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Abstract 

Functional Robustness: 
A New Framework for Multiple Realization and its Epistemic Consequences 

 
Worth Howard Boone III, PhD 

 
University of Pittsburgh, 2019 

 
 
 
 

In this dissertation, I provide a novel account of multiple realization. My account reframes the 

concept in terms of causal theories of explanation, in contrast to the original framing in terms of 

the deductive-nomological theory of explanation. I align my account of multiple realization with 

the phenomenon of functional robustness, particularly by examining a number of cases of 

robustness in neural systems. I then explore the epistemic consequences of functional robustness. 

In particular, I argue that systems that exhibit robustness will tend to violate causal faithfulness, 

thus posing challenges to causal hypothesis testing and causal discovery. I then consider the 

proposal that robustness undermines modularity - i.e. the ability of causal relationships within a 

system to be disrupted independently. I argue that it does not and instead that robustness often is 

due to feedback control driving systems toward particular outcomes. As a result, robustness will 

attend failures of acyclicity, not failures of modularity. I conclude by contrasting these epistemic 

consequences of functional robustness with those traditionally associated with multiple realization. 
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1.0 Dissertation Introduction 

Brains exhibit remarkable capacities to maintain functions despite substantial variation in the 

component parts and processes that support those functions. This robustness of neural functions 

can be found at all levels of organization within the brain. For example, individual neurons show 

stable electrophysiological properties despite variation in the ion channels that determine those 

properties. Neural circuits produce stable outputs despite variation in the synaptic strengths 

between and intrinsic activity of the cells that make up those circuits. And neuroplasticity can 

enable recovery of function from macroscale damage to entire cortical areas. These different forms 

of neural robustness are imminently relevant to anyone interested in understanding the mind-brain 

relation, explanation in neuroscience, and the relationships between different levels of organization 

in complex systems. 

Philosophical debates about the mind-brain relation have, however, failed to make substantial 

contact with this phenomenon of robustness. This is particularly puzzling given that the concept 

of multiple realization has been central to these debates since the 1970s. In broad terms, multiple 

realization is the claim that higher-level properties correspond to a number of distinct lower-level 

properties. And it is typically cited as a crucial premise in arguments against reductionism and in 

arguments looking to secure the autonomy of the so-called special sciences. Robustness, at least 

on its face, would seem to be of patent relevance to multiple realization, as it demonstrates a clear 

case in which there is stability at the level of the function performed, despite variation in the causal 

structures that support performance of that function. 

Philosophical accounts of multiple realization have, however, had a blindspot to the types of 

cases robustness presents. Particularly in the context of the mind-brain sciences, these accounts 
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have tended to focus on the possibility of the same mental state arising in different organisms (e.g. 

animal pain vs. octopus pain) or in silica (i.e. the possibility of artificial intelligence), whereas 

robustness points toward a sort of causal heterogeneity underlying stable functions within a 

particular species or even a particular organism. Some reasons for this have to do with historical 

coincidence of the scientific state of the art at the time that early debates about multiple realization 

were taking place. For instance, advances in computer science teased the development of artificial 

intelligence that might bear similarities to human intelligence. And little was understood about 

complexity underlying functions within particular neural systems, supporting the assumption that 

a mental state, like pain, may not be multiply realized within a particular species. This meant 

looking to computers or other organisms for potential sources of multiple realization. 

Another factor influencing where philosophers have been looking for instances of multiple 

realization involves the background views in philosophy of science that framed its initial 

discussions. Specifically, those initial discussions were situated within logical positivist views of 

explanation and reduction. Loosely, according to these positivist views, explanation of some 

phenomenon consists in logically deriving it from natural laws, and reduction of a higher-level 

science to a lower-level science consists in showing how the laws of the higher-level science can 

be logically derived from the laws of the lower-level science. Within this framework, multiple 

realization is cast as a thesis about the natural kind terms that figure into these natural laws. As a 

result, the search for examples of multiple realization has largely consisted in finding an example 

of some mental natural kind, say pain, and making the case that it exists in a number of different 

systems. 

 Over the past several decades, consensus in philosophy of science has shifted away from these 

positivist accounts toward accounts that take causation to be central to both explanation and 
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reduction. Rather than construing explanation as a matter of derivation from, or subsumption 

under, natural laws, causal accounts take explanation to consist in illuminating the causal structures 

that give rise to a phenomenon. Such accounts have been developed with particular focus on 

higher-level sciences, like biology, cognitive science, social science, etc. This represents a 

substantial shift in the backdrop that frames debates about multiple realization. Rather than a thesis 

about natural kind terms that occur in different sciences, multiple realization instead becomes a 

thesis about causal heterogeneity at a lower level, despite causal stability at a higher level. 

This difference in framing brings with it differences in the kinds of phenomena that will be 

sought as instances of multiple realization. Rather than looking for the same mental state arising 

in different organisms or in artificial systems, causal frameworks encourage looking for causal 

complexity underlying causal stability. This invites contact with the forms of robustness mentioned 

at the outset, as robustness points toward a sort of causal heterogeneity underlying stable functions 

within a particular species or even a particular organism. 

The difference in framing also attends differences in the epistemic significance of multiple 

realization. As alluded to above, debates about multiple realization have generally focused on its 

ability to secure the autonomy of psychology (or higher-level sciences, more generally) from 

neuroscience (or lower-level sciences, more generally). Within the positivist framework, this is the 

natural way to characterize the epistemic significance of multiple realization. In that framework, 

multiple realization is cast as a thesis about the natural kind terms that figure into natural laws. If 

the natural kinds of a higher-level science are multiply realized by the kinds in the lower-level 

science, then the bridge principles that map between those kinds and are necessary for logical 

derivation are blocked. The bridge principles are blocked because multiple realization implies that 

higher-level kinds correspond to heterogenous disjunctions of kinds in the lower-level science. 
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Such heterogeneous disjunctions are then taken as unsuitable candidates for the nomic bridge 

principles required for logical derivation. By contrast, in causal frameworks, rather than this 

comparatively thin epistemic thesis about autonomy, multiple realization instead implies a range 

of more nuanced epistemic consequences about causal discovery, the structure of causal 

explanation, how we proceed with causal investigation, and causal hypothesis testing. 

My central aim in this dissertation is to articulate this story in greater detail, taking stock of the 

shift mentioned above in the background views in philosophy of science, demonstrating its 

relevance to debates about multiple realization, and looking to examples of functional robustness 

to both substantiate this new account of multiple realization and to draw out its more nuanced 

epistemic consequences. I proceed as follows. 

In chapter 2.0, I consider the shift from positivist to causal models of explanation in more detail 

and offer a reframed analysis of multiple realization in causal explanatory frameworks. As 

intimated above, multiple realization has traditionally been cast as a thesis about the relation 

between kinds posited by the taxonomic systems of different sciences. I show explicitly the ways 

in which this traditional framing is tied to positivist models of explanation and reduction. I then 

develop an alternate framing based on causal explanatory frameworks that, in broad terms, 

characterizes multiple realization as causal stability at a higher level despite causal heterogeneity 

at a lower level. This framing enables the connections between multiple realization and the notion 

of functional robustness discussed above. I examine cases of robustness from systems 

neuroscience that demonstrate this connection, and I show how traditional debates fail to track 

important features of these cases. 

In chapter 3.0, I argue that systems that exhibit functional robustness pose a particular 

challenge to the problem of causal discovery—i.e. the problem of inferring causal structure from 
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patterns of probabilistic dependence. Specifically, robust systems are prone to generate failures of 

causal faithfulness. Causal faithfulness is a condition that grounds many, but not all, causal 

discovery algorithms in the context of graphical causal modeling. The condition states that any 

two variables in a system that are causally related are also probabilistically dependent. In systems 

that exhibit functional robustness, the function in question will often be probabilistically 

independent of causal variables relevant to performance of that function, thus generating failures 

of causal faithfulness. I demonstrate such a failure of faithfulness with an example of functional 

robustness in single neurons. I then discuss the significance of failures of faithfulness for causal 

inference in neuroscience and in complex systems more generally. 

In chapter 4.0, I consider the proposal that robustness undermines the notion of modularity in 

interventionist theories of causation. Modularity, in general terms, refers to the assumption that 

components of a causal system make isolated causal contributions to their respective effects. In 

other words, a system is modular to the extent that any particular causal relationship can be 

disrupted without altering the other causal relationships within the system. This concept is a core 

feature of attempts to analyze causation and causal inference in terms of difference-making, 

particularly interventionist theories of causality (Woodward 2003). Mitchell (2008, 2009) has 

argued that robustness shows that modularity typically does not hold for biological systems, in 

particular genetic networks. In this chapter, I argue that Mitchell mislocates the challenge posed 

by robustness to theories of causal explanation. Rather than failures of modularity, I argue that 

robustness often indicates cyclic causal structures – therefore indicating failures of acyclicity, not 

failures of modularity. Cyclic causal structures pose their own challenges to causal inference. I 

explore those challenges and the resources available to overcome them. 
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In chapter 5.0, I conclude by contrasting the traditional epistemic consequences associated with 

multiple realization with those that follow from functional robustness (or causal explanatory 

multiple realization). Rather than entailing autonomy between different sciences, functional 

robustness entails a range of consequences for causal inference and explanation. In addition, I 

highlight several aspects of my discussion that point toward promising avenues for future research. 
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2.0 Multiple Realization and Robustness 

2.1 Introduction 

Traditionally, multiple realization (MR) has been understood as a thesis about the relation 

between kinds posited by taxonomic systems in different sciences (e.g. psychology and 

neuroscience). This characterization of MR has been heavily influenced by positivist models of 

explanation, reduction, and the unity of science (Hempel 1942, Nagel 1961, Oppenheim and 

Putnam 1958), against which early arguments concerning MR (Putnam 1967, 1975; Fodor 1974) 

were targeted. In this chapter, I explicitly reframe MR in terms of causal explanatory frameworks 

that better capture explanatory practice in the special sciences. Within such frameworks, MR 

becomes more a thesis about causal structure than about mapping relations between kinds. This 

shift in framing exposes connections between MR and the notion of functional robustness in 

biology and neuroscience. 

I proceed as follows. In §I, I show how the traditional framing of MR is tied to outmoded 

positivist conceptions of explanation and reduction. I then offer an analysis of MR that operates 

within frameworks of causal explanation that better capture explanatory practice in psychology 

and neuroscience. In §II, I draw connections between this conception of MR and the phenomenon 

of functional robustness in biology and neuroscience. I examine in detail two cases of robust 

functions in neural systems. In §III, I further develop my account by considering and responding 

to the objection that the account I offer still essentially construes MR to be a relation between 

kinds. I conclude with brief remarks on the ways this reframing of MR alters the landscape of 
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debate surrounding nonreductive accounts of the mind-brain relation, and the special sciences 

more generally. 

2.2 Multiple Realization and Causal Explanation 

The preoccupation with kinds in philosophical discussions of multiple realization has been, in 

large part, a holdover from now defunct positivist conceptions of explanation and reduction. The 

deductive-nomological (D-N) model of explanation, of which the Nagelian model of reduction is 

an extension, maintains that to explain a phenomenon is to subsume it under some law-like 

regularity (Hempel 1942, Hempel and Oppenheim 1948, Nagel 1961). This conception of 

explanation thus assigns the explanatory value of theories to their laws, and by fiat to the (natural) 

kind terms that figure into those laws. Fodor’s (1974) seminal argument from multiple realization 

to the autonomy of the special sciences targeted the Nagelian model of reduction.1 As a result, 

Fodor couched MR as a relation between higher- and lower-level kinds, precluding the formation 

of nomic bridge principles between higher- and lower-level sciences. This general framing has 

shaped much of the subsequent debate surrounding MR. 

The D-N model, however, has proven to be an inadequate account of explanation in the special 

sciences, particularly psychology and neuroscience (as well as biology, more generally). A primary 

reason for this is that neither psychology nor neuroscience deals in laws in the traditional sense 

(qua universal generalizations), and relatedly, explanations in neither science proceed by 

subsuming phenomena under regularities (see, e.g., Cummins 1983, Ch1; Craver 2007). To the 

 

1 Despite the fact that Fodor’s title suggests that his target is Putnam and Oppenheim’s account of the unity of science. 
See Shapiro and Polger (2012) for detailed discussion. 
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contrary, regularities in both psychology and neuroscience provide the targets of explanations, the 

explananda, rather than the explanantia (Cummins 1983, 2000). 

For instance, the “cocktail party effect” denotes a regularity according to which people are able 

to single out the sound of their names in a noisy environment. Simply citing this effect does little 

to explain a particular instance of this phenomenon—to do so would be more akin to explaining 

the sedative properties of opium by appealing to its “dormitive virtue”, as famously quipped by 

Moliere in 1665. Rather, the cocktail party effect characterizes an explanandum, and psychology 

seeks explanations for why this regularity holds. Similarly, gradually depolarizing a neuron to a 

membrane potential around -40mV is regularly followed by a rapid depolarization of the cell—the 

rising phase of the action potential. But again, simply citing this regularity does nothing to explain 

a particular instance of neural depolarization. Rather, the regularity is the target of explanation into 

the mechanisms of the action potential. A primary function of taxonomic systems is to capture 

these sorts of regularities within different scientific domains. That is, with respect to explanatory 

practice in the special sciences, taxonomic systems and the kinds they posit serve more to 

characterize explananda than to provide explanantia.2 

The models of explanation in philosophy of science that have supplanted the positivist 

framework take causation, rather than subsumption under laws, as the central feature of scientific 

explanation (e.g. Bechtel 2008, Craver 2007, Salmon 1984, Woodward 2003). While varied in 

their particulars, what is common to these models is the idea that to explain a phenomenon is to 

situate it within a causal nexus. Such models fare better at capturing explanatory practice in both 

 

2 Of course, taxonomic systems also play crucial roles in explanatory practice, but their explanatory value does not 
consist in capturing nomic regularities or “carving nature at its joints”. Rather, the explanatory value of taxonomic 
systems consists in providing the terms for capturing causal relations between higher- and lower-level analyses. As 
such, it is those causal relations that do the explanatory heavy lifting in the special sciences, not the kind terms 
themselves. I revisit this point in more detail in §III, but for now this fast and somewhat loose discussion will do 
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psychology and neuroscience. For instance, psychologists look to explain the cocktail party effect 

by analyzing it in terms of functional subprocesses—e.g. selective auditory attention and speech 

channel separation. Similarly, neuroscientists have explained the rising phase of the action 

potential by investigating the workings of voltage-gated Na+ channels. In explaining how 

regularities arise, both psychology and neuroscience look to the causal processes that give rise to 

these sorts of regularities. 

For the most part, causal models of explanation stress decomposition of a system in order to 

explain how it operates to give rise to some phenomenon. The mechanistic framework (Bechtel 

and Richardson 1993, Bechtel 2008, Machamer et al. 2000, Craver 2007) currently provides a 

dominant framework of explanation via decomposition. According to this framework, roughly, to 

explain a phenomenon is to decompose it into some set of entities and activities that, appropriately 

organized, explain how the phenomenon was produced (see Figure 1, b). Such decompositional 

explanations, however, only provide half of the story, especially if one is interested in interpolating 

MR into this framework. The other half consists in upward-directed analyses that explain what a 

system or phenomenon does within some containing system (see Figure 1, a). Such analyses are 

closely related to what Craver (2001, 2011) calls “contextual explanations” and the explanatory 

strategy is similar to Bechtel’s (2008) notion “reconstituting a phenomenon.” 

  

Figure 1: Diagram of the contrast between (a) upward-directed functional 
analyses and (b) decompositional mechanistic analyses. 
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Cummins’s (1975) account of functional analysis remains one of the canonical ways of 

capturing this explanatory strategy in both precise and general terms. Cummins’s account 

maintains that functions are ascribed by situating a capacity of a system within an analysis of a 

capacity of some containing system. In other words, functions are attributed relative to the role 

they play in analysis of other capacities. 

x functions as a ф in s (or: the function of x in s is to ф) relative to an analytical 
account A of s’s capacity to ѱ just in case x is capable of ф--ing in s and A 
appropriately and adequately accounts for s’s capacity to ѱ by, in part, appealing to 
the capacity of x to ф in s. (Cummins, 1975: 762) 

Both decompositional analyses and upward-directed analyses are crucial to understanding 

functions within a framework of causal explanation. Upward-directed analyses justify functional 

attributions, explaining what a system does within some containing system, while decompositional 

analyses explain how that function is performed by various subsystems. Of course, there is a sort 

of symmetry between both forms of analysis. A functional analysis can constitute a mechanistic 

analysis of the function of the containing system, and a mechanistic analysis of a particular 

function can constitute a functional analysis relative to which the functions of the components of 

the mechanism are attributed (Piccinini and Craver 2011). Nonetheless, it is useful to keep in mind 

the distinction between these two forms of analysis in order to interpolate MR into causal-

explanatory frameworks. 

Juxtaposing functional and mechanistic analyses, MR can be defined as sameness or stability 

of function (qua causal role in some functional analysis) despite difference in the mechanisms 

performing that function. Mechanisms are individuated in terms of causal relevance. Two 

mechanisms are distinct just in case they consist in distinct sets of entities and activities that make 

relevantly different contributions toward explaining the target phenomenon (in this case, some 
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function or capacity).3 Causal relevance can be understood in terms of manipulation and control 

(Woodward 2003; Craver 2007, Ch3). Thus, a feature of a mechanism is causally relevant if 

manipulating it while holding the other features of the mechanism fixed alters the phenomenon the 

mechanism is invoked to explain. 

Functional sameness or stability can also be cashed out in terms of causal relevance. Here it is 

the absence of causally relevant differences (relative to the functional analysis of some containing 

system) that denotes functional stability. That is, a function is stable across multiple instances just 

in case whatever differences obtain across those instances are not causally relevant to the role of 

that function within its containing system. Thus, MR in this framework amounts to the thesis that 

there are multiple relevantly different causal pathways that converge on a relevantly stable 

function.4 For clarity, this thesis of Causal Explanatory MR can be stated as the joint satisfaction 

of the following two conditions. 

Causal Explanatory Multiple Realization (CEMR) 

(1) Two mechanisms are different realizations of a function just in case there are 
differences between them that would make a difference to performance of the 
function they explain under controlled intervention (holding all other aspects of the 
mechanism fixed). 

(2) Two instances of a function are relevantly similar just in case whatever 
differences obtain between them do not make a difference to their roles in 

 

3 Larry Shapiro (2000, 2004) has also developed an account of MR according to which realizations are distinguished 
on the basis of causal relevance. As such, Shapiro is a progenitor of the move to frame MR in causal explanatory 
frameworks. However, Shapiro relies on an intuitive notion of causal relevance, and fails to offer a precise criterion 
for functionality similarity. Instead, in his earlier work on the subject (though cf. Polger and Shapiro, 2016), Shapiro 
accepts Kim’s (1992) principle of causal individuation of kinds, which in turns leads him to skepticism regarding MR 
(more on this below). My account thus can be seen as building on Shapiro’s work, offering more precise analysis of 
both causal relevance and functional similarity by tying both to notions of manipulation and control in causal 
explanation. 
4 By “causal pathway” here I mean a sequence of steps leading from some causal factor to its effect (in this case, some 
appropriately specified function). This is in rough alignment with the sequential notion of mechanism laid out in 
Machamer et al. (2000). 
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explaining the capacity of a containing system under controlled intervention 
(holding all other aspects of the functional analysis of that system fixed). 

This may seem to invite a puzzle. If two mechanisms are really distinct, then there must be 

differences between them that are causally relevant to performance of the function in question (by 

virtue of the conditions I have stipulated for mechanism individuation). So, it would seem that the 

function cannot be stable across those differences. In other words, it may seem that conditions (1) 

and (2) are mutually incompatible. 

In essence, this apparent incompatibility is the same issue that has motivated a predominant 

thread of MR skepticism due to Larry Shapiro (2000, 2004). Shapiro has argued that proponents 

of MR face a dilemma when it comes to distinguishing realizations of a functional kind. The 

dilemma runs as follows. 

Horn one: if two instances of a functional kind do not differ in a way that is relevant 
to performance of the function in question, then those instances do not properly 
correspond to distinct realizations of that kind. 

For instance, two waiter’s corkscrews that differ only in color are not properly distinct realizations 

of the kind, corkscrew. It should be clear that the account I’ve been developing effectively accepts 

this horn (though I resist framing the issue in terms of kinds—more on this is §III). 

Horn two: if two instances of a functional kind do differ in a way that is relevant to 
performance of the function in question, then it would seem that there are genuine 
causal differences between those instances and thus that they correspond to distinct 
kinds. 

The consequent in horn two follows from acceptance of the principle of causal individuation of 

kinds (Kim 1992). For a mundane example, consider spark-ignition and compression-ignition as 

relevantly different ways of powering an engine. It would be misleading to say that spark-ignition 

engines and compression-ignition engines are different realizations of the same kind because the 
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causally relevant difference between them seems to track a difference in kind rather than a 

difference in realization of the same kind. 

The account of MR developed above offers a way around this dilemma. The advance offered 

is a precise criterion for functional stability that does not get bogged down in issues of kind 

individuation—i.e. condition (2) of CEMR. Specifically, stating the issue in terms of kinds invites 

application of a general criteria of “kindhood” (like Kim’s principle of causal individuation) that 

may not actually be relevant to scientific instances of MR. If we instead interpolate Shapiro’s 

second horn into CEMR, it is plain to see that the issue just points to the puzzle outlined above: if 

two mechanisms are really distinct, then there are differences between them that are causally 

relevant to performance of the function in question; and so it would seem that the function cannot 

be stable across those differences. The issue here is just to see how relevantly different causal 

pathways can converge on a (relevantly) stable function. And the apparent puzzle can be resolved 

by noting that there may be differences in other causally relevant features of a mechanism that 

compensate for some particular causally relevant difference to produce a stable function. In such 

a case, a particular causally relevant difference is sufficient for distinguishing two realizations of 

a function, while the compensatory differences among other causal factors in turn enable stability 

(or relevant similarity) of function. This is in fact commonplace in biological systems, as will 

become clear in the next section. 

2.3 Multiple Realization as Functional Robustness 

To this point, I have argued that multiple realization can be understood in causal explanatory 

frameworks as similarity in what a system does (relative to a functional analysis of some 
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containing system), in spite of differences in how it does it (specified by some set of mechanistic 

decompositions). This conception of MR is tied purely to the structure of causal explanations rather 

than to features (e.g. nomicity, causal individuation, projectibility) of kinds that figure into 

different taxonomic systems (cf. Fodor 1997, Kim 1999, again more on this in §III). The notion of 

(functional) robustness maps fairly precisely onto this causal explanatory characterization. The 

aim of this section is to flesh out this connection and to provide empirical examples of robustness 

that thereby substantiate this account of MR. 

In the first place, there are several related notions of robustness that have received substantive 

attention in both the biological sciences and philosophy of science and should be distinguished. 

The first, which I will term “methodological” robustness was introduced by Levins (1966) and has 

been championed in philosophy of science with the work of Wimsatt (1980, 1981, 2003) and more 

recently Weisberg (2006) and Schupbach (2018). Robustness in this sense means “accessible 

(detectable, measurable, derivable, produceable, or the like) in a variety of independent ways” 

(Wimsatt, 2003). Robustness also has close ties to notions of “stability” and “invariance” that have 

been cited as criteria on explanatory generalizations that move away from the standard 

(positivistic) conception of “laws of nature”—qua universal generalizations (e.g. Mitchell 1997, 

Woodward 2003). The notion of robustness in which I am interested is related to both of these 

concepts but is nonetheless distinct in relevant ways. This notion, which I call “functional” 

robustness, is the robustness of some effect produced by a system over variation in or perturbations 

to the components and properties of that system (Mitchell 2008). This latter notion has been central 

to recent research in biology and has played a crucial role in systems neuroscience. 
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Kitano (2004) defines functional robustness as “a property that allows a system to maintain its 

functions despite external and internal perturbations” (Kitano 2004: 826).5 The concept is of 

central relevance to genetic networks in which a large amount of redundancy is built to ensure that 

systems do not break down in the face of, e.g., minor errors in genetic transcription. Functional 

robustness is also of central relevance to engineering science in systems in which stable effects 

must be maintained in response to a range of environmental perturbations. For instance, the 

autopilot system in modern airplanes is designed to maintain a flight path against a range of 

changes in atmospheric conditions through compensatory adjustments to various flight 

mechanisms; similar for cruise control in maintaining a constant speed in automobiles. It is no 

coincidence that the systems in which functional robustness figures most crucially are also those 

in which the notion of function has typically been employed—i.e. biological systems and 

engineered artifactual systems. In such systems there are selective pressures for effects rather than 

causes, and so there is need for stability in what a system does that supersedes stability, and in fact 

errs toward variation, in how it does it. 

Some initial distinctions are in order before turning to specific examples of robustness in neural 

systems. Robustness, in the sense discussed by Kitano and other biologists, should be distinguished 

from the more general concept of functional stability. For any function there is some normal range 

of variation in its mechanisms over which it may be stable. For instance, spark-ignition engines 

can combust a range of air-fuel mixture ratios (roughly, between 8:1 and 18:1) that are regulated 

by a carburetor. The function of the engine is thus stable over this range of ratios. But this form of 

 

5 Kitano uses the term “biological robustness” because he is interested specifically in how the causal notion of 
robustness applies to genetic networks. For consistency and to keep clear these multiple senses of the term 
“robustness,” I continue to use my more general term, “functional robustness,” in reference to Kitano’s work and 
throughout the remainder of the dissertation. 
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stability is weaker than or at least distinct from that implied by the concept of robustness of interest 

to biologists. Functional robustness is a subclass of functional stability that involves some form of 

reorganization of a system in order to maintain function in the face of perturbations. The concept 

of reorganization here implies different causal contributions from other components of the 

mechanism in question.  

Here a further distinction can be drawn between (at least) two ways in which reorganization 

can arise: redundancy and distributed robustness (Wagner 2005). Redundancy occurs when a 

system maintains function via some redundant mechanism that fills in for a perturbed component. 

For instance, imagine a spark-ignition engine with a backup carburetor that fills in should the 

primary carburetor become damaged. In such cases, the redundant part plays the same causal role 

in the system. As such, functional robustness via redundancy does not qualify as a genuine instance 

of MR based on the account offered in §I (due to the lack of causally relevant differences in the 

mechanisms that explain such functions). By contrast, distributed robustness occurs when many 

different parts play a range of different causal roles that compensate for effects of perturbations. 

Though there is no easy analog for engines, it might be something like a spark-ignition engine 

having the capacity to reorganize itself into a compression-ignition engine and sort out a way of 

converting gasoline into diesel in response to a carburetor failure. It sounds ridiculous in the 

context of engines, but something like this seems to be remarkably common in certain biological 

systems. 

In systems neuroscience, the study of robustness very much is a science of multiple realization. 

Neuroscientists concerned with robustness strive to understand many of the features of the mind-

brain relation that motivated early work on multiple realization—e.g., the stability of macrolevel 

regularities to microlevel variation (Putnam 1975; Fodor 1968, 1974), the fact that the same 
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psychological kinds seem to be realized and realizable in different organisms and artificial systems 

(Putnam 1975), the fact that psychological functions can be stable over changes that occur in the 

course of development, and the fact that psychological function can be stable over substantial 

neural damage (Block and Fodor 1972). Despite the patent relevance of functional robustness to 

MR, it has received scant attention from philosophers of mind. This is likely because the 

obviousness of the connection has been obscured by the positivistic hangover that has shaped 

debates about MR. However, with the causal explanatory framing of MR I offered in §I, it is not 

much work to connect these two concepts. 

To see how MR and distributed robustness relate, it will be helpful to first examine some 

instances of robustness in neural systems. In long-lived organisms—including humans and lobsters 

(the purpose of this odd association will become apparent)—individual neurons can persist and 

function properly for decades. By contrast the proteins and receptors that modulate the 

electrophysiological properties of those neurons are decaying and being replaced on timescales of 

minutes to hours and days to weeks. As a result, the features that determine a neuron’s 

electrophysiological properties are in a continuous state of flux. And yet those electrophysiological 

properties are remarkably stable over time. This poses a mystery regarding how this stability is 

achieved. As Marder and Goaillard (2006) state the problem, 

[E]ach neuron is constantly rebuilding itself from its constituent proteins, using all 
of the molecular and biochemical machinery of the cell. This allows for plastic 
changes in development and learning, but also poses the problem of how stable 
neuronal function is maintained as individual neurons are continuously replacing 
the proteins that give them their characteristic electrophysiological signatures. 
(Marder and Goaillard 2006: 563) 

The electrophysiological signatures here refer to both the response properties of neurons as well 

as their intrinsic excitability. These features are determined by proteins and receptors that enable 

and modulate the flow of ions across the cell membrane. Experimental work has revealed that 
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individual neurons exhibit many-fold variability in their expression of particular ion channels (see 

Marder and Goaillard 2006, and Marder 2011 for review). Despite this variability in channel 

density (i.e. ion channels per surface area), those same neurons exhibit remarkably similar 

electrophysiological profiles. 

This presents a puzzle. The influx and outflow of ions is what explains the characteristic 

fluctuations in membrane potential that constitute the electrophysiological properties of a given 

neuron. So how is it that the channel densities that determine the rates of the influx and outflow of 

ions can vary while the electrophysiological properties remain stable? 

Note that the puzzle encountered here is the same puzzle posed at the end of §I. The problem 

there was to understand how features that are causally relevant to the performance of a function 

can vary while that function remains stable. The answer I alluded to was that there can be 

compensating differences in other causally relevant features that explain this stability. And indeed, 

computational models demonstrate that a variety of combinations of ion channel densities can give 

rise to similar electrophysiological profiles in model neurons. These results show that very 

different combinations of channel densities can produce the same intrinsic bursting profiles 

(Golowasch et al. 2002, Prinz et al. 2003). Taken together with the observed variability in channel 

density, it can be inferred that neuron electrophysiology is tightly regulated by compensatory 

mechanisms to maintain target levels of activity. And indeed, the existence of such compensation 

has been confirmed in genetic knockout experiments (Guo et al. 2005, Nerbonne et al. 2008). 

What this all suggests is that the functions of individual neurons provide an instance of the sort 

of MR outlined in §I. That is, neurons often exhibit stable functions despite variation in the 

mechanisms that allow and explain performance of those functions. Again, mechanisms are 

individuated on the basis of features that are causally relevant to performance of a function, and 
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functions are specified relative to a functional analysis of some containing system. The densities 

of ion channels are the primary component features that determine a neuron’s electrophysiological 

profile. And so different combinations of ion channel density distinguish different mechanisms 

that explain the electrophysiology of a given neuron. It is generally taken for granted in 

neuroscience that the functions of neurons are determined by their electrophysiological profiles. 

However, to bring those functions into alignment with the causal explanatory framework from §I, 

they must be specified relative to some functional analysis of a containing system. 

Rarely, and usually only in very simple organisms, do the activities of individual neurons 

figure directly into explanations of an organism’s behavior. To understand how the activities of 

individual neurons contribute to the behaviors of whole organisms, it is often necessary to first 

determine the roles those neurons play in intermediate-level causal structures. Specifically, the 

functions of individual neurons are most often specified relative to their roles in ensembles of 

neurons—circuits and networks. It is then the functions of these circuits and networks that figure 

into explanations of simple behaviors. (We do not currently have well-articulated explanations for 

more complex behaviors in large part because there are likely to be more tiers of intermediate-

level causal structure of which we currently have impoverished understanding.) So, in order to 

gain insight into how circuits operate and what functions they perform, neuroscientists look to 

simpler systems. 

The stomatogastric ganglion (STG) of decapod crustaceans is a small network of about 30 

neurons in the stomatogastric nervous system that generates and maintains various motions 

involved in digestion. There are two main functional networks in the STG: the pyloric network 

and the gastric network. Both networks produce patterned motor outputs that control particular 

aspects of crustacean digestion. The primary function of the pyloric network is to generate a three-
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phase motor pattern that traffics food particles through the pylorus in a wave of peristaltic motion. 

This triphasic rhythm has received extensive attention from systems neuroscientists looking to 

understand the ways in which activities of individual neurons combine to produce characteristic 

circuit function. Analysis of the triphasic rhythm has shown that the inference from the functional 

roles of individual neurons to the functions of neural ensembles is far from trivial. Here again, MR 

is rife in the structure of these interlevel causal explanations. 

Prinz et al. (2004) demonstrated that the pyloric rhythm can be generated by vastly different 

values of the parameters that define the pyloric circuit. Using a simplified (three neuron) model of 

the pyloric network, they created a database of all possible combinations of synaptic strength and 

intrinsic electrophysiological properties of the cells in the circuit. Out of more than 20 million 

possible combinations of circuit parameters, more than 4 million sets of those parameters 

generated rhythms that exhibited the characteristic three-phase signature of the pyloric rhythm—

call this the broad criterion. And of those, 11% (just under half a million sets of parameters) 

satisfied narrowly defined biological criteria derived from in vitro recordings of pyloric rhythms 

from a large sample of lobster preparations—the narrow criterion. Importantly, the parameter sets 

that satisfied both the narrow and broad characterizations of the pyloric rhythm included all 

possible parameter values for both the intrinsic properties of the individual neurons as well as 

almost all possible values (with one variable having a restricted range) for the synaptic weights 

between the neurons in the circuit. So, no particular component or connection within the circuit 

dominates circuit function. 

Given Prinz et al.’s data, the pyloric rhythm provides a clear instance of multiple realizability 

of the sort outlined in §I. The intrinsic properties of the neurons comprising the pyloric network 

and the synaptic weights within the network are precisely the features that are causally relevant to 
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production of the triphasic rhythm. So, the different mechanisms that explain the triphasic rhythm 

correspond to the different sets of parameter values (i.e. particular network configurations) that 

support the function. It is these specific network configurations that explain how the pyloric 

rhythm is generated in any particular case. But there is no universal answer to this “how” question. 

That is, there is no single mechanism that is responsible for production of the pyloric rhythm. Just 

as in the case of electrophysiology of single neurons, tuning of other causally relevant features of 

the network (other synaptic weights and intrinsic properties of component neurons) allows 

multiple sets of parameter values to converge on a stable target output (e.g., see Figure 2). 

 

Figure 2: Vastly different sets of parameter values (c,d) give rise to nearly 
identical circuit function (a,b). From Prinz et al. (2004). 

That target output—i.e. the function of the pyloric rhythm—can be specified relative to its role 

in the functional analysis of crustacean digestion. Thus, the rhythm functions to open (and then 

close) the pylorus and to produce a wave of peristaltic motion to traffic food particles through the 

pylorus. Prinz et al.’s broad and narrow criteria correspond to two different ways in which the role 
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of the pyloric network in this digestive capacity can be analyzed. The broad criterion specifies 

relevant similarity simply in terms of production of a three-phase rhythm. There are empirical 

reasons for thinking this is a reasonable criterion: specifically the motoneuron that mediates 

between the pyloric network and the pylorus seems to act as a sort of temporal filter, so the relevant 

information from the network is just the order and timing of the firing of the neurons in the three-

phase sequence. The narrow criterion constrains the function to the range of biological variability 

of circuit output observed in vitro. Again, there are theoretical motivations—in this case the lack 

of certainty that order and timing are the only causally relevant features of pyloric network 

output—to take this as the criterion of relevant functional similarity. These functional analyses 

specify what the circuit is doing within the organism and as such determine the range of relevant 

similarity (or acceptable variability) in the output of the circuit. 

This can be made more precise by specifically examining the two functional outputs (a, b) and 

network configurations (c, d) in Figure 2. The two functional outputs are not exactly similar, but 

they are well within the range of observed variability of in vitro recordings of pyloric network 

output. On the other hand, the two network configurations—i.e. the two mechanisms realizing 

those functions—are relevantly different. Any controlled intervention changing one of the 

parameters in configuration (c)—e.g. the KCa conductance (500mS/cm2) of the LP neuron—to its 

corresponding value in the second configuration (d)—in this case, completely blocking KCa 

conductance (0mS/cm2) of the LP neuron—would cause catastrophic failure of the network 

rhythm. It is the tuning in other network parameters—i.e. the other causally relevant features of 

the mechanism—that enables the two networks to produce relevantly similar functions despite 

these differences. Thus, the pyloric network provides a clear instance of MR in the sense outlined 
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in the first section: relevant similarity in function despite relevant difference in the mechanisms 

that perform that function. 

2.4 Kinds Reconsidered 

My central goal to this point has been to provide an analysis of MR, substantiated with 

empirical examples, that moves away from positivist conceptions of explanation and reduction and 

operates instead within causal explanatory frameworks. In such frameworks, I have argued MR 

should be construed as a thesis about the structure of causal explanations rather than a thesis about 

relations between kinds that figure into different taxonomic systems. One might object that MR in 

my framework is still, fundamentally, a thesis about the relation between higher- and lower-level 

kinds. That is, my framing merely offers a different analysis of the kinds involved in putative 

instances of MR, not a complete abandonment of the concept or utility of kinds in this context. In 

short my response is that while it is certainly possible to interpolate some notion of kinds into this 

framework, the relevant shift in the ways kinds are characterized negates much of the philosophical 

debate that has focused on kinds in the context of MR. The aim of this section is both to develop 

this objection and to spell out my response in more detail. 

Recall that the causal explanatory framework outlined in §I consists in two parts: (1) 

realizations of a function consist in the mechanisms that explain how that function is performed; 

(2) functions are specified as causal roles within a functional analysis of some containing system. 

Despite my insistence to the contrary, it would seem there’s a natural way to interpolate kinds into 

this framework. Specifically, the mechanisms that realize functions may be thought to correspond 

to lower-level kinds, while functions, qua causal roles within some containing system, may be 
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thought to correspond to functional kinds in much the way traditional accounts of MR have 

assumed. On this modified framing, MR would still amount to the traditional claim that there is a 

many-one relation between lower-level kinds (mechanisms) and higher-level kinds (functions). 

Also, notably a causal explanatory framing of type-identity theory could be then couched in this 

framework as the claim that there is a one-one relation between mechanisms and functions.6 

To reiterate the challenge, interpolating kinds into CEMR involves (a) identifying mechanisms 

as lower-level kinds and (b) identifying the functions specified in functional analysis as higher-

level (functional) kinds. I’ll respond to each of these claims in turn. With respect to (a), identifying 

mechanisms as kinds (qua members of some scientific taxonomic system) is more problematic 

than it may appear at first glance. Consider the mechanism of a generic snap mousetrap. That 

mechanism consists in something like the following. The mousetrap is set by lifting the hammer 

off the platform, pulling it back against the force of the spring, placing the holding bar over the 

hammer/spring, and then engaging (and baiting) the catch that holds the hammer in place. When 

the catch is released, the potential energy of the spring is converted into kinetic energy causing the 

hammer to slam down on the other side of the platform. Note that this mechanism is a complex 

causal process; it is not a kind in anything like the traditional philosophical sense, and it is certainly 

not a simple element of a taxonomic system in terms of which mousetraps might be analyzed. 

A taxonomy of the components of a snap mousetrap might consist in a list of elements like: 

platform, hammer, spring, holding bar, catch. These are the elements in terms of which the function 

of the mousetrap may be analyzed. But the mechanism itself is a complex of these taxonomic 

elements, and it is their arrangement and causal coordination that explains how snap mousetraps 

perform their functions. From the other direction, note that snap mousetraps could be construed as 

 

6 I take this to be roughly the view defended, albeit in different terms, by Polger and Shapiro (2012, 2016). 



 26 

a particular kind in a taxonomy of mousetraps—among others like glue, poison, or electric 

mousetraps. Generic mapping relations (one-one, one-many, many-one) between this higher-level 

taxonomic system and the lower-level taxonomic system of mousetrap components do not track 

anything interesting about explanations of the operations of these different kinds of mousetraps. 

This is nothing peculiar to toy examples. The same applies to well-worn scientific examples 

like the mechanism of the action potential. Action potentials are, plausibly, activity-kinds in 

cellular-level neuroscientific taxonomy. The subcellular-level taxonomy in terms of which the 

action potential is explained consists in kinds like: voltage-gated Na+ channels, voltage-gated K+ 

channels, plasma membranes, and Na+ and K+ ions. The mechanism itself, of course, belongs to 

neither of these taxonomic systems. Rather, as in the mousetrap example, the mechanism is a 

complex causal process that here involves activation of voltage-gated Na+ when a neuron’s 

membrane potential depolarizes to some threshold, usually between -55mV and -40mV, causing a 

rapid influx of Na+ ions, and so on. 

This may seem like a nitpicking point, but the general framing of MR as an issue of the 

alignment of taxonomic systems continues to be the default view for many philosophers (see, e.g., 

Polger and Shapiro 2016). Now, while this all suggests there are good reasons to resist thinking of 

mechanisms as kinds in the sense of simple terms in a taxonomic system, one may still object that 

mechanisms must be kinds because they have scope. That is, mechanisms are not simply token 

causal processes, but rather are causal process-types that apply across multiple instances. This is 

borne out, for instance, in both the examples considered above. The mechanism of the snap 

mousetrap does not just explain how this particular mousetrap operates, but rather explains how 

snap mousetraps in general operate. And the same is true mutatis mutandis of the mechanism of 

the action potential. Presented with such examples it may be tempting to think that mechanisms 
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are actually a sort of functional kind coextensive with the functions they realize. Indeed, the 

mechanism of the snap mousetrap described above is a sort of functional description; and 

everything that satisfies that description is a snap mousetrap, and every snap mousetrap satisfies 

that description. Again, the same seems to be true mutatis mutandis of the mechanism of the action 

potential.  

But here we have to be careful and thinking in terms of kinds (and generalizing from examples 

of this form) muddies the waters.7 Mechanisms and the functions they realize need not be 

coextensive. To insist that they are would be to rule out causal explanatory MR tout court. The 

causal explanatory framing of MR outlined in §I distinguishes the individuation conditions of 

functions from the individuation conditions of mechanisms: recall that condition (1) lays out the 

individuation conditions of mechanisms, condition (2) the individuation conditions of functions. 

The coherence of CEMR thus shows the identification of functions and mechanisms to be 

conceptually problematic, and the cases of robustness from §II show that identification to be 

empirically problematic. So, it would seem to be a mistake to construe mechanisms as functional 

kinds, just as above it proved problematic to construe mechanisms as structural kinds in any 

straightforward sense. Thus, it seems that there is no straightforward way to interpret mechanisms 

as kinds in any classical sense of the term. And moreover, foisting the concept of kinds onto 

mechanisms seems to invite confusion regarding the relation between mechanisms and the 

functions they perform. 

 

7 This is one diagnosis of a problem with the type-identity theory that Polger and Shapiro (2012, 2016) defend. They 
generalize from toy examples like corkscrews and scientific examples that involve quite general characterizations of 
mental/neural functions to reach the conclusion that functions are, in the vast majority of cases, identical with the 
mechanisms that realize those functions. 
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We can now take a closer look at (b), the identification of functions specified in functional 

analysis with higher-level (functional) kinds. On its own, this proposal is not as fraught as (a) but 

does bear its own pitfalls. The point of maintaining that functions are always attributed relative to 

a functional analysis of some containing system is to build a significant amount of context-

sensitivity into functional attributions. Specifically, functional analyses play the crucial role of 

determining the relevant grain of generality at which functions are specified. 

Take hearts as an example. At a most general level the function of a heart can be specified 

relative to its role in a circulatory system—viz. pumping nutrient fluids. At such a general level, 

there is no motivation to distinguish between the functions of insect hearts and vertebrate hearts. 

That is, any organ embedded in a circulatory system that pumps nutrient fluids functions as a heart 

in this general sense. However, if we perform more fine-grained functional analysis of circulatory 

systems, and consider the sorts of nutrients those fluids supply (e.g. oxygen) and the ways those 

nutrients are supplied to body parts (i.e. through open or closed circulatory systems), insect hearts 

and vertebrate hearts no longer perform the same function. 

At this grain of functional analysis, note that fish hearts and human hearts do perform the same 

function. However, if we analyze the functions of vertebrate hearts in terms of their role in blood 

oxygenation, fish hearts and human hearts no longer perform the same function. In fish circulatory 

systems, the heart simply functions to circulate blood (via a single pass per circuit), with the blood 

picking up oxygen from the gills en route to the rest of the organs and body parts. In human 

circulatory systems, the heart serves a dual function (via two passes per circuit) of circulating 

deoxygenated blood to the lungs and oxygenated blood to the rest of the body. 

The point of these examples is that the relevant function the heart performs changes depending 

on the way its role within its containing system (the circulatory system) is analyzed. In the context 
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of circulatory systems generally, hearts function to pump nutrient fluids simpliciter; in the context 

of open circulatory systems, hearts function to pump nutrient fluids (for insects, hemolymph) 

diffusely throughout the body; in the context of closed circulatory systems, hearts function to pump 

nutrients and oxygen-transporting red blood cells through a system of blood vessels; and so on. 

The advantage of tethering functions to functional analyses is that doing so keeps this context in 

place and encourages clarity regarding the degree of generality at which those functions are 

specified. Thinking in terms of functional kinds, on the other hand, invites decontextualization of 

functions (“the heart functions to pump blood”), and encourages lack of clarity with respect to 

degree of generality. 

Further there is a close connection between functional analytic context and the criteria that 

determine and distinguish between realizations of a given function that risks getting lost when 

functions are construed as kinds. For instance, are insect hearts genuine realizations of the 

functional kind, heart, even though they don’t “pump blood”? What differences between 

realizations of hearts are causally relevant to their ability to “pump blood”? Are two-chambered 

hearts and four-chambered hearts two different kinds or different realizations of one kind? These 

questions are too vague to be determinately answered in the absence of the context provided by 

some more precise functional analysis of the circulatory systems in which hearts are embedded. 

Again, the ability to clearly determine and distinguish between realizations gets lost in 

decontextualized functional attributions—i.e. subsumption under functional “kindhood”. 

Of course, one could argue that I’m not really giving up the notion of functional kinds, but 

rather that I am advocating a radical contextualization of functional kinds. After all, functions, 

even when tightly coupled with functional analyses, do have scope beyond token instances. Thus, 

although I may be denying that hearts are a univocal functional kind, what I’m actually advocating 
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is that hearts can be divided into many different functional kinds that correspond to different 

degrees of generality depending on circulatory system context. There does seem to be something 

to this. We do distinguish between insect hearts and vertebrate hearts, between fish hearts and 

mammalian hearts, and these distinctions do seem to track differences in scope, and thus may be 

construed as tracking differences in kind. 

My reply to such a counter is similar to that which arose in the discussion of mechanisms as 

kinds. On one hand, I can only concede that this sort of stripped-down notion of kinds (qua any 

predicate with scope) can be applied to my account of functions. On the other hand, I can certainly 

urge caution in the ways philosophical habits of thought regarding kinds are applied within such 

an account; and I can further point out that a highly context sensitive notion of functional kinds 

fails to make solid contact with a significant thread of philosophical discussion regarding MR. 

On this latter point, I can offer some more specific remarks. Due to the positivist backdrop of 

most philosophical debates about MR, the focus on functional kinds has centered on their ability 

to figure into special science laws (rather than causal explanations). For instance, Fodor (1997) 

argues that functional kinds are vindicated by their role in special science laws (whereas 

heterogeneous disjunctions are not appropriately nomic, and so lower-level “laws” that attempt to 

capture higher-level, multiply realized regularities are not in fact laws). By contrast Kim’s (1992) 

MR skepticism is grounded in the claim that scientific kinds must be individuated on the basis of 

causal powers, which has ties to Shapiro’s (2000, 2004) MR dilemma discussed in §I. And further, 

Kim argues the hallmark of natural laws is that they are projectible generalizations—i.e. a 

confirming instance of a lawlike generalization of the form “All Fs and Gs” provides reason to 

believe that Fs will be Gs in all contexts. Kim argues that generalizations involving multiply 

realized kinds are not projectible in this way, and so MR ought to be rejected. 
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The issue for both Fodor and Kim in the context of this debate hinges on what criteria one 

adopts for nomicity or naturalness of kinds. But such criteria fail to gain traction with a highly 

contextualized notion of functional kinds. Contra Fodor, the generalizations such kinds figure into 

do not aim for lawlike status; they are confined to their functional analytic contexts. Similarly, 

their inductive projectibility is confined to functional analytic context; there are no ambitions to 

project universally. But based on the account I’ve been developing, none of this should garner 

pessimism regarding the prospects of MR. One can either give up the prospects for regarding 

contextualized functions as kinds, or one can insist on their characterization as kinds and give up 

direct contact with these traditional ways of framing MR debates. Once we shift the debate into 

the context of causal explanations, issues regarding nomicity and lawfulness are exposed as red 

herrings that the philosophical conversation ought to move beyond. 

2.5 Conclusion 

The aims of this chapter have been largely positive. In the first place, I provided an analysis of 

MR that moves away from positivist conceptions of explanation and reduction and operates instead 

within causal explanatory frameworks. In such frameworks, I argued that MR can be construed as 

a thesis about the structure of causal explanations rather than a thesis about relations between kinds 

that figure into different taxonomic systems (granted the caveats of §III). My second main aim has 

been to provide empirical examples that substantiate this notion of MR by drawing connections 

between MR and functional robustness in systems neuroscience. The traditional philosophical 

considerations that have surrounded MR (e.g. nomicity, projectibility, causal individuation) fail to 

adequately track important features of these empirical cases. This should perhaps be unsurprising 
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given that those debates are based on an outmoded framework of explanation and reduction in the 

special sciences. One might worry, however, that tailoring an analysis of MR to these cases 

sacrifices much of the philosophically interesting features of MR. In the chapters to follow I show 

that quite the opposite is true. The connection between MR and robustness provides a range of 

important and interesting epistemic consequences for causal inference and causal explanation. 
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3.0 Robustness and Causal Faithfulness 

3.1 Introduction 

My argument in chapter 2.0 encouraged a shift away from the traditional framing of multiple 

realization (MR). Specifically, I argued that MR should be situated within causal models of 

explanation rather than the deductive-nomological (DN) model of explanation. Philosophical 

interest in MR has always ultimately been motivated by its epistemic consequences. The DN-

model of explanation takes laws and natural kind terms as the fundamental features of science. 

The traditional take on the epistemic consequences of MR has focused in turn on MR’s ability to 

secure the autonomy of higher-level laws from lower-level laws. Since I encouraged a shift away 

from the DN-model in the framing of MR, one would expect a corresponding shift in the epistemic 

implications that follow from my causal explanatory framing of MR (what I termed CEMR). 

Specifically, rather than supporting the autonomy of laws, CEMR ought to have implications for 

the formation of causal explanations, the discovery of causal structure, and the testing of causal 

hypotheses. 

In this chapter, I draw out a subset of these implications by exploring the consequences of 

robustness for the causal faithfulness condition (CFC). Robustness, in the sense that exemplifies 

CEMR, refers to a system’s capacity to maintain functions despite relevant differences in the 

causal structures that realize those functions. The CFC is a condition that relates information about 

probabilistic dependences between variables to representations of the causal relationships between 

those variables. It has important implications for both causal discovery and causal hypothesis 
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testing. I argue that systems that exhibit robustness are likely to violate the CFC, and I explicate 

the consequences of such violations of faithfulness for causal inference in those systems. 

I proceed as follows. In §I, I introduce the general framework for causal inference using 

directed acyclic graphs—including the causal Markov condition and the causal faithfulness 

condition—and I explicate the most common argument cited in defense of the CFC. In §II, I offer 

an analysis of the general dialectic surrounding the faithfulness condition, including objections 

and responses. In §III, I examine a case of robustness from cellular neuroscience, show how this 

case exhibits a clear violation of faithfulness, and show how this example generalizes across many 

levels of analysis in neuroscience. In §IV, I situate this example with respect to the debates 

surrounding faithfulness outlined in §II and discuss the significance of violations of faithfulness 

more generally for causal analysis of complex systems. 

3.2 Graphical Causal Modeling and the Causal Faithfulness Condition 

Graphical causal models (GCMs) represent the causal structure of a system in terms of nodes, 

representing variables of interest, connected by edges, representing causal relations between those 

variables. Directed acyclic graphs (DAGs) are a form of GCM that contain information about the 

direction of the causal links between nodes and contain no directed cycles (bidirectional pathways 

between nodes). In themselves, such models contain no information about quantitative 

relationships between variables in a given graph—i.e. probability distributions over those 

variables. That is, graphical models provide only tools for representing causal relationships; they 

do not directly entail anything about how those causal relationships manifest in quantitative 

relationships between variables. 
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Of course, being able to move between probability distributions and causal structure is 

desirable. Such inferences license causal hypothesis testing—testing causal structures by deriving 

statistical predictions from them and checking them against data—as well as causal discovery—

inferring causal structure from statistical data. In order to form these inferences some additional 

principles linking causal structure to statistical data have to be adopted. Two conditions that have 

been influentially proposed to fill such a role are the Causal Markov Condition and the Causal 

Faithfulness Condition (Spirtes, Glymour, and Scheines 1993). 

It is useful to introduce the Causal Markov Condition (CMC) by characterizing it as a 

generalized form of the screening off relation in Reichenbach’s common cause principle 

(Reichenbach 1956—for discussion see Cartwright 1999). The common cause principle captures 

the idea that correlations between events often point not to a causal relation between those events, 

but instead to a common cause of both events. A common cause is said to screen off a correlation 

between two variables just in case the two variables are uncorrelated (probabilistically 

independent) when one conditions on the common cause variable. Take for instance the example 

in Figure 3. Psoriasis and depression are positively correlated—i.e. P (psoriasis & depression) > 

P (psoriasis) * P (depression). However, that positive correlation is screened off when one 

conditions on alcohol abuse—i.e. P (psoriasis & depression | alcohol abuse) = P (psoriasis | alcohol 

abuse) * P (depression | alcohol abuse). 

 

Figure 3: The screening off relation. 
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The CMC generalizes this screening off relation to the joint probability distribution over all 

variables in a causal graph. Informally, the CMC states that if two variables are correlated, then 

either they share a common cause or they are causally related.8 In other words, any correlation that 

cannot be screened off by a common cause implies causation. In this way, the CMC stipulates a 

sufficient condition on two variables being causally linked—i.e. it is sufficient that they share a 

correlation that cannot be screened off. Thus, X is a direct cause of Y if, conditional on all other 

variables in the causal graph, X and Y are dependent. The formal definition more often takes the 

form of the contrapositive: all variables in a system that are not causally related are 

probabilistically independent. In this direction of inference, the CMC stipulates a sufficient 

condition on variables being probabilistically independent—i.e. it is sufficient that they not share 

a causal link. In other words, the CMC provides an entire set of independence and conditional 

independence relations for a given causal graph. 

The CMC is appealing because it captures intuitions about how causal structure should entail 

conditional probabilistic independencies. If two variables are not causally related, then those 

variables should be probabilistically independent, conditional on their direct causes—or 

‘parents’—provided that neither variable is a descendant of the other. Formalizing this intuition 

allows a first step toward mapping between causal models and quantitative relationships between 

variables. The CMC contains information relevant to both causal hypothesis testing and causal 

discovery. With respect to causal hypothesis testing, the CMC entails that, conditional on their 

direct causes, all variables in a causal graph will be probabilistically independent of all 

nondescendant variables. With respect to causal discovery, the CMC entails that any correlation 

 

8 A third possibility is that the variables share a common effect (called a collider), in which case conditioning on the 
collider will yield a dependence between the variables that are otherwise conditionally independent. 
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between two variables that holds despite conditionalization on all other variables in the graph 

implies that those two variables are causally linked. The direction of that link can also be inferred 

in that the effect will be probabilistically dependent on the cause, but not vice versa. (See Table 1 

for reference.) 

However, by itself the CMC is not sufficient to either generate substantive statistical 

hypotheses from causal graphs or to derive substantive causal graphs from statistical data. This is 

because the CMC alone is too easily satisfied—inferring probabilistic relationships from causal 

structure, it only entails information about what independences (both conditional and 

unconditional) follow from a causal graph and does not entail anything about the dependences that 

should follow. From the other direction, inferring causal structure from probabilistic relationships, 

the CMC only entails information regarding which variables are causally related and does not 

entail anything regarding which variables are not causally related. Note, for instance, that if all 

variables in a graph were probabilistically independent, the CMC would be satisfied trivially. 

Similarly, if every variable in a graph were connected as a direct cause to every other variable in 

that graph, the CMC would again be trivially satisfied and provide no additional constraints or 

information about the joint probability distribution of the variables in the graph.9 

Thus, some additional principle is needed to form substantive inferences between statistical 

data and causal graphs. The other condition that has most frequently been adopted to play this 

complementary role is the Causal Faithfulness Condition (CFC).10 The CFC has received less 

philosophical attention, though it is generally regarded as the less secure of the two conditions by 

 

9 It should be noted, however, that the CMC is typically only applied in the context of directed acyclic graphs (DAGs). 
And since the situation where every variable is a direct cause of every other variable in a graph would entail the 
presence of causal cycles, this situation would be ruled out by definition in the context of DAGs. 
10 See also the notion of ‘stability’ in Pearl (2000). 
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proponents and developers of causal discovery algorithms (Zhang and Spirtes 2008). The CFC is 

the converse of the CMC. Informally, it states that causation implies correlation (probabilistic 

dependence)—i.e. all variables that are causally related should be probabilistically dependent. 

More formally, the CFC states that the independences in a probability distribution for a set of 

variables are only those entailed by the CMC. So, if two variables are probabilistically 

independent, there is no causal relation between them. Thus, where the CMC stipulates a sufficient 

condition on two variables being causally linked, the CFC stipulates a necessary condition—i.e. it 

is necessary that they share a correlation that cannot be screened off. 

The CFC is perhaps less intuitive as a principle relating causation and probability. On one 

hand, it is intuitive that a causal path between two variables should imply a dependence between 

those variables. But what this claim is effectively ruling out (as will be discussed in more detail 

below), is the possibility of canceling causal pathways between two variables. There is nothing 

inherent in our conception of causation and how causation implies correlation that rules out 

canceling causal pathways. The CFC is, however, a very powerful complement to the CMC. 

Jointly, for any causal graph, the CMC and CFC entail a complete set of probabilistic relationships, 

both conditional and unconditional dependencies and independencies, between all variables in that 

graph (though that set of probabilistic dependences may be compatible with more than one causal 

graph). With the addition of the CFC, the concerns about trivial satisfaction of the CMC mentioned 

above are eliminated. 

Like the CMC, the CFC contains information relevant to both causal hypothesis testing and 

causal discovery. With respect to causal hypothesis testing, the CFC entails that all variables in a 

causal graph connected by a causal pathway are probabilistically dependent. With respect to causal 

discovery, the CFC entails that any independence between two variables, conditional on all other 
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variables in the graph, implies that there is no causal pathway between those variables. In other 

words, the CFC licenses inference from probabilistic independence to the absence of a causal 

relationship between variables. (Again, see Table 1 for reference.)  

Table 1: Breakdown of inferences supported by the CMC and CFC. 

   Causal discovery Causal hypothesis testing 

CMC If ~(Ci ╨ Ej), then Ci causes Ej If Ci does not cause Ej, then Ci ╨ Ej 

CFC              If Ci ╨ Ej, then Ci does not cause Ej If Ci causes Ej, then ~(Ci ╨ Ej) 

 
Note: Here ╨ means “is independent of, conditional on all other variables in the 
causal graph.” 

However, there are multiple ways the CFC can be violated. For instance, in deterministic 

systems, if X is a deterministic cause of Y and the true causal DAG were X→Y→Z, Y and Z 

would be independent conditional on X. Further, if a variable in a DAG were to maintain the same 

parameter value for a particular data set, it would be rendered probabilistically independent of its 

descendants in the joint distribution function for that data set. For instance, suppose (quite 

plausibly) that gender is a cause of propensity to commit gun violence. These two variables would 

be probabilistically independent in a sample that only included men. Neither of these forms of 

violation have been the focus of debates about the CFC. With respect to the former, this is because 

the types of systems these causal modeling techniques are applied to tend to be nondeterministic, 

and fully deterministic causal relationships would be discoverable by other means. With respect 

to the latter, such a bias in a variable of interest in a data set would typically be very apparent to 

researchers interested in causal relationships in such a system. Moreover, this scenario is ruled out 

by the assumption of positive support—i.e. that all values of the variables have positive 

probability—which is commonly made in the context of GCMs. 
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There is, however, a separate set of cases in which the CFC is violated that are potentially more 

problematic for the typical domain of application of GCMs. Specifically, violations of the CFC 

occur when there are precisely balanced inhibitory (suppressive) and excitatory (stimulative) 

causal pathways to some effect variable. For example, consider a triangular causal structure with 

a direct path A→C and another path A→B→C. Suppose the strength of the excitatory pathway 

from A→C were exactly equal to the net inhibitory effect of the pathway A→B→C. The result 

would be that the causal relation between A and C would be masked in the probability distribution 

for this system. That is, A and C would be probabilistically independent despite the presence of a 

causal relationship between them—thus exhibiting a violation of the CFC. 

For a more concrete example, consider the following. Consumption of fish increases both 

omega-3 fatty acid levels and levels of mercury in the blood (Chowdhury et al. 2012; Cole et al. 

2004). Mercury increases risk of dementia (Hock et al. 1998); omega-3 fatty acids decrease risk 

of dementia (Lim et al. 2005). If, in a particular population, the negative effects of levels of 

mercury absorbed through fish consumption precisely balanced the positive effects of omega-3 

fatty acids due to fish consumption (relative to their effects on dementia), then there would be no 

net effect of fish consumption on the risk of developing dementia. Thus, development of dementia 

would be probabilistically independent of fish consumption even though fish consumption is 

causally relevant to development of dementia. Such a case would constitute a violation of causal 

faithfulness. 

Linear causal model (excluding error terms): X=aW, Y=bW, Z=cX+dY 

Figure 4: Example of a possible structure exhibiting a violation of 
faithfulness. 
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Note: From the example above, consider W=levels of fish consumption, X=levels 
of mercury, Y=levels of omega-3s, and Z=risk of dementia. Note that a failure 
of faithfulness requires precise balancing between the excitatory and 
inhibitory pathways—given the proposed linear causal model with the figure, 
this will occur only when ac+bd=0. 

The controversies that have surrounded the CFC have generally focused on how likely such 

precisely balanced pathways are to occur and hence how likely the CFC is to fail in this manner.11 

In the example in Figure 4, it is clear that such a “conspiracy of the evidence” would be highly 

unlikely. In fact, and to be clear, the benefits of omega-3 fatty acids associated with fish 

consumption seem to far outweigh any risks due to increased mercury levels associated with fish 

consumption (Mutter et al. 2007). This unlikeliness of precisely balanced pathways has been the 

primary route to defending or justifying the use of the CFC in causal inference. In particular, 

Spirtes, Glymour, and Scheines (2000), henceforth SGS, provide a proof that, for linear causal 

models, the set of parameter values that correspond to violations of faithfulness is Lebesgue 

measure zero compared to the set of all possible parameter values.12 

To cash this out, grant that a causal graph with n parameters will have a set of possible 

parameter values corresponding to an n-dimensional real space (ℝn), which is to say each 

parameter can take any real number value. Any subset of that space that corresponds to an (n-1)-

dimensional space is said to be Lebesgue measure zero with respect to ℝn. To perhaps make this 

more intuitive, consider a cube, out of which you slice a single square. If you wanted to know how 

much of the volume of the cube is contained in that square, the answer would be zero. This is, by 

11 More on this to follow in §II. 
12 See Theorem 3.2, SGS pp.41-42; and pp.383-384 for the proof; Meek (1995) extends this theorem to causal models 
with discrete variables. 
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extension to any number of dimensions, what it means to say that a set is Lebesgue measure zero 

with respect to a superset. What SGS show is that the subset of possible parameter values that 

constitute a violation of faithfulness has at least one less dimension of variation than the set of all 

possible parameter values. We can again see this more intuitively with the example from Figure 

4. Allow that the set of possible parameterizations of this causal model correspond to a 4-

dimensional real space. The subset of that space corresponding to violations of faithfulness is those 

parameterizations for which ac+bd=0, which corresponds to a 3-dimensional space (note that once 

any three parameters are set, the fourth is determined). 

From this proof, SGS (and others) claim that because violations of faithfulness are measure 

zero, the probability of violations of faithfulness should also be zero, thus justifying the use of the 

CFC as a principle for inference between causal graphs and quantitative relationships between 

variables in those graphs. SGS’s argument can be reconstructed as follows: 

P1: The set of all possible combinations of parameters values for a causal model 
with N parameters constitutes an n-dimensional real space (ℝn). 

P2: The subset of that space that corresponds to violations of faithfulness is (n-1)-
dimensional or less. 

P3: Any subset of ℝn that is N-1 dimensional or less is Lebesgue measure zero. 

P4: Any subset of ℝn that is Lebesgue measure zero has probability zero of 
occurring. 

C: Therefore, violations of faithfulness have probability zero of occurring. 

P1 and P3 are uncontroversial. Establishing P2 is the main focus of SGS’s analysis, and is well 

supported, as can be seen from the discussion of the example from Figure 4. P4 is left implicit in 

SGS’s original argument and deserves further scrutiny. 
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3.3 The Likelihood of Failures of Faithfulness 

The line of justification for the CFC offered by SGS has not gone unchallenged. Several 

authors have argued, despite SGS’s proof, that the CFC is likely to fail in a range of cases that all 

fall within the typical domain of application of DAGs. For instance, Nancy Cartwright (1999a, 

1999b, 2007) has argued that violations of the CFC will be common in certain engineering, 

economic, and medical contexts. She argues, 

It is not uncommon for advocates of DAG-techniques to argue that cases of 
cancellation will be extremely rare, rare enough to count as non-existent. That 
seems to me unlikely, both in the engineered devices that are sometimes used to 
illustrate the techniques and in the socioeconomic and medical cases to which we 
hope to apply the techniques. For these are cases where means are adjusted to ends 
and where unwanted side effects tend to be eliminated wherever possible, either by 
following an explicit plan or by less systematic fiddling. The bad effects of a feature 
we want - or are stuck with - are offset by enhancing or encouraging its good effects. 
(Cartwright 1999, p. 16) 

A good many of the systems to which we think of applying the methods advocated 
by Bayes-net theorists are constructed systems, either highly designed… or a mix 
of intentional design, historical influence and unintended consequences, as in 
various socio-economic examples. In these cases cancellations of the effects of a 
given cause, either by encouraging the action of other factors or by encouraging the 
contrary operation of the cause itself, can be an important aim, particularly where 
the effect is deleterious. (Cartwright 2007, pp.70-71) 

Kevin Hoover has made a similar argument for the likelihood of violations of faithfulness in 

macroeconomic contexts where policymakers aim to precisely balance parameters to ensure stable 

outcomes. He writes, 

[SGS] acknowledge the possibility that particular parameter values might result in 
violations of faithfulness, but they dismiss their importance as having ‘measure 
zero’. But this will not do for macroeconomics. It fails to account for the fact that 
in macroeconomic and other control contexts, the policymaker aims to set 
parameter values in just such a way as to make this supposedly measure-zero 
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situation occur. To the degree that policy is successful, such situations are common, 
not infinitely rare. (Hoover 2001, p.170) 

Finally, Holly Andersen has applied a similar line of reasoning to biological systems that maintain 

equilibria. She writes, “some kinds of systems, especially those studied in the so-called special 

sciences, are likely to display the kinds of features that lead to CF violations, such as mechanisms 

for equilibrium maintenance across a range of variables” (Andersen 2013, p.682). 

All these arguments effectively challenge the claim that measure zero subsets of ℝn will have 

zero probability of occurring—i.e. P4 in the reconstruction at the end of §I. Both Cartwright (2007) 

and Andersen (2013) are explicit about this: 

But this conclusion would follow only if there were some plausible way to connect 
a Lebesgue measure… with the way in which parameters are chosen or arise 
naturally for the causal systems that we will be studying… [W]e not only need a 
story that connects a Lebesgue measure… with how real parameter values arise, 
but we need a method that selects as a question to be addressed before values are 
chosen: shall values occur that satisfy faithfulness or not. (Cartwright 2007, p.68) 

However, the fact that CF-violating systems are measure 0 in this class does not 
imply that we will not encounter them with any frequency… [Rational numbers] 
are also measure 0 with respect to the real numbers, while irrational numbers are 
measure 1… However, this does not imply that rational numbers are unlikely to be 
encountered simpliciter: bluntly put, we do not encounter numbers by randomly 
drawing them from the number line. Rational numbers are encountered, and used, 
overwhelmingly more often than one would expect from considering only the proof 
that they are measure 0 with respect to the real numbers. (Andersen 2013, p.677) 

The crux of these likelihood objections rests on this point—the connection between Lebesgue 

measures and the probabilities of particular sets of parameter values arising. In their original 

presentation of the measure zero argument, SGS offer no explicit justification for P4—instead 

merely offering the ‘measure zero’ proof and stating that this implies that failures of the CFC are 
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probability zero.13 Other authors have, however, attempted to further develop a rationale for P4 

that Cartwright, Hoover, and Andersen’s arguments do not take into account. 

Woodward (1998) and Pearl (1998) in separate commentaries on SGS’s work, home in on the 

assumptions about the parameters in a causal model that would have to hold for P4, and thus the 

CFC, to be justified.14 Woodward encourages caution in the conditions under which faithfulness 

is employed. In particular, he notes that other theoretical information is often necessary to provide 

context for evaluating causal claims, pointing out that there are familiar and well-established cases 

where parameter values precisely cancel in ways that “mask” causal relationships (Woodward 

1998, pp.142-145). For instance, consider a particle at rest in Earth’s gravitational field. One 

explanation for why the object is at rest is that there are no forces acting on it; another explanation 

is that there are a number of forces acting on it in a way that is precisely balanced such that the 

object remains at rest. The CFC rules out the latter in favor of the former, but obviously that is not 

the better explanation in this case, because we have independent theoretical knowledge that all 

objects in Earth’s gravitational field are subject to a constant gravitational force that must be 

counterbalanced for an object to be at rest. Woodward concludes from this example that 

“[e]xplanations that eschew special parameter values and complicated causal influences are not 

always preferable to those that do not” (Woodward 1998, p.144). This provides a useful reminder 

that the CFC should not be taken as an exceptionless condition on causal claims and causal 

 

13 In later work, Spirtes et al. (2004) offer some further elaboration, “[s]ome form of assumption of faithfulness is 
used in every science, and amounts to no more than the belief that an improbable and unstable cancellation of 
parameters does not hide real causal influences” (Spirtes et al. 2004, p.182). However, here again the improbability 
of cancellation of parameters is merely stated. The notion that violations of faithfulness are unstable would seem to 
come from the idea that, because the pathways must be so precisely balanced, any slight deviation in one or more 
parameter would reveal the ‘hidden’ causal relationship. Woodward (1998) expounds on this notion of instability. 
14 Specifically, these commentaries were directed at the TETRAD Project (Scheines et al. 1998), though the themes 
are not specific to that piece and have implications for the broader SGS program. 
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explanations, but instead as a heuristic to be applied only in particular circumstances in which it is 

likely to hold. 

The question then becomes what factors bear on the appropriateness of applications of the 

CFC. To this end, Woodward points out that the line of reasoning in the gravity example may not 

apply to the social sciences and other fields more typically within the domain of DAG modeling 

techniques. For instance, Glymour et al. (1987) offer an analysis of a large-scale social experiment 

that tested the influence of monetary disbursements, administered through the Transitional Aid 

Research Program (TARP), on recidivism, as discussed by Rossi et al. (1980). The experiment 

found no effect between recidivism and monetary disbursements—i.e. the treatment group that 

received disbursements had recidivism rates that were not significantly different from recidivism 

rates in the control group that did not receive disbursements. A natural interpretation, as is implied 

by the CFC in this case, is that there is no causal influence between monetary disbursements and 

recidivism. Rossi et al., however, postulated that TARP payments decreased recidivism rates, but 

that they also increased unemployment, which led to a corresponding increase in recidivism that 

precisely counterbalanced the decrease directly resulting from TARP payments. Following Hans 

Zeisel (1982), who was on the advisory board for the TARP study and disagreed strongly with this 

interpretation, Glymour et al. argue that this is a case where the CFC holds, and so Rossi et al.’s 

model, with its unnecessarily complicated causal structure that requires special parameter values, 

should be rejected.15 

There are two notable differences between this case and the gravity example. First, there is 

vast divide between the independent theoretical motivations at play in the gravity example as 

compared to Rossi et al.’s proposed causal structure and the special parameter values it requires. 

 

15 See Zeisel 1982 and Glymour et al. 1987, pp. 26-30. 
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In the gravity example, the independent theoretical motivation is the primary factor directing us 

toward the correct conclusion that this is a case in which special parameter values, supporting 

precisely balanced pathways, are warranted. Rossi et al.’s proposed model was not completely 

unmotivated. They related their results back to a smaller previous study, the Baltimore LIFE 

experiment, which had found an 8% reduction in arrests for crimes of theft (but no effect for other 

crimes) for those receiving monetary disbursements compared to controls (Rossi et al. 1980, pp. 

37-43). It is a stretch to use a result from a smaller study that is barely statistically significantly 

and is restricted to a single type of rearrest charge as the linchpin for the central interpretation of 

results in the TARP study.16 At any rate, it suffices for present purposes to note that there is a wide 

gulf between the theoretical motivation at play in the TARP and that motivating the causal story 

in the gravity example. 

The second and related difference is that the relevant parameters in the TARP study do not 

operate as physical constants, but instead are relatively “unstable”, making the special parameter 

values and precisely balanced pathways seem less plausible. Woodward further notes that often in 

the social sciences (qualitative) causal structure may be stable despite (quantitative) variation in 

the parameter values across different instances. For instance, the economic principle of supply and 

demand seems to express a stable qualitative causal relationship; however, the particular 

quantitative relationships that exhibit supply and demand can vary dramatically. In such contexts, 

the parameters in causal models will be not behave like the physical constants at play in the gravity 

example. As a result, Woodward argues, it becomes more reasonable to assume that precisely 

balanced causal pathways will not occur. Thus, in conditions where the underlying qualitative 

causal structure is stable, and the parameters are relevantly unstable, the CFC will be more useful 

 

16 Again, see Zeisel 1982 and Glymour et al. 1987, pp. 26-30, for further discussion of this case. 
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as a constraint on causal modeling. Summarizing this rationale, he writes, “[a]ssuming that the 

structural coefficients are unstable and free to change independently of each other, one might argue 

that models which imply conditional independence relations because of special coefficient values 

should be rare and unlikely to persist across time and space” (Woodward 1998, p.145). In other 

words, violations of faithfulness should be rare and unstable when parameters are unstable and 

vary independently of one another. 

Pearl (1998) offers a similar rationale, stressing the importance of the notion of “autonomy” 

(Aldrich 1989), also known as modularity (see chapter 4 for additional discussion), in justifying 

faithfulness. Pearl explains, “[t]his invariance means that mechanisms can vary independently of 

one another, which implies that it is the set of structural coefficients… rather than other types of 

parameters, that will vary independently when experimental conditions change” (Pearl 1998, 

p.121). Both Woodward and Pearl thus see the ability of parameters to vary independently as 

crucial to justifying the CFC. Woodward adds that parameters need to be unstable and also that 

there need to be no independent theoretical reasons to expect precisely balancing forces (as in the 

gravity example). Given that these conditions are met, it is reasonable to expect that P4 will hold, 

and thus that violations of the CFC will be probability zero. 

Steel (2006) goes further, offering a more explicit and precise analysis of the conditions under 

which P4 holds. To understand Steel’s analysis, we first need a general way of assigning 

probabilities to subsets of ℝn. To this end, we can associate each parameter of a causal model with 

a random variable. The set of all random variables for a causal model with n parameters is then V 

= {V1, V2, … Vn}. The question becomes, what conditions have to hold of the joint probability 

distribution of V for P4 to hold? That is, what would the joint distribution function need to look 

like for it to be the case that subsets of ℝn of Lebesgue measure zero receive zero probability. 
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With this setup, we can recast Woodward and Pearl’s claims that the CFC will be appropriate 

when parameters are allowed to vary independently. For a parameterization to be variation 

independent is for the parameter space to be the Cartesian product of the sets of values of each of 

the parameters.17 In other words, no particular parameter or group of parameters constrains the 

value that any other parameter can take, so all possible combinations of parameter values are in 

the parameter space. Steel argues that variation independence by itself is neither necessary nor 

sufficient to rule out strict exceptions to the CFC (by justifying P4). On one hand, if one or more 

of the random variables in V is discrete, Lebesgue measure zero subsets of ℝn will have non-zero 

probability regardless of whether the parameters are variation independent.18 A variable’s being 

discrete just means that it has positive probability for at least one point value (whereas continuous 

variables have positive probability only for some range of values and have zero probability for all 

point values). 

Take the case where n=1 as an illustration. Any point value is measure zero with respect to the 

real number line. So, if our single random variable is discrete, a measure zero subset of ℝ receives 

positive probability. As will become clear in what follows, this generalizes to any number of 

variables—one or more variables being discrete collapses the number of dimensions of ℝn that 

receive positive probability regardless of whether those variables are variation independent. Thus, 

variation independence by itself is insufficient. An additional condition is required—namely that 

the marginal distributions of all random variables associated with the parameters be continuous. 

In other words, every individual parameter must be associated with a continuous random variable, 

 

17 See, e.g., Lindsey (1996) and Bergsma and Rudas (2002). 
18 See Steel (2006), p.310 for a counterexample illustrating this point. But as will be discussed in the remainder of this 
section, any variable being discrete would obviously entail a failure of joint continuity, and joint continuity is 
necessary for P4. 
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which just means that the parameter can take any real value within some interval. For ease of 

terminology, I will refer to this requirement simply as the requirement that the parameters be 

“marginal continuous.” If both these conditions are met—if the joint probability distribution of V 

satisfies both marginal continuity (of all variables) and variation independence—then subsets of 

ℝn of Lebesgue measure zero will have zero probability. 

This deserves some additional unpacking. The probability associated with a continuous 

random variable corresponds to the area under the curve of the variable’s probability density 

function, where the total area under the curve is 1. Critically, only ranges of values receive positive 

probability for continuous random variables—point values receive zero probability (as there is no 

area above a point). For a single variable, the probability density function thus specifies an area 

over a line, which corresponds to the relevant range of values of the variable. A variable fails to 

be continuous (i.e. is discrete) insofar as it has positive probability at a particular point. 

Joint continuity extends this concept to a set of variables. For two random variables the 

probability density function specifies a volume over a plane, which corresponds to an area equal 

to the product of the two relevant ranges for each variable. Again critically, only ranges of values 

for both variables receive positive probability (as there is no volume above a line).  It becomes 

more difficult to visualize with three or more variables, but the same principles iterate for any 

number of variables. Thus, for a set of random variables to be jointly continuous, there must be 

some joint probability density function that specifies probabilities for a set of ranges of each 

variable. So, for a set of n random variables, the joint probability density will be an (n+1)-

dimensional “curve” over an n-dimensional space, which corresponds to the product of the relevant 

ranges of each variable. Only subsets of ℝn with n-dimensions receive positive probability. Any 
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subset of ℝn that has (n-1)-dimensions or fewer receives zero probability, which is to say any 

Lebesgue measure zero subset of ℝn receives zero probability. 

The existence of a joint probability density function for a set of variables requires not only that 

the marginal distribution of each variable be continuous, but also that probability density function 

of each variable be continuous conditional on any subset of the others. These conditions are 

satisfied by the conjunction of marginal continuity and variation independence. If the marginal 

distributions of all variables are continuous and no particular variable or group of variables 

constrains the value of any other variable, then the probability density functions of all variables 

will be continuous conditional on any subset of the others. Thus, marginal continuity in 

conjunction with variation independence entails joint continuity which in turn entails P4—that any 

Lebesgue measure zero subset of ℝn receives zero probability. This delivers a more precise version 

of Pearl and Woodward’s claim that the CFC may hold when parameters are unstable and vary 

independently. This claim is true insofar as the required instability entails marginal continuity, as 

marginal continuity and variation independence are jointly sufficient for P4. 

However, as Steel notes, variation independence, in the technical sense, is stronger than 

necessary: “joint continuity does not require that variation independence be true, since the range 

of possible values of one variable may be restricted by the value of another even if each variable 

is continuously distributed conditional on any combination of other variables” (Steel 2006, p. 311). 

Thus, we can replace the requirement that no particular parameter or group of parameters 

constrains the value that any other parameter can take with the requirement that all parameters 

vary continuously conditional on any other parameter or set of parameters. Steel ultimately argues 

that this condition is reasonable in the typical domain of application for DAG causal modeling 

because “it is quite plausible that this is indeed the case in biology and social science, and indeed, 
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in any field that studies complex systems in which the strength of causal relationships depend on 

a plethora of variable factors” (Steel 2006, p. 311). However, as I’ll argue in the next two sections, 

this may fail to be true in an important set of cases in neuroscience that generalize in relevant ways 

to other complex systems. 

3.4 Failures of Faithfulness in Neuroscience 

Robustness in neural systems provides a useful testing ground for these points of debate 

regarding the likelihood of violations of the CFC. I argued in chapter one that neural robustness 

provides clear cases of causal explanatory multiple realization (CEMR)—i.e. relevant similarity 

in function despite relevant variation in the causal mechanisms that give rise to that function. The 

connection between CEMR and violations of the CFC is straightforward to demonstrate. Let both 

the relevant aspects of the mechanism(s) supporting a function and the function itself be nodes in 

a causal graph. In the true causal graph of such a system, there will be a number of directed edges 

connecting the relevant aspects of the mechanism to the function in question. In cases of 

robustness, there will be stability in function—circumstances in which the value of the function 

variable remains fixed—despite variation in the values taken by causal variables. To the extent 

that this occurs, there will be probabilistic independence between the function variable and some 

set of its causes. This is a violation of the CFC—probabilistic independence despite the presence 

of causal connection. 

This can be illustrated more precisely through examples of robustness of neural function at the 

single cell level. The functions of individual neurons are generally characterized in terms of their 

response (input-output) properties. A neuron’s response properties are determined by the 
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combined effect of several currents that result from proteins (ion channels) allowing ions to 

permeate the cell’s membrane. Whereas a neuron may live for decades, these proteins have shorter 

lifespans, typically turning over on the order of hours, days, or weeks.19 As a result, the 

conductances that determine a neuron’s response properties also vary over time. This raises 

questions regarding how stable those response properties are, and, to the extent that they are stable, 

how neurons maintain that stability. A range of studies has shown, for a variety of cells, that ion 

channel densities can in fact vary severalfold between cells that nonetheless have effectively 

identical response properties (Golowasch et al. 2002, Schulz et al. 2006, Ransdell et al. 2013). This 

suggests that neuronal response properties are tightly regulated and has motivated research into 

the mechanisms of that regulation. 

Burst firing in Purkinje cells is a prime example of this sort of robustness of response properties 

to variation in the underlying conductances. Purkinje cells are a type of neuron found in the 

cerebellum that are relatively large cells with sprawling dendritic trees that receive tens of 

thousands of inputs. They play key roles in motor behaviors and, particularly, in motor learning. 

Climbing fibers, projections from the inferior olivary nucleus in the medulla oblongata, provide a 

strong source of excitatory input to Purkinje cells. According to a longstanding model, the inputs 

from climbing fibers convey a motor error signal that is integral to motor control and motor 

learning.20 Depolarizing stimulation from climbing fibers evokes a stereotyped all-or none burst 

firing pattern from Purkinje cells. This burst firing is a crucial function that enables plasticity in 

adjacent circuits, in the form of both long-term potentiation and long-term depression. 

 

19 See, e.g. Hanwell et al. 2002; and Marder and Goaillard 2006, for relevant review. 
20 This is the Marr-Albus-Ito model, one of the most influential computational cum experimental models in 
neuroscience (Marr 1969, Albus 1971, Ito et al. 1982, Ito and Kano 1982, Ito 1989). For relevant review of the model, 
see Strata 2009. For a recent extension of this model that proposes that this cerebellar circuitry constitutes a more 
general reinforcement learning mechanism, see Yamazaki and Lennon 2019. 
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Purkinje cell burst firing is the result of a relatively small net inward current after an initial 

action potential. And Purkinje cells are among those that have been shown to have similar 

electrophysiological profiles despite massive variance in surface conductances. That is to say, 

Purkinje cells with very similar burst profiles exhibit substantial variation in underlying 

conductances of different types of ions. This similarity in burst profiles is surprising because the 

bursts are triggered by small net influx of currents relative to the variability in any particular 

conductance. 

Imagine a water lock designed such that there are multiple gates instead of one between any 

two chambers, where each gate has a pump that pushes water into one chamber or the other. Now 

imagine that when these gates open and the pumps turn on, huge amounts of water flow between 

the two chambers. However, the result when the gates close is the same—a small amount of water, 

relative to the large fluxes, always enters the downstream chamber. Such a system would be very 

sensitive to the size of the gates, strength of the pumps, etc. Varying the size of any single gate 

would throw off the balance and change the net amount of water flowing between the two 

chambers. This is analogous to how burst firing is triggered in Purkinje cells—multiple large 

inward and outward currents sum to a relatively small net inward current after an initial action 

potential, in turn triggering further action potentials. It would seem that small changes in those 

large inward and outward currents would be likely to throw off the balance and disrupt bursting 

and yet that is not what is observed (Swensen and Bean 2003). 

In a remarkable study, Swensen and Bean (2005) investigated the mechanisms that support 

robustness in Purkinje cells. They performed two distinct interventions that targeted different 

timescales: (1) pharmacological blockade of sodium conductance, (2) genetic knockout of sodium 

ion channels. Pharmacological blockade is transient and occurs on very short timescales. The short 
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duration of the intervention rules out any second messenger processes occurring within the cell to 

alter ion channel expression on the cell membrane. Genetic knockout persists through the life of 

the organism, thus allowing second messenger processes to potentially alter ion channel 

expression. Under both interventions, burst firing was surprisingly robust, and Swensen and 

Bean’s additional analysis revealed that there are in fact distinct mechanisms that support 

robustness on the two different timescales. For present purposes, I will be concerned only with the 

pharmacological knockout aspect of Swensen and Bean’s study, though the genetic knockout 

experiment, as well as the significance of the distinction between the two forms of intervention, 

will be a focus of discussion in chapter four. 

In their pharmacological intervention, Swensen and Bean used a substance called tetrodotoxin 

(or TTX) to temporarily block sodium conductance via voltage-gated sodium channels. The vast 

majority (70%) of cells persisted bursting with a 50% reduction in sodium conductance.21 In a 

previous study, Swensen and Bean (2003) had found that TTX-sensitive sodium current 

contributed the largest of the inward currents during the interspike interval. Swensen and Bean’s 

(2005) result thus demonstrates a remarkable stubbornness of Purkinje cells to persist in bursting. 

Returning to the water lock metaphor, it would be as though the same net amount of water made 

it into the downstream chamber despite varying the size of the largest gate by 50%. (For perspicuity 

of the metaphor, recall that the largest gate allows an amount of water through that dwarfs the net 

amount of water that passes through after the gates have closed.) Within that range of variance, 

the gate size would be rendered independent of the amount of water that reaches the downstream 

chamber. This would, in ways that will be explored further in what follows, pose serious challenges 

 

21 With a 25% reduction in sodium conductance, all the Purkinje cells persisted bursting; with a 50% reduction, the 
majority (70%) of cells continued bursting; it was only with a 75% reduction that all cells ceased bursting. 
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to understanding the causal dynamics of the system. Similarly, for Purkinje cells, within the 50% 

range of TTX blockade, changes in sodium conductance are rendered independent of Purkinje cell 

burst firing, despite being a relevant cause.22 In both cases, prior knowledge of the causal structure 

of the system, specifically the knowledge that these factors—gate size, or sodium conductance—

must be causally relevant factors, invites further investigation into the means by which the 

robustness is achieved. That is, because the causal structures of these systems are already 

somewhat characterized, the robustness over variation in causally relevant factors suggests the 

presence of precisely balanced pathways. 

Swensen and Bean investigated the means by which Purkinje cells achieve robustness to TTX 

blockade. The main currents that determine burst firing are sodium, calcium, and potassium 

currents. Each of these ions can have a number of associated ion channels that regulate the flow of 

ions across the cell membrane. Because TTX has transient effects and operates acutely, and 

bursting was assayed within seconds, it is essentially impossible that any preservation of burst 

firing would be due to second messenger systems that affect the expression of channels that 

regulate these currents. That is, changes in ion channel density can be ruled out as the source of 

robustness on theoretical grounds. Particular ion channel types, however, do have their own 

 

22 Note that this example involves independence for a range of values (0-50% TTX blockade), which is typical for 
examples of robustness. Within the GCM framework, this kind of independence is consistent with there still being a 
discoverable causal relationship between the variables at issue (in this case burst firing and TTX-sensitive sodium 
conductance). In other words, in GCMs the only thing that is required for X to cause Y is that Y is dependent on some 
values of X in some background conditions. Thus, in examples of robustness, perturbing the system outside the 
relevant range (in this case >50% TTX blockade) will reveal dependence between the variables. The issues raised by 
robustness might thus be better characterized as “local failures” of the CFC or as invariance over a certain set of values 
that a variable can take. However, such failures are no less relevant for several reasons. Most notably, we are often 
interested in discovering causal structure within such ranges. In the particular case of Purkinje cells, the 0-50% range 
corresponds to a generous approximation for “normal operating conditions” of a cell—perturbation beyond that range 
is not something that would occur in vivo. So, if we are interested in discovering causal structure within such ranges, 
invariance to all values a variable can take in that range will pose problems for causal discovery that mirror the 
problems associated with general failures of the CFC. 
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dynamics, and changes in the parameters governing those dynamics are the obvious additional 

place to look for compensatory changes. 

To determine which other ion channels might be involved in the preservation of bursting, 

Swensen and Bean first recorded the action potential waveforms for each Purkinje cell in current-

clamp, and then switched to voltage-clamp and played the action potential waveform back to the 

cell.23 This allowed them to observe any compensatory changes in other conductances that 

facilitated continued burst firing. They discovered that the acute decrease in sodium conductance 

due to TTX produced a decrease in the height of the action potential and a hyperpolarizing shift in 

postspike membrane potential. These changes in action potential waveform effected a small 

decrease in calcium conductance and, more notably, significant reductions in potassium current—

both voltage-dependent and calcium-activated potassium current saw reductions ~50% in 

comparison to their levels with no TTX block. For simplicity, we can neglect the relatively small 

reduction in calcium conductance and represent the causal structure of the basic compensatory 

mechanism Swensen and Bean discovered as follows in Figure 5. 

 

Figure 5: Simplified causal DAG for Purkinje cell burst firing robustness. 

 

23 Current-clamp is a technique in which experimenters record from cells while injecting stimuli (usually 1ms 
depolarizing electrical currents) and recording the cell’s response (so the cell’s membrane potential is the dependent 
variable). Voltage-clamp, by contrast, is a technique in which the experimenter controls cell’s membrane potential 
and observes how aspects of the cell’s electrophysiology respond (so the cell’s membrane potential is the independent 
variable). 



 58 

Note: As sodium conductance decreases, potassium conductance (through two 
channels—voltage-dependent and calcium-activated) also decreases. The net effect 
balances to preserve the small net postspike inward current that drives bursting. 

Sodium exists in high concentrations outside the cell, whereas potassium exists in high 

concentrations inside the cell. Thus, when TTX-sensitive sodium channels open, sodium rushes 

into the cell, depolarizing the membrane; and when voltage-activated and calcium-activated 

potassium channels open, potassium rushes out of the cell, hyperpolarizing the membrane. 

Both voltage-dependent and calcium-activated potassium channels are sensitive to changes in 

the action-potential waveform. The primary driver of decrease in voltage-dependent potassium is 

the hyperpolarizing shift in interspike potential. Swensen and Bean hypothesized that this decrease 

is due to the voltage sensitivity of deactivation of the Kv3-type potassium channel in the observed 

voltage range. They attribute the decrease in calcium-activated potassium current to three main 

factors: (1) the decrease in calcium entering the cell (despite the changes in calcium current being 

relatively small), and the hyperpolarizing postspike shift serves to (2) promote deactivation of BK-

type potassium channels, and (3) decrease the potassium driving force. The causal dynamics here 

are obviously fairly complex, which on one hand makes it all the more remarkable that these 

pathways wind up effectively canceling. On the other hand, the complex causal dynamics combine 

to produce a fairly simple causal structure (Figure 5). Intervening on sodium conductance disrupts 

the main inward current during the interspike interval. However, it also affects the action potential 

waveform (it is not possible to intervene on TTX-sensitive sodium conductance without also 

changing the action potential waveform). This leads to a form of parameter coupling whereby 

potassium conductance, which is the main source of outward current flow in the interspike interval 
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(Swensen and Bean 2003), also decreases as a result of the TTX treatment.24 The net effect is that 

the postspike inward current is stable and burst firing persists. 

This basic causal structure mirrors a classical violation of faithfulness.25 And the parameter 

coupling governing the effects of sodium conductance and potassium conductance during the 

interspike interval reveals this as, in fact, a fairly clear case of a failure of the CFC. In this case the 

effect variable, net postspike inward current, is probabilistically independent of variation in 

sodium conductance, even though sodium conductance is clearly a cause of that postspike current. 

This example thus provides a clear case of a violation of causal faithfulness with a reasonably well 

characterized causal mechanism underlying that violation. 

Before moving on to consider how such failures of the CFC can occur (given the arguments 

considered in §II), it is worth stressing that the specific example of robustness in Purkinje cells is 

hardly unique in neural systems. As mentioned at the beginning of this section, many other 

neuronal types have been found to exhibit severalfold variation in intrinsic conductances, similar 

to the variances found in Purkinje cells (Golowasch et al. 2002, Schulz et al. 2006, Ransdell et al. 

2013). This only makes sense, as all neurons face the same basic problem of maintaining stable 

functions despite the components supporting those functions changing over time. As Marder and 

Goaillard (2006) state in their review of work on this topic, 

[E]ach neuron is constantly rebuilding itself from its constituent proteins, using all 
of the molecular and biochemical machinery of the cell. This allows for plastic 
changes in development and learning, but also poses the problem of how stable 

 

24 The sort of parameter coupling at issue here indicates a stable functional relationship between these parameters in 
the system. In their original formulation of the measure zero argument, it is clear that SGS thought of different 
combinations of parameter values as “independent draws” and thus that any cancellations would be accidental and not 
the result of stable functional relationships. 
25 This basic causal structure provides, in fact, a so-called “triangle failure of faithfulness” (Zhang and Spirtes 2008). 
The significance of triangle failures of faithfulness is that they are not “detectable” from data alone, where non-triangle 
failures of faithfulness are. That is, non-triangle failures of faithfulness have intervening variables that could, in 
principle, be revealed through appropriate experimental interventions. 
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neuronal function is maintained as individual neurons are continuously replacing 
the proteins that give them their characteristic electrophysiological signatures. 
(Marder and Goaillard 2006: 563) 

In other words, the problem that generates the need for robustness in Purkinje cells is a general 

problem for all neurons (and indeed is faced by all complex systems where stability of function 

must be achieved despite dynamic components). In Purkinje cells and other neurons, this stability 

of function seems to be achieved via compensatory differences in other causally relevant 

features—either through variance in other intrinsic conductances or through compensatory 

changes in ion channel density. 

And indeed, computational models for other types of neurons demonstrate that a variety of 

intrinsic conductances and ion channel densities can give rise to similar electrophysiological 

profiles (Goldman et al. 2001, Taylor et al. 2009, Ball et al. 2010). This suggests that compensatory 

mechanisms, like those discovered by Swensen and Bean, that maintain target levels of activity, 

will be found throughout the nervous systems of humans and other animals.26 

Similar considerations scale up to the level of small networks in neural systems. Such networks 

can be perturbed by either removing individual neurons or by varying the properties of those 

neurons. For long-lived organism, the problem more commonly is the latter—i.e. variability in the 

conductances of the neurons that comprise the network. The reason, as above, is that neurons tend 

to persist over long periods of time—from decades to the lifespan of the organism. Since the 

relevant variance is thus at the level of components of the neurons that compose the network (in 

essence, two “levels” down from the function in question), one might suppose that the natural way 

to ensure stable output of the network is just to tightly regulate the output of the individual cells 

 

26 Biological evidence of such compensatory mechanisms has indeed been found for a number of different neuronal 
types—see, e.g., MacLean et al. 2003, Guo et al. 2005, Nerbonne et al. 2008. 
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via the same compensatory mechanisms mentioned above. However, another way to solve this 

problem is to reconfigure the network, adjusting the response properties of other cells within the 

network to compensate for changes in the response properties of some particular neuron. That is, 

instead of tightly regulating the roles that each individual cell plays within the network, 

compensation can occur by adjusting the roles played by other cells in the network. The pyloric 

network of the stomatogastric ganglion, discussed in chapter one, is an example of this later sort 

of compensation (Prinz et al. 2004). Similar studies have demonstrated the same principle in other 

small networks (Goaillard et al. 2009, Grashow et al. 2010, Ransdell et al. 2012). 

Scaling up to larger networks, the situation becomes more complex. This is primarily due to 

vast number of potentially relevant parameters. Computational studies, like those showing the 

multitude of combinations of parameter values that can support stable function in single neurons 

and small networks, are simply not feasible for larger networks. There are, however, compelling 

reasons to again believe that similar principles will hold—i.e. that network function will exhibit 

stability over large variations in the parameters that influence network activity. 

In the first place, the same problem exists insofar as large-scale networks are comprised of 

small networks and neural circuits, which are in turn comprised of individual neurons. Those 

individual neurons are in the same state of continuous flux that induces robustness on smaller 

scales. As with small networks, there may be compensatory mechanisms that respond to this flux 

via network reconfiguration at larger scales. Secondly, larger networks in neural systems may be 

required to operate in fluid ways based on available resources and depending on other demands on 

the system. Such situations arise when multiple tasks that recruit overlapping neural regions are 
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undertaken simultaneously.27 This creates an additional challenge for stability of function in large 

networks. To the extent that this challenge is met, large networks will exhibit robustness not just 

over variations in their usual component parts and processes, but also over which parts and 

processes are recruited at a particular time for a particular task. 

There is evidence that this sort of robustness indeed exists in larger networks. A wide range of 

studies of neuroplasticity have demonstrated the brain’s ability to recover function in the face of 

injury. The data showing this come from either lesion studies in model organisms or studies of 

recovery in human patients after traumatic brain injuries.28 Computational studies of plasticity at 

the neuron level provide a plausible mechanisms by which such robustness may be achieved 

(Abbott and Nelson 2000, Albensi 2001, Noppeney et al. 2004). And perhaps more saliently, large 

scale network analyses comport with the idea that the functions of these networks are highly robust 

(Bullmore and Sporns 2012, Stromatias et al. 2015). This all serves to suggest that robustness is a 

ubiquitous feature of neural systems that should be expected to be found across many levels of 

organization. Insofar as the example of robustness in Purkinje cell burst firing holds implications 

for causal inference, those implications should be expected to hold, mutatis mutandis, for causal 

inference throughout neuroscience.29 

 

27 There is ongoing, substantive debate on whether and to what extent the brain accommodates this kind of 
multitasking. See Fischer and Plessow (2015) for a recent review. 
28 For relevant reviews, see Kolb and Gibb 1999, Kolb and Gibb 2008, Bach-y-Rita 2003. 
29 This is particularly relevant in fMRI research, where a number of causal modeling techniques have been employed 
in the service of recovering functional connectivity in resting state and block designs—see Henry and Gates 2017 for 
an excellent review. 



 63 

3.5 The Significance of Failures of Faithfulness 

The discussion in §II concluded that violations of the CFC should have zero probability of 

occurring in systems in which the parameters governing the causal relationships between variables 

vary continuously both individually and jointly (conditional on any subset of the others).30 I have 

just argued in §III that systems that exhibit robustness will tend to violate the CFC. The natural 

conclusion would thus be that systems that exhibit robustness have causal relationships that are 

governed by parameters that do not vary continuously both individually and jointly. In what 

follows, I’ll show that this is plausibly the case with the Purkinje cell example. However, this only 

tells part of the story. My claim in §III was not merely that examples of robustness provide cases 

where violations of the CFC are not probability zero, but actually cases where violations of the 

CFC will be likely. I argue that a similar feature—parameter coupling—drives both failures of 

joint continuity and the likelihood of violations of the CFC in the Purkinje cell case. I then conclude 

by considering the implications of the likelihood of violations of the CFC for causal inference in 

systems that exhibit robustness. 

Consider the relevant parameters in the Purkinje cell case, as depicted in Figure 5. In that 

simplified model, postspike inward current is a function of both sodium conductance and 

potassium conductance, and potassium conductance is also a function of sodium conductance. If 

we ignore error terms and assume these relationships are linear,31 we get the following causal 

model: 

 

30 In the sense that the marginal distributions of each variable should be continuous and the joint probability density 
function should be continuous. 
31 Linearity is almost certainly an unrealistic assumption, but SGS’s measure zero proof is restricted to linear causal 
models. I assume linearity here both for simplicity and in order to allow this example to make contact with SGS’s 
proof. 
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K+ conductance = b (Na+ conductance) 

Δ Postspike current = a (Na+ conductance) - c (K+ conductance) 

Conceptually, the relevant parameters refer to: (a) the effect of sodium conductance on postspike 

inward current, (b) the effect of sodium conductance on potassium conductance, and (-c) the effect 

of potassium conductance on postspike inward current. As alluded to in my discussion of the 

example in §III, the feature that seems to be driving robustness is a sort of parameter coupling. Put 

simply, it seems that these parameters do not vary independently. Instead they are tied together in 

a way that ensures stability in postspike current over substantial variation in sodium conductance. 

We can see this more precisely by spelling out the relationships between these parameters in light 

of Swensen and Bean’s analysis. 

As sodium conductance varies, so does the action potential waveform. Potassium conductance, 

in turn, depends on the action potential waveform. Recall that potassium has an inhibitory effect 

on postspike conductance (and thus takes negative values). In order for (a) the effect of sodium 

conductance on postspike inward current to be offset by corresponding change in the effect of 

potassium current on postspike inward current, (b) the effect of sodium conductance on potassium 

conductance must vary in proportion to (a). And then to ensure robustness, that change in 

potassium conductance (due to changes in the action potential waveform) must also be inversely 

proportional to (-c) the effect of potassium conductance on postspike inward current. To see why 

this inverse proportionality holds, note that the stronger the effect of potassium conductance on 

postspike inward current, the weaker the increase in potassium conductance (due to changes in the 

action potential waveform) needs to be to offset any effect on postspike current due to changes in 

sodium conductance. Put formally, the relationships between these parameters can be expressed 

as b = -a/c. 
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Given this analysis, it is straightforward to show that this is a case in which the joint probability 

density function for these parameters falls to be continuous. First, we can associate each of these 

parameters with a random variable—respectively, Va, Vb, and Vc. Recall that joint continuity 

requires not only that the marginal distribution of each random variable be continuous, but also 

that each be continuous conditional on any subset of the others. It is reasonable to suppose that Va, 

Vb, and Vc are all marginally continuous. However, from the above analysis, we have Vb = Va / Vc. 

To the extent that this relationship holds, Vb is not continuous conditional on Va and Vc (to the 

contrary, it’s value would be fixed). 

Another way of getting at this connects directly to the measure zero argument. For Va, Vb, and 

Vc to be jointly continuous is for there to be a joint probability density function defined over these 

variables. Such a joint probability density function would specify a four dimensional “curve” over 

ℝ3 and would thus assign positive probability only over volumes specified by the products of 

ranges for each Va, Vb, and Vc. However, again, if Vb = Va / Vc no such probability density 

function can exist. Note that once we set two of the values, the third is fixed. Thus, the set {(Va, 

Vb, Vc) ∈ ℝ3 | Vb = Va / Vc} has zero volume (it instead specifies an area), and yet receives unit 

probability. As a result, there is no joint probability density function for Va, Vb, and Vc, but instead 

just a joint cumulative distribution function that specifies a three-dimensional solid over areas in 

the above set. This, of course, entails that a measure zero subset of ℝ3 receives nonzero probability. 

The astute reader will have noticed that the equation, b = -a/c, is just a transposition of the 

relationship that must obtain between the parameters in the causal model above for that model to 

violate faithfulness. So, it is unsurprising, given that this relationship holds, that the random 

variables associated with the parameters would fail to be jointly continuous, and that the joint 

distribution function would assign positive probability to measure zero subsets of ℝ3. These 
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conditions just follow once a violation of faithfulness is established. But this does not mean the 

discussion is question begging. Rather it serves to make explicit the consequences of the parameter 

coupling that seems to be at play in the Purkinje cell case. And that parameter coupling is not 

merely stipulated but is also backed by a causal explication of the ways the relevant parameters 

interact. 

Of course, it is one thing to argue that this parameter coupling is what drives robustness in the 

Purkinje cell case, it is another to say that this is generally the way that robustness is achieved in 

complex systems. At the end of §III, I argued that robustness is widespread in neural systems, and 

is likely to arise in some form at all levels of analysis. The mechanisms that enable robustness may 

not always take the form of parameter coupling, though in all cases robustness is likely to cause 

problems for the CFC. The reason is that the key feature of these complex systems that drives 

robustness is the fact that systems have to maintain stable functions on timescales that exceed the 

lifespan of the component parts and processes that support those functions. This in turn requires 

the system to develop mechanisms that tune parameters such that functions persist despite 

significance variance in the relevant components parts and processes that support those functions. 

So, what implications for causal inference should be gleaned from the likelihood of failures of 

faithfulness in systems that exhibit robustness? Recall from §I that the CFC plays key roles in 

causal hypothesis testing and causal discovery. With respect to causal hypothesis testing, the CFC 

allows inference from a causal link between two variables to the claim that those two variables are 

not probabilistically independent (given appropriate conditionalizations). So, if you start with a 

proposed causal link, but then discover that the linked variables are in fact probabilistically 

independent, the CFC dictates that you then reject the causal link. 
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The hypothesis that motivates Swensen and Bean’s study in fact exhibits this inference pattern 

but arrives at a different conclusion. A previous study (Swensen and Bean 2003) had revealed that 

bursting in Purkinje cells occurs as a result of multiple large inward and outward currents 

combining to produce a small net inward current. They state their hypothesis for the 2005 study in 

reference to these previous results, “[t]hese results suggest a fine balance of postspike currents in 

which a small change in the size of any individual current, through slow inactivation, modulation, 

or other perturbation, could have dramatic effects on bursting” (Swensen and Bean 2005, p.3509). 

In other words, given that previous results have demonstrated a causal link between certain 

postspike currents (particularly, TTX-sensitive sodium currents) and burst firing, one would expect 

strong probabilistic dependence between those postspike currents and bursting. Of course, their 

study found precisely the opposite. If we accept the CFC, then the appropriate response to this 

result would be to deny the presence of a causal link; an alternative response would be to reject 

the CFC. Swensen and Bean essentially opt for the latter. 

Compare this to the TARP study discussed in §II. Rossi et al.’s (1980) inference pattern is 

essentially identical to Swensen and Bean’s. They considered a potential causal link between 

monetary disbursements and recidivism and also found that the two were probabilistically 

independent. Rather than rejecting the causal link, Rossi et al. instead rejected the CFC. But in the 

case of the TARP study, this seems to have been the wrong conclusion. The difference between 

these two cases mirrors the difference between the TARP study and the gravity example. The 

causal link between monetary disbursements and recidivism is, at the start, on much shakier ground 

than the causal link between TTX-sensitive sodium currents and bursting. Further, there is no 

reason to expect the sort of parameter coupling that supports robustness in the Purkinje cell case 

would obtain between monetary disbursements and recidivism. We can conclude that the CFC is 
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a useful and intuitive principle for causal hypothesis formation; however, with respect to causal 

hypothesis testing, the CFC should not be taken as a steadfast rule. Whether a probabilistic 

independence counts as evidence of robustness or evidence of causal independence ultimately 

depends on the strength of extraneous evidence for the causal link. 

This last point bears on causal discovery, in a certain sense. To the extent that some 

probabilistic independence is discovered between variables for which there is strong extraneous 

evidence of a causal link, this independence serves as evidence of robustness (and hence a violation 

of the CFC). The discovery of that probabilistic independence thus encourages investigation into 

the means by which robustness is achieved. This is effectively the structure of the reasoning in 

Swensen and Bean’s study. However, this point is more an offshoot of the implications of failures 

of the CFC for causal hypothesis testing than a point of relevance to causal discovery in the sense 

most relevant to DAG causal modeling, as discussed in §I. In the DAG framework, causal 

discovery consists in inferences from probabilistic data to causal relationships. 

To that end, recall that the CFC licenses inference from probabilistic independence between 

two variables (given appropriate conditionalizations) to the absence of a causal link between those 

variables. Causal discovery inferences are most relevant to contexts where causal relationships are 

unknown. Thus, on one hand, the causal discovery implications of the CFC are less relevant in the 

Purkinje cell example simply because the causal relevance relationships in the system were already 

fairly well understood. Nonetheless we can see, through this example, the basic shape of the 

challenge robustness poses to causal discovery. Suppose we had no prior knowledge of the causal 

factors driving burst firing in Purkinje cells. If we had only a joint probability distribution showing 

the probabilistic relationships between the various conductances and the size of the net interspike 

currents driving burst firing, we would be at a loss to infer any causal links. 
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This issue has the potential to muddy the waters of causal discovery in serious ways. For 

instance, suppose we are interested in exploring causal links between particular genetic 

abnormalities associated with depression—e.g. allelic variation in serotonin transporter gene 

polymorphism (Haenisch et al. 2013)—and neural abnormalities also associated with depression—

e.g. decreased amygdala volume in unmedicated depression (Hamilton et al. 2008). The typical 

way to search for such links would be to perform a genome-wide association study (GWAS) 

among individuals suffering from depression. If these association studies were to show that the 

two factors are probabilistically independent, what would be the appropriate conclusion to draw?32 

Should we infer that this is a case, similar to the TARP study, where the CFC holds and so the 

absence of probabilistic dependence implies there is no causal link? Or should we assume that this 

is a case, similar to the Purkinje cell example, where the brains of depressed individuals exhibit 

compensatory pathways that produce decreased amygdala volume over a range of variation in 

relevant genetic factors? In the absence of some supplementary information about the causal 

structure of these systems, it is difficult to see any way to offer principled answers to these 

questions. 

There are a number of conclusions we can draw from this. First, independent of its likelihood 

of holding in any particular domain, the CFC is a useful guide for causal hypothesis formation. 

For any proposed causal link between two variables, a natural way of testing that link is to analyze 

the dependence between those variables (given appropriate controls). A negative result (i.e. the 

discovery of probabilistic independence between the variables) can be either reason to reject the 

causal link or reason to look for counterbalancing causal pathways. Which conclusion to draw 

 

32 In fact, associations between allelic variation in serotonin transporter polymorphism and amygdala volume have 
been inconsistent, with some studies reporting associations and other, more powerful studies failing to replicate those 
associations (Pezawas et al. 2005, Scherk et al. 2009, Stjepanovic et al. 2013). 
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depends, primarily, on the strength of the independent evidence supporting the proposed causal 

link. Second and relatedly, robustness poses serious challenges to causal discovery. To the extent 

that robustness is likely to occur likely in a particular domain, it is unclear that any causal 

information can be gleaned from probabilistic independence. Again, that independence can reflect 

either the absence of a causal relationship or the presence of counterbalanced causal pathways. No 

determination between those interpretations can be made in the absence of supplementary 

knowledge of the causal structure of the system. But requiring such supplementary causal 

knowledge undermines the purpose of causal discovery, in the sense at issue in DAG causal 

modeling.33 

3.6 Conclusion 

In this chapter, I have argued that systems that exhibit robustness will tend to violate causal 

faithfulness. I offered detailed analysis of the example of robustness of burst firing in Purkinje 

cells, and showed how this example demonstrates a violation of faithfulness. I argued that the key 

feature driving robustness in this case is a form of parameter coupling that is well characterized in 

the causal dynamics of the system. This parameter coupling demonstrates how failures of the CFC 

can not only fail to be probability zero but can also be highly likely.34 I argued further that 

robustness is likely to be found in complex systems that maintain stable functions across timescales 

that exceed the lifespan of the component parts and processes that support those functions. I 

 

33 Hat tip to acknowledge that this conclusion is in keeping with Nancy Cartwright’s (e.g. 1999a) slogan: “No models 
in, no causes out.” 
34 “High likely” to the extent that it makes sense for there to be a probability distribution over the possible parameter 
values. 
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concluded by arguing that this likelihood of failures of faithfulness has significant consequences 

for both causal hypothesis testing and causal discovery. 
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4.0 Robustness, Modularity, and Cyclicity 

4.1 Introduction 

In this chapter, I continue to explore the epistemic consequences of functional robustness (qua 

an instance of causal explanatory multiple realization). Mitchell (2008, 2009) has argued that 

systems that exhibit robustness fail to be modular, in the sense of having components that are 

independently disruptable. This is significant because modularity is a crucial feature of difference-

making accounts of causal inference, particularly interventionism (Woodward 2003). If causation 

is to be understood in terms of difference-making, one must be able to manipulate causal variables 

in a system without changing other causal relations in that system. Mitchell argues that this 

requirement fails when robustness is achieved through some form of reorganization of causal 

structure in response to localized experimental manipulations. Her support for this conclusion 

draws from evidence of genetic robustness—specifically, experiments that show that disruption to 

individual genes often has no phenotypic effect in organisms. She concludes from this that 

interventionist theories of causal inference are not viable in complex systems, and that instead new 

methods of causal inference and theories of explanation are needed. 

I argue, by contrast, that closer inspection reveals that instances of robustness are often 

indicative of feedback loops driving systems toward particular outcomes. That is, robustness does 

not indicate a failure of modularity, but instead a failure of acyclicity. Causal inference in cyclic 

systems presents its own set of challenges, but those challenges do not support general skepticism 

of difference-making accounts of causation or support a call for radically different methods of 
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causal investigation. Indeed, I show that modularity is a crucial component of unearthing the causal 

structure of cyclic systems. 

In §I, I provide general background on interventionist accounts of causation and discuss the 

role of modularity in those accounts. In §II, I consider some of the standard objections to 

modularity and offer a slight amendment to the concept. In §III, I reconstruct Mitchell’s argument 

that functional robustness in genetic knockout experiments is incompatible with modularity. I 

argue to the contrary that modularity plays a crucial methodological role in knockout 

experimentation. In §IV, I argue that Mitchell mislocates the challenge functional robustness poses 

to theories of causation and methods of causal investigation. Rather than undermining modularity, 

I argue that functional robustness reveals the presence of feedback control—i.e. the presence of 

cyclical causal structure. I show how modularity can again play a crucial role in unearthing the 

cyclic causal structure. I conclude by noting some of the challenges cyclicity poses to theories of 

causation and causal inference. 

4.2 Modularity and Interventionism 

The interventionist theory of causation developed from the same roots as the graphical causal 

modeling (GCM) framework discussed in chapter three. It can be thought of as the semantics of 

the inferential methods and principles associated with that framework.35 Interventionism interprets 

the meanings of causal claims as claims about how the world would be different given certain 

 

35 See Woodward 2008 (pp.200-201) for discussion of interventionism as a semantic project. For the general 
framework of interventionism and explicit discussion of its relation to graphical causal modeling, see Woodward 
2003. 
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changes, where those changes are understood as hypothetical idealized experimental 

manipulations. So, to say X causes Y is just to say that, if all other relevant features are held 

constant, changing the value of X will result in as change in the value of Y. Thus, to take an 

example from the previous chapter, to say that alcohol abuse causes psoriasis just is to say that, 

given appropriate controls (or conditionalizing on the other relevant variables), adjusting alcohol 

consumption will adjust risk of developing psoriasis. Note that the claim is not that it must be 

possible to actually perform this intervention. For instance, we can understand the claim that the 

moon’s gravity causes oceanic tides as a counterfactual claim about how the tides would be 

affected if the moon didn’t exist or were closer or further from Earth without actually being able 

to perform those interventions. 

 Interventionism has been an influential part of the shift away from the deductive-nomological 

model toward causal theories of explanation, as discussed in the first chapter. Like other causal 

theories of explanation, interventionism takes explanation to consist in illuminating causal 

relationships that give rise to a phenomenon, rather than subsuming that phenomenon under laws 

of nature. In addition, interventionism replaces the concept of universal laws of nature with the 

concept of invariant causal generalizations. To say that a generalization is merely invariant, as 

opposed to universal, is to allow that it may hold only in certain circumstances, e.g. given certain 

background conditions or restricted ranges of parameter values. This notion of invariance is a 

significant improvement over the previous conception of laws qua universal generalizations, as it 

allows us to nonetheless use and make sense of generalizations that hold only in particular sets of 

circumstances. 

Take, for instance, the snap mousetrap, briefly discussed in chapter one and depicted below. 

Our understanding of the causal operation of snap mousetraps is roughly as follows. The trap is 
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set by pulling the hammer, against the force of the spring, in an arch over the platform; the holding 

bar is then placed over the hammer and held by the catch on the opposite side of the platform. 

When the catch is tripped, the holding bar is released and the potential energy of the spring’s force 

again the hammer is converted to kinetic energy, causing the hammer to slam onto the opposite 

side of the platform. This causal story does not hold universally—instead it is invariant over a 

range of values that the relevant parameters that determine the functioning of the system can take. 

For instance, if the spring is too strong relative to the sensitivity of the catch or the strength of the 

holding bar, the system will cease to function in accord with this causal chain. 

A different form of stability, the notion of modularity, is also a key component of the 

interventionist framework.36 Modularity refers to the independent manipulability of causal 

relationships in a system. Independent manipulability here means that changing one functional 

relationship within the system does not cause changes to other functional relationships within the 

system. Woodward (2008) defines modularity as follows: 

Modularity: A system of equations is modular iff (i) each equation is invariant 
under some range of interventions on its independent variables and (ii) for each 
equation, it is possible to intervene on the dependent variable in that equation in 
such a way that only the equation in which that dependent variable occurs is 
disrupted while the other equations in the system are left unchanged. (Woodward 
2008, p.221) 

This concept of modularity is an important, though controversial, component of the 

interventionist framework.37 If causal claims are understood as counterfactual claims about how 

the world would be different under different hypothetical manipulations, it is important that 

 

36 We encountered this concept in passing in chapter three in the form of the notion of autonomy from Aldrich (1989), 
and as incorporated by Pearl (1999). 
37 In less cautious moments, interventionists have described modularity as intrinsic to the concept of causality (e.g. 
Hausman and Woodward 1999, p.550), and have attempted to use modularity in the service of deriving the causal 
Markov condition (Hausman and Woodward 1999, Hausman and Woodward 2004). See Cartwright 2002 and Steel 
2006 for objections to the latter efforts. 
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systems exhibit a certain amount of stability in the face of those hypothetical manipulations. 

Particularly, one must be able to manipulate causal relationships in a system without changing 

other causal relations in that system, otherwise there would be no way to attribute particular causal 

content to the contribution of that causal relationship. 

    

Figure 6: Illustration of a snap mousetrap with a causal diagram. 

Note: the causal diagram depicts the relevant factors bearing on the force exerted 
by the hammer on the platform upon release of the catch. 

Consider, again, the snap mousetrap, represented above in Figure 6. This system is modular in 

the relevant sense. For instance, suppose we are interested in understanding the relevant causes 

that determine the force that the hammer exerts on the platform, as represented in the associated 

causal diagram. That force is a function of the initial position of the hammer (when the trap is set) 

and the strength of the spring. The initial position of the hammer is a function of the positions of 

both the catch and the holding bar, where position is understood to contain information about both 

the height of the connection point and the relative distance between each respective connection 

point and the top of the crossbar of the hammer. Intervening of one of these variables, say, the 

strength of the spring, has no influence on the other causal relationships in the system. As long as 

we are within the values of parameters and variables that allow the system to function, which is 

the point of (i) in Woodward’s definition, we can alter the strength of the spring without causing 
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changes that cascade through the rest of the system. As a result, if we want to determine the causal 

relationship between the strength of the spring and the force exerted by the hammer on the platform 

when the catch is tripped, we can simply vary the strength of the spring and observe the resulting 

change in force. 

Consider, by contrast, what it would mean for modularity to fail in this system. Suppose our 

only means of manipulating the strength of the spring involved adjusting the tightness of the coils, 

and that this, in turn, affected the position of the catch (say, in order to clear the adjusted coils). 

To the extent that we grant this, this system would violate modularity. Manipulating the strength 

of the spring would alter the initial position of the hammer, and in the process would confound the 

effect of changes in strength of the spring on the force of the hammer on the platform. The 

consequence is that it would be impossible to isolate the causal contribution of the strength of the 

spring on the force exerted by the hammer on the platform. 

4.3 Challenges and a Modification 

Nancy Cartwright has been a staunch skeptic of modularity (see, e.g., Cartwright 2001, 2002, 

2007). Her opposition to the concept has generally been advanced through apparent 

counterexamples, focused on everyday items and their internal mechanics. The idea is perhaps that 

if modularity fails for such mundane, everyday items, it shouldn’t be expected to hold in more 

complex systems. One of Cartwright’s recurrent counterexample involves a common toaster. She 

explains as follows, 

The expansion of the sensor due to the heat produces a contact between the trip 
plate and the sensor. This completes the circuit, allowing the solenoid to attract the 
catch, which releases the lever. The lever moves forward and pushes the toast rack 
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open… I would say that the movement of the lever causes the movement of the 
rack. It also causes a break in the circuit. Where then is the special cause that affects 
only the movement of the rack? Indeed where is there space for it? The rack is 
bolted to the lever. The rack must move exactly as the lever dictates. So long as the 
toaster stays intact and operates as it is supposed to, the movement of the rack must 
be fixed by the movement of the lever to which it is bolted. (Cartwright 2002, pp.70-
72) 

The toaster fails to be modular, because the mechanism that pops the toast up is part of the same 

system that completes the circuit and delivers electrical current to the heating elements. It makes 

sense to turn the heating elements off when the toast is done, and it makes sense to pop the toast 

up so you can retrieve it without burning your hand, and there’s some benefit to those things to 

happening at the same time, so toaster designers just connect the two mechanisms. The system 

fails to be modular in the sense that there are not independent causal switches that can be 

intervened upon to isolate those separate causal mechanisms. 

This is not a particularly compelling counterexample. As Woodward (2008) and Steel (2010) 

have pointed out, it would be easy to alter the system in a way that would enable separate 

manipulability of the rack and circuit. For instance, if the toaster were designed like, say, a toaster 

oven, where the movement of the rack (horizontally, rather than vertically) is instead tied to the 

opening of the door and is isolated from the circuit delivering electricity to the heating elements. 

Note, however, that with a toaster oven, unlike a toaster, the means for adjusting temperature is 

not separable from the on/off switch for the circuit (there is usually just one dial); whereas with a 

toaster, the on/off switch, which is controlled by the lever, is separate from the browning dial that 

controls either the temperature or the time of toasting. At any rate, the point is that plenty of things 

are designed in a way that connects distinct causal mechanisms but should not really be what’s at 

issue in the notion of modularity. It would be no great feat of engineering to separate these 

mechanisms in everyday items like toasters—e.g. by unbolting the lever from the rack. 
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Cartwright’s response, contained in the quote above, would presumably be that altering the 

toaster in this way should be prohibited, or changes the toaster in substantial enough ways that it 

no longer continues to operate as a toaster. But this will not do. It is antithetical to how we reason 

about causal systems. Isolating components and tinkering with them to see what their individual 

effects can contribute to the systems that contain them is fundamental to most areas of engineering 

as well as causal investigation of complex systems.38 For instance, the vast majority of experiments 

in cellular neuroscience involve isolating individual neurons from nervous systems and tinkering 

with them in vitro. Of course, there is always some worry that such isolation will generate causal 

claims that fail to generalize back to the system of interest. That is, there is always concern that 

causal claims won’t generalize from the lab back to the world.  But if this were generally the case, 

modern investigations of complex systems would be completely ineffective. 

Though not a compelling counterexample, the toaster case is instructive in that it encourages 

more precision in what it means for a system to be modular. Modularity is typically described as 

a property of representations, or systems of equations (see, e.g., Woodward 2003, p.48; Woodward 

2008, p.221). There is a perfectly clear sense of what modularity means in such contexts, as is 

specified in the definition from Woodward (2008) in the previous section. However, it is perhaps 

more useful to think of modularity in the first place not as a feature of representations, but as an 

assumption about causal systems that licenses certain inferences and encourages particular ways 

of conducting causal investigations. This assumption amounts to something like the following: 

Modularity*: to say a causal system is modular is to imply that each cause in the 
system provides an isolated causal contribution to its respective effect. 

 

38 Woodward calls this a “Galilean” approach to the function of experiments (2008, p.229). 
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The notion of isolation here can be taken to mean independence of the causal relationships in the 

system. Something akin to modularity* is an implicit methodological principle that drives the sorts 

of causal investigation just mentioned that involve deconstructing systems and tinkering with their 

components in relative isolation to determine their particular causal roles within some system. 

Reframing modularity in this way captures the same core feature at issue in Woodward’s definition 

but avoids some of the problems that definitions invites. 

The key differences between Woodward’s definition of modularity and modularity* are: (1) 

modularity* stipulates that modularity is a property of causal systems rather than a property of 

representations, and (2) modularity* stipulates only that causal contributions of individual causes 

are isolated, not that they are isolable. With respect to (1), the formal definitions of modularity 

invariably take the form of claims about systems of equations. However, elsewhere, Woodward 

(2003, 2008) and Hausman and Woodward (1999, 2004) vacillate on whether modularity should 

be construed as a property of representations or a property assumed of causal systems in the world. 

For instance, Woodward writes, “[i]t is natural to suppose that if a system of equations correctly 

and fully represents the causal structure of some system, then those equations should be modular” 

(Woodward 2008, p.48). In other words, Woodward here seems to regard modularity as a feature 

of the world and so a criterion of correctness for causal representations of the world. It is also 

common for descriptions of modularity to get tied to the notion of distinct causal mechanisms (in 

the world).39 At any rate, the key point of (1), thinking of modularity as a property of the world 

rather than a property of representations, is that it creates room for the distinction at play in (2).  

 

39 See, e.g., Hausman and Woodward (1999), p.549, where modularity is offered as a criterion on mechanism 
individuation. 
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With respect to (2), the standard definition of modularity requires that it be possible to perform 

an intervention that isolates the causal contribution of each cause (dependent variable) within a 

system. This encourages thinking of modular systems as those in which there are particular 

switches or dials for each relevant variable within the system and that each switch or dial must be 

able to be adjusted in a way that is completely independent of the others. Moving away from the 

requirement of isolability cuts off this temptation. The fact that a causal contribution is presumed 

to be isolated from the other causal relationships in a system does not entail that it is isolable by 

means of some particular intervention. That is, even if causal contributions are not isolable by 

means of particular interventions, there may be nonetheless ways to infer isolated causal 

contributions. 

Take, for instance, our imagined “modularity violating” snap mousetrap from the end of the 

previous section. The idea there was that manipulating the strength of the spring had the effect of 

also changing the position of the catch. In such a system, there fails to be a single intervention that 

isolates the causal contribution of the strength of the spring from the effect of the position of the 

catch. However, as long as the corresponding change in position of the catch is regular and 

quantifiable, it would be a fairly trivial matter of geometry to figure out how the initial position of 

the hammer covaries with the strength of the spring. The effect of that change in initial position on 

the force of the hammer can then be calculated and subtracted off the overall effect of manipulating 

the strength of the spring in order to isolate the causal contribution of the change in the strength of 

the spring from the change in position of the catch. 

This distinction between isolated and isolable causal contributions bears on the point that 

typical objections to modularity, like Cartwright’s toaster, tend to focus on. Cartwright takes the 

toaster to be a counterexample precisely because the design of the system precludes independent 
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manipulation of the rack and electrical circuit without reengineering the system. But if modularity 

only implies that there are isolated causal contributions in the target system, then the fact that there 

are not easily isolable is beside the point. Moreover, if we assume that the system is in fact 

modular, in the sense of modularity*, then the natural way to home in on the isolated causal 

contributions of each component is to deconstruct/reengineer the system in order to separate the 

mechanisms responsible for different functions—which, in this case, involves separating the 

mechanism for opening the rack from mechanism delivering electricity to the heating elements. 

The fact that the same physical component plays a role in two separate causal chains in no way 

precludes that component’s ability to make an isolated contribution to each chain. 

The distinction is also relevant when available technology limits the precision of experimental 

manipulations. Consider Karl Lashley’s (1960) efforts to isolate the function of visual cortex in 

blinded rats’ abilities to learn and navigate mazes, as discussed by Bogen (2004, p.19-24). The rats 

were trained to navigate a maze with vision intact, then blinded and (re)trained to navigate the 

maze, and then their visual cortices were removed and their abilities to navigate the maze were 

tested. The ideal means of testing this would have been to ablate the rats’ visual cortices without 

affecting any surrounding regions. However, given technology of the time, such precise localized 

ablation was not possible, other surrounding areas inevitably got damaged as well. Bogen explains 

Lashley’s solution, 

To work around this he lesioned the visual cortex in a variety of different ways, 
each one of which was designed to do collateral damage to a different adjacent 
structure. In one group of rats, the hippocampal lobes were lesioned along with the 
visual cortex, and the auditory cortex was spared. In another group, the auditory 
cortex was damaged and the hippocampal lobes were spared. And so on for each of 
the other regions next to the visual cortex. In a final group Lashley lesioned the 
visual cortex while sparring as much of the rest of the brain as he could. (Bogen 
2004, p.20) 
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In other words, Lashley exerted control over which surrounding areas were affected and varied 

them systematically.  He set a number of different conditions in all of which visual cortex was 

lesioned, but different adjacent regions were lesioned in each condition. Proceeding in this way, 

Lashley then tested the rats’ performance at navigating a maze after lesioning. Though the rats had 

been retrained on the maze after being blinded, their performance after lesioning was uniformly 

impaired on the maze task (as much or more so than the impairment observed after blinding). 

Lashley concluded that visual cortex is involved in rats’ abilities to learn and navigate mazes (in 

addition to its role in processing visual information. 

What is clear from this description of Lashley’s experiment is that he was operating with an 

assumption like modularity*. In particular, he assumed that visual cortex was playing an isolated 

role in maze navigation in blinded mice; this is what motivates his systematically varied “fat-

handed” interventions. However, that role was not isolable given the lack of precision in 

experimental techniques available at the time. This, arguably, causes issues for Woodward’s 

definition of modularity, which is part of Bogen’s purpose in bringing up the case.40 Those issues 

are again sidestepped with the tweaked notion of modularity*, which also serves to illuminate the 

motivation behind Lashley’s approach. 

 

40 Bogen cites this example in the service of an argument against interventionism (and counterfactual theories of 
causation, more generally). Bogen argues of this case that Lashley made no reference to the potential ideal intervention 
(in Bogen’s terms “immaculate manipulation of a system which meets the modularity requirement”) that he was 
clearly trying to approximate, and no counterfactual claim about what would have resulted had that ideal intervention 
been performed. Woodward 2008 counters Bogen’s interpretation by arguing that Lashley was trying to understand 
what would happen if he were to perform an ideal intervention even though, as a practical matter, he could not perform 
such an intervention. Thus, Woodward argues, the causal claims Lashley concluded regarding the role of visual cortex 
in learning and navigating mazes are well characterized in the interventionist framework. See Woodward 2008, 
pp.209-211, for further discussion. 
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4.4 Mitchell’s Challenge: Robustness and Modularity 

Sandra Mitchell (2008, 2009) has challenged modularity from a different angle. She argues, 

rather than simple systems like toasters, complex systems, particularly those found in biology, 

often fail to be modular. Mitchell’s argument is based on anomalous gene knockout experiments, 

which she argues indicate a form of genetic robustness very similar to the examples of neural 

robustness that have been considered throughout this dissertation. She argues that genetic 

robustness provides instances in which intervening on some particular causal relationship 

reconfigures other causal relationships in order to maintain the function in question in the face of 

the intervention. She concludes from this that genetic systems violate modularity and thus that new 

theories of causation are needed to account for the complex causation found in biological systems 

(see, in particular, Mitchell 2009, Ch4). 

To understand Mitchell’s argument, it is first necessary to provide some background. Genetic 

knockout is a targeted form of intervention that involves inserting artificial, nonfunctional DNA 

into the chromosomes of embryonic stem cells in vitro. The embryos are then transplanted into a 

female uterus of some particular model organism, most typically a mouse, and allowed to develop. 

The resulting mouse pups are heterozygous knockouts, which can then be bred to create 

homozygous knockouts. These techniques provide a precisely targeted means of manipulating 

genes to determine their roles in supporting different phenotypes (cf. the discussion of Lashley’s 

experiment on rat visual cortex discussed at the end of the previous section). One might thus expect 

knockout experiments to be exemplars of interventionist accounts of causality—precisely 

controlled manipulations of dependent variables (genes) lead to changes in independent variables 

(phenotypes), and a causal link is inferred between those variables. And indeed, many knockout 

experiments proceed in just this way. Schofield et al. (2012) note in a review that of the ~25,000 
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mouse genes with protein sequence data, ~8,200 have identified phenotypes.41 That is a significant 

amount of success in establishing causal links between genes and phenotypes, especially when 

considering that knockout techniques had only been in practice for 20 years when their review was 

published. 

However, not all genetic knockouts have associated phenotypic changes. Roughly 15 percent 

of gene knockouts are developmentally lethal. Aside from those, and to the point crucial for 

Mitchell’s argument, some sizable percentage of knockout experiments show little to no evidence 

of phenotypic change. These are the so-called “anomalous” knockout experiments, and Mitchell 

cites their proportion at roughly 30% of all knockout experiments (Mitchell 2008, p.700, Mitchell 

2009, p.68). Other estimates fall in the 10-15% range (Barbaric et al. 2007), but the accuracy of 

this number is actually quite hard to gauge, for reasons that will be explored further below. 

Nonetheless, in some subset of these cases, Mitchell argues that systems exhibit a form of 

robustness similar to those I’ve considered in earlier chapters in the context of neural systems. 

Specifically, she homes in on cases where the robustness of phenotype to genetic variation may be 

due to reorganization of causal structure. 

Mitchell’s argument, offered primarily in her own words, proceeds as follows, 

[I]n up to 30% of double knockouts there is little or no evident phenotypic 
consequence of knocking out a gene. The cases where the knockout produces no 
substantive phenotypic difference may point to the dynamical plasticity of the 
genetic network. Robustness due to redundancy or degeneracy will make it difficult 
to make inferences about the normal causal structure from an intervention or 
perturbation of the system. (Mitchell 2008, p.700) 

 

41 See also the massive databases available online collating information on the mouse genome 
(www.informatics.jax.org) and phenome (phenome.jax.org). 
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Recall that we encountered this distinction between redundancy and degeneracy (what I’ve called 

functional robustness) in the first chapter. Redundancy simply involves a back up copy of a gene 

substituting for it in the knockout case. When robustness is achieved through redundancy, the other 

causal relationships within the system need not change. Thus, these cases do not challenge 

modularity. She continues her reasoning in accord, 

The absence of a phenotypic change even when all redundant copies of a single 
genetic component are knocked out could indicate that the network itself has 
reorganized to compensate for the loss of the gene. If so, parts of the network that 
in the normal state would be described by one set of functional relationships change 
their interactions in response to the experimental intervention to produce a product 
similar to that of the unperturbed system. (Mitchell 2009, p.71) 

It appears that a degenerate or robust system where a genetic network reorganizes 
when some piece of it is knocked out is not independently disruptable. That is, one 
gene in the network functions as a causal contribution to the phenotypic effect under 
normal internal conditions, but functions in a different way when another part of 
the network is removed… Thus Woodward’s condition of modularity is not met. 
(Mitchell 2009, p.77) 

Thus, Mitchell argues that degeneracy (i.e. functional robustness) provides the best explanation 

for the results of some anomalous knockout experiments, especially when redundancy can be ruled 

out. And it is these instances of robustness that undermine Woodward’s notion of modularity. Her 

conclusions from here are sweeping: that new concepts of causation are necessary and no uniform 

methodological prescriptions (e.g. regarding experimentation or how to conduct causal 

investigation) will be adequate for such complex causal systems. 

While I am generally sympathetic to Mitchell’s project (as should be no surprise given the 

topic of this dissertation), this argument moves too quickly to support such sweeping conclusions. 

Further, with respect to the more measured conclusion regarding the prospects for modularity in 

systems that exhibit robustness, I believe that Mitchell mislocates the challenge that robustness 
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poses to theories of causation and causal inference. Spelling this out requires first taking a step 

back. 

Results from anomalous knockout experiments are not straightforwardly attributable to 

robustness. Mitchell is well aware of this. In the setup for her argument (2009, p.68), she cites a 

famous quote from Mario Capecchi, who received the Nobel prize in 2007 for his research in the 

field: “I don’t believe in complete redundancy. If we knock out a gene and don’t see something, 

we’re not looking correctly.” She also offers a quote from the opposite end of the ideological 

spectrum from Robert Weinberg, a pioneer of research on the genetics of cancer: “The big surprise 

to date is that so many individual genes, each of which has been thought important, have been 

found to be nonessential for development.”42 Other researchers (e.g. Greenspan 2001, Edelman 

and Gally 2001), with whom Mitchell sides (2009, p.68), offer a distinct possibility—that 

phenotypes may be impervious to gene variation as a result of robustness in genetic networks.43 

There are thus three broad possibilities that must be considered in the interpretation of anomalous 

knockout experiments: (1) there is actually a phenotypic difference that simply has not yet been 

discovered, (2) the DNA is nonessential, (3) the system exhibits robustness, either in the form of 

redundancy or degeneracy. Interpreting anomalous results to imply (3) is thus not uncontroversial. 

I take (2) to be a conclusion of last resort, as it effectively ends inquiry despite the presence of 

other live options. However, (1) merits further scrutiny. Barbaric et al. (2007) provide an excellent 

review, extensively detailing possible explanations of anomalous knockout results. They offer the 

following set of options. 

 

42 Both quotes can be found in Travis 1992. 
43 Greenspan (2001) demonstrates a proof of concept for functional robustness in genetic networks, showing that 
model genetic networks may be able to maintain functions by reorganizing in the face of deletion of particular genes. 
Edelman and Gally (2001) introduce the term degeneracy and discuss a number of potential domains in which it may 
arise. 
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If inactivation of a gene does not lead to an observed abnormal phenotype, there 
are three possibilities: (i) the abnormal phenotype is present under the conditions 
currently being used but is yet to be discovered, (ii) the abnormal phenotype will 
only become evident under environmental conditions that have not yet been tested 
or (iii) there is no abnormal phenotype. (Barbaric et al. 2007, p.92) 

The first two options refer to distinct ways phenotypic differences can be obscured. First, (i) there 

may be a phenotypic difference that is present in experimental conditions but has not yet been 

discovered. One major methodological issue that creates this possibility is the lack of 

standardization in phenotyping protocols. Some large-scale efforts have been made to standardize 

protocols, e.g. the German Mouse Clinic (Gailus-Durner et al. 2005). In its first several years of 

operation, the German Mouse Clinic analyzed more than 80 knockout lines and discovered 

previously uncharacterized phenotypes in 95% of those lines (Fuchs et al. 2009). The ongoing 

discovery of new phenotypes for different mutant strains should give pause to the idea that 

anomalous results should be taken at face value. However, as protocols become more standardized 

and more exhaustive, this should become less of an issue. It is difficult to estimate the impact this 

will have on the proliferation of anomalous knockout results, but it is likely to be significant. 

Second, (ii) many phenotypes are only apparent in particular environmental contexts. Thus, it 

may be that anomalous knockout results are due to experimental conditions that do not provide the 

environmental conditions necessary for the phenotype to manifest, rather than reflecting an actual 

lack of phenotypic variation. For instance, Chen et al. (1997) discovered an exocrine gland 

dysfunction as a result of melanocortin 5 receptor (MC5-R) knockout in an unexpected way. They 

write,  

No readily visible phenotype was apparent in MC5-RKO mice… Appearance, 
behavior, growth, muscle mass, adipose mass, reproduction, basal and stress-
induced corticosterone, glucose, and insulin levels in these animals were 
indistinguishable from wild-type littermates. More subtle physiological phenotypes 
of the knockout were studied by examination of responses to exogenous 
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melanocortin peptides in biological assays… None of these assays produced 
identifiable differences between the wild-type and knockout animals. During a 
stress-induced analgesia assay in which the mice are made to swim for 3 min to 
activate the hypothalamic-pituitary-adrenal axis, it was observed that the knockout 
animals remained wet for a longer period of time than littermate controls. This 
effect was then identified to result from nearly double the water retention in the 
coat of the MC5-RKO, resulting in severe thermoregulatory defects in the animal 
as well. (Chen et al. 1997, p.794) 

In other words, MC5-R knockout was previously an anomalous knockout gene, showing no 

phenotypic variation despite a wide range of phenotyping assays. Fortuitously, during an assay to 

test for abnormal stress response in which mice are forced to swim, Chen et al. noticed an unrelated 

abnormality—the coats of the knockout mice stay wet longer than the coats of wild-type mice. It 

turns out this abnormality reflects an exocrine gland dysfunction due to the MC5-R knockout. 

Again, it is difficult to estimate what proportion of anomalous knockout experiments are best 

accounted for in this way. At any rate, my point in raising this is not to come up with any estimate, 

but rather to reflect on appropriate methodology. As we’ve seen, Mitchell argues, on the basis of 

anomalous knockout results, that new methods of causal inference and new accounts of causal 

explanation are needed. In particular, she argues that when faced with anomalous knockout results, 

researchers should not assume modularity, but should instead assume that some more complex 

causal structure is in play. On one hand, even given the preceding discussion, it is not unreasonable 

to expect that at least some anomalous knockout experiments are indicative of more complex 

causal structures. However, it is clearly premature to infer from this that standard forms of 

experimental design, captured by the interventionist framework, and assumptions of modularity* 

should be abandoned. Modularity*, as a methodological principle, pushes researchers toward 

discovery of new phenotypes, rather than accepting anomalous knockout results at face value. 
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4.5 Answering Mitchell’s Challenge: Robustness and Cyclicity 

I have just argued that, from a methodological perspective, Mitchell is wrong that modularity* 

should be abandoned as a principle guiding causal investigation in genetics. However, my 

discussion does not support the conclusion that all anomalous knockout results are due to 

undiscovered phenotypes. This thus leaves open the (likely) possibility that some results will be 

best explained by reference to functional robustness (aka degeneracy). Moreover, I have argued in 

previous chapters that functional robustness is widespread in neuroscience and has serious 

implications for causal inference. So my argument that modularity* is the right methodological 

principle to retain in genetics is beside the point to this main issue: what are the implications of 

functional robustness for modularity*?  

Consider the following, from a discussion of robustness from O’Leary (2018): “If an insect 

loses a leg, it may or may not lose the ability to walk. But the biomechanical relationships between 

the remaining legs will be fundamentally altered” (O’Leary 2018, p.182).  Autotomy (self-

amputation) of appendages, in fact, occurs in many taxa, including vertebrates, echinoderms, 

crustaceans, and arachnids (Wrinn and Uetz 2007). Spiders are particularly interesting cases 

because their legs play vital roles not only in locomotion but also as sensory organs—the tiny hairs 

on spider legs are capable of detecting minuscule vibrations. Yet they can lose two to three legs, 

and often do as a result of autotomy, and nonetheless retain their abilities to walk and detect prey. 

This case gets to the heart of the issue with the relationship between modularity and robustness. 

On one hand, appendages are generally regarded as exemplars of modularity in biology (e.g. 

Williams and Nagy 2001). Granted, the notion of modularity in biology is distinct from, though it 

bears similarity to, modularity* as well as the technical definition of modularity in interventionism. 

And appendages do seem to satisfy modularity* also; they provide isolated causal contributions to 
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the capacities they’re involved in. However, in certain organisms, like spiders, removal of 

appendages leads to changes in other causal relationships within the system—particularly, the 

biomechanical and sensory relationships between the remaining legs. This thus seems to at once 

satisfy and violate modularity*. 

The tension here can be resolved by considering more carefully how the changes in other causal 

relationships within the system occur. In the immediate aftermath of leg removal, a spider’s ability 

to walk will actually be seriously impaired. This is because the biomechanical relationships 

between the remaining legs do not adjust automatically. That is, the remaining legs are still 

controlled by motor patterns predicated on the organism having all eight of its legs. Thus, it is 

more accurate to say that the biomechanical relationships adjust over time in response to feedback 

that enables recovery of function. This is significant because it shows that a system can exhibit 

functional robustness while nonetheless satisfying modularity*. The components of a causal 

system can provide isolated causal contributions to their effects, which can be assessed on short 

timescales immediately following an intervention that disrupts one of those causal relationships. 

And then, on longer timescales, other causal relationships may change as a result of feedback 

within the system in response to that intervention, and those changes may enable recovery of 

function—i.e. functional robustness.44 

The upshot is that in systems where functional robustness is achieved via feedback control, 

there is a temporal gap between the intervention and the recovery of function. This gap creates 

 

44 As an aside, this shows another way in which modularity* is preferable to Woodward’s definition of modularity. 
Different intervention techniques operate on different timescales (compare, e.g., pharmacological knockout and 
genetic knockout in Swensen and Bean 2005). That is, different ways of manipulating dependent variables target 
different timescales. Modularity* avoids this timescale dependence by removing the requirement of isolability (or 
possibility of intervention). 
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room for a productive notion of modularity* to play a role both as a criterion on adequate causal 

explanations and as a guiding principle in causal investigation. 

Indeed, the assumption of modularity* is often critical to understanding how feedback control 

enables robustness. This can be seen again in the example of the spider. In order to understand 

how the biomechanical relationships between the remaining legs need to change to preserve 

locomotion, it is necessary to first understand the isolated causal contribution of the destroyed leg. 

That leg will have played different roles in different motor behaviors—e.g. prey capture or web 

navigation. Characterizing those different roles—i.e. the isolated causal contributions of the leg—

is necessary to understand how those motor behaviors can be maintained in the absence of the leg. 

For instance, whether it is a front, back, or middle leg that is missing will have consequences for 

the new motor patterns that need to be learned, and hence new causal relationships that need to be 

adopted, to maintain those behaviors. 

These considerations are not limited to this example. Feedback control seems to be one of the 

primary mechanisms responsible for enabling functional robustness in a range of different systems. 

Of particular relevance, feedback control drives robustness in both neurons and genetic networks. 

Mitchell is, of course, aware of this. However, she comes to the conclusion that feedback is 

inconsistent with modularity. For instance, she writes, “[a]ny physical system with complex 

feedback mechanisms will be one in which we can expect modularity to fail. But we should not 

conclude that such systems don’t involve true component causes” (Mitchell 2009, p.82). 

Unfortunately, she does not offer a definition of “true component causes” and indeed it is unclear 

what could be meant that isn’t equivalent to modularity*. But as I’ve just argued, feedback and 

modularity* are not incompatible; to the contrary, modularity* is an important component of 
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adequate explanations of and investigations into systems that achieve robustness via feedback 

control. 

This can be further illuminated by examining the other half of Swensen and Bean’s (2005) 

study, which was briefly mentioned in chapter three. Recall that in their investigation of robustness 

of burst firing in Purkinje cells, Swensen and Bean (2005) performed two distinct interventions 

that targeted different timescales, and they found burst firing to be robust in both conditions. The 

first condition involved pharmacological blockade of sodium conductance with TTX, which is 

transient and occurs on very short timescales. The relevance of the short duration of the 

intervention is that it rules out second messenger processes occurring within the cell that may alter 

ion channel expression on the cell membrane. The second intervention involved a genetic knockout 

similar to those discussed in the previous section. In particular, the mice used were knockouts for 

the Nav1.6 gene, which codes for the protein that constitutes a particular subtype of voltage-gated 

sodium channel. 

Swensen and Bean conducted additional analyses to determine the mechanisms responsible for 

robustness in each condition, and they found evidence of distinct mechanisms that operate on two 

different timescales. The mechanism responsible for robustness under TTX intervention was 

described at length in the previous chapter. In the case of the genetic knockout study, which is 

more relevant to the issue at hand, Swensen and Bean found evidence of a completely different 

mechanism, compensating for the lack of sodium conductance by changing expression of other 

ion channels on the cell membrane. 

They found that the main difference driving robustness of bursting in Nav1.6 knockouts was 

an increase in calcium conductance. This is surprising for two reasons. First, recall that potassium 

conductance was the main current that changed in response to acute reductions in sodium 
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conductance in the TTX experiment. Potassium is positively charged and flows out of the cell, 

hyperpolarizing the membrane, whereas sodium is positively charged and flows into the cell, 

depolarizing the membrane. In the TTX experiment, Swensen and Bean found that as sodium 

conductance decreases, there is a compensating decrease in potassium conductance to maintain the 

small net influx of current necessary to drive burst firing. One might thus expect that in the 

knockout case, the changes in channel expression on the cell membrane would largely consist in a 

decrease in potassium channels proportional to the decrease in sodium channel expression. Yet 

this is not what Swensen and Bean found. 

Second, recall also that one of the main drivers of increased potassium conductance in the TTX 

experiment was calcium-activated potassium current.  Calcium influx can have, on net, either 

hyperpolarizing or depolarizing effects on membrane potential. While calcium entering the cell 

has a depolarizing effect, the hyperpolarizing response of calcium-activated potassium current is 

capable of overwhelming those depolarizing effects. However, Swensen and Bean found that this 

does not occur in the case of Nav1.6 knockouts. This reflects plasticity in the coupling between 

calcium influx and calcium-activated potassium current. 

In sum, there are two main changes that account for robustness of burst firing in the knockout 

case—increased calcium ion channel expression on the cell membrane and a decrease in the 

responsiveness of calcium-activated potassium current to the presence of calcium within the cell. 

Both these changes are likely the result of feedback control driving the cells toward burst firing in 

response to the decrease in sodium conductance due to the knockout. 

This case reinforces two aspects of my arguments to this point. In the first place, note that the 

knocked-out sodium channels are modular* components of the system. This is all the more 

apparent due to the contrast between the two forms of intervention used by Swensen and Bean. 
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The transient, short-timescale intervention of TTX has a totally different effect on the system than 

the persistent, longer-timescale intervention of the gene knockout. What’s more is that the 

modular* contribution of sodium conductance to action potential generation and burst generation 

was already well characterized prior to the study (Swensen and Bean 2003). This prior knowledge 

of the isolated causal contribution of sodium conductance played a significant role in guiding 

inquiry into the underlying mechanisms supporting robustness. 

The second point reinforces points made in the previous section. Note that in the case of Nav1.6 

knockouts, if we zoom out to the level of the whole organism, the phenotypic change associated 

with the Nav1.6 gene in the context of cerebellar function would likely be obscured. This is a case 

where (phenotypic) robustness occurs at an intermediate level within the system. If we were to 

follow Mitchell’s prescriptions about causal investigation and explanation, we may well miss this 

effect. In other words, this case provides another instance where anomalous knockout results 

should not be taken at face value. 

The preceding arguments show that functional robustness is consistent with modularity*. It 

does, nonetheless, carry significant consequences for accounts of causal explanation and causal 

inference. Different experimental interventions operate on different timescales, as we’ve just seen 

with genetic knockout and pharmacological intervention. These different techniques are capable 

of illuminating different causal mechanisms, as we’ve seen with the contrast between the two 

experiments from Swensen and Bean. The notion of ideal intervention in play in interventionist 

accounts of causation fails to capture this; ideal interventions are timescale insensitive. This seems 

to reflect a flaw in such accounts, or at least points to a set of issues where further work needs to 

be done. 
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Further consequences follow for methods involved in causal inference. Feedback control, by 

definition, entails cyclic causal structure—i.e. causal structure with bi-directional causal pathways 

linking at least two variables in the system. This is significant because it provides another reason 

to believe that systems that exhibit functional robustness may be unsuitable for analysis with the 

kinds of causal modeling techniques discussed in chapter three. Recall that that family of 

techniques rely on the assumption of acyclicity (hence, directed acyclic graphs—DAGs). While it 

may be informative to treat systems that exhibit robustness as acyclic on particular timescales in 

order to better understand particular modular* causes within the system, methods that assume 

acyclicity cannot capture the full dynamics of systems that involve feedback control. 

4.6 Conclusion 

In this chapter, I explored the consequences of functional robustness for theories of causation, 

explanation, and methods of causal investigation. I offered a tweak to the standard definition of 

modularity in interventionist theories of causation and argued that this amended notion of 

modularity* is preferable for a variety of reasons. I then considered Mitchell’s argument that 

functional robustness undermines modularity*. I argued in contrast that there are multiple 

interpretations available for the anomalous genetic knockout that are the core of her argument. I 

showed that modularity*, as a methodological principle retains significant value in this domain by 

encouraging researchers to continue searching for new phenotypes associated with particular gene 

knockouts. I went on to argue that, in cases where functional robustness does in fact occur, it 

nonetheless is not incompatible with modularity*. I argued to the contrary that modularity* is a 

crucial aspect of causal investigations into the mechanisms that enable robustness. Finally, I 
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contended that the real consequences of functional robustness in these domains is its implication 

of causal cyclicity in the form of feedback control. I concluded by exploring some of the 

consequences of causal cyclicity for theories of causation and methods of causal investigation. 
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5.0 Dissertation Conclusion 

In this dissertation, I have provided a novel account of multiple realization (MR) and explored 

its epistemic consequences. My aims in chapter 2.0 were largely positive. First, I provided an 

analysis of MR that moves away from positivist conceptions of explanation and reduction and 

operates instead within causal explanatory frameworks. Within such frameworks, I argued that 

MR can be construed as a thesis about the structure of causal explanations rather than a thesis 

about relations between kinds that figure into different taxonomic systems. The substance of the 

account of MR I developed is straightforward: multiple realization occurs when functions are 

stable—i.e. relevantly similar in their causal roles within some containing system—despite 

causally relevant differences in the ways the function is performed. 

My second main aim in chapter 2.0 was to substantiate my account of MR through empirical 

examples of functional robustness in neuroscience. I argued that the traditional philosophical 

considerations that have surrounded MR (e.g. nomicity, projectibility, causal individuation) fail to 

adequately track important features of these empirical cases. This should perhaps be unsurprising 

given that traditional debates about MR are based on an outmoded framework of explanation and 

reduction in the special sciences. 

One might worry, however, that interpolating MR into causal explanatory frameworks and 

aligning it with functional robustness might sacrifice much of what is philosophically interesting 

about MR in the first place. In particular, debates about MR have generally focused on its ability 

to secure the autonomy of psychology (or higher-level sciences, more generally) from 

neuroscience (or lower-level sciences, more generally). Within the positivist framework, this is the 

natural way to characterize the epistemic significance of multiple realization. In that framework, 
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multiple realization is cast as a thesis about the natural kind terms that figure into natural laws. If 

the natural kinds of a higher-level science are multiply realized by the kinds in the lower-level 

science, then the bridge principles that map between those kinds and are necessary for logical 

derivation are blocked. By contrast, in causal frameworks, rather than this comparatively thin 

epistemic thesis about autonomy, multiple realization instead implies a range of more nuanced 

epistemic consequences about causal discovery, the structure of causal explanation, how we 

proceed with causal investigation, and causal hypothesis testing. My aims in chapters 3.0 and 4.0 

were to explore some of those epistemic consequences. 

In chapter 3.0, I argued that systems that exhibit robustness will tend to violate causal 

faithfulness. I offered detailed analysis of the example of robustness of burst firing in Purkinje 

cells and showed how this example demonstrates a violation of faithfulness. I argued that the key 

feature driving robustness in this case is a form of parameter coupling that is well characterized in 

the causal dynamics of the system. This parameter coupling demonstrates how failures of the CFC 

can not only fail to be probability zero but can also be highly likely. I argued further that robustness 

is likely to be found in complex systems that maintain stable functions across timescales that 

exceed the lifespan of the component parts and processes that support those functions. I concluded 

by arguing that this likelihood of failures of faithfulness has significant consequences for both 

causal hypothesis testing and causal discovery. 

In chapter 4.0, I explored the consequences of functional robustness for theories of causation, 

explanation, and methods of causal investigation. I offered a modification to the standard definition 

of modularity in interventionist theories of causation and argued that this amended notion of 

modularity is preferable for a variety of reasons. I then considered Mitchell’s argument that 

functional robustness undermines modularity. I argued, in contrast, that there are multiple 
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interpretations available for the anomalous genetic knockout experiments that are the core of her 

argument. I showed that modularity, as a methodological principle, retains significant value in this 

domain by encouraging researchers to continue searching for new phenotypes associated with 

particular gene knockouts. I went on to argue that in cases where functional robustness does in fact 

occur, it nonetheless is not incompatible with modularity. I argued to the contrary that modularity 

is a crucial aspect of causal investigations into the mechanisms that enable robustness. Finally, I 

contended that the real consequence of functional robustness in these domains is its implication of 

causal cyclicity in the form of feedback control. I concluded by exploring some of the 

consequences of causal cyclicity for theories of causation and methods of causal investigation. 

The epistemic consequences of robustness that I explored in chapters 3.0 and 4.0 diverge 

significantly from the traditional epistemic consequences that have been associated with MR. That 

should, however, be a welcome result. The shift in framing for MR that I advocated in chapter 1.0 

influences not only where we should look for phenomena that exemplify MR but also what 

consequences MR should have for the epistemology of the sciences it factors into. To this end, I 

have only scratched the surface. There are a number of avenues of related and future research that 

are worth highlighting. 

In particular, non-causal or non-mechanistic explanation has recently been a hot topic in 

philosophy of science (e.g. Batterman and Rice 2014, Chirimuuta 2018, Lange 2017, Ross 2015). 

Proponents of such explanations, generally, do not hark back to positivist views of explanation, 

but rather forge into interesting examples that test the limits of the causal frameworks of the new 

mechanists and interventionists that have been a focus of this dissertation. Other proponents of 

mechanistic explanation have also recently sought to extend the framework to network 

explanations (e.g. Bechtel 2017). The examples of functional robustness considered in this 
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dissertation are relevant to these debates. On one hand, robust functions seem to preclude causal 

analysis in terms of a single underlying causal mechanism. Indeed, the examples of robustness 

tend to show that there are multiple causal mechanisms that can support the same function (of 

course, the crux here is how mechanisms are individuated). Further, some of the same methods 

that proponents of non-causal explanation focus on, in particular dynamical models, have been 

used to understand what perturbations push robust systems out of their operable ranges. These 

models clearly play a role in homing in on the causal dynamics of these systems, but it is an 

interesting question whether the models should be regarded as explanatory. Much of this ground 

has already been covered in recent literature, but it is worth considering whether the examples of 

functional robustness bear on these debates in new and interesting ways. 

Another topic that merits further exploration is that of causal inference in fMRI. I intimated in 

chapter 3.0 that failures of causal faithfulness are relevant to causal discovery in fMRI. To the 

extent that neural systems are robust and thus likely to generate failures of the CFC, this will 

confound a number of causal discovery algorithms that have currently been employed in efforts to 

recover functional connectivity from fMRI data.45 It is often unclear exactly the extent to which 

these discovery algorithms assume the CFC. In some cases, however, it is transparent. For instance, 

the PC-algorithm begins with all possible edges connecting nodes in a graph, and then eliminates 

connections for variables that are independent or conditionally independent (thus transparently 

assuming the CFC).46 Cashing out the full implications of failures of the CFC for such algorithms 

 

45 See Henry and Gates (2017) for an excellent review of these causal discovery algorithms and the extent of their 
application to fMRI data. 
46 See Spirtes and Glymour (1991) for details of the algorithm. See Joshi et al. (2010) for an application of the 
algorithm to fMRI data. 
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as well as their application to fMRI data is a potentially valuable extension of the research 

performed in chapter 3.0. 

Finally, the issues raised toward the end of chapter 4.0 with respect to timescales and 

interventionism deserve further exploration. There are two issues here worth highlighting. The first 

can be tied in with the above considerations regarding the significance of robustness for fMRI 

research, though it also has more general implications. Specifically, there is a methodological 

concern that can be raised regarding temporal resolution and sampling rates of data used for causal 

modeling. Note, for instance, that the temporal resolution of fMRI tends to be on the order of 

several seconds; this is obviously a problem if the phenomena one is interested in involves 

feedback control processes that occur over shorter timescales (and in the case of neural systems it 

is entirely possible that they will). 

The second point involving issues of timescales is that different experimental interventions 

often operate on different timescales. This is evident, for instance, in the difference between 

pharmacological knockout and genetic knockout. The notion of ideal intervention in play in 

interventionist accounts of causation fails to capture this because ideal interventions are framed in 

a way that is timescale insensitive. Ideal interventions are, of course, in-principle interventions, so 

one could argue that these differences in timescale of (in-practice) experimental techniques do not 

actually pose a challenge. However, these different interventions often reveal distinct causal 

mechanisms that occur on different timescales. This is again evident in the two distinct 

mechanisms sustaining Purkinje cell burst firing revealed in Swensen and Bean’s (2005) study. In 

other words, the differences in timescale of intervention techniques does not simply reflect 

tradeoffs due to practical limitations of current technology, but instead actually tracks differences 

in the timescale on which phenomena in the world are stable. Interventionism is intended to 
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provide an account of the content of causal claims. To the extent that causal phenomena are stable 

on different timescales, some different forms of temporal indexing will be necessary to adequately 

characterize those phenomena. Building this kind of timescale sensitivity into the interventionist 

framework is a non-trivial task. For instance, it will involve not only characterizing the timescale 

over which the intervention occurs, but also the timescale over which other causal factors in the 

system are held fixed (or treated as constant). This is a bigger project than can even be thoroughly 

outlined here but exploring the implications of timescale relativity in causation may provide some 

important revisions to the interventionist framework. 
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