produce the 

T antigens, which drive cells into S-phase and initiates the process of replication (218, 

219). MCV LT assembles into a head-to-head double hexamer formation and binds to 

and unwinds the viral origin of replication to begin this process (220, 221). As MCV T 

antigens are a major focus of this dissertation, a more comprehensive review of MCV T 

antigen expression and manipulation of the host cell is presented in Chapter 2 (page 37). 

After replication, it is believed that LT may downregulate its own transcription, 

which causes a switch to late gene transcription and capsid production (222). The miRNA 

encoded by MCV may also play a role in this process by suppressing LT transcripts (214). 

Very little is known about the process of MCV capsid assembly and egress from cells. 

Many polyomaviruses exit cells through direct lysis, but as MCV is known to naturally be 

present in the skin (66, 223), it may also be naturally shed through the natural 

differentiation process of the skin. 

Overall, the lack of an infectious model system for MCV has made studying its 

natural biology quite difficult. Trying to identify permissive cells for MCV infection has also 

proven challenging (224). Only recently was it proposed that human dermal fibroblasts 

are the natural host cells for MCV (225). While this finding is consistent with reports that 

MCC often arises in the dermis (226), it has also raised many questions about the origins 

of MCV-induced MCC. One theory is that Merkel cells represent a non-permissive cell 

line for MCV that become incidentally infected following virus shedding in the dermis, 
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leading to malignant transformation (227). Others have suggested that MCV instead 

reprograms its natural host cells to present Merkel cell markers (228, 229), which is further 

supported by work by Harold et al. that showed that knockdown of T antigen expression 

in MCC cells results in the loss of expression of Merkel cell marker genes and reversion 

to a differentiated neuronal cell phenotype that is distinct from Merkel cells (230). 

Recently, genetic analyses on an MCV-positive MCC derived from a benign 

trichoblastoma indicate that epithelial skin cells may also serve as a host cell for MCC 

development (231). Taken together, these reports demonstrate that MCV-induced MCC 

may arise from multiple cellular lineages (232) and that there are still many questions 

regarding MCC histogenesis that need to be clarified.  

1.4.4 Involvement in Merkel cell carcinoma 

Much like the other human tumor viruses that preceded it, establishment of the 

causal relationship between MCV and MCC required a supportive body of evidence 

before the scientific community at large recognized MCV as a bona fide tumor virus. One

of the strongest pieces of evidence came from the discovery report itself, where it was 

determined that MCV was not just present in MCC tumor specimens, but rather it was 

clonally integrated into the genome in 8 of 10 specimens that were examined (48). Clonal 

integration of MCV in MCC tumor specimens and tumor-restricted T antigen expression 

was further confirmed through follow-up studies (121, 233, 234). These data indicate that 

the virus was present prior to the outgrowth of the tumor and negates the possibility of 

MCV being present as a passenger infection. Furthermore, continued proliferation of 

MCC tumors was also seen to be dependent on the expression of MCV LT and sT 
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Figure 10. Hypothetical framework for MCV-induced MCC carcinogenesis. 

MCV infection is acquired in childhood and remains a persistent, asymptomatic infection. Old age 
and immunosuppression results in reactivation. MCV becomes integrated in the host genome. 
Selective pressure eliminates replication-competent integrated viruses. T antigen expression 
drives tumorigenesis leading to MCC development over time. (Republished with permission of 
Annual Reviews, Inc., from Chang and Moore, 2012; permission conveyed through CCC, Inc.) 

antigens (235, 236), and MCV sT has been demonstrated to have in vitro and in vivo 

transformative capabilities (237–239). Together, these findings help to solidify the causal 

relationship between MCV and MCC, while simultaneously providing a diagnostic 

framework for identifying MCV-positive MCCs. 

Having established this causal relationship between MCV and MCC, the question 

then became how a component of the natural skin flora acquired in childhood manages 

to induce such an aggressive form of skin cancer (Figure 10). It is important to remember 

that MCC generally arises in elderly and immunosuppressed populations, where it is 

believed that immune surveillance toward MCV becomes diminished (210, 212). This 

could stimulate a more productive MCV infection in these populations (240, 241). The 

next steps in this process are two mutagenic events: first, integration of the viral genome 
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within the host genome by nonhomologous recombination, and second, nonsense or 

missense mutations to the viral genome that eliminate the ability of MCV to replicate. 

Were MCV still able to foster replication following integration, it is believed that this 

unlicensed replication would trigger host DNA damage sensors resulting in cell death 

(83). In this way, only cells that undergo both mutagenic events can survive, which results 

in the clonal expansion from single MCC progenitor tumor cell. Expression of viral T 

antigens within these cells is also a key factor in promoting tumorigenesis.  

1.4.5 Mutations in Merkel cell carcinoma 

As mentioned in the previous section, one of the defining characteristics of MCV-

positive MCCs is the presence of missense or nonsense mutations to the integrated viral 

genome that result in the production of the C-terminally truncated LT protein in these 

tumors, leaving the coding sequence for MCV sT intact (83). These C-terminal truncation 

mutations result in the deletion of the entire the helicase domain and usually most of the

origin-binding domain, eliminating the replicative functions of LT (Figure 11). Tumor-

derived LTs notably retain a functional DnaJ domain and Rb-binding motif, highlighting 

the importance of each of these regions for tumor outgrowth, which parallels their 

importance in SV40 LT-induced transformation (203). The preservation of the entire sT 

coding sequence likewise underscores its role in tumor initiation and tumor maintenance. 

The functional domains of the MCV T antigens are enumerated in greater detail in the 

following chapter. Lastly, it should be noted that MCV-positive MCC cases possess a 

significantly lower frequency of somatic mutations than MCV-negative MCC cases, which 

are believed to arise from UV-damage (242–245). This is consistent with other virus-
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induced cancers, where the viral oncoproteins target tumor suppressors that are 

frequently mutated in non-infectious cancers.  

Figure 11. Schematic of canonical LT truncations in MCC cell lines. 

At the top, a schematic for full-length LT is shown, annotated with amino acid positions for key 
functional domains and motifs. The lengths in amino acids of truncated LTs present in MCC cell 
lines are depicted below, showing all that truncated LTs retain the N-terminal DnaJ domain (blue 
line) and Rb-binding motif (orange line), but lack the C-terminal replicative domains (green line 
and beyond).  
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2.0 Large T and small T antigens of Merkel cell polyomavirus 

The literature review contained in this chapter was published in Current Opinion 

in Virology 

Curr Opin Virol. 2015 Apr;11:38-43. 

with authors Wendzicki JA, Moore PS, and Chang Y. 

Minor updates to include new findings have been made since the original date of 

publication in 2015. 

2.1 Introduction 

Merkel cell polyomavirus (MCV) is the newest member of the short list of human 

cancer viruses (16, 18), and is the only known human polyomavirus confirmed to be 

oncogenic (48, 55, 56, 62, 63, 66–74, 246). While MCV was only discovered in 2008, 

polyomavirus research dates back over a half century, beginning with the isolation of 

murine polyomavirus (MuPyV) (11) and later simian vacuolating virus 40 (SV40) (12, 52). 

These polyomaviruses have provided invaluable insights into our mechanistic 

understanding of tumor and cell biology. Polyomaviruses have small genomes (~5kb) 

comprised of early and late coding regions, separated by a noncoding regulatory region 

(NCRR). The early region contains the T (“Tumor”) antigen gene locus (82), from which 
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multiple, alternatively-spliced RNA transcripts are generated. MCV expresses four unique 

gene products from this early coding region: the large T (LT), small (sT), and 57kT 

antigens along with a product from an alternate frame of the LT open reading frame 

(ALTO) (91) (Figure 12). In natural polyomavirus lytic infection, a sequential expression 

of early antigens followed by late capsid proteins is seen. By contrast, MCV-associated 

tumorigenesis is characterized and mediated by the sole expression of LT and sT 

antigens (82, 235). This review will present a biochemical map of the functionally relevant 

motifs and domains within LT and sT, the two major oncoproteins of MCV. 

Figure 12. Gene products of the MCV early coding region. 

Multiple gene products are expressed from the early coding region of the MCV genome as a result 
of alternative splicing of RNA transcripts. Splicing patterns for each gene product are depicted. 
LT, sT, and 57kT represent the main T antigens expressed by MCV, which share a common first 
exon sequence. An alternate frame of the LT open reading frame (ALTO) has also been identified, 
which is +1-shifted to the second exon of LT. A single microRNA named MCV-miR-M1 is also 
coded by MCV whose mature sequence is antisense to 1215-1236 nt in the viral genome. 
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2.2 Large T antigen 

The LT antigens of polyomaviruses contain a number of common motifs and 

domains important for facilitating the viral life cycle (247). In the context of oncogenesis, 

some of these elements also have the effect of disabling tumor suppressor pathways, for 

example by targeting Rb and p53 (82). The LT antigen of MCV encodes many of these 

conserved features as well as a few unique ones (Figure 13).  

Figure 13. Schematic of MCV LT and sT functional domains. 

The LT and sT Antigens of MCV are characterized by their multifunctional natures. This schematic 
representation of these two proteins highlights the location of several motifs and domains that are 
important in the viral life cycle and tumorigenesis. Regions with a key role in tumorigenesis are 
bolded. LT contains a DnaJ domain at its N-terminus, followed by the MUR, which contains the 
binding motifs for Vam6p and Rb family members as well as an NLS. In this region is also the site 
of complementarity for MCV-miR-M1, the sole microRNA encoded by the MCV genome. The C-
terminal portion of LT contains the OBD and the core helicase/ATPase domain, which contains 
the zinc-finger domain and the region corresponding to Exon 3 of 57 kT. sT contains an identical 
DnaJ domain, followed by the LSD and sites for PP4C and PP2A interaction.  
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The N-terminal end of MCV LT (1–70 aa) contains the DnaJ domain (247) 

comprised of the CR1 (13–17 aa) motif followed by the HPDKGG hexapeptide sequence 

responsible for Hsc70 binding (42–47 aa) (83, 247). Kwun et al. confirmed that MCV LT 

interacts with Hsc70, and by disrupting this interaction with a point mutation, they showed 

the necessity of the DnaJ domain for MCV replication in vitro (248).  

Between the first exon and the OBD (~100–300 aa) lies a stretch of sequences 

that contains a conserved LXCXE motif and nuclear localization signal (249), but 

otherwise bears little homology to other polyomaviruses. This region, designated the MCV 

T antigen unique region (MUR) contains a binding motif for the vacuolar sorting protein 

Vam6p. The LT-Vam6p interaction, which can be ablated by mutation of a single 

tryptophan residue at position 209, results in the nuclear sequestration of this cytosolic 

protein and disrupts lysosomal clustering (250). Although Vam6p interaction appears to 

be unique to MCV, the site of this interaction parallels the site for Bub1 interaction in SV40 

LT, which also depends on the presence of tryptophan residues and modulates SV40 LT-

mediated transformation by overriding the mitotic spindle checkpoint (82, 182). In an in 

vitro replication assay using an infectious molecular clone of MCV mutated at position 

209, Feng et al. demonstrated that loss of LT-Vam6p binding leads to enhanced viral 

replication compared to a wild-type control (219). It is possible that in the natural life cycle 

of MCV, LT-Vam6p interaction inhibits or minimizes viral reactivation, a potential form of 

‘viral latency’. SV40 miRNA has been proposed to serve a similar autoregulatory function 

by inhibiting SV40 LT expression (94). MCV encodes an miRNA that may have a similar 

function and may augment Vam6p-related replication silencing (96, 214). Whether or not 

Vam6p targeting is also important in tumorigenesis is not presently known. 
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The Rb-binding (LXCXE) motif of LT (212–216 aa) embedded in the MUR lies 

directly adjacent to the Vamp6-binding site (209 aa). This highly conserved sequence 

across polyomaviruses allows for dysregulation of E2F-mediated transcription and drives 

cells into S-phase (82, 251). Rb-binding and subsequent upregulation of E2F target genes 

such as cyclin E has been confirmed for MCV LT (83, 252). Houben et al. showed the 

importance of the LXCXE motif in the proliferation of MCC tumors cells, since 

complementation with an Rb-binding mutant of LT after RNAi-mediated T antigen 

depletion in MCC cell lines was incapable of rescuing cell growth (253). A novel 

biochemical function was mapped to this region when Arora et al. observed that 

upregulation of the anti-apoptotic protein survivin upon LT expression is dependent on 

the presence of and intact LXCXE motif (252). Targeting LT-mediated survivin 

upregulation represents a viable therapeutic option, supported by in vivo studies where 

pharmacologic inhibition of survivin lengthened the survival of mice bearing MCC 

xenografts (252, 254). 

The C-terminal portion of MCV LT contains several critical elements required for 

viral replication. The OBD of LT (308–433 aa) is responsible for recognition and binding 

of a minimum 71-bp origin of replication in the MCV NCRR (221, 248). Diaz et al. 

observed that phosphorylation of LT upstream of the OBD at residues T297 and T299 

decreases the origin-binding affinity of LT and negatively affects replication initiation 

(255). Following the OBD is a zinc-finger motif (437–528 aa) that is contained in the core 

polyomavirus helicase/ATPase domain (441–817 aa), both of which are important for LT 

oligomerization and initiation of replication (251). In addition to replicase activity, the 

helicase domain in SV40 contains a bi-partite sequence that can directly bind p53 and 
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prevent transcription of its target genes, allowing for the evasion of senescence or 

apoptosis (82, 151, 156, 247, 251, 256). Currently, there is no evidence that either full 

length or truncated forms of MCV LT directly bind p53 (257, 258). This concept is explored 

in greater detail in Chapter 4 of this dissertation. 

One of the most striking features of the LT antigen of MCV is that the C-terminal 

domains are consistently truncated by tumor-associated polymorphisms, but the N-

terminus up to the Rb-binding motif are always intact (83, 259). The short NLS of MCV 

LT that lies between these two regions (277–280 aa) was initially believed to also be 

conserved in tumors (249), but recent evidence indicates that the NLS is not preferentially 

preserved in MCC (257, 260). In the cases where the NLS is eliminated by tumor-specific 

mutations to LT (as in cell lines MCC350, MCCL-11, and MCCL-12) nuclear localization 

is not lost, but rather both nuclear and cytoplasmic distribution are observed (257). 

This signature pattern of C-terminal truncation indicates a selective pressure for 

the elimination of viral replicative elements in tumor development, since a full-length LT 

could initiate unlicensed replication at the site of integration in the host genome leading 

to a DNA damage response (DDR) and cell death (83). This is not unlike other 

polyomaviruses (or other tumor viruses) in which replication competency is lost or 

suppressed in the setting of tumorigenesis (261–263). This notion is supported by Li et 

al. who observed a DDR induced by MCV infection which was mapped to the core 

helicase region of LT. The expression of a LT with intact and functional helicase induces 

ATR and subsequent p53 activation in multiple cell lines (264), leading to cell cycle arrest 

and decreased proliferation. There exists additional pressure for C-terminal truncation of 

LT that has been mapped to the very C-terminal end of the protein, corresponding to the 
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third exon of 57kT, which is shared by LT (717–817 aa). Upon retroviral transduction of 

an exon 3 construct, Cheng et al. noticed retardation of cell growth in an established MCC 

cell line as well as in human fibroblasts immortalized by SV40. The mechanism underlying 

this phenotype is presently unknown (258). Altogether, this evidence suggests that the C-

terminal portion of LT generally has an antiproliferative effect, necessitating its deletion in 

tumorigenesis. 

2.3 Small T antigen 

Although MCV LT and sT share exon 1 of the T antigen locus, and the DnaJ 

domain of LT is required for replication, the functional significance of this domain in sT is 

unknown. It has been shown that mutating Hsc70 binding on sT does not interfere with 

its effect on MCV viral replication (248) or the in vitro transformative activity of sT (265). 

This is similar to SV40 in which the DnaJ domain of LT and sT is known to bind Hsc70 

(138), but this function also does not impact tumorigenesis (82, 266). 

The primary functions of sT antigens in the prototypic polyomaviruses SV40 and 

MuPyV has been long attributed to modifying Akt-mTOR signaling via their interactions 

with protein phosphatase 2A (PP2A) (196, 267, 268), a heterotrimeric complex comprised 

of A, B, and C subunits. sT antigens bind to the A and C subunits of PP2A to displace a 

variety of modular B subunits (82, 268), but the consequences of these interactions and 

their requirement in tumorigenesis varies between different polyomavirus species (269). 

Both SV40 and MuPyV sT antigens have been shown to have broad effects on cell cycle 

progression, survival, and differentiation that are dependent on PP2A (270, 271). The 
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primacy of PP2A targeting in other polyomavirus sT antigens contrasts directly with MCV 

sT, whose PP2A interacting domains (119–124 and 147–152 aa) are dispensable for its 

in vitro and in vivo transformative activity (239, 265). MCV sT instead possesses other 

functionalities in addition to PP2A binding that make it a key oncoprotein for MCC. MCV 

sT expression alone, independent of LT, is responsible for in vitro transformation of rodent 

fibroblasts in soft agar and focus formation assays (265), and sT is required for continued 

cell proliferation in MCC (236). Recent work by Verhaegen et al. has shown that MCV sT 

has in vivo proliferative activity when expressed in mice (239). 

A major feature of MCV sT is a domain spanning 74–98 aa in intron 1 that is 

predicted to encode for an exposed, unstructured loop remotely located from PP2A 

binding sites (237). Scanning alanine mutagenesis in this loop has identified a region from 

91–95 aa termed the LT-Stabilization Domain (LSD). This domain is responsible for 

inhibiting the SCFFbw7 E3 ubiquitin ligase (237). Since LT is a target of Fbw7, co-

expression of sT prevents LT degradation, increases steady-state LT levels and has been 

shown to enhance viral replication (237). sT targeting of Fbw7 not only regulates LT levels 

during natural infections, sT also stabilizes truncated tumor T antigens and other 

SCFFbw7 substrates, including c-Myc and cyclin E, contributing to carcinogenesis. The 

importance of the LSD is evidenced by the fact that when mutated, sT loses its in vitro 

transformation activity (237). The promiscuous E3 ligase targeting ability of sT though its 

LSD and its consequences on genome stability has been recently described (272) and is 

included as Chapter 5 of this dissertation. 

In addition to Fbw7, an intact sT LSD domain is required for targeting 4E-BP1, the 

major regulator of eukaryotic cap-dependent translation. In its active, hypo-
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phosphorylated form, 4E-BP1 directly binds and inhibits eIF4E from interacting with the 

5’ cap of mRNA and recruiting 40S ribosomal assembly. Mammalian target of rapamycin 

complex 1 (mTOR1)-mediated phosphorylation of 4E-BP1 releases eIF4E from 4E-BP1, 

allowing translation initiation to proceed. sT expression has been shown to result in 

increased hyperphosphorylated 4E-BP1 that is independent of mTORC1 signaling (265). 

The mechanism for sT-mediated 4E-BP1 hyperphosphorylation is believed to be 

mediated through the LSD, which contacts cell division cycle protein 20 (cdc20). This 

interaction results in the activation of cyclin-dependent kinase 1 (CDK1, which directly 

hyperphosphorylates 4E-BP1, the effects of which may contribute to sT-induced 

transformation (273, 274).  

Griffiths et al. through a mass spectrometric approach have revealed that MCV sT 

also interacts with protein phosphatase 4C (PP4C) at a region (95–111 aa) directly 

adjacent to the LSD at 91–95 aa (275). MCV sT binding of PP4C or PP2A Aβ targets the 

NF-κB essential modulator (NEMO) protein and prevents nuclear translocation of NF-κB, 

inhibiting NF-κB mediated transcription (275). PP4C binding is also important for the 

induction of a highly motile cell phenotype that may correspond to the highly metastatic 

nature of MCC (276). 

Most recently, a novel role for MCV sT in modulating host transcription has been 

described. Cheng et al., show that sT is able to recruit L-myc to the EP400 histone 

acetyltransferase and chromatin remodeling complex (277). This complex is sufficient to 

bind to and activate specific gene promoters, namely MDM2 and MDM4. As both of these 

proteins are involved in p53 regulation, this transcriptional effect of sT may represent an 

indirect means of targeting the p53 pathway by MCV (278). The formation of this complex 
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is in part dependent on the LSD of sT, as amino acids E86, E87, K92, and D93 have been 

identified as critical for binding.  

2.4 Conclusions 

Since its initial discovery in 2008, the map of MCV has transitioned from a simple 

sketch to a more intricate schematic with detailed characterizations of the viral gene 

products and how they impact tumorigenesis. Unearthing the functional aspects of the T 

antigens has aided in identifying novel targets for MCC treatment, spurring the 

development of MCV-directed vaccines and therapeutics (279–282). Still, there exist 

uncharted activities associated with MCV infection that warrant additional 

characterization for a more comprehensive understanding of this virus and its role in 

MCC. As previous research on polyomaviruses has contributed fundamental concepts in

cell and cancer biology, continued efforts in elucidating the mechanisms of MCV 

pathogenesis may uncover similar discoveries that extend beyond the context of MCC. 
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3.0 The C-terminal domain of MCV Large T antigen is critical for its stability 

Work described in this chapter is unpublished. 

J.A. Wendzicki performed all experiments described in this chapter. J.A. Wendzicki, 

P.S. Moore, and Y. Chang conceived the project and analyzed results.  

The C-terminal replicative domains of Merkel cell polyomavirus (MCV) Large T 

(LT) antigen are characteristically truncated in Merkel cell carcinoma (MCC) tumor 

specimens out of a selective pressure to suppress unlicensed viral replication following 

integration of the viral into the host genome. Recent work suggests these C-terminal 

domains may have additional functions aside from replication. In this chapter, we show 

that a short region within the C-terminus of MCV LT is critical for maintaining the stability 

of the full-length protein. Mutational analyses revealed that loss of these C-terminal motifs 

within the terminal 35 amino acids of LT results in poly-ubiquitination and rapid turnover. 

Attempts to stabilize mutant LTs have been largely unsuccessful. The mechanism of this 

destabilizing phenotype remains unknown, but these data indicate this region may 

function in regulating steady-state LT protein levels, which is of importance in the context 

of a lytic infectious cycle.    
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3.1 Introduction 

Merkel cell polyomavirus (MCV) is the causative agent of roughly 80% of all cases 

of Merkel cell carcinoma (MCC), a rare, aggressive skin cancer. MCV-positive MCCs are 

characterized by integration of the viral genome within the host genome and the presence 

of missense or nonsense mutations that result in the expression of a C-terminally 

truncated Large T (LT) antigen, but an intact small T (sT) antigen (83). As the C-terminal 

helicase domain of LT is required for viral replication, it has been hypothesized that these 

truncating mutations arise out of a selective pressure during tumor formation to eliminate 

this function of the virus. This is because initiation of unlicensed viral replication at sites 

of integration in the host genome would likely lead to replication fork collisions and double-

strand break induction, prompting a cytotoxic DNA damage response by the host cell 

machinery (83, 283). This elimination of MCV replication in the context of MCC is 

consistent with other known tumor viruses that are rendered replication incompetent in 

tumor specimens (261–263, 284, 285)  

While a selective pressure to suppress replication following viral integration is 

evident, it has been suggested that there may be additional reasons for this premature 

truncation of LT. Recent findings suggest that these signature C-terminal truncation 

mutations may actually arise prior to viral integration within the host genome (286). Since 

such mutations effectively eliminate half the amino acid sequence of the protein (83, 287, 

288), it is believable that additional functionalities of LT independent of replication exist in 

this region, which are also selectively lost in tumor populations. Two groups have mapped 

an anti-proliferative phenotype to the C-terminal region of LT, which further supports the 

notion that non-replicative functions exist in this region that may be unfavorable for 
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tumorigenesis (258, 264). Richards et al. have additionally showed that a truncated 

tumor-derived LT protein was expressed at higher levels, resulted in enhanced cellular 

proliferation, and induced unique transcriptomic changes compared to wild-type, full-

length LT protein (289). These results suggest that the absence of C-terminal domains of 

LT may in part impact its expression levels and ability to modulate cellular pathways.  

Changes in protein levels and stability as a result of C-terminal truncation is a 

common phenomenon that has been reported across numerous species. In many cases 

these truncations lead to enhanced stability of a protein due to the deletion of sequences 

that are involved in its targeting for degradation (290–294). The identities of such 

sequences (known as degrons) have remained elusive, but recent work by Koren et al. 

proposes that the stability of many proteins is regulated by C-terminal degrons (295). In 

terms of polyomaviruses, it has been identified that removal of C-terminal variable linker 

and host range region (VHR) from the LT antigen of JCV and SV40 results in lower LT 

protein levels and has varying impacts on transformation efficiency (296). Although the 

C-terminal region of MCV LT shows negligible homology to the VHR, these data suggest

that this region as a whole may have more nuanced functions in MCV biology than initially 

believed. 

In this study, we initially sought to map and characterize the different functional 

domains of MCV LT, but it was revealed almost immediately that truncations to the 

terminal 100 amino acids of the protein drastically altered LT protein levels. Truncation 

and alanine mutagenesis were used to define hotspots in this C-terminal region that were 

critical for maintaining stability of the LT protein, which when mutated resulted in 

increases in LT poly-ubiquitination and degradation. Elucidating the precise mechanism 
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behind this destabilizing phenotype has remained challenging for several reasons, but 

identification of these peptide motifs suggests an important role for the C-terminal tail of 

LT in coordinating the stability of the full-length protein and may function in the course of 

natural MCV infection to regulate steady-state LT protein levels.    

3.2 Materials and methods 

3.2.1 Generation of LT truncation mutants 

A PCR-based approach was used to selectively amplify desired genetic regions of 

a codon-optimized MCV LT, which were restriction cloned into the pCMV-Tag2B vector 

to allow for uniform N-terminal Flag tags on all LT constructs. The 5’ primers for each 

construct also contained codon sequences for an in-frame nuclear localization signal 

derived from SV40 LT (PKKKRKV) that would directly precede the desired MCV LT 

sequence. The 3’ primers for each construct included a C-terminal Stop codon directly 

after the last nucleotides of the desired MCV LT sequence.  

3.2.2 Alanine mutagenesis 

All mutagenesis was carried out using the QuikChange Lightning Site-Directed 

Mutagenesis Kit (Agilent) according to the manufacturer’s instructions. All constructs were 

then sequenced along the entire MCV LT sequence to confirm the presence of the desired 

mutation and absence of any extraneous mutations.  
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3.2.3 Cell culture and transfection 

293 cells lines were maintained in DMEM (Cellgro, #10-013), supplemented with 

10% fetal bovine serum (FBS) (Sigma). Transfections were performed using 

Lipofectamine 2000 (Invitrogen) following the manufacturer's instructions. In experiments 

involving MG132 treatment, cells were cultured overnight in the presence of 10 M 

MG132 (Selleckchem) or a corresponding amount of DMSO as a negative control.  

3.2.4 Immunoblotting 

At 48 hours post-transfection, cells were washed once in 1x PBS, followed by lysis 

in RIPA buffer [50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 0.1% SDS, 1% NP-40, 0.5% 

sodium deoxycholate], supplemented with a protease inhibitor cocktail (Roche). Protein 

concentration in each lysate was quantitated using the DC Protein Assay (Bio-Rad).  

Equal amounts of total protein from each lysate were resolved by SDS-PAGE and 

transferred to nitrocellulose membranes (GE Healthcare). After blocking in milk, 

membranes were incubated in primary antibodies for at least 2 hours at RT or overnight 

at 4°C. IRDye 680CW goat anti-mouse/rat or IRDye 800CW goat anti-rabbit antibodies 

(LI-COR) were used for secondary detection. Signals were analyzed at 700 or 800 nm 

wavelengths, using the quantitative Odyssey IR Imaging System (LI-COR). The following 

primary antibodies were used: anti-MCV LT (CM2B4), anti-Flag (M2 Sigma), anti-α tubulin 

(11H10 Cell Signaling; 12G10 DSHB), and anti-HA (3F10 Roche). 
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3.2.5 Immunofluorescence 

293 cells were seeded on glass slides and transfected with MCV LT constructs. 

Cells were fixed and permeabilized with cold methanol at -20 °C for 20 minutes. After 

blocking with 10% fetal bovine serum in PBS, cells were incubated overnight at 4 °C with 

primary anti-Flag antibody (M2 Sigma), followed by secondary antibody incubation (Alexa 

Fluor 568-conjugated goat anti-mouse) for 1 hour at room temperature. Stained cells were 

mounted in aqueous medium containing DAPI (Vector Laboratories). Cells were analyzed 

by fluorescence imaging using an Olympus AX70 epifluorescence microscope. 

3.2.6 Ubiquitination assays 

293 cells were transfected with expression constructs for wild-type or mutant LTs 

along with an HA-tagged ubiquitin construct. At 48 hours post-transfection, cells were 

subjected to a short course of proteasome inhibition by treatment with MG132 (10 M) 

for 4 hours. Cells were then lysed in immunoprecipitation (IP) buffer (50 mM Tris-HCl [pH 

7.4], 150 mM NaCl, 1% Triton X-100, 5 mM NaF), supplemented freshly with a protease 

inhibitor cocktail (Roche). Lysates were incubated overnight at 4°C with Flag-antibody 

(M2 Sigma), followed by incubation with a slurry of Protein A/G Plus Agarose beads 

(Santa Cruz) for an additional 4 hours. After multiple wash steps, bound proteins were 

eluted in 2×SDS loading buffer, resolved by SDS-PAGE, and immunoblotted as described 

above. 
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3.2.7 Structural modeling 

Amino acid sequence alignment was performed for all human polyomavirus LT 

sequences using the Clustal Omega alignment tool (297). The Quick2D feature from the 

MPI Bioinformatics Toolkit (298) was used to infer secondary structural information about 

the C-terminal region of MCV LT. Phyre2 (299) was used to gain additional information 

about secondary structures present in MCV LT and to generate a predicted 3D structure, 

which was then analyzed in Pymol.   

3.3 Results 

3.3.1 C-terminal truncations to MCV LT impact its stability 

At the outset of this study, the goal was to create a library of plasmids that could 

be used to selectively express different functional domains of MCV LT to learn more about 

their biological function and potential binding partners. The genetic sequences 

corresponding to functional domains of MCV LT were cloned into a Flag-tagged 

expression system along with an N-terminal nuclear localization signal (NLS) to ensure 

uniform localization of all LT truncation mutants (Figure 14A). Upon transfection of these 

LT truncation mutant plasmids into 293 cells and subsequent immunoblotting, it was 

revealed that only a subset of the mutant LTs showed stable protein expression. Initially 

owing this finding to an error in transfection, we were surprised to find this phenotype was 

highly reproducible. Treatment of transfected cells with the proteasome inhibitor MG132  
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Figure 14. C-terminal truncations compromise MCV LT stability. 

A. Diagram of Flag-tagged LT truncation mutants aligned with the corresponding functional
domains of LT that each contains. Two tumor-derived LT protein sequences serve as reference.
Constructs displayed in green show stable expression in 293 cells, whereas those shown in red
are unstable. All unstable constructs have perturbations within the C-terminal 100 amino acids of
LT or are limited to the C-terminal amino acids, highlighted by the red box. B. Immunoblots for
Flag-LT truncation constructs expressed in 293 cells. Only 7 of 13 constructs are detected in
control (DMSO) conditions, but LT protein levels for all constructs are restored upon proteasome
inhibition by MG132.
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showed that the LT mutants that failed to express under normal conditions were being 

expressed and synthesized, but were also being rapidly turned over by the cellular 

degradation machinery (Figure 14B). When looking at the map of truncations a clear 

pattern emerged in terms of the LT mutants that were rapidly degraded in that all 

contained deletions to the C-terminal 100 amino acids of LT, a region previously 

implicated in the growth-inhibitory phenotype associated with full-length MCV LT (258). 

To more finely map the threshold required for stable LT expression, a second 

series of truncation mutants was created that featured systematic deletions of 17 amino 

acids, beginning from the C-terminus of LT and spanning the final 100 amino acids of the 

protein (Figure 15A). Expression of these truncation constructs in 293 cells revealed that 

the terminal ~35 amino acids of LT are required for stable expression, as truncation 

between 783-800 aa drastically reduced LT stability to undetectable levels by 

immunoblotting. As before, all truncation mutants became detectable after proteasome 

inhibition with MG132 (Figure 15B). To corroborate the immunoblotting data, 

immunofluorescence directed against Flag-tagged LT in transfected 293 cells was used.  

Full-length (1-817) LT was readily visible in nuclei of transfected cells, but only after 

MG132 treatment did LT 1-783 become visibly expressed (Figure 15C).  
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Figure 15. Systematic C-terminal truncations reveal threshold for LT stability. 

A. Diagram of serial truncations to the C-terminus of LT. These Flag-tagged LT truncation mutants each vary by 17 amino acids and
span the terminal 100 amino acids of LT. B. Immunoblot for Flag-LT truncation constructs expressed in 293 cells. Only full-length (1-
817) LT and LT 1-800 show stable expression in control (DMSO) conditions, indicating the region between 783-800 aa is critical for
stability. Protein levels for all constructs are restored by MG132 treatment. C. Immunofluorescence assay for Flag-LT in 293 cells.
Compared to strong nuclear staining of full-length (1-817) LT expression in control conditions, the unstable LT 1-783 is only detected
in cells after MG132 treatment.
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3.3.2 Alanine mutagenesis reveals hotspots important for LT stability 

While the truncation constructs were useful for defining a threshold of C-terminal 

amino acids required for LT stability, it could not be determined whether or not the loss of 

stability was due to the truncation of the protein chain itself or loss of a specific motif in 

that region.  Alanine mutagenesis was then used in an attempt to identify a stability motif 

in the C-terminus of LT in context of the full-length protein. Stretches of 5-7 amino acids 

were mutated to alanine within the 781-817 aa region of full-length MCV LT (Figure 16A). 

Following transfection into 293 cells, it became clear that some of these mutations had a 

more pronounced destabilizing effect on the LT protein than others, but overall protein 

levels were again restored upon MG132 treatment in all cases (Figure 16B). Quantitation 

of LT protein levels as normalized to alpha-tubulin revealed two hotspot regions that when 

mutated to alanine resulted in ~80% reduction in LT protein levels: 786-795 aa and 811-

817 aa (Figure 16C). These destabilizing mutations provided evidence that it was indeed 

loss of specific motifs in the C-terminus of LT that resulted in LT degradation.   

Given that large mutations or truncations often alter or disrupt protein structure, 

leading to degradation, we wanted to see if mutation to any one residue in the C-terminal 

region of LT could impact its stability to the same degree as these larger mutations. Single 

amino acid alanine substitution mutants were then generated for residues falling within 

the first hotspot region for this purpose (786-795 aa). Conversely, single amino acid 

alanine substitution mutants were also generated for a region that did not impact LT 

stability when mutated (801-805 aa). As previously, these constructs were transfected 

into 293 cells; however, in this case all mutant LTs displayed stable protein levels in the 
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Figure 16. Alanine mutagenesis reveals hotspot regions important for LT stability. 

A. LT C-terminal amino acid sequence spanning from 781-817 aa. Black lines beneath the
sequence represent pentapeptide alanine substitution mutations that were generated throughout
this region. B. Immunoblot for Flag-LT constructs expressed in 293 cells. Alanine substitution
mutants show varied levels of LT protein compared to wild-type LT under normal (DMSO)
conditions. Protein levels for all constructs are restored by MG132 treatment.  C. Quantitative
representation of LT protein levels for each mutant LT compared to wild-type LT reveals alanine
substitution between 786-795 aa and 811-817 aa are highly destabilizing.

absence of proteasome inhibition, indicating that no single amino acid was directly 

responsible for the loss of LT stability upon mutation (Figure 17). Instead, the hotspot 

regions identified by larger tracts of alanine substitution represent the shortest peptide 

motifs that impact LT stability.  
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Figure 17. Single alanine substitutions do not destabilize LT. 

Immunoblot of single alanine substitution LT mutants expressed in 293 cells, as detected by 
CM2B4 antibody. Constructs were sorted by whether or not the mutations fell within the hotspot 
region associated with increased degradation or an area that when mutated did not impact 
stability (control). In all cases, mutant LT protein levels were stably expressed.  

3.3.3 Unstable LT mutants possess higher levels of ubiquitination 

Proteins are most often targeted for degradation by the ubiquitin-proteasome 

pathway, where a series of covalently-linked ubiquitin moieties are attached to lysine 

residues on a protein to target it for proteasome recognition and degradation (300). 

Considering unstable LT mutants used in this study were consistently stabilized through 

proteasome inhibition, it followed that they were being targeted for degradation through 

this pathway. We next wanted to see whether or not the unstable LT mutants possessed 

a higher degree of poly-ubiquitination to further support this notion. 293 cells were 

transfected with either stable (wild-type, 799-803A) or unstable (781-85A, 786-90A, 789-

93A, 791-95A) LT constructs along with HA-tagged ubiquitin and subject to 4 hours 

proteasome inhibition prior to lysis. Immunoprecipitation was performed against the Flag-

tagged LT, followed by immunoblotting against the HA-tagged ubiquitin to visualize the 
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Figure 18. Unstable LT mutants are highly ubiquitinated. 

Ubiquitination assay. 293 cells were transfected with wild-type, stable (LT 799-803A), and 
unstable (LT 781-85, LT 786-90A, LT 789-93A, LT 791-95A) LT constructs and HA-tagged 

ubiquitin. Cells were treated with MG132 (10 M) for 4 hours prior to lysis. Input lysates (left) show 
Flag-LT protein levels within the whole cell lysate. Following IP against Flag and subsequent 
immunoblotting against HA-ubiquitin (right), characteristic smears make it clear that unstable LT 
mutants show more poly-ubiquitination than stable LT mutants or wild-type LT. Asterisk denotes 
nonspecific IgG heavy chain band. 

presence of poly-ubiquitination on LT. Unstable LTs possessed a marked enrichment in 

ubiquitination compared to stable LTs (Figure 18), indicating that unstable mutants were 

being directly targeted for proteasomal degradation. 

3.3.4 Attempts to stabilize LT mutants were unsuccessful 

To better understand from a mechanistic standpoint why these truncation and 

alanine substitution mutations within the C-terminus of LT result in rapid turnover, a few 

attempts were made to counteract the destabilization phenotype. In some cases, single 

protein domains that lack inherent stability can become stabilized in the context of a 
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Figure 19. LT stabilization attempts were unsuccessful. 

A. Immunoblot from 293 cells expressing single Flag-LT fragments or combinations of Flag-LT
fragments that together constitute the full-length LT protein (1-817 aa). Co-expression of unstable
LT 1-717 with corresponding LT 718-817 did not restore stable expression of either fragment. B.
Immunoblot from 293 cells expressing wild-type LT, unstable LT 791-95A, or stable LT 799-803A
in the presence of an empty vector, a mutant MCV replicon (-), or a wild-type MCV replicon (+).
Co-expression of LT with MCV replicons did not result in significant stabilization of LT 791-95A.

multidomain protein (301), so we first tried co-expressing unstable domains of LT in trans 

to see if a complementation approach would increase their stability. However, co-

expression of MCV LT 1-717 and 718-817 did not result in stabilization of either fragment, 

despite representing the complete amino acid sequence of LT (Figure 19A). We next 

sought to stabilize LT through co-transfection of a plasmid containing the viral origin of 

replication. As LT is known to form double hexamers and assemble at the viral origin 

(221, 302–305), we hypothesized that even mutant LTs could be stabilized in these higher 

ordered structures if origin sequences were present. Co-transfection of the unstable MCV 

LT 791-95A along with a wild-type origin plasmid did not result in an increase in LT protein 
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levels, however (Figure 19B). It remains undetermined why these mutations result in 

such a drastic destabilization of LT, resulting in its rapid turnover.  

3.4 Discussion 

What began as a methodology to express various functional domains of MCV LT 

led to the identification of specific sequences within the most C-terminal region of LT that 

are critical for stabilizing the entire protein. The simplest explanation for this phenomenon 

would be that these truncations and alanine mutations result in misfolding of LT, which 

leads to rapid poly-ubiquitination and degradation (306–308). Whether or not expression 

of unstable LT constructs results in an unfolded protein response (UPR) in cells has not 

been formally assayed for; however, the fact that not all mutations in this region 

compromise LT stability is evidence that the phenomenon may instead be sequence 

specific.  

Much of what has been discovered about MCV biology to date has stemmed from 

comparisons with other polyomaviruses and tumor viruses. By aligning this C-terminal 

region of MCV LT with other human polyomavirus LT sequences, we found a limited 

amount of homology compared to other highly conserved regions of the protein (Figure 

20). Though it does not allow for much inference about the function of this motif, it does 

indicate that these sequences may be unique to MCV LT. Additionally, with a limited 

amount of crystallographic data available for MCV LT, it is difficult to understand precisely 

what role this C-terminal tail plays in terms of coordinating the structure of the entire 

protein. Structural modeling through multiple predictive indices suggests that while part 
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Figure 20. Peptide sequence alignment of C-terminal regions from PyV LTs. 

Complete LT amino acid sequences from 13 human polyomaviruses and also SV40 and MuPyV 
were aligned using Clustal Omega aligment tool. The snapshot shown here highlights the C-
terminal sequences of MCV LT that are critical for stability (top). Asterisks designate perfectly 
conserved residues. Colons indicate partial conservation. Only two asterisks and two colons 
appear for the entire C-terminal region. Overall, this region shows low sequence homology for 
MCV LT compared to the other polyomaviruses. 

of this region is alpha-helical in nature, the majority of this tail is unstructured and does 

not participate in the larger globular structure of the major functional domains of LT 

(Figure 21 A & B). As naturally unstructured regions of proteins often serve as docking 

sites for other interactors (309–311), it follows that this motif could serve as a binding site 

for a protein that results in stabilization of LT. This is not unlike the human papillomavirus 

family, in which the length and nature of intrinsically disordered regions of E6 and E7 

oncoproteins correlate directly with their affinity for cellular cofactors and overall 

tumorigenicity (312–314). Furthermore, the presence of post-translational modifications 

within this disordered region may also influence binding of cellular cofactors, and this 

region does contain multiple serine and threonine residues, which may serve as 

phosphorylation sites. Interestingly, Li et. al have identified an ATM phosphorylation site 
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Figure 21. Structural modeling of C-terminal tail of MCV LT. 

A. Secondary structural modeling of the C-terminal region of MCV LT from Quick2D. The black
arrow at residue 781 denotes the beginning of the region involved in stability. Multiple predictive
indices (left) indicate a portion of this region is alpha-helical (H). The majority of this sequence is
disordered (D) in nature, however. EE designates an extended loop. B. Three-dimensional
modeling of the C-terminal region of LT (pink) as predicted by Phyre2. While two small helices
are present in this region, most of the sequence is unstructured. Any molecular contacts (yellow
lines) between this region and the helicase domain (red) or the DnaJ domain (blue) are largely
absent.
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at S816 of MCV LT (315), which supports the idea that these other neighboring residues 

may also be phosphorylated by additional cellular kinases. 

Protein degradation is generally governed by post-translational modifications at 

specific sites on target proteins that are then recognized by the cellular proteasomal 

machinery. Specific peptide motifs known as degrons can serve as recognition sites for 

E3 ubiquitin ligases, which coordinate poly-ubiquitination at key lysine residues to target 

proteins for degradation (316, 317). Likewise, some phosphorylation sites within proteins 

compose phosphodegron motifs that can also be recognized by particular E3 ligases to 

target proteins for degradation (318–320). Phosphorylation can also mask degron motifs 

and block E3 ligase binding in what is termed a phospho-inhibited degron (318). It has 

been reported that phosphorylation of several oncoproteins allows for interaction with the 

E3 ubiquitin ligase RNF4, which actually results in their stabilization (321). 

Immunoprecipitation experiments do not show evidence for interaction between MCVLT 

and RNF4, however (data not shown). In terms of LT degradation, it has been established 

that phosphorylation at residues S220 and S239 in the N-terminal region can be 

recognized by multiple cellular E3 ligases to target LT for degradation (222), but less is 

known about any C-terminal degron motifs. The C-terminal region identified in this study 

contains no lysine residues, but five potential phosphorylation sites are present (T806, 

T809, S812, T814, S816), the last of which has been validated (315). If and how any of 

these potential phosphorylation sites functions to promote or prevent LT degradation 

remains unknown.  

While it has become clear through this study that the C-terminal tail of MCV LT 

plays an important role in stabilizing the protein, the precise mechanism governing this 
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process remains unknown. The destabilizing mutations identified here have made 

subsequent attempts at identifying novel binding partners in this region technically 

difficult. Also, given that the C-terminus of LT is canonically truncated in tumor specimens, 

it is unknown whether or not this region or any cofactors binding there have any relevance 

to MCV tumorigenesis. Instead, the C-terminus of LT may serve as a regulatory region 

for governing LT protein levels in the context of a natural MCV infection. 
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4.0 Differential targeting of p53 by polyomavirus Large T antigens 

Work in this chapter is unpublished. Parts of the data presented here are in 

preparation for a manuscript submission in 2020. 

with authors Wendzicki JA, Moore PS, and Chang Y. 

J.A. Wendzicki performed all experiments described in this section. J.A. Wendzicki, P.S. 

Moore, and Y. Chang conceived the project, analyzed results, and have begun drafting 

the manuscript. 

Targeting the p53 pathway is an essential component of the polyomavirus life cycle 

in lytic infections and tumorigenesis. In this chapter we compare mechanisms of p53 

inhibition by the Large T (LT) antigens of two polyomaviruses: simian vacuolating virus 

40 (SV40) and Merkel cell polyomavirus (MCV). In contrast with SV40 LT, MCV LT shows 

weak interaction with p53 and p300 in immunoprecipitation and proximity ligation assays. 

Quantitative PCR and chromatin immunoprecipitation further show that SV40 LT prevents 

binding of p53 to target gene promoters to prevent transcriptional activation, while MCV 

LT does not. A point mutation in the C-terminal domain of SV40 LT (P522L) disrupts its 

p53 binding ability, leading to a reversal of p53 accumulation and transcriptional inhibition. 

This mutant is also replication deficient but retains binding to retinoblastoma protein pRb. 

These data clarify the mechanism of p53 inhibition by SV40 LT and indicate that contact 

with p53 may be more specific than previously believed. It remains unclear how MCV 

inhibits the p53 pathway, but these results suggest it is not mediated through LT alone.  
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4.1 Introduction 

As small, double-stranded DNA viruses, polyomaviruses must manipulate the host 

cell cycle and replication machinery to accomplish their viral life cycles. Polyomaviruses 

rely on the expression of multiple, alternatively-spliced transcripts from the early region 

of their genome known as tumor (T) antigens to accomplish this (82, 322). As one of the 

earliest discovered polyomaviruses (12), simian vacuolating virus 40 (SV40) has served 

as the touchstone of this virus family for investigating the precise biology of the 

polyomavirus life cycle and how this virus family elicits cellular transformation in a variety 

of hosts. Likewise, research on Merkel cell polyomavirus (MCV), the only human 

polyomavirus with a causal role for cancer in humans, has provided tremendous insight 

into novel mechanisms of tumorigenesis since its discovery (48, 105, 218).     

One of the cellular proteins canonically targeted by the T antigens of 

polyomaviruses is p53, since its inhibition can prevent both host cell senescence and 

apoptosis (82, 323, 324). Either of these outcomes are otherwise dead ends for the viral 

life cycle, underscoring the importance of targeting the p53 pathway during a productive 

infection. As p53 is also at the center of maintenance of genome integrity (144, 325), 

inhibition of p53 is also a key factor in the tumorigenicity of these viruses. The p53 protein 

itself was first discovered and characterized as a result of interactions with the Large T 

(LT) antigen of SV40 (140, 141, 326). SV40 LT is known to contact p53 through bipartite 

motifs in its C-terminal domains, specifically amino acids 351-450 and 533-626 (103, 147, 

327). Through this interaction, SV40 LT contacts regions of p53 that are involved in 

multimerization as well as DNA binding (148, 327–329), which is believed to be the 

method by which SV40 blocks p53 transcriptional activation. The ability of SV40 LT to 
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bind to p53 directly correlates with its efficiency of in vitro transformation in multiple cell 

lines (330).   

While SV40 LT antigen has long been known to robustly bind to and inactivate 

p53, the relationship between MCV LT and p53 remains poorly understood. To date, the 

interaction between MCV LT and p53 has been described as weak to nonexistent (257, 

258). There are also conflicting reports as to whether or not MCV LT can inhibit p53-

dependent transcriptional activity (257, 331), but given that the vast majority of MCV-

positive Merkel cell carcinoma (MCC) cases harbor wild-type p53 (245, 332, 333), it 

follows that there may be a yet undefined mechanism by which MCV antagonizes this 

pathway. On the other hand, it is known that MCV, like other polyomaviruses, induces a 

potent DNA damage response (DDR) and recruits DNA repair factors to facilitate its 

replication (71, 334–337). It has been reported that this DDR triggered by MCV LT results 

in p53 activation, downstream target upregulation, and apoptosis in certain cell lines (264, 

315). Taken together, these data suggest the relationship between MCV LT and p53 both 

in the context of a lytic infection and tumorigenesis is multi-dimensional and represents 

an area in which further clarification is needed.    

In this study, we highlight fundamental differences in the ability of the LT antigens 

of MCV and SV40 to inhibit the p53 pathway. We recapitulate the ability of  SV40 LT to 

complex with p53 and its cofactor p300, for which interactions with either protein are 

significantly weaker in the case of MCV LT. SV40 LT also inhibits p53 site-specific DNA 

binding and activation of downstream targets, whereas MCV LT is deficient in this 

functionality. A point mutation at residue P522 in the C-terminal region of SV40 LT 

abrogates binding to p53, but retains binding to retinoblastoma protein pRb. This p53-
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binding mutant LT reverses the p53 accumulation and inhibition phenotype seen with the 

wild-type protein. These results provide further insight into mechanisms of p53 inhibition 

by SV40 LT and effectively demonstrate that MCV LT does not play a direct role in 

inhibiting the p53 pathway.   

4.2 Materials and methods 

4.2.1 Cell culture and transfection 

293 and U2OS cell lines were maintained in DMEM (Cellgro, #10-013), 

supplemented with 10% fetal bovine serum (FBS) (VWR Seradigm). The Short Tandem 

Repeat profiles of the 293 and U2OS cells were authenticated by the University of Arizona 

Genetics Core. Transfections were performed using Lipofectamine 2000 (Invitrogen) 

following the manufacturer's instruction. 

4.2.2 Plasmids 

Mammalian expression constructs used for MCV LT wt (265), MCV LT LXCXK 

(83), and SV40 LT wt (183) have been described previously, as referenced. Constructs 

MCV LT P689L, SV40 LT LXCXK, and SV40 LT P522L were generated through 

mutagenesis, using the QuikChange Lightning Mutagenesis Kit (Agilent). MCV (pMCV-

Ori339(97)) (248) and SV40 (pSV01EP) (338) origin plasmids used in the replication 

assay have been described previously, as referenced. The 4XBS2WT-luc plasmid 
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(Addgene #16593; (339)) used in p53 reporter assays was a kind gift from Dr. Jian Yu. 

The Flag-p53 plasmid was a kind gift from Dr. Ole Gjoerup.   

4.2.3 Immunoblotting and antibodies 

Cells were lysed in RIPA buffer [50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 0.1% 

SDS, 1% NP-40, 0.5% sodium deoxycholate], supplemented with protease inhibitors 

pepstatin A, leupeptin, aprotinin, and phenylmethylsulfonyl fluoride (PMSF). Lysates were 

resolved by SDS-PAGE and transferred to nitrocellulose membranes (GE Healthcare). 

After blocking in 5% milk, membranes were incubated in primary antibodies for at least 2 

hours at RT or overnight at 4°C. For quantitative Western blot detection, IRDye 800CW 

goat anti-mouse/rabbit or IRDye 800CW goat anti-mouse/rabbit antibodies (LI-COR) 

were used as secondary antibodies.  Signal intensities were analyzed at 700 or 800 nm 

wavelengths, using the Odyssey IR Imaging System (LI-COR). The following primary 

antibodies were used: anti-MCV LT (CM2B4), anti-SV40 T antigen (pAb416 Calbiochem), 

anti-α tubulin (11H10 Cell Signaling; 12G10 DSHB), anti-pRb (Abcam), anti-p21 (EA10 

Calbiochem), anti-PUMA (Ab3795), and anti-Flag (M2 Sigma). The following primary 

antibodies were used for p53 detection: total p53 (DO-1 Santa Cruz; FL-393 Santa Cruz), 

phospho-Ser15 (16G8 Cell Signaling), phospho-Ser20 (Cell Signaling), phospho-S392 

(Cell Signaling), and acetyl-K373 (NY-CO-13 Millipore Sigma).  
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4.2.4 Immunoprecipitation 

293 or U2OS cells were transfected with plasmids for expression of wild-type and 

mutant LTs of MCV and SV40. Cells were lysed in immunoprecipitation (IP) buffer (50 

mM Tris-HCl [pH 7.4], 150 mM NaCl, 1% Triton X-100, 5 mM NaF) freshly supplemented 

with protease inhibitors pepstatin A, leupeptin, aprotinin, PMSF, and 1 mM 

benzamidine. Lysates were incubated overnight at 4°C with antibodies against p53 (DO-

1 Santa Cruz), MCV LT (CM2B4), SV40 LT (pAb416 Calbiochem), or pRb (Abcam). This 

was followed by incubation with a slurry of Protein A/G Plus Agarose beads (Santa Cruz) 

for 3 additional hours. After a series of wash steps, bound proteins were eluted in 2×SDS 

loading buffer, resolved by SDS-PAGE, and immunoblotted as described above. 

4.2.5 Proximity ligation assay 

U2OS cells were seeded on glass slides and transfected with MCV or SV40 LT 

constructs. Cells were fixed in 4% paraformaldehyde for 10 minutes, followed by 

permeabilization in PBS containing 1% Triton X-100. Next, the Duolink PLA system 

(Sigma) was used to develop the PLA signal according to the manufacturer’s instructions. 

After blocking with Duolink Blocking Solution, cells were incubated overnight at 4 °C with 

a combination of anti-LT antibodies (CM2B4; pAb416) and anti-p53 antibody (FL-393 

Santa Cruz) or anti-LT antibodies and anti-p300 antibody (N-15 Santa Cruz). Cells were 

then incubated with Duolink anti-rabbit PLUS and anti-mouse MINUS secondary 

antibodies, followed by ligation, and rolling circle amplification to develop the PLA signal. 

Lastly, cells were incubated with Alexa Fluor 488 goat anti-mouse antibody to 
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counterstain against LT. Stained cells were mounted in Duolink PLA Mounting Medium 

with DAPI. Slides were analyzed by fluorescence imaging using an Olympus AX70 

epifluorescence microscope. 

4.2.6 RNA extraction and quantitative real-time PCR 

RNA was extracted from cells using TRIzol Reagent (Ambion) according to the 

manufacturer’s protocol. The TURBO DNA-free Kit (Invitrogen) was used to remove any 

DNA contamination, prior to cDNA synthesis with SuperScript IV Reverse Transcriptase 

(Invitrogen). Quantitative PCR (qPCR) was conducted on cDNA samples using the 

PowerUp SYBR Green Master Mix (Applied Biosystems) according to the manufacturer’s 

instructions, using a QuantStudio 3 Real-Time PCR System (Applied Biosystems). Fold 

change in mRNA expression was calculated using the delta-delta CT method with target 

genes standardized to a GAPDH control. 

4.2.7 Chromatin immunoprecipitation 

Cells were fixed in 1% formaldehyde in PBS for 10 minutes to crosslink proteins 

and DNA. Nuclei were isolated as previous (222), followed by lysis in ChIP buffer (50 mM 

Tris-HCl [pH 8.1], 1% SDS, and 10 mM EDTA [pH 8.0] with protease inhibitors). 

Chromatin was sheared by sonication and then diluted 10-fold in dilution buffer (20 mM 

Tris [pH 8.1], 1% Triton X-100, 2 mM EDTA [pH 8.0], 150 mM NaCl with protease 

inhibitors). Soluble chromatin was precleared with protein A/G-agarose (Santa Cruz) and 

2 µg of sonicated salmon sperm DNA (Stratagene) for 2 hours at 4 °C. Small aliquots 
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(5%) of the precleared chromatin were taken as input controls. The remainder was 

incubated overnight at 4°C with anti-p53 antibody (DO-1 Santa Cruz) or isotype IgG 

control (R&D Systems), after which A/G-agarose beads were added for another 4 hours 

at 4 °C. Following a series of wash steps, bound DNA was extracted twice with buffer (50 

mM NaHCO3, 1% SDS, 50 mM Tris [pH 8.0], 1 mM EDTA) and incubated at 65 °C 

overnight to reverse crosslinking. Input and ChIP DNA samples were purified by 

phenol:chloroform extraction, followed by qPCR carried out with PowerUp SYBR Green 

Master Mix (Applied Biosystems) according to the manufacturer’s instructions on a 

QuantStudio 3 Real-Time PCR System (Applied Biosystems). Results are reported using 

the percent input method, where ChIP samples are standardized to the input chromatin 

levels.  

4.2.8 Replication assays 

U2OS cells were transfected with wild-type or mutant MCV and SV40 LT 

constructs along with 50 ng origin-containing replicons for MCV (248) and SV40 (338). At 

48 hours post-transfection cells were lysed in TE-SDS buffer (10 mM Tris [pH 8.0], 1 mM 

EDTA, 0.6% SDS), to which NaCl was added at 1M concentration to salt-precipitate 

chromatin DNA. After centrifugation, the episome-containing fraction was subject to 

phenol:chloroform extraction and ethanol precipitation. Digest with DpnI was used to 

remove input replicon DNA, and quantitative PCR with origin-specific primers for each 

virus was used to measure newly-replicated DNA. As above, qPCR was carried out with 

PowerUp SYBR Green Master Mix (Applied Biosystems) according to the manufacturer’s 

instructions, using a QuantStudio 3 Real-Time PCR System (Applied Biosystems).  
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4.2.9 Luciferase assays 

U2OS cells were transfected with equal amounts firefly luciferase reporter 

4XBS2WT-luc (339) and control Renilla reporter pRL-null (Promega), along with MCV 

and SV40 LT constructs. Luciferase assays were performed using the Dual-Luciferase 

Reporter Assay System (Promega) according to the manufacturer’s instructions. In short, 

cells were lysed in passive lysis buffer and lysates were loaded in triplicate in a 96-well 

plate. Firefly and Renilla luciferase reads were quantitated using a Synergy2 microplate 

reader (BioTek) equipped with a luciferase detection program. Firefly luciferase reads 

were standardized based on the Renilla luciferase reads. A portion of lysates from each 

condition were retained for immunoblotting to confirm LT expression. 

4.2.10 Cycloheximide chase half-life studies 

U2OS cells were transfected with expression plasmids for MCV and SV40 LT 

constructs. At 48 hours post-transfection, standard culture media was replaced with 

media containing 50 g/mL cycloheximide (CHX) to block new protein synthesis. Cells 

were then washed once in 1X PBS, followed by direct lysis in RIPA buffer at the following 

time points: 0, 0.5, 1, 2, and 4 hours after CHX treatment. Lysates were resolved by SDS-

PAGE, and immunoblotting was performed against LT, p53, and tubulin, as described 

above. Quantitative LI-COR detection allowed for measurement of p53 decay over time 

for each condition, normalized to tubulin.  
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4.3 Results 

4.3.1 MCV LT does not strongly interact with p53 or p300 

SV40 LT directly binds to and inactivates p53 through bi-partite motifs within its C-

terminus (103, 147, 256, 340, 341), so we first wanted to see if MCV LT was capable of 

binding p53 in a similar manner. 293 cells were transfected with expression constructs 

for wild-type MCV LT or SV40 LT, followed by immunoprecipitation (IP) against 

endogenous p53. Immunoblotting for LT revealed that while SV40 LT was enriched 

through p53 pulldown, MCV LT showed a weak ability to co-IP with p53 (Figure 22). This 

finding is consistent with a previous study by Borchert et. al that failed to see direct 

interaction between MCV LT and p53, despite seeing inhibition of p53 activity through 

reporter assays (257).  

Figure 22. MCV LT weakly immunoprecipitates with p53. 

293 cells were transfected with expression constructs for MCV LT, SV40 LT, or an empty vector. 
Input lysates show LT levels in the whole cell lysate (left). Following IP against endogenous p53 
and immunoblotting against LT, SV40 LT was clearly enriched through pull-down, whereas MCV 

LT showed weak co-IP efficiency. 
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Figure 23. MCV LT weakly interacts with p53 and p300. 

Immunofluorescence images following proximity ligation assay (PLA) in U2OS cells expressing MCV LT, SV40 LT, or an empty vector. 
Separate panels are displayed for each channel: DAPI (blue), PLA signal (red), and LT expression (green). Images captured at 1000X 
magnification. A. PLA was directed against LT and p53 interaction. PLA signal is much weaker for MCV LT compared to SV40 LT 
despite similar LT protein levels. B. PLA was directed against LT and p300 interaction. PLA signal is weaker for MCV LT compared to 
SV40 LT despite similar LT protein levels.
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The LT antigen of MuPyV also does not directly bind p53, but rather targets the 

p53 co-activators CREB binding protein (CBP) and p300 through its C-terminus (342–

346). SV40 LT has also been shown to participate in a complex with p300, but contact 

with p300 is mediated through direct binding to p53 (161, 170). We next wanted to see if 

MCV LT could also complex with p300 in some way, as this could represent a novel 

mechanism for antagonizing the p53 pathway by MCV. A technique called proximity 

ligation assay (PLA) was used to assay for interactions between LT, p53, and p300. This 

fluorescence microscopy technique relies on antibody-based detection of two target 

proteins, which when in close proximity (<40 nm) result in ligation and amplification of 

DNA oligos that are conjugated to the target-bound antibodies. The punctate staining 

pattern that results is a highly-specific surrogate marker for interaction between the two 

target proteins (347). Using PLA to probe for interactions between LT and p53 confirmed 

our initial IP results, as a strong PLA signal was detected in U2OS cells that expressed 

SV40 LT. Cells expressing MCV LT correspondingly showed a much weaker PLA signal 

for p53 interaction (Figure 23A). A second PLA between LT and p300 confirmed 

interaction between SV40 LT and p300, but there did not appear to be a similar robust 

interaction between MCV LT and p300 (Figure 23B). In this way it appears that MCV LT 

contrasts with other polyomavirus LTs in terms of targeting the p53 pathway. 

4.3.2 SV40 LT inhibits p53 DNA binding and transactivation 

Binding of SV40LT to p53 is undisputed, but the exact mechanism behind its 

functional inactivation is less clear. There are conflicting reports as to whether or not SV40 

LT prevents p53-specific DNA binding to repress its transcriptional activity (151, 153, 
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156). It has also been reported that MCV LT prevents p53 transcriptional activity despite 

lack of evidence of a direct interaction (257). To better understand if and how MCV and 

SV40 LTs affect p53 DNA binding and transcriptional activation, we surveyed p53 target 

Figure 24. SV40 LT downregulates p53 target transcripts during DNA damage response. 

U2OS cells were transiently-transfected with constructs for MCV LT, SV40 LT, or an empty vector. 
Cells were treated with doxorubicin to induce a DNA damage response or an equal amount of 
DMSO as a control prior to lysis. A. Chromatin immunoprecipitation (ChIP) results show level of 
p53 binding to promoter regions of PUMA, p21, and Mdm2 reported as % input chromatin levels. 
IP was directed against p53 protein or mouse IgG as an isotype negative control. B. qPCR results 
show fold change in mRNA levels for p53 target genes PUMA, p21, and Mdm2 normalized to 
GAPDH. Asterisks denote a significant decrease with respect to empty vector transfected cells 

as calculated by Student’s t-test (p<0.05). Results show the mean  standard error from two 

independent experiments with qPCR performed in triplicate. 
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gene transcript levels by quantitative real-time PCR (qPCR) and p53 binding at their 

corresponding promoters through chromatin immunoprecipitation (ChIP) (348–354). 

U2OS cells were transfected in duplicate with expression constructs for wild-type MCV 

LT, SV40 LT, or an empty vector. Prior to RNA extraction and fixation for ChIP, one set 

of cells with was treated overnight with doxorubicin (0.5 M) to induce p53 activation 

through a DNA damage response (DDR) (355); the other set being treated with an equal 

amount of DMSO as a control. Binding of p53 to the promoters for PUMA (BBC3), p21 

(CDKN1A), and Mdm2 (MDM2) was assessed by ChIP, which under normal conditions 

showed a limited decrease in binding of p53 to all three promoters in cells that expressed 

SV40 LT compared to empty vector or MCV LT-expressing cells (Figure 24A). As 

expected, doxorubicin treatment led to an increase in p53 occupancy at all three 

promoters, but expression of SV40 LT did not result in an inhibition of p53 binding to these 

promoters in this case. Despite subtle changes in p53 occupancy at target promoters, a 

significant decrease in transcript levels for each of these three genes was observed for 

cells expressing SV40 LT in the context of a DDR (Figure 24B). MCV LT on the other 

hand does not show evidence for preventing p53 transcriptional activation. 

Though the results obtained from transient transfection were compelling, we 

sought to enhance our findings by generating stably-transfected U2OS cell lines that 

uniformly expressed LT. Stable cells expressing wild-type SV40 LT or an empty vector 

control were similarly processed for RNA extraction and ChIP in the absence of an active 

DDR. In this case, ChIP revealed significant decreases in p53 binding at the promoters 

for PUMA and p21, and a moderate decrease in occupancy at the Mdm2 promoter 

(Figure 25A). This loss of p53 binding at promoter sequences in SV40 LT-expressing 
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cells correlated with significant decreases in mRNA transcript levels for each of these 

three p53 target genes (Figure 25B). These data support the idea that SV40 LT inhibits 

p53 transactivation by preventing its binding to promoters of downstream target genes. 

Results from cells that stably express MCV LT are forthcoming, but it is not anticipated 

that major changes in p53 activity will be observed.  

Figure 25. Stably-transfected SV40 LT inhibits p53 binding and activation of target genes. 

U2OS cells were stably-transfected with SV40 LT or an empty vector. A. Chromatin 
immunoprecipitation (ChIP) results show level of p53 binding to promoter regions of target genes 
PUMA, p21, and Mdm2 reported as % input chromatin levels. IP was directed against p53 protein 
or mouse IgG as an isotype negative control. B. qPCR results show fold change in mRNA levels 
for p53 target genes PUMA, p21, and Mdm2 normalized to GAPDH. Asterisks in both panels 
denote a significant decrease with respect to empty vector transfected cells as calculated by 

Student’s t-test (p<0.05). Results show the mean  standard error from two independent 

experiments with qPCR performed in triplicate. 
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4.3.3 Characterization of a p53 binding mutant SV40 LT 

Acetylation in the C-terminal domain of p53 by histone acetyltransferases (HATs) 

like CBP and p300 is essential for its stabilization and activation. Though neither MCV 

nor SV40 LT appear to directly bind to p300, we noticed both proteins possess the same 

Q(L/I)FP motif that is responsible for binding p300 by MuPyV LT (Figure 26). Upon 

Figure 26. Polyomavirus LT antigens possess a conserved p300 binding motif. 

Top: Schematic representations of MCV and SV40 LT antigens and their relevant functional 
domains. The bipartite binding motifs for p53 binding by SV40 LT are noted with brackets. Bottom: 
Sequence alignment of MuPyV, SV40, MCV, and human PyV LT amino acid sequences clustered 
around the Q(L/I)FP motif (yellow box) that MuPyV LT uses to bind p300. Asterisks denote 
perfectly conserved residues and colons denote partially conserved residues. This region is highly 
conserved across all PyVs shown here. Dotted arrows show the location of the conserved proline 
required for p300 interaction by MuPyV LT in MCV (P689) and SV40 LT (P522). 
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mutation of the proline residue in this motif to leucine or cytosine, binding between MuPyV 

LT and p300 was abrogated (342). We next wanted to see whether or not the same 

mutation at P689 and P522 of MCV and SV40 LT respectively would impact p53 targeting 

by either protein in any way. Surprisingly, it was revealed through co-IP experiments 

against LT in U2OS cells that p53 interaction was severely compromised by P522L 

mutation on SV40 LT (Figure 27A). A reciprocal co-IP experiment against p53 further 

Figure 27. P522L mutation in SV40 LT disrupts p53 binding. 

 Reciprocal immunoprecipitation (IP) experiments to examine p53 binding by MCV LT wt, SV40 
LT wt, or SV40 LT P522L. A. IP against MCV LT (CM2B4) and SV40 LT (pAb416) and 
immunoblotting against p53 shows that SV40 LT P522L has a p53 binding defect compared to its 
wild-type counterpart. Input lysates show LT and p53 protein levels in the whole cell lysate. B. IP 
against p53 and immunoblotting against LTs similarly shows that SV40 LT P522L co-IPs with p53 
at a greatly reduced efficiency compared to SV40 LT wt. In neither case does MCV LT strongly 
co-IP with p53, matching earlier data. Input lysates show LT and p53 protein levels in the whole 
cell lysate. 
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supported the finding that this mutation in SV40 LT impairs its ability to bind p53 (Figure 

27B). This P522 residue falls just outside the canonical bi-partite sequences on SV40 LT 

known to be essential for p53 binding (103), and these data suggest that p53 binding by 

SV40 LT may be more precise than previously believed.  

Having identified a point-mutation critical for binding p53 in SV40 LT, it was 

imperative to determine whether or not this mutation also affected other functions of LT. 

Figure 28. Mutant LTs bind pRb but fail to replicate DNA. 

A. Immunoprecipitation (IP) experiment to examine pRb binding efficiency of wt, P→L mutant, or
LXCXE mutant LTs from MCV and SV40. IP against pRb and immunoblotting against LT shows
only LXCXE mutant LTs fail to co-IP with pRb. Two different exposures are shown as signal
intensities varied between MCV and SV40 LTs. Input lysates show LT and pRb protein levels in
the whole cell lysate. B. SV40 replication assay. Results are shown as fold enrichment in SV40
replicon DNA over empty vector transfected cells. SV40 LT wt and SV40 LT LXCXK both
efficiently amplify the replicon, but SV40 LT P522L shows no replication activity. C. MCV
replication assay. Results are shown as fold enrichment in MCV replicon DNA over empty vector
transfected cells. MCV LT wt and MCV LT LXCXK both amplify the replicon, MCV LT P689L
shows no replication activity.
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Apart from binding p53, another function of SV40 LT is to bind to and sequester the 

retinoblastoma (Rb) family of proteins to facilitate the replication process (90, 137, 356). 

IP experiments were used to determine if mutant LTs from MCV and SV40 were still 

capable of binding to pRb. U2OS cells were transfected with wild-type, P→L mutant, or 

Rb-binding mutant (LXCXK) LTs from MCV or SV40 and subject to pulldown against 

endogenous pRb. Immunoblotting revealed that both MCV LT P689L and SV40 LT P522L 

were still capable of pRb interaction, unlike the corresponding LXCXK mutant LTs (Figure 

28A). The main function of LT in the context of a productive infection is to initiate the viral 

replication process, so replication assays were used to determine if these mutations had 

an impact on this process. In these assays, qPCR was used to measure the efficiency of 

replication of an origin-containing replicon in the presence of either LT (222, 248). It 

became clear that both MCV LT P689L and SV40 LT P522L were deficient in DNA 

replication, compared to wild-type LTs (Figure 28 B & C). This is consistent with findings 

that mutations in the helicase region of LT often hinder replication efficiency (262, 330, 

341). Overall, these mutations appear to disrupt multiple functions of LT, but they do not 

render the protein completely functionally inactive either.   

4.3.4 SV40 LT mutation reverses p53 stabilization and inhibition 

Inhibition of p53 activity by SV40 LT is dependent upon direct binding between the 

two proteins, so we next examined the consequences of a p53-binding mutant LT on p53 

activation. Using a luciferase reporter that contains four copies of the p53 binding site 

(BS2) from the PUMA (BBC3) promoter, p53-dependent transcriptional activation in the 

presence of wild-type and mutant LTs from MCV and SV40 could be measured. While 
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Figure 29. P522L mutation in SV40 LT reverses p53 transcriptional inhibition. 

A. Luciferase assay results for p53-dependent transcription using the 4xBS2 reporter system.
U2OS cells expressing either MCV LT show a 2-fold increase in p53 reporter activity compared
to empty vector control. SV40 LT wt shows potent inhibition (~75% decrease) of p53 reporter
activity, which is reversed to near baseline levels upon P522L mutation. B. Corresponding
immunoblot for cells used in the luciferase assay, showing the LT and p53 protein levels in these
cells. LT protein levels are relatively equal between all conditions.

wild-type SV40 LT showed greater than 70% reduction in reporter activity (Figure 29A), 

the P522L mutant failed to inhibit transcriptional activation to the same degree, despite 

equal LT protein levels (Figure 29B). By contrast, both wild-type and P689L MCV LT 

showed a 2-fold increase in reporter activity, which is consistent with the notion that full-

length MCV can trigger p53 activation through a DNA damage response (264).  

The transactivation capability of p53 is primarily governed by post-translational 

modifications such as phosphorylation and acetylation that promote p53 multimerization, 

DNA binding, and recruitment of multiple cofactors (146, 357, 358). Post-translational 

modifications on p53 were profiled by immunoblotting, using lysates derived from U2OS  

cells transfected with wild-type or P→L mutant LTs from MCV and SV40 both with and 

without a doxorubicin-induced DDR (Figure 30). Under normal conditions in empty 
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Figure 30. Post-translational modifications on p53 vary in the presence of LTs. 

Immunoblots of lysates generated from U2OS cells transfected with MCV LT wt, MCV LT P689L, 
SV40 LT wt, SV40 LT P522L, or an empty vector. Cells were either treated with doxorubicin to 
induce a DNA damage response or an equal amount of DMSO. The first two panels show protein 
levels for MCV and SV40 LTs. The next five panels show total p53 protein levels as well as 
phosphorylation at S15, S20, S392, and acetylation at K373. Protein levels of p53 targets PUMA 
and p21 are shown below. Tubulin serves as a loading control. 

vector-transfected cells, total p53 protein levels remained low and markers of activation 

were largely absent. This was also seen for cells expressing either wild-type or P689L 

MCV LT, but cells that expressed wild-type SV40 LT showed an increase in total p53 

protein levels along with the presence of several activating post-translational 

modifications. This is consistent with reports that describe p53 bound to SV40 LT as 

possessing activation markers despite overall functional inhibition (161, 170). By 
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comparison, cells expressing P522L mutant SV40 LT show diminished total p53 levels 

and a reduction in activation markers, providing further evidence that this mutation impairs 

p53 inactivation by LT. Following doxorubicin treatment, total p53 levels became 

increased across all conditions, as did protein levels for downstream targets PUMA and 

p21. Likewise, consistent with a DDR, post-translational markers of activation are present 

on p53 in all conditions here, with a specific enrichment at phospho-S20 and acetyl-K373 

in cells expressing wild-type SV40 LT. We hypothesize that the increased signal at these 

sites is a consequence of inhibition of p53 degradation by SV40 LT.  

Unlike high-risk HPV E6 proteins that target p53 for degradation (359–361), SV40 

LT simultaneously prevents its transcriptional activation and degradation through direct 

binding (155, 156, 158, 362). This p53 accumulation with SV40 LT was observed in our 

immunoblots, but it was reversed by P522L mutation (Figure 30). We next explored 

changes in p53 half-life in the presence of wild-type and P→L mutant LTs from MCV and 

SV40 through cycloheximide (CHX) chase assays. As p53 is generally a short-lived 

protein (363), p53 protein levels readily decreased over the 4 hour course of CHX 

treatment in empty vector-transfected cells (Figure 31A). Similar kinetics of p53 

degradation were observed in cells that expressed either wild-type or P689L MCV LT. 

Cells that expressed wild-type SV40 LT, however, showed a substantial stabilization of 

p53 across the entire time course. This stabilization phenotype was reversed upon P522L 

mutation of SV40 LT, indicating that this p53 binding mutant is insufficient at blocking p53 

degradation. RNA extraction was simultaneously performed at each time point, so that 

p53 mRNA transcript levels could be monitored throughout. At no time point were 
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substantial changes in p53 transcripts observed between the different conditions (Figure 

31B), suggesting observed changes in p53 protein levels occurred post-transcriptionally. 

Figure 31. P522L mutation in SV40 LT sensitizes p53 to degradation. 

Cycloheximide (CHX) chase experiment to study p53 half-life in U2OS cells expressing MCV LT 
wt, MCV LT P689L, SV40 LT wt, SV40 LT P522L, or an empty vector. Time points were taken at 
0, 0.5, 1, 2, and 4 hours post-CHX treatment. A. Immunoblots for each condition show LT and 
p53 protein levels over the 4-hour time course. Tubulin serves as a loading control. Half-life of 
p53 is stabilized only by SV40 LT wt. B. qPCR results for p53 mRNA levels at each time point, 
normalized to GAPDH. Dotted line corresponds to p53 mRNA level in empty vector transfected 
cells, normalized to 1. Significant changes in p53 mRNA were not detected at any time point for 
any condition relative to the empty vector control. 
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4.4 Discussion 

T antigens and p53 have been married from the start, and as in any marriage their 

relationship is multidimensional, enduring, and profound. This study sought to compare 

the LT antigens from the classic polyomavirus SV40 with the more recently discovered 

MCV primarily in an attempt to reach a greater understanding of how these proteins 

manipulate the p53 pathway, but also to reconcile some of the conflicting data that has 

existed in the field regarding mechanisms of p53 inhibition by both viruses. Rather than 

revealing concerted mechanisms of p53 targeting by MCV and SV40, the data presented 

here show that the LT antigens from these two viruses possess entirely disparate 

mechanisms for antagonizing the p53 pathway. 

The relationship between MCV and the p53 pathway remains complicated, but 

these results show clearly that there is little evidence of a role for LT alone when it comes 

to p53 inhibition. Despite putative binding motifs for both p53 and p300 based on 

sequence homology to other polyomaviruses, IP and PLA results demonstrate that if LT 

does complex with either of these proteins, it is with significantly less affinity than SV40 

LT. This is not an entirely unexpected finding, as other groups have reported a lack of 

binding between MCV LT and p53 (257, 258). However, unlike the results from the study 

by Borchert et al. that additionally show a decrease in p53-dependent transcription in the 

presence of LT by reporter assays, we see no evidence of any reduction in the mRNA 

transcript levels of p53 target genes in cells that express MCV LT. In contrast to their 

findings, the reporter assay results described here suggest an increase in p53-dependent 

transcription in LT-expressing cells. Transcript levels of p53 target genes were slightly 

elevated in MCV LT-transfected cells under normal conditions, as well. These results are 
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more consistent with studies that have shown that full-length MCV LT does not inhibit p53 

but rather induces p53 activation downstream of ATR activation in U2OS cells (255, 264). 

It is believed that MCV-induced p53 activation is mediated by and requires an intact, 

functional C-terminal helicase domain.  

Recent work by Park et al. suggests that there may be a role for the small T (sT) 

antigen of MCV in inhibiting the p53 response through transcriptional modulation of Mdm2 

and Mdm4 through a sT-MYCL-EP400 complex (277, 278). Their results show that co-

expression of sT with LT can dampen the p53 activation phenotype that was observed by 

expression of LT alone (278). A similar level of interplay between sT and LT functionalities 

has also been seen in the enhancement of viral replication by MCV LT through co-

expression of sT (219). Taken together, these findings emphasize the utility of examining 

the functions of LT and sT proteins in conjunction with one another rather than attempting 

to separate their roles.  

Seminal works involving SV40 have been the foundation for studying cancer 

biology in general and have prompted the discovery of a litany of new polyomaviruses 

throughout the animal kingdom during the past few decades (79, 364). Although a 

multitude of research has been published on the human polyomaviruses, there remains 

much more to be gained from further study of SV40. Portions of this study recapitulate 

established dogma about p53 targeting by SV40 LT, but these results go further to 

definitively show that SV40 LT prevents binding of p53 to cognate sequences in the 

promoter regions of established target genes, which corresponds to a significant 

decrease in mRNA transcripts from those same loci. Furthermore, attempts to investigate 

p300 binding led to the identification of a p53-binding point mutant SV40 LT (P522L) that 
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is deficient in stabilizing p53 protein levels and inhibiting its transactivating functions. 

Although this mutation also renders LT replication incompetent, it still retains the 

important N-terminal function of binding to pRb. This P522L mutant LT also displays a 

similar half-life to the wild-type protein in CHX chase experiments, adding further support 

to the idea that this mutation does not completely destabilize and disable LT. 

As LT is a complex, multidomain protein, it is possible for a mutation to eliminate 

functionalities within one domain without completely eliminating all functions of the protein 

as a whole. Extensive mutagenic studies on SV40 LT have made this concept clear, as 

mutations that disrupted ATPase activity or p53 binding by LT resulted in proteins that in 

some cases were still competent for replication and even transformation of particular cell 

lines (330, 341). Furthermore, work by Manos and Gluzman has identified multiple 

mutants of SV40 LT that were defective in replication but were competent in 

transformation, including a P522S mutant LT (262, 365). Given that this mutation has 

been classified as an ATPase mutant and not a p53 binding mutant, it would appear that 

serine versus leucine substitution mutations at this residue produce different effects on 

LT function. How the P522L mutant LT identified in this study may impact cellular 

transformation by SV40 remains to be seen. 



93

5.0 Merkel cell polyomavirus small T antigen induces genome instability by E3 

ubiquitin ligase targeting 

Work described in this chapter was published in Oncogene 

Oncogene. 2017 Dec 7;36(49):6784-6792. 

with authors Kwun HJ, Wendzicki JA, Shuda Y, Moore PS, and Chang Y. 

H.J. Kwun and J.A. Wendzicki contributed equally to this work. 

H.J. Kwun and J.A. Wendzicki performed transfection and transduction of cell lines, 

immunofluorescence staining and centrosome counts, and immunoblotting. J.A. 

Wendzicki performed flow cytometry. J.A. Wendzicki prepared cells for karyotype 

analysis, which was carried out by the Cytogenomics Laboratory at the University of 

Minnesota Masonic Cancer Center. Y. Shuda maintained mice used in this study and 

assisted in blood and organ sample collection, which were processed and analyzed by 

J.A. Wendzicki with help from Litron Laboratories. H.J. Kwun performed knockdown, 

immunoprecipitation, RT-qPCR, and half-life experiments. H.J Kwun, J.A. Wendzicki, 

P.S. Moore, and Y. Chang conceived the project, analyzed results, and wrote the 

manuscript. 
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The formation of a bipolar mitotic spindle is an essential process for the equal 

segregation of duplicated DNA into two daughter cells during mitosis. As a result of 

deregulated cellular signaling pathways, cancer cells often suffer a loss of genome 

integrity that might etiologically contribute to carcinogenesis. This chapter describes how 

Merkel cell polyomavirus MCV sT oncoprotein induces centrosome overduplication, 

aneuploidy, chromosome breakage and the formation of micronuclei by targeting cellular 

ligases through a sT domain that also inhibits MCV LT oncoprotein turnover. These 

results provide important insight as to how centrosome number and chromosomal stability 

can be affected by the E3 ligase targeting capacity of viral oncoproteins such as MCV sT, 

which may contribute to Merkel cell carcinogenesis. 

5.1 Introduction 

Merkel cell polyomavirus (MCV) is the causative agent of most Merkel cell 

carcinomas (MCCs), a highly aggressive human cancer (48). Shortly after the discovery 

of MCV, the large T (LT) and small T (sT) antigens encoded by the early region of the 

virus were identified as the two major oncoproteins responsible for tumorigenesis and 

tumor maintenance (235). Both LT and sT are expressed in virtually every MCV-infected 

MCC (333, 366). MCC tumors are characterized by the clonal integration of viral DNA 

within the host genome as well as by mutations in the viral early coding region that result 

in the expression of a C-terminally truncated form of LT; however, the coding region for 

sT is left intact (83).  
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The sT antigen of MCV alone is able to transform rodent fibroblasts (265). While 

sT transgenic mice show dermal hyperproliferation (239), expression of sT combined with 

homozygous deletion of p53 in a transgenic mouse model leads to the development of 

fully transformed, highly anaplastic tumors in livers and spleens (238). The transformation 

activity of sT is independent of its ability to interact with PP2A (198, 265), but is localized 

to a short region of sT from amino acids 91–95 termed the LT-stabilization domain (LSD) 

(237). The LSD allows sT to inhibit the cellular ubiquitin ligase complex SCF-Fbw7 (237), 

which governs the degradation of several cellular oncoproteins, including c-myc and 

cyclin E (194). The LSD is also responsible for inhibiting the anaphase-promoting 

complex/cyclosome E3 ligase, which leads to increased mitogenesis and 

hyperphosphorylation of the major translation regulator 4E-BP1 (273).  

Many cancer cells display evidence of genomic instability (367), such as the 

presence of centrosome amplification and multipolar mitotic spindles. Supernumerary 

centrosomes can lead to the assembly of multipolar mitotic spindles, which may in turn 

result in chromosome mis-segregation, aneuploidy and, over time, cancer development 

(368). MCC, similar to many other cancers, has been shown to exhibit a chromosomal 

instability tumor phenotype (369), which can be attributed in part to the properties of viral 

oncoproteins as commonly seen in other virus-induced human cancers. The Skp, Cullin, 

F-box containing complex (SCF) family of E3 ligases has been known to have an

important role in the regulation of many of the major proteins involved in cell cycle (370, 

371). In many cancers, mutational loss of SCF is associated with genomic instability 

resulting from the accumulation of its substrates, including cyclin E, cyclin D1, Polo-like 

kinase 4 (PLK4) and several others (372, 373). A number of viral oncoproteins implicated 
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in human cancer have previously been shown to cause multipolar mitoses and aneuploidy 

by deregulation of host systems involved in ubiquitin-mediated degradation. Human 

papillomavirus 16 (HPV16) E7 induces centriole multiplication mediated by altered 

expression of PLK4, a target of SCF-β-TrCP (374, 375), hepatitis B virus HBx binding to 

DDB1 (ultraviolet-damaged DNA-binding protein1) E3 ubiquitin ligase complex subunit 

results in chromosome segregation defects (376), and human T-cell leukemia virus type-

1 Tax oncoprotein directly binds and activates the Cdc20-associated anaphase-

promoting complex (377) resulting in mitotic abnormalities (378–380). In addition, primary 

endothelial cells infected with Kaposi’s sarcoma-associated herpesvirus display abnormal 

mitotic spindle assembly, supernumerary centrosomes and chromosome instability (381). 

These findings underscore the importance of the intricate network of host cell machinery 

in maintaining genome integrity, which, when deregulated by viral proteins, can lead to 

tumorigenesis.  

MCV sT expression stabilizes SCF-Fbw7 targets such as c-myc and cyclin E (237) 

and promotes microtubule destabilization (276). These effects implicate the induction of 

genomic instability as an important mechanism for MCV sT-induced oncogenesis. Here 

we show using several assays of genomic instability that MCV sT, through the targeting 

E3 ligases, fosters a genomically unstable phenotype. Expression of sT in vitro results in 

the formation of supernumerary centrosomes and increased aneuploidy and 

chromosomal breakage in an LSD-dependent manner. Inducible expression of sT in vivo 

leads to the development of micronuclei in reticulocytes. Loss of Fbw7 either by knockout 

or by knockdown leads to the formation of supernumerary centrosomes, an effect that 

can be recapitulated by sT expression when Fbw7 is replete. 
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5.2 Materials and methods 

5.2.1 Cell culture and transfection 

293 and WI38 (American Type Culture Collection CCL-75, Manassas, VA, USA) 

cell lines were maintained in Dulbecco’s modified Eagle’s medium (Cellgro, #10-013, 

Manassas, VA, USA), supplemented with 10% fetal bovine serum (VWR Seradigm, 

Radnor, PA, USA). hCDC4+/+ and hCDC4−/− HCT116 cells (kindly provided by Dr. Bert 

Vogelstein and obtained from Johns Hopkins University Genetic Resources Core Facility) 

were grown in McCoy’s 5A medium with 10% fetal bovine serum. NIH3T3 cells were 

maintained in Dulbecco’s modified Eagle’s medium with 5% calf serum (Gibco, 

Gaithersburg, MD, USA). Transfections were performed using Lipofectamine 2000 

(Invitrogen, Carlsbad, CA, USA) following the manufacturer’s instructions. The short 

tandem repeat profiles of the 293 and WI38 cells were authenticated by the University of 

Arizona Genetics Core and NIH3T3 cells by IDEXX (Westbrook, ME, USA). All cells used 

in experiments were confirmed to be negative for mycoplasma at the time of each 

experiment. 

5.2.2 Plasmids and lentivirus production 

Codon-optimized cDNAs for MCV sT WT (GenBank accession number 

AEM01096.1, Addgene, Cambridge, MA, USA, #40201), sT L142A (198), sT LSDm (237) 

and for SV40 sT (GenBank accession number KM359729) (198), and HPV E7 (NCBI 

reference sequence NP_041326.1) (382) plasmids for lentiviral transduction and 
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transfection were described previously, as referenced. shRNA-targeting sequences of 

CDC20 (TRCN0000003790, UniProtKB ID: Q12834) and BTRC (TRCN0000006541, 

UniProtKB ID: Q9Y297) cloned in pLKO.1 vector (265) were used for the knockdown 

study. shRNAs for human Fbw7 (UniProtKB ID: Q969H0) were described previously 

(237), and a control shRNA construct was obtained from Addgene (#1864). Lentiviral and 

retroviral particles were generated in 293FT (Invitrogen) cells maintained in Dulbecco’s 

modified Eagle’s medium with 10% fetal bovine serum by cotransfection with the 

packaging vector plasmids psPAX2 and pMD2 or pCLAmpho (Addgene) using 

Lipofectamine 2000 (Invitrogen). 

5.2.3 Immunoblotting and antibodies 

Cells were lysed in buffer (50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 0.6% SDS and 

5 mM NaF) containing protease inhibitors (Roche, Basel, Switzerland). Lysates were 

resolved by SDS-polyacrylamide gel electrophoresis and transferred to nitrocellulose 

membranes (GE Healthcare, Chicago, IL, USA), then incubated in primary antibodies for 

at least 2 h at room temperature. For quantitative infrared western blot detection, IRDye 

800CW goat antimouse (926-32210, LI-COR) or IRDye 800CW goat anti-rabbit antibody 

(929- 32211, LI-COR) were used as secondary antibodies. Signal intensities were 

analyzed at 800 nm, using the Odyssey IR Imaging System (LI-COR, Lincoln, NE, USA). 

The following primary antibodies were used: anti-MCV sT CM8E6 (248); anti-α tubulin (B-

5-1-2, T5168, Sigma-Aldrich, St Louis, MO, USA); pAb419 (sc-58665, Santa Cruz, Dallas,

TX, USA); Myc (9E10, sc-40, Santa Cruz); FLAG (M2, F3165, Sigma, St Louis, MO, USA); 
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anti-HA (16B12, MMS-101R, Biolegend, San Diego, CA, USA); and Hsc70 (sc-7298, 

Santa Cruz). 

5.2.4 Flow cytometry 

Cells were trypsinized and stained with a fixable viability dye (eBioscience, Thermo 

Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. 

Fixation was performed in cold 70% (vol/vol) ethanol. Fixed cells were washed with 

phosphate-buffered saline (PBS) containing 1% bovine serum albumin and permeabilized 

by addition of 0.25% Triton X-100 for 30 min on ice. To label DNA, cells were resuspended 

in propidium iodide/RNaseA staining solution (0.05 mg/ml propidium iodide, 0.1 mg/ml 

RNaseA in 1 × PBS) and incubated for 30 min at room temperature and analyzed using 

a Becton Dickinson (Franklin Lakes, NJ, USA) Accuri C6 flow cytometer. 

5.2.5 Immunofluorescence microscopy 

Cells were seeded on glass slides and transfected or transduced with designated 

plasmids. Cells were fixed with 4% buffered formalin for 10 min and permeabilized with 

PBS with 0.1% Triton X-100 for 10 min. After blocking with 10% goat serum in PBS-T 

(PBS with 0.5% Tween 20), cells were incubated overnight at 4 °C with primary antibody 

γ-tubulin (ab84355, Abcam, Cambridge, MA, USA) or CEP170 (72-413-1, Thermo Fisher 

Scientific, Waltham, MA, USA) for staining, followed by secondary antibody incubation 

(Alexa Fluor 488- or 568-conjugated goat anti-rabbit (A11034 or A11036) or anti-mouse 

(A11029 or A11004, 1:1000, Invitrogen) for 1 h at room temperature. Stained cells were 
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mounted in aqueous medium containing 4,6-diamidino-2-phenylindole (DAPI) (Vector 

Laboratories, Burlingame, CA, USA). Cells were analyzed by fluorescence imaging using 

an Olympus AX70 epifluorescence microscope equipped with a U-CMAD3 camera 

(Olympus, Tokyo, Japan). Centrosome counting was performed in a blinded manner by 

two observers. 

5.2.6 Karyotype analysis 

Cells were seeded in flasks and transduced with specified lentiviruses. The 

following day cells were shipped to the Cytogenomics Laboratory at the University of 

Minnesota Masonic Cancer Center, and culture medium was replaced upon arrival. At 48 

h post transduction, cells were subjected to overnight (15 h) treatment with colcemid to 

arrest cells in metaphase. Cells were then collected, fixed and dropped on slides 

according to standard cytogenetic protocol. Fifty metaphases per condition were analyzed 

for chromosomal gaps, breakages and losses by G-banding at 400 band resolution. 

5.2.7 Mouse studies 

All mice were maintained in accordance with protocols approved by the 

Institutional Animal Care and Use Committee at the University of Pittsburgh. In brief, a 

previously characterized tamoxifen-inducible, cre-loxP recombination system was used 

to achieve ubiquitous expression of MCV sT from the ROSA26 locus in C57BL/6 mice 

(238). Two main cohorts of mice (8–10 weeks of age) were used: UbcCreERT2−/+ROSAsT/+ 

for sT expression alone (five female and four male) and UbcCreERT2−/+p53flox/floxROSAsT/+ 
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(six female and four male) for additional p53 knockout. UbcCreERT2−/− mice (four female 

and seven male) from either genetic background served as negative controls, as they 

lack expression of Cre recombinase. All mice were subjected to intraperitoneal injection 

of tamoxifen (0.2 mg/g), followed by sacrifice after 48 h. Mouse tissues were isolated and 

processed for immunoblotting as described previously (238). Mouse blood samples were 

isolated via cardiac puncture, fixed in ultracold methanol and analyzed by Litron 

Laboratories (Rochester, NY, USA). All mice used for experiments were randomly 

assigned to non-blinded treatment groups. Sample size determined by Mead’s resource 

equation. 

5.2.8 Immunoprecipitation 

293 were transfected with plasmids for expression of MCV sT WT or sT LSDm 

along with HA-tagged β-TrCP. Cells were lysed in immunoprecipitation buffer (50 mM 

Tris-HCl (pH 7.4), 150 mM NaCl and 1% Triton X-100) freshly supplemented with 

protease inhibitor cocktail (Roche), 1 mM phenylmethylsulfonyl fluoride and 1 mM 

benzamidine. Lysates were incubated overnight at 4 °C with HA-specific antibody, 

followed by incubation with a slurry of Protein A/G Plus Agarose beads (Santa Cruz) for 

3 additional hours. Following a series of wash steps, bound proteins were eluted in 2 × 

SDS loading buffer, resolved by SDS-polyacrylamide gel electrophoresis, and 

immunoblotted for MCV sT as described above. 
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5.2.9 Quantitative real-time PCR analysis 

shRNA-transfected cells were selected with puromycin (2 μg/ml) for 4 days after 

infection. Total RNA was isolated 2 days after transduction using TRIzol LS reagent 

(Invitrogen) and treated with DNase I (NEB, Ipswich, MA, USA). The cDNA was 

generated using random hexamer primers and Superscript III First-Strand Synthesis 

reverse transcriptase (Invitrogen). Quantitative PCR with cDNA (0.1 μg) was carried out 

using SsoFast EvaGreen Supermix (Bio-Rad, Hercules, CA, USA) and a CFX96 real-time 

PCR detection system (Bio-Rad) according to the manufacturer’s protocol with primer 

pairs for Fbw7 (5′-AAAGAGTTGTTAGCGGTTCTCG-3′ and 5′-CCACAT 

GGATACCATCAAACTG-3′), β-TrCP (5′-TGCCGAAGTGAAACAAGC-3′ and 5′-

CCTGTGAGAATTCGCTTG-3′), cdc20 (5′- CGCCAACCGATCCCACAG-3′ and 5′-

CAGGTTCAAAGCCCAGGC-3′) and GAPDH (5′-ACTTCAACAGCGACACCC-3′ and 5′-

TCTTCCTCTTGTGCTCTTGC-3′) cDNA detection. 

5.3 Results 

5.3.1 Overexpression of MCV sT induces centrosomal aberration and aneuploidy 

To determine whether MCV sT causes centrosome amplification, NIH3T3 cells 

were stably transduced with lentiviruses for wild-type (WT) MCV sT, a PP2A-binding 

mutant sT (L142A), an LSD mutant sT (LSDm), HPV16 E7, SV40 sT or an empty vector. 

These stably transduced NIH3T3 cells were enriched for mitosis by arrest with the cyclin- 
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Figure 32. Overexpression of sT causes centrosomal aberration in NIH3T3 cells. 

A. Multipolar mitosis with centrosome amplification by viral oncoproteins. Stably transduced
NIH3T3 cells were stained for centrosomes (γ-tubulin, green) and DNA (4,6-diamidino-2-
phenylindole (DAPI), blue). SV40 sT antigen and HPV16 E7 were used as controls.
Supernumerary centrosomes were readily visible in cells expressing WT or L142A mutant MCV
sT as well as HPV16 E7 (× 1000 magnification). B. Quantification of cells with abnormal numbers
(⩾3) of centrosomes in metaphase out of 70 cells. Data show the mean ±s.e. from three

experiments. C. Expression of oncoproteins was analyzed using specific antibodies (8E6, pAb419
and HA for MCV sTs, SV40 sT and E7, respectively) by immunoblotting from the same samples
used for immunofluorescence.

dependent kinase 1 inhibitor RO-3306 (10 μM) at the mitotic boundary and subsequently 

released. Cells were then fixed and immunostained for γ-tubulin, a principle protein 

component of centrosomes. Abnormal centrosome numbers and multipolar mitotic 

assemblies were readily detected in metaphase spreads from cells expressing WT MCV 

sT or L142A mutant sT (Figure 32A), reaching frequencies >40% of the 70 mitotic cells 

counted in each experiment (Figure 32B). This 1.5- to 2-fold enrichment of 
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Figure 33. Centrosome aberration in BJ-hTERT and Rat-1 fibroblasts. 

An increase in the frequency of supernumerary centrosomes (γ-Tubulin, green) is detected by 
fluorescence microscopy in wild-type sT-expressing BJ-hTERT and Rat-1 cells. Formation of 
supernumerary centrosomes was observed at 2 days post-transduction. DAPI nuclear 
counterstaining is shown in blue. 

supernumerary centrosomes observed in cells expressing MCV sT or a mutant unable to 

interact with PP2A (198) was comparable to cells that expressed the HPV16 E7 

oncoprotein, which has previously been reported to cause centrosome amplification 

(378). Mutation of the LSD of sT by alanine substitution at amino acids 91–95 (237) 

resulted in a loss of this phenotype, with the frequency of centrosome abnormalities 

matching cells transduced by an empty vector. Transiently-transfected BJ-hTERT and 

Rat-1 fibroblasts also showed the formation of supernumerary centrosomes upon WT sT 

expression (Figure 33). 

The presence of supernumerary centrosomes during mitosis can result in mistakes 

in spindle assembly and chromosome missegregation, which in many cases leads to cell
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Figure 34. sT increases aneuploidy and number of centrosomes in human diploid WI38 cells. 

A. Ploidy analysis. Cells transiently transduced with WT sT, L142A sT, LSDm sT or empty
expression vectors were stained for DNA content by propidium iodide and analyzed by flow
cytometry. Representative cell cycle profiles are shown for cells isolated at 2 days post
transduction, with 2N, 4N and >4N populations annotated. The population of cells with >4N DNA
content is magnified as respective inserts, and is most elevated for WT sT- and L142A sT-
expressing cells. B. Expression of sT. Immunoblotting was simultaneously performed on a portion
of the cells used for flow cytometry to validate sT expression using mouse monoclonal, anti-sT
antibody (CM8E6). Results are representative of expression at 2 days post transduction from four
independent experiments. C. Fold changes in the percentage of cells with >4N content were
calculated for 2, 5, 7 and 10 days after transduction in each condition. A single asterisk denotes
a significant increase over empty vector control cells (P<0.05), and a double asterisk denotes a
significant increase over LSDm-expressing cells (P<0.05). Results represent the mean ±s.e. from
three independent experiments. D. Transiently transduced cells were fixed at 2 days post
transduction and stained for γ-tubulin, a centrosome marker. The number of centrosomes per cell
was analyzed by microscopy and counted in 30 interphase cells to determine the frequency of
supernumerary centrosomes. Results represent the mean ±s.e. from five independent
experiments.
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death by mitotic catastrophe (383–387).  In the rare cases when an aberrant mitotic event 

progresses, the daughter cells that result often display an aneuploid karyotype, which has 

been proposed to have a causal role in tumorigenesis and tumor evolution (388, 389). To 

ascertain the ability of MCV sT to induce an increase in aneuploidy, early-passage WI38 

human diploid fibroblast cells were selected to more easily monitor changes in DNA 

content. These cells were first transiently transduced with lentiviruses for wild-type MCV 

sT, L142A sT, LSDm sT or an empty vector. Changes in ploidy were monitored over the 

course of 10 days, using flow cytometric analysis to detect changes in DNA content. A 

four-fold increase in the aneuploid population, evidenced by >4N staining, was present in 

wild-type sT and L142A sT-expressing cells as early as 2 days post transduction 

Figure 35. MCV sT expression acutely increases cell death in WI38 fibroblasts. 

A. An increase in the population of Sub G1-phase (red) is shown by flow cytometry when either
wild-type or L142A mutant sT is expressed in cells. sT expression induces loss of DNA due to
DNA fragmentation and results in cell death. Sub G1-phase cell population is doubled to reach
almost ~50% of the population in cells expressing either wild-type or L142A mutant sT, but not
LSDm. B. sT proteins were detected from the same lysates used in Fig. 34C as controls.
Expression of sT has retained at 10 days post-transduction.
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(Figure 34 A & B). This increase in genome DNA content by sT expression was 

maintained through to 5 days post transduction, but declined at later time points with an 

elevated proportion of dead cells (Figure 35A), likely triggered by acute induction of 

aneuploidy and genotoxic stress (383) and not the by loss of sT protein levels (Figure 

35B). The degree of aneuploidy that is observed with LSDm sT is increased two-fold or 

less compared to the empty control (Figure 34C). In addition to increased aneuploidy, an 

increase in the frequency of supernumerary centrosomes was present in interphase WI38 

Figure 36. Centrosome and nuclear aberrations in MCV sT-expressing WI38 fibroblasts. 

An increase in the frequency of supernumerary centrosomes (γ-Tubulin, green) is detected by 
fluorescence microscopy using an Olympus AX70 epifluorescence microscope (A) and phase 
contrast microscopy (Nikon Eclipse TS100 with DAPI filter) (B) in both wild-type and L142A 
mutant sT-expressing WI38 cells but not in LSDm. Formation of multinucleated cells were 
observed at 2 days post-transduction.  
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cells (Figure 34D; Figure 36A), and the formation of multinucleated cells (Figure 36B) 

was observed at 2 days post transduction by both WT and L142A sTs but not by LSDm 

sT expression. 

To better characterize the type of genetic damage occurring in cells from the 

aneuploidy analysis, karyotype (Figure 37) and metaphase chromosome spread analysis 

were also performed on WI38 cells. Cells were first transduced with lentiviral vectors for 

WT MCV sT, LSDm sT or an empty vector. At 2 days post transduction, cells were 

arrested in metaphase with colcemid and collected for cytogenetic analysis. 

Representative karyotypes were collected for each condition, and cells expressing WT 

MCV sT showed an elevated level of chromosomal breakage, aneuploidy and even loss 

of an X chromosome (Figure 37). Out of the 50 metaphase spreads that were analyzed 

for each condition, WT sT-expressing cells showed an increase in total number of 

chromosome breakages and gaps, a greater number of breakages within a single cell 

and an overall higher average number of breakages per cell (Table 2) that did not reach 

statistical significance compared to empty control. The number of breakage and gaps in 

LSDm sT-expressing cells was not elevated above empty control levels. In looking at the 

specific loci of gaps and breaks, WT sT-expressing cells had a higher frequency of breaks 

at telomeres and known fragile sites (390) (Tables 2-5), but this increase was not 

statistically significant. Complex rearrangements, such as translocation events, were 

entirely absent in the empty control cells, but were observed in three instances in cells 

that expressed WT sT (Table 2). 
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Figure 37. sT expression results in increased chromosomal instability in WI38 cells. 

Karyotyping and G-banding analysis were performed on cells at 2 days post transduction with 
indicated lentivirus constructs. Representative karyotypes are shown for each condition, and 
chromosome breaks are indicated by red arrows. The greatest amount of breakage was seen in 
cells that express WT MCV sT, which is also missing an X chromosome. 
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 Table 2. Karyotype analysis in WI38 cells 

Empty 
Vector sT wt sT LSDm 

No. of metaphase cells analyzed 50 50 50 

Total number of gaps and breaks 146 148* 144* 

Range of breaks per cell  0-9 0-13 0-8

Average no. of breaks per abnormal cell 3.39 3.61 3.34

Unique gap and breakage loci 37 43** 45**

Telomeric regions affected  6 9** 5**
Total number of gaps and breaks at 
fragile sites (390)  28 33** 28** 

46, XX normal 7 6 6 

46, XX with breakage 43 41 43 

46, XX with other structural 
rearrangements 0 3 1 

der(3), del(6) ring(X) 

der(X;1) 

der(X;10) 

*Not statistically increased over empty vector control levels when compared against

number of cells analyzed by 2-test (p>0.05).
**Not statistically increased over empty vector control levels when compared against the

total number of gaps and breaks present in each group by 2-test or Fisher’s exact test
(p>0.05).
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Table 3. Table of all breaks listed by chromosome for WI38 cells with an empty vector 
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Table 4. Table of all breakpoints listed by chromosome for WI38 cells with MCV sT wt expression 
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Table 5. Table of all breaks listed by chromosome for WI38 cells with MCV sT LSDm expression 
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5.3.2 sT increases aneuploidy in mice 

Mis-segregation of chromosomes during mitosis can also lead to chromosomal 

breakage or loss, and these fractured or lagging chromosomes can become packaged in 

micronuclei, which appear adjacent to the main nucleus following cell division (391, 392). 

Therefore, the presence of micronuclei is a definitive and, more important, quantifiable 

marker of genomic instability. To determine whether sT expression leads to the formation 

of micronuclei, we made use of an inducible MCV sT transgenic mouse model for an in 

vivo micronucleus assay. This assay quantitatively detects the presence of micronuclei 

retained after enucleation occurs during erythrocyte maturation by flow cytometric 

analysis of peripheral blood cells (393). The primary cohort of mice used in this study 

allowed for ubiquitous, tamoxifen-inducible expression of MCV sT (red; Figure 38A). 

Because of the fact that in vivo tumor development has only been observed when sT is 

expressed and p53 is concurrently ablated (238), a second cohort of mice (blue) with this 

phenotype was also included to determine whether loss of p53 affected the frequency of 

micronuclei formation. Mice lacking cassettes for Cre recombinase in each of those 

backgrounds served as negative controls (black and gray). At 48 h post induction of sT 

expression, a significant increase in the presence of micronuclei in reticulocytes could be 

detected at nearly equal levels in mice both with and without p53 (Figure 38B). The 

frequency of micronuclei in reticulocytes was increased 3.3-fold upon sT expression alone 

(red) and 2.1-fold when combined with a p53 knockout (blue). In the same mice from 

which erythrocytes were collected, immunoblotting was performed on lysates extracted 

from a panel of tissues following necropsy to confirm that sT expression was induced 
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Figure 38. sT expression in transgenic mouse model increases frequency of micronuclei. 

A. Schematic of the transgenic mice used in this study. All mice were subjected to intraperitoneal
injection of tamoxifen (0.2 mg/g) with blood and tissue samples collected 48 h later at necropsy.
B. In vivo micronucleus assay. Frequency of micronuclei in reticulocytes (RETs) was measured
by staining DNA (MicroFlow kits, Litron Laboratories, Rochester, NY, USA) using flow cytometry.
An increase in the frequency of micronucleated RETs was detected in mice after sT induction
(~1%) compared to control mice (~0.3%). This corresponds to a threefold increase for sT
expression alone (***P<0.0001) and twofold when p53 is concurrently knocked out (**P=0.0005).
Numbers of mice within each group are indicated. C. Near-ubiquitous expression of sT was
detected in panel of mouse organs from Cre+/− mice only but not from Cre−/− controls.
Representative results are shown for each mouse background. Statistical significance between
two groups was determined using two-tailed Student’s t-tests in either GraphPad Prism or Excel.
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ubiquitously in all experimental mice (Cre +/− ) and not in tissues from control mice 

(Cre−/−)  (Figure 38C). Together, these data indicate that MCV sT is capable of inducing 

chromosomal damage in an in vivo setting. 

5.3.3 sT targets E3 ligases to induce centrosome abnormality 

MCV sT through its LSD has been shown to inhibit multiple ubiquitin ligases, 

including the SCFFbw7 complex (237) and the cdc20 subunit of the anaphase-promoting 

complex/cyclosome (273), which govern a number of substrates involved in centrosome 

duplication and cell division (394–397). To examine the effect of E3 ligases targeted by 

sT in centrosome amplification, HCT116 cells deleted for the FBW7 gene (372) were 

used. Supernumerary centrosomes form spontaneously in FBW7-null cells (−/−), but sT 

expression drives further centrosome amplification in this FBW7-null background, where 

LSDm sT cannot (Figure 39A). Expression of WT but not LSDm sT in the parental FBW7 

WT (+/+) cells also results in the formation of supernumerary centrosomes. Together 

these results underscore the importance of Fbw7 in the regulation of centrosome 

duplication, although it is not the sole target of MCV sT in causing a genomically unstable 

phenotype. Additional immunostaining against Cep170 (red) in WT sT-expressing 

HCT116 cells allowed us to distinguish mature ‘mother’ centrioles from newly formed 

daughter centrioles, which were correspondingly labeled with green fluorescent protein-

tagged centrin (green). In all cases, we observed a single ‘mother’ centriole with multiple 

daughter centrioles, indicative of centriole overduplication as opposed to accumulation 

(398) (Figure 39B). HPV16 E7-induced centriole overduplication requires aberrant PLK4

(374), a substrate of β-TrCP E3 ubiquitin ligase and so we examined potential interaction 
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Figure 39. sT targets E3 ligases to induce centrosome abnormality. 

A. Centrosome abnormality induced by sT expression or loss of Fbw7. HCT116 cells were stained
for centrosomes (γ-tubulin, red) and DNA (4,6-diamidino-2-phenylindole (DAPI), blue).
Supernumerary centrosomes form spontaneously in an Fbw7-null clone (FBW7−/−). Expression
of WT sT, but not LSDm sT, results increased supernumerary centrosomes over empty vector
control levels in both the parental (FBW7+/+) and knockout (FBW7−/−) cell lines. Images were
captured at × 1000 magnification with oil. B. sT induces centrosome overduplication. HCT116
were transfected with GFP-centrin to visualize centrioles (green) along with MCV sT. CEP170
protein (red) was stained to specifically visualize ‘mother’ centrioles. The single mother with
multiple daughter centrioles is induced by sT overexpression. Images were captured at × 1000
magnification. C. MCV sT interacts with β-TrCP in an LSD-dependent manner. HEK293 cells were
transfected with increasing amounts of WT sT (1, 3 and 5 μg) or LSDm (2, 6 and 10 μg) along
with HA-tagged β-TrCP (5 μg with sT WT and 10 μg with LSDm) to obtain comparable levels of
protein expression. D. E3 ligase knockdown is sufficient for centrosome amplification. Depletion
of Fbw7, or cdc20 by shRNA induces a significant increase in centrosome amplification, as does
sT overexpression alone (P<0.05). Data show the mean ±s.e. from three experiments, where the
number of centrosomes in 30 metaphase cells was counted. E. Efficiency of knockdown was
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Figure 39 (Continued)
determined by quantitative PCR instead of immunoblotting due to the low expression of cellular 
E3 ligases and the limited availability of Fbw7 antibody(237). F. sT stabilizes Fbw7 and β-TrCP 
substrate targets relevant for genome stability. The half-lives of the target proteins of these E3 
ligases are extended by expression of WT sT but not empty vector or LSDm sT. Specific targets 
of Fbw7, β-TrCP or both are indicated by side brackets (left). 293 cells were treated with 
cycloheximide (CHX; 100 μg/ml) and collected at the indicated time points. A representative α-
tubulin loading control is shown. Representative results are shown from three independent 
experiments. 

between MCV sT and β-TrCP by immunoprecipitation. When MCV sT is coexpressed 

with hemagglutinin (HA)-tagged β-TrCP in 293 cells, sT was readily detectable after 

coimmunoprecipitation with HA antibody, and mutation of the LSD specifically impaired 

its binding to β-TrCP (Figure 39C). Further, we tested the effect of sT-targeting E3 ligase 

knockdown in centrosome amplification. Either knockdown of Fbw7 or cdc20 resulted in 

a two-fold increase in abnormal centrosome numbers in 293 cells, with the frequency of 

centrosomal aberrations in these cells comparable to that achieved by expression of WT 

MCV sT alone (Figure 39D). Unexpectedly, knockdown of β-TrCP by short hairpin RNA 

(shRNA) lentiviral induction caused cell death, sustained the low efficiency of target gene 

silencing and resulted in a modest increase in supernumerary centrosomes (Figure 39E). 

The effect of sT expression on the stability of cellular Fbw7 and β-TrCP targets associated 

with genomic instability, including c-myc, PLK1, PLK4, YAP and Deptor, was examined 

in 293 cells. Consistent with our previous data (237) sT inhibited the turnover of proteins 

targeted by E3 ligase in the presence cycloheximide in an LSD-dependent manner 

(Figure 39F; Figure 40). 
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Figure 40. sT stabilizes Fbw7 and β-TrCP substrate targets relevant for genome stability. 

The half-lives of the target proteins of Fbw7 and β-TrCP E3 ligases are extended by expression 
of wild-type sT but not empty vector or LSDm. 293 cells were treated with CHX (100 µg/mL) and 
harvested at the indicated time points. In the presence of sT expression, substrates turnover was 
inhibited and the steady-state levels of each substrate was increased. Protein expression level at 
time points was quantitated and normalized by control, α-tubulin, using Odyssey LI-COR IR 
imaging system. Graphs were plotted with relative expression value to non-CHX treated empty 
sample (Empty, time 0). Error bars represent SEM; n = 3. 

5.4 Discussion 

As a recognized hallmark of cancer, the genomic instability phenotype induced by 

MCV sT may be a contributing factor to its transformation activity in the context of MCC 

development. Genomic instability is frequently characterized by centrosomal aberrations, 
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namely the presence of supernumerary centrosomes. While a diverse set of proteins 

contribute to the tight regulation of centrosome duplication, it is known that members of 

the SCF complex are integral to this process (373). Specifically, inactivation of SCF/Fbw7 

has previously been shown to be associated with increased centrosome amplification due 

to increased levels of c-myc, cyclin E (372), PLK2 (397) and possibly PLK4 (370). Our 

results demonstrate that sT expression results in the presence of supernumerary 

centrosomes in multiple cell lines in an LSD-dependent manner. It has been shown that 

the LSD is required for the binding of sT to Fbw7 (237), and our results further show that 

turnover of Fbw7 target proteins, including c-myc, PLK1 and YAP is attenuated in the 

presence of sT. The accumulation of these substrates as a result of Fbw7 inhibition could 

in part be responsible for centrosome overduplication in sT-expressing cells.  

The overlap between multiple E3 ligase pathways that regulate mitotic controls 

makes it particularly difficult to implicate the targeting of any single E3 ligase by MCV sT 

as a cause for genome instability. For example, because both Fbw7 and β-TrCP are F-

box proteins that function as part of the SCF complex (399), there is overlap in the 

proteins they target for degradation. Similarly, although β-TrCP has been identified as the 

E3 ligase responsible for PLK4 degradation, which allows for tight control of centriole 

duplication (400), it also has been proposed that Fbw7 may participate in PLK4 regulation 

(370). A combination of promiscuous targeting of such E3 ligases by sT along with overlap 

within those E3 ligase networks may contribute to the ability of sT to produce an unstable 

genomic phenotype. Although sT targeting of any single E3 ligase cannot be shown to be 

exclusively responsible for its disturbance of genome stability, what is clear from our 
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results, however, is that the observed phenotype requires the presence of the LSD of sT 

in multiple assays. 

Not only is the presence of supernumerary centrosomes a marker for genomic 

instability in its own right, it has also been proposed as a precursor to the development of 

aneuploidy (401). Our results indicate that sT is capable of acutely inducing an aneuploid 

cell population. A subset of these populations is lost over time, which is consistent with 

cell death following acute genotoxic stress, in which cells with the most severe genetic 

abnormalities die (383). We also noted that WT or L142A sT expression both led to an 

increased proportion of cells in the G2/M population, which is in line with the ability of sT 

to promote mitogenesis as a result of targeting the anaphase-promoting 

complex/cyclosome (273). Our karyotyping analysis showed that WT sT-expressing cells 

contained more breakages at fragile sites that are uniquely induced by oncogene 

expression (such as cyclin E or Ras) as well as general replicative stress (390) (Tables 

3-5). In addition, WT sT-expressing cells exhibited a higher number of breaks in telomeric

regions, which is of interest because telomere dysfunction has been associated with 

tumorigenesis (402). Although the differences noted in our karyotype analysis are not 

statistically significant, they show a trend toward the types of genetic damage that likely 

result from sT expression over time and are consistent with the small population of cells 

with aberrant DNA content detected by flow cytometry (Figure 34A). These single-

oncoprotein overexpression experiments may not completely recapitulate the precise 

biology of the virus in the context of MCC, in which the LT antigen is also expressed, but 

these data do provide evidence that sT expression alone is capable of inducing a 

genomically unstable phenotype. 
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6.0 Conclusions and perspectives 

6.1 The C-terminus of MCV LT 

Studies on SV40 over the past few decades have consistently shown that the LT 

antigen is a dynamic, multifunctional powerhouse in terms of the ways it can use its many 

domains and motifs to target cellular proteins. Some have even referred to it as the most 

amazing molecule in the universe. While the LT antigen of MCV differs from that of SV40 

in terms of its intrinsic transforming capabilities, it remains an integral part of the MCV life 

cycle and plays an important role in MCC tumorigenesis. The study included in Chapter 

3 began as an attempt to clone and isolate the various functional domains of MCV LT so 

that they could be better characterized. Novel functions in the C-terminus of LT were of 

particular interest, as this region is canonically truncated in MCC tumor samples (83). 

While elimination of replication following integration of the viral genome within the host 

genome is a clear reason for LT truncation, there is evidence to support other anti-

tumorigenic functions may be localized to the C-terminus that further prompts their 

elimination for tumor outgrowth to occur (258, 264).   

This study identified a region at the very C-terminal tail of MCV LT downstream of 

the helicase domain that is critical for maintaining the stability of the full-length LT protein. 

Mutagenesis in this region revealed two hotspot areas (786-795 aa and 811-817 aa) in 

which the native LT amino acid sequence was essential for producing a stable full-length 

LT protein. Thus far, no single amino acid has been implicated in being critical for stability, 

so it is most likely the loss of a larger peptide motif that compromises LT stability. While 
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these MCV LT expression studies were carried out in 293 cells, which express adenovirus 

E1A and E1B proteins, we do not believe these additional viral proteins play a role in the 

destabilization of LT. Expression of LT truncation constructs in U2OS cells, which do not 

express other viral oncoproteins, yielded similar results in terms of destabilization of LT 

protein levels (data not shown).  

There is no crystallographic data for MCV LT that contains the regions in question, 

making any inference about how this region contributes to the overall structure of LT quite 

difficult. As this region is also divergent from other polyomavirus species, it becomes even 

harder to try and draw comparisons in terms of its potential structure and function. From 

what can be predicted, it appears that this region exists as an unstructured, flexible tail 

downstream of the helicase domain and does not serve to contact other regions of LT.  

While the motifs within the C-terminus of MCV LT that are required for stability are 

divergent from those of other polyomavirus LTs, the concept that mutations to the LT 

amino acid sequence can compromise its stability is not new. Seminal works on SV40 

describe multiple LT mutants that are expressed at lower levels, are more rapidly turned 

over, and have defects in facilitating viral replication compared to wild-type LT in the 

context of a lytic infection. Notably, these effects are temperature-dependent and can be 

mitigated by reducing the temperature at which infected cells are cultured to 34 C (403–

405). The experiments performed with MCV LT in Chapter 3 were all conducted at 37 C, 

so it would be of interest to determine whether or not the destabilizing mutations identified 

here render LT temperature-sensitive. Culturing transfected cells at a lower temperature 

may serve as a means to stabilize these otherwise unstable LT mutants, and, if 
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successful, this method would provide an avenue for exploring the functional 

consequences of these mutations in terms of MCV biology.  

Given the presence of a number of putative phosphorylation sites within this 

region, one plausible hypothesis to explain our findings is that this region may contain a 

phospho-inhibitor degron module (318). In this type of a model, phosphorylation at one 

or more of these sites may sterically block binding of an E3 ligase at some other site on 

LT. Mutation of those sequences would therefore eliminate this block, and LT would be 

readily targeted for degradation. This is further supported by the fact that LT is known to 

be phosphorylated at multiple sites throughout its amino acid sequence, and some of 

these have been validated as recognition sites for cellular E3 ligases (222, 237).  

Future experiments designed at validating these putative phosphorylation sites 

and their contributions to LT stability may be of value. It would also be interesting to try to 

identify novel binding partners of LT within this region. Unstable LT mutants may fail to 

bind a stabilizing cofactor or instead display increased affinity for a host protein that 

targets LT for degradation. A differential mass spectrometric approach would be an 

excellent means to identify novel interactors that are specific to either wild-type or mutant 

LT antigens. As the 57kT antigen of MCV also shares the same C-terminal sequences 

but lacks the DNA binding and helicase domains present in LT, it may be informative to 

see if the same C-terminal mutations that compromise LT stability also affect 57kT 

stability. Overall, additional study of this region is required to obtain a more complete 

understanding of its biological relevance for MCV, but given what has been described 

here, it follows that this region may have a regulatory function in terms of governing LT 

protein levels within cells, especially during the context of a lytic infection. 
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6.2 Large T antigens and p53 

Tumor suppressor p53 has long been regarded as the “guardian of the genome” 

due to the fact that it sits at the center of a number of important cellular signaling pathways 

that work to maintain tight regulation of all aspects of the cell cycle (144). In the case of 

cell cycle dysregulation or DNA damage, p53 has been implicated in determining the fate 

of such cells by initiating cell death or senescence pathways. The natural function of p53 

is at odds with the polyomavirus life cycle, which requires the unscheduled entry into S-

phase for efficient genome replication. Thus, T antigens of polyomaviruses have 

canonically inhibited p53 function in one way or another. The study in Chapter 4 sought 

to better understand how MCV LT may contribute to p53 inhibition by comparison to SV40 

LT, whose p53-targeting capacities have been well studied. In doing so, it also helped to 

resolve ongoing conflicts in the literature regarding p53 targeting by both MCV and SV40 

LT antigens.  

For the case of MCV, it became clear that its LT antigen does not target p53 via a 

similar mechanism as SV40 LT. IP and PLA experiments both showed that MCV LT does 

not strongly interact with p53 or the co-adaptor p300. Our experiments further 

demonstrated that MCV LT is defective for inhibiting p53-specific DNA binding to target 

gene promoters and blocking their transcription. In reporter assays, we even saw an 

increase in p53-dependent transcription, which is consistent with reports of MCV LT 

inducing a DNA damage response in cells (264). Overall, these results demonstrate the 

lack of a role for MCV LT alone in antagonizing the p53 pathway. Given recent findings 

on the effects of MCV sT activation of Mdm2 and Mdm4 as an indirect means of targeting 

p53, it may be of interest to express MCV sT in some of these assays or co-express both 
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T antigens to see how p53 activation and downstream transcriptional activity may be 

impacted.    

For the case of SV40, our results have provided greater insight into how its LT 

antigen is capable of directly binding to p53 and inhibiting its transactivating properties. 

Our results confirm the well-characterized binding between LT and p53 and the metabolic 

stabilization of inactive p53 in LT-expressing cells. ChIP and qPCR data support the 

model that SV40 LT directly inhibits p53 binding to target gene promoters as the 

mechanism for inhibiting p53-dependent transcription (151). Furthermore, the 

identification of a point mutant LT (P552L) that disrupts p53 binding is evidence that the 

precise residues responsible for facilitating contact with p53 may have a greater 

specificity than previously described (147). Not only is this mutant LT incapable of binding 

p53, it also compromises the ability of LT to stabilize p53 and block transcriptional 

activation. The interaction between SV40 LT and p53 may impede the ability of Mdm2 to 

bind p53 and target it for degradation, resulting in its stabilization (406). It follows that the 

P522L mutant LT that no longer binds p53 would be defective at blocking Mdm2 

recognition of p53, leading to a return to steady-state degradation kinetics. It would be 

informative to profile Mdm2 binding to p53 and examine p53 poly-ubiquitination states in 

the presence of wild-type and mutant LTs in future experiments to elucidate this 

mechanism. Ongoing experiments seek to better characterize this mutant LT and to 

further define the functional consequences of this mutation in terms of modulating p53 

activity.  

The results presented in Chapter 4 describe a striking contrast between the 

mechanism of p53 targeting by SV40 and MCV LT antigens and provides further insight 
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into the biology of both of these polyomaviruses. Still, there remain a number of items 

that need to be addressed before moving forward to publish these findings. First, we are 

working on a more complete functional characterization of the P522L mutant of SV40 LT 

in terms of its ability to bind other known interactors of LT as well as its ability to 

multimerize into a double hexamer formation. A more complete understanding of the 

precise LT functionalities that are abrogated by this mutation will allow for a more informed 

interpretation of our findings. Secondly, we plan to incorporate the P522L mutant of SV40 

LT into the PLA, ChIP, and qPCR experiments described for the wild-type LTs in this 

chapter to examine the functional consequences of this mutation on the p53 pathway. 

How this mutation may impact the transformation efficiency of LT is also a potential 

avenue for continued research.  

Lastly, we also want to address the technical difficulties imposed by transient 

transfection used in many of these experiments. While 293 cells contain wild-type p53, 

they also express adenovirus E1A and E1B proteins, which metabolically stabilize and 

inactivate p53 function (407). This makes 293 cells less than ideal candidates for studying 

the effects of T antigens on p53 biology. Thus, many of the studies performed here were 

conducted with U2OS cells, due to the fact that they can readily be transfected, harbor 

wild-type p53, and do not express other viral oncoproteins. We are currently developing 

a tet-inducible expression system for the LTs described in this study. This system will be 

used to create stably-transduced cell lines in which LT expression can be uniformly 

initiated. This approach would allow us to standardize our approach in terms of LT 

expression and eliminate the potentially confounding factor that the transfection process 

itself may have on p53 activation. This inducible system would also allow us to extend 
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our experiments to non-transformed, primary cell lines, which may provide even greater 

insight into the functional relevance of our findings. We anticipate that the results of these 

additional experiments will serve to bring this study to completion.  

6.3 MCV sT and genomic instability 

Genomic instability has been enumerated as an emerging hallmark of cancer 

(408), and many cancers show the presence of key features of genomic instability: 

centrosome amplification, multipolar mitotic events, and aneuploidy. Multiple 

oncoproteins from tumor viruses have been implicated in inducing hallmarks of genomic 

instability by targeting cellular proteins that regulate cell division, which may contribute to 

their tumorigenic potential. Chapter 5 described how the sT antigen of MCV is capable of 

inducing a genomically unstable phenotype through its promiscuous E3 ligase targeting 

function. 

Previous studies from our laboratory and others have demonstrated the 

tumorigenic potential of the sT antigen of MCV, which is underscored by the fact that 

continued proliferation of MCC cell lines requires sT expression (236). One of the unique 

features of MCV sT in comparison to other polyomavirus sT antigens is the presence of 

a flexible linker sequence termed the LT-stabilization domain or LSD. This domain is 

responsible for interacting with and inhibiting multiple E3 ligases within cells, including 

Fbw7, β-TrCP, and cdc20 (237). In this study, we showed how dysregulation of these E3 

ligase networks by MCV sT can lead to the induction of a multiple hallmarks of genomic 

instability. 
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Expression of sT in rodent and human fibroblasts shows evidence for centrosome 

amplification, aberrant mitotic events, and the development of aneuploidy in an LSD-

dependent manner. Use of a sT-inducible mouse model revealed that sT is capable of 

increasing the frequency of micronuclei in reticulocytes. While the results of our karyotype 

analysis did not reach statistical significance, we did see an increasing trend in the 

number of chromosomal breakages and rearrangements in cells that expressed wild-type 

sT compared to an LSD mutant. By directly knocking down E3 ligases known to be 

targeted by sT, the same aberrant mitotic events seen in the presence of sT began to 

emerge. Lastly, sT expression resulted in the stabilization of several targets of these E3 

ligases that are known to be important in regulating cell division. Taken together, these 

data provide evidence for the induction of genomic instability as an oncogenic mechanism 

of sT that may influence MCC tumorigenesis.  

Though this study has effectively been completed, there are additional 

experiments that could provide a deeper insight into the mechanism presented in this 

chapter. One experiment that could most convincingly corroborate our findings would be 

to perform live cell microscopy on sT-expressing cells to monitor the induction of aberrant 

mitotic events in real time. Additionally, now that PLA has been adopted by our laboratory, 

it may serve as an excellent tool for examining interactions between sT and various E3 

ligases. This technique would also add an additional layer of information about these 

interactions by showing precisely where in cells these interactions are taking place. 

Lastly, as MCV LT has also been implicated in promoting a DNA damage response in 

cells (264), it may be of interest to co-express LT and sT to see if any of the findings here 

are in any way amplified further.  
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There is one final point of contention raised by the data presented in this study, 

which is the fact that these results conflict with data that shows a low rate of somatic 

mutations in MCV-positive MCC samples (243, 244). The fact of the matter is that no one 

single oncogenic mechanism described for MCV is responsible for causing MCC. It is 

likely a multifactorial combination of multiple mechanisms employed by the T antigens 

that contributes to tumorigenesis. It is important to note that the results presented in this 

chapter were generated by overexpression of sT as a means of amplifying the phenotype 

to a level that could be experimentally observed. In all likelihood, the frequency of such 

events is probably quite low, but our results suggest that dysregulation of E3 ligase 

networks by sT may be one contributing factor that sets the stage for MCC tumorigenesis. 

6.4 Semper prorsum 

It has now been just over a decade since the identification of MCV, and the 

staggering amount of work during this time has vastly enhanced our knowledge of the 

newest member on the list of human tumor viruses. For as much as we have learned, 

though, there remain scores of questions about MCV biology that require answers. Similar 

to the way in which MCV LT initiates bidirectional replication of the viral genome, research 

on MCV has moved in two directions since its discovery. Many groups have worked to 

identify initiating events in MCC tumorigenesis by studying the oncogenic mechanisms of 

MCV T antigens. Others have instead begun by studying the biology of established MCC 

tumors and tracing backwards to infer about the origins of this rare cancer and the role 

MCV plays in its development. As time has progressed, these two directions of research 
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have started to meet in the middle and inform each other more and more to give a clearer 

picture of MCV biology.   

Two of the biggest roadblocks for the MCV field moving forward are the lack of an 

infectious model system and lack of information about the natural host cells for MCV. To 

get around this, many of the foundational studies regarding MCV T antigen biology have 

relied on the use of expression plasmids, derived either from genomic MCV sequences 

or cDNA. In some ways, this approach has been an excellent tool for being able to dissect 

the particular functionalities of each T antigen alone. In fact, several of these foundational 

characterization studies of tumorigenic mechanisms of MCV T antigens were performed 

in our laboratory using codon-optimized expression constructs for either LT or sT 

antigens. The work contained in this dissertation reflects that methodology. While such 

results are informative, they do not completely recapitulate the natural biology of the virus, 

and there is likely a lot of additional information we are missing by taking this approach. 

This is underscored by the fact that the field has significant gaps in its understanding of 

the functions of the other MCV T antigens, namely 57kT and ALTO. Both in the context 

of a productive infection and in MCC tumors, T antigens are expressed together, and it is 

imperative to focus on how they may influence one another in terms of manipulating the 

host cell moving forward.  
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