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Quantum chemistry is a useful tool that provides insight into the properties and behavior

of chemical systems. Modern software packages have made quantum chemistry methods more

easily accessible, and the continued increase in available computational resources has allowed

them to be applied to larger systems at higher levels of theory. Two significant problems that

the field faces are the high computational complexity of high-level methods and the shift

toward parallelism in high performance computing architectures. This work examines the

treatment of weakly interacting molecular systems with the fixed-node diffusion Monte Carlo

(DMC) method. DMC and other quantum Monte Carlo (QMC) methods offer a possible

solution to both of the aforementioned problems: they can produce near-exact results with a

lower scaling (with respect to problem size) than other similarly-accurate methods, and they

are inherently parallel, so there is little additional cost associated with distributing the work

of a single QMC calculation across a large number of processing units.

The only error in DMC that is not systematically improvable is the constraint of a fixed

nodal surface of the many-particle wave function of the system being studied. There are

many cases in which a single Slater determinant trial function is sufficient to obtain accurate

results, but there are others in which more sophisticated multi-determinant trial functions

are necessary. Furthermore, it is non-trivial to generate nodal surfaces of similar quality for

isolated and interacting molecules, so cancellation of errors is not guaranteed. We examine

the use of different single- and multi-determinant trial functions in DMC calculations on

small chemical systems with the goal of further understanding how to construct appropriate

trial functions for molecules and clusters.
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1.0 Introduction

Electronic structure theory encompasses a variety of methods that are used in solid-state

physics, materials science, and chemistry. These methods allow one to calculate properties

of molecules and solids from first principles by solving the Schrödinger equation. With a

few exceptions (involving small numbers of particles and/or a high degree of symmetry),

this equation cannot be solved exactly; approximations must be made, and different ap-

proximations give rise to the many different methods in electronic structure theory. These

approximations can be of different types, including the form of the wave function, the type

and size of the basis set, the terms included in the Hamiltonian, and the methods used for

evaluating certain terms.

In general, the more accurate ab initio methods are more computationally demanding.

One of the most basic ab initio methods, Hartree-Fock theory, formally scales as O(N4),

where N is the size of the basis set. It is computationally inexpensive, but due to its failure to

describe electron correlation, it is not accurate enough to reliably predict chemical properties.

In spite of its deficiencies, Hartree-Fock calculations are useful for defining an initial set of

orbitals to be used in correlated methods.

Second-order Møller-Plesset perturbation theory1 is slightly more computationally ex-

pensive, with O(N5) scaling, but it recovers the most important correlation effects missed

by Hartree-Fock, and it is a valuable approach for the study of weakly-correlated systems.

Coupled cluster with singles, doubles, and perturbative triples2 is reliably accurate for systems

that are not strongly correlated, but its O(N7) scaling (where N is now a general measure

of system size rather than strictly the number of orbitals) limits its applicability to larger

systems. Full configuration interaction, which gives the exact nonrelativistic energy in a

particular basis, has a cost which scales exponentially with system size, so it cannot be used

for systems with more than a few dozen correlated electrons.

Quantum Monte Carlo methods are becoming more popular as the world’s largest

computers increasingly rely on parallelism for performance. One of these methods, diffusion

Monte Carlo (DMC),3–5 will be described in this chapter, and results of DMC calculations

1



will be presented in later chapters. DMC scales roughly as O(N3M), where N is the number

of electrons and M is the number of Slater determinants in the trial function. In addition

to this low-scaling computational complexity, DMC also benefits from nearly ideal parallel

scaling —there is negligible overhead required to distribute the computational work of a

single DMC calculation across many processing units. This makes it well-suited for modern

high-performance computing.

With its O(N3) scaling, density functional theory is an inexpensive alternative to wave

function-based ab initio methods. Ref. [6] offers a recent review of the performance of 200

functionals applied to several classes of problems: there are several functionals which perform

well (RMS errors below 1 kcal mol−1) across many of the test sets, but there are some sets for

which no functional has an RMS error below a few kcal mol−1. While DFT is useful in studies

of systems for which appropriate functionals have been developed and shown to work, there

is (in practice) no universal functional that will reliably give accurate results for any system,

and the error due to the use of an inexact functional is not systematically improvable.

1.1 The electronic Schrödinger equation

The work described in the following chapters concerns the calculation of properties

(primarily energies) of electronic systems. Such systems are assumed to be well-described by

the non-relativistic time-independent electronic Schrödinger equation,

ĤΨ(~r1, . . . , ~rN) = EΨ(~r1, . . . , ~rN) (1.1)

where {~r} represents the positions of the electrons, Ĥ is a Hamiltonian, and E is the energy

associated with the system described by the wave function Ψ. For the purposes of this work,

we will consider the nonrelativistic electronic Hamiltonian for a system of N electrons and

M ions:

Ĥ = −
N∑
i=1

~2

2me

∇i
2 + e2

4πε0

∑
i<j

1
|~ri − ~rj|

−
N∑
i=1

M∑
A=1

ZA

|~ri − ~RA|
+
∑
A<B

ZAZB

|~RA − ~RB|

 (1.2)
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where the first term is the operator corresponding to the kinetic energy of the electrons, and

the remaining three terms are the operators corresponding to electron-electron, electron-ion,

and ion-ion potential energies due to Coulomb interactions. In everything that follows,

Hartree atomic units will be used (i.e. the mass of an electron me, reduced Planck’s constant

~ = h
2π , the elementary charge e, and the Coulomb constant ke = 1

4πε0
will all be equal to one.

Wave function-based electronic structure theory methods rely on applying a set of

constraints to (or assuming a certain form of) the many-electron wave function for a given

system. The wave function is then optimized within these constraints to give an approximate

solution of the electronic Schrödinger equation. Equation (1.1) describes the effect of the

Hamiltonian operating on its eigenfunctions, but it is also useful to be able to evaluate an

energy associated with a wave function which is not an eigenfunction of Ĥ. The expectation

value of the energy associated with any wave function Ψ can be found by left-multiplying the

equation by Ψ∗ and integrating over the electronic degrees of freedom:

E = 〈Ψ|Ĥ|Ψ〉 =
∫

d~x1

∫
d~x2 . . .

∫
d~xNΨ∗(~x1, . . . , ~xN)ĤΨ(~x1, . . . , ~xN), (1.3)

where Ψ is assumed to be normalized, and where we have now also included spin as well as

spatial coordinates (i.e., ~xi = (~ri, ωi) where ωi represents the spin coordinate of electron i).

In practice, it is impossible to find an exact solution to (1.1) for any system of more

than a few particles, so approximations must be made. One of these, the Born-Oppenheimer

approximation, is already implied by the omission of a term for the nuclear kinetic energy

operator in Eq. (1.2). In this approximation, the electronic part of the Schrödinger equation

is solved while the positions of the nuclei remain fixed. This makes the nuclear repulsion term

a constant; for simplicity, it will also be omitted from the following discussion in this chapter.

In atomic units, after dropping the nuclear repulsion term, the Hamiltonian simplifies to

Ĥ =
∑
i

[
−1

2∇
2
i −

∑
iA

ZA

|~ri − ~RA|

]
+
∑
i<j

1
|~ri − ~rj|

(1.4)

=
∑
i

ĥ(i) +
∑
i<j

v̂(i, j) (1.5)

where ĥ is a one-electron operator representing kinetic energy and electron-ion potential

energy, and v̂ is a two-electron operator representing the electron-electron repulsion energy.
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1.1.1 Slater determinants

Another useful approximation is the assumption that a many-electron wave function Ψ

can be represented as a product of single-electron functions, or orbitals ψ. A simple product

Ψ(~x1, . . . , ~xN) = ψi(~x1)ψj(~x2) . . . ψk(~xN) is not antisymmetric (i.e., it does not change sign

when the coordinates (spatial and spin) of two electrons are exchanged). A Slater determinant

is a linear combination of these products that is antisymmetric with respect to exchange:

Ψ(~x1, ~x2, ..., ~xN) = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψi(~x1) ψj(~x1) . . . ψk(~x1)

ψi(~x2) ψj(~x2) . . . ψk(~x2)
... ... . . . ...

ψi(~xN) ψj(~xN) . . . ψk(~xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.6)

= |ij...k〉 (1.7)

The orbitals in the determinant can be taken to be parametrized functions, and the variation

of these parameters gives flexibility to the orbitals and the wave function. For the rest of this

work, we assume that the set of orbitals is orthonormal (i.e.
∫

d~xψ∗i (~x)ψj(~x) = δij, where δij
is the Kronecker delta); this simplifies some equations without any loss of generality.

1.1.2 One-electron basis sets

In practice, the orbitals are represented in a basis set. In periodic systems, plane wave

basis sets are often used. These have the advantages of periodicity and orthogonality, and

they are eigenfunctions of the momentum operator (and the kinetic energy operator). An

infinite number of plane waves would provide a complete description of space (i.e., an orbital

expressed as a linear combination of such functions would be infinitely flexible within the unit

cell), so increasing the number of functions used will generally allow results to converge (or

at least be extrapolated) to the limit of this complete basis. For a central potential, spherical

harmonics are well-suited as angular basis functions, and there are several ways to represent

the radial behavior. For a hydrogen-like system (a potential proportional to 1
r
and a single

electron), Laguerre polynomials in r along with functions of the form e−ζr (where ζ > 0)

are eigenfunctions of the electronic Hamiltonian. Along with the spherical harmonics, these
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radial functions also form an orthogonal basis that is complete when an infinite number of

them are used (and as with the plane waves, they will converge to the limit of a complete

basis in a well-behaved way). In systems with more electrons and more nuclei, these are no

longer exact eigenfunctions, but when expansions are placed on each nucleus they still form a

useful basis that can be converged in a well-behaved way. Gaussian radial functions of the

form e−αr
2 (where α > 0) are much easier to work with than Slater-type functions (e−ζr).

They lack certain desirable properties (e.g., nuclear cusps, correct long-range behavior), but

their ease of use makes them preferable to Slater-type functions.a Atom-centered Gaussian

basis functions, or atomic orbitals (AOs), are used in most software packages that perform

ab initio calculations on finite systems.

Once a basis set has been defined, the spatial part φi of each orbital can be represented

as a linear combination of basis functions {χµ}:

φi(~r) =
∑
µ

cµi χµ(~r) (1.8)

Orbitals must also account for the spin coordinate of electrons. This can be accomplished by

multiplying the spatial part of the orbital by a spin basis function. The one-electron spin

basis is usually taken to be the eigenfunctions of ŝz (the z-component of the spin operator),

which form a complete orthonormal basis in this space:

ŝz |α〉 = 1
2 |α〉 (1.9)

ŝz |β〉 = −1
2 |β〉 (1.10)

〈α|β〉 = 0 (1.11)

〈α|α〉 = 〈β|β〉 = 1 (1.12)

aEfficient evaluation schemes exist for integrals over Slater-type orbitals involving only one or two centers,
but not for the three- or four-center integrals that are required for ab initio calculations on polyatomic
molecules.
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1.2 Hartree-Fock

One of the simplest ab initio electronic structure theory methods, Hartree-Fock, aims to

find the single-determinant wave function with the lowest energy in a given basis set. For

a Slater determinant Ψ composed of a set of orthonormal orbitals, the expression for the

energy simplifies to:

E = 〈Ψ|Ĥ|Ψ〉 =
∑
i

〈i|ĥ|i〉+ 1
2
∑
i,j

(
〈ij|ij〉 − 〈ij|ji〉

)
(1.13)

where the sums are over occupied orbitals, and

〈i|ĥ|j〉 =
∫

d~x1 ψ
∗
i (~x1)ĥ(1)ψj(~x1) (1.14)

〈ij|kl〉 =
∫ ∫

d~x1 d~x2 ψ
∗
i (~x1)ψ∗j (~x2)v̂(1, 2)ψk(~x1)ψl(~x2) (1.15)

As described above, the molecular orbitals (MOs) are represented as linear combinations of

basis functions (for this discussion, these will be described as AOs, but they can be any type

of basis function).

The method of Lagrange multipliers can be used to minimize the single-determinant

energy in the parameter space of the coefficients cµi of Eq. (1.8) while enforcing the constraint

that the MOs remain normalized. This leads to an eigenvalue problem where the optimal

MOs are eigenfunctions of the Fock operator f̂ :

f̂(1)ψi(~x1) = εiψi(~x1) (1.16)

f̂(1) = ĥ(1) + v̂HF (1), (1.17)

where εi is the orbital energy associated with the MO ψi, and the argument of f̂ refers to

the fact that it is acting on electron 1 The first term on the right-hand side of Eq. (1.17) is

the one-electron operator in Eq. (1.5). The second term, v̂HF , is an approximation of the

two-electron operator in Eq. (1.5). It represents the potential due to the average distribution

of the other N − 1 electrons in the system, and it is formed by summing over all occupied

orbitals and integrating over the coordinates of one electron.

v̂HF (1) =
occ.∑
k
k 6=i

∫
d~x2ψ

∗
k(~x2) 1

r12
(1− P12)ψk(~x2) (1.18)
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where the sum runs over all occupied MOs, and the P12 operator permutes the coordinates

of electrons 1 and 2. The restriction on the sum in Eq. (1.18) would necessitate a different

v̂HF (and thus a different Fock operator) for each orbital that it acts on; however, the k 6= i

restriction can be removed with no effect on the sum. The sum over all N occupied orbitals

would appear to imply that ˆvHF acting on an electron in ψi will describe repulsion between

that electron and itself (because it is included in the sum), but this term is exactly cancelled

due to presence of the exchange term P12. If we take ˆvHF (1) to act on ψi(~x1), then in the

k = i term of the sum in Eq. (1.18), the integrand will be zero:

(1− P12)ψi(~x2)ψi(~x1) = ψi(~x2)ψi(~x1)− ψi(~x1)ψi(~x2) = 0 (1.19)

Through v̂HF , the Fock operator depends on the occupied MOs, so this equation is solved

iteratively in a self-consistent manner: using an initial set of MOs, the Fock operator is

formed; solution of Eq. (1.16) gives a new set of MOs and associated MO energies, which can

be used to form a new Fock operator. This is repeated until convergenceb. The determinant

obtained in this way is the Hartree-Fock wave function, and its energy is the Hartree-Fock

energy.

1.3 Electron correlation

Electron correlation is a general term describing the correlated motion of electrons. It is

useful to separate this correlation into different types.

1.3.1 Exchange correlation

Exchange (or Fermi) correlation arises from the fact that electrons are Fermions, so they

must be described by an antisymmetric wave function. This means that the wave function

must have a node (i.e., it must be equal to zero) wherever the coordinates (spatial and spin)

of two electrons coincide. This has the effect of decreasing the likelihood that two electrons

bTypically, this is done until the change in total energy or some measure of the electron density difference
between two successive iterations falls below a small threshold
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with the same spin will be found near each other in space. This behavior is solely due to the

antisymmetry of the wave function, so even a simple single Slater determinant wave function

will describe this type of correlation.

1.3.2 Coulomb correlation

Coulomb correlation (or just correlation) describes the correlated motion due to electrons

repelling each other through Coulomb interactions. A complete description of these interac-

tions includes instantaneous (rather than average) positions of electrons. Hartree-Fock, a

mean-field theoryc, does not account for this, so it is said to be uncorrelated. The electronic

correlation energy is defined as the difference between the Hartree-Fock limitd and the exact

nonrelativistic energy of a system. For the remainder of this work, the term “correlation” will

refer only to this Coulomb correlation.

1.4 Determinants as a basis

Just as a set of AOs can form a basis in which to represent a set of one-electron orbitals,

a set of Slater determinants forms a basis in which many-electron wave functions can be

represented. The Hartree-Fock energy only depends on the occupied orbitals, but if the basis

set has more functions than electrons (which is nearly always the case), the Fock operator

will have additional orbitals (virtual orbitals) which are not occupied in the Hartree-Fock

determinant. If one or more of the occupied MOs in the HF determinant is replaced by

these virtual orbitals, a new Slater determinant is formed. A singly-excited determinant is

formed when one occupied MO is replaced by a virtual MO, a double-excited determinant

is formed when two occupied MOs are replaced by virtual MOs, and so on up to N -tuple

excitations. While the functional form of an individual determinant cannot describe any
cHere, the term “mean-field” describes the fact that electron repulsion is accounted for by averaging over

the positions of all electrons to form a field which each individual electron interacts with. (Note that because
this includes an exchange term, each electron in an N -electron system only “sees” the other N − 1 electrons
in this field.)

dThe Hartree-Fock limit is the energy that would be obtained from a Hartree-Fock calculation in the limit
of a complete basis set.
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correlated behavior of electrons, a linear combination of determinants can describe this

correlation. A simple example of this can be seen with a minimum basis set description of

H2, where the basis consists of one s-type AO on each nucleus. The MOs in this case are

determined by symmetry:

σg(~r) = χA(~r) + χB(~r) (1.20)

σu(~r) = χA(~r)− χB(~r) (1.21)

(1.22)

where χA(χB) is the AO centered on nucleus A(B), and normalization constants have been

omitted for simplicity. The lowest-energy determinant is

Ψ1 = |σgσg〉 (1.23)

Ψ1(~x1, ~x2) = 1√
2

∣∣∣∣∣∣∣
σg(~x1) σg(~x1)

σg(~x2) σg(~x2)

∣∣∣∣∣∣∣ (1.24)

= 1√
2

∣∣∣∣∣∣∣
σg(~r1)α(ω1) σg(~r1)β(ω1)

σg(~r2)α(ω2) σg(~r2)β(ω2)

∣∣∣∣∣∣∣ (1.25)

= 1√
2
σg(~r1)σg(~r2) [α(ω1)β(ω2)− β(ω1)α(ω2)] (1.26)

where the overbar represents multiplication by the β spin function, and lack of an overbar

represents multiplication by the α spin function. After integrating over spin coordinates, the

probability density P (~r1, ~r2) of finding electron 1 at ~r1 and electron 2 at ~r2 can be factored

into a product form p(~r1)p(~r2), where it is clear that the spatial distributions of the two

electrons are completely independent of each other:

P (~r1, ~r2) =
∫

dω1

∫
dω2 |Ψ1(~x1, ~x2)|2 (1.27)

= |σg(~r1)|2 |σg(~r2)|2 (1.28)

This can also be thought of as a linear combination of half and half ionic (with both electrons

near the same nucleus) and covalent (electrons on opposite nuclei) wave functions:

σg(~r1)σg(~r2) = [χA(~r1)χA(~r2) + χB(~r1)χB(~r2)] + [χA(~r1)χB(~r2) + χB(~r1)χA(~r2)] (1.29)

= Φion + Φcov (1.30)
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Another determinant with the same symmetry is Ψ2 = |σuσu〉. This determinant has

a higher energy than Ψ1, and it also lacks any description of spatial correlation between

electrons. As with Ψ1, this also contains half ionic and half covalent character, but these

terms now have opposite signs:

σu(~r1)σu(~r2) = [χA(~r1)χA(~r2) + χB(~r1)χB(~r2)]− [χA(~r1)χB(~r2) + χB(~r1)χA(~r2)] (1.31)

= Φion − Φcov (1.32)

If we use these two determinants as a basis to form a new wavefunction Φ = c1Ψ1 + c2Ψ2,

the resulting wave function is now correlated. Because of the difference in sign between Φion

and Φcov in Ψ2, these two terms will no longer have the same weight in Φ. If the energy of Φ

is minimized by varying c1 and c2, the resulting wave function will have less ionic character

(i.e. the electrons will be less likely to be located near the same nucleus).

1.5 Correlated methods

Correlated methods go beyond the mean-field approximation to account for the correlated

motion of electrons; in general, they are more accurate and more expensive than Hartree-Fock.

As described above, a wave function comprised of a linear combination of Slater determinants

has the flexibility to describe correlated behavior of electrons. This can be done in any set

of MOs, although we will primarily focus on the case where the MOs are obtained from a

Hartree-Fock calculation. Post-Hartree-Fock methods operate in this space of determinants

formed from the converged Hartree-Fock orbitals. The Slater-Condon rules describe the

matrix elements of the Hamiltonian in this basise:

〈Ψ|Ĥ|Ψ〉 =
∑
i

〈i|ĥ|i〉+ 1
2
∑
i,j

〈ij||ij〉 , (1.33a)

〈Ψ|Ĥ|Ψa
i 〉 = 〈i|ĥ|a〉+

∑
j

〈ij||aj〉 , (1.33b)

〈
Ψ
∣∣∣Ĥ∣∣∣Ψab

ij

〉
= 〈ij||ab〉 , (1.33c)

eThese are applicable to any basis of determinants created from a set of orthonormal MOs.
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where Ψa
i represents the determinant created by removing orbital ψi from Ψ and replacing it

with ψa (ψi is occupied in Ψ, and ψa is not), and the sums are over all occupied orbitals. If

all of the MOs (occupied and virtual) are orthonormal (as we have been assuming), then the

set of all Slater determinants that can be formed from these MOs is also orthonormal.

1.5.1 Configuration interaction

Configuration interaction (CI) is conceptually one of the most simple post-HF methods.

In its simplest form, a CI wave function is represented as a linear combination of Slater

determinants constructed from a single set of orthonormal molecular orbitals. This is usually

expressed as a linear expansion of excited determinants,

|ΨCI〉 = (1 + Ĉ) |Ψ0〉 , (1.34)

Ĉ =
N∑
m=1

Ĉm (1.35)

Ĉ1 =
∑
i,a

cai τ̂
a
i (1.36)

where τ̂ai is a single-excitation operator, and Ĉm is a linear combination of m-tuple excita-

tion operators. Using these determinants as a basis, one can use the Slater-Condon rules

(Eq. (1.33a)) to construct the matrix representation of the Hamiltonian, which will be sparse

(matrix elements between determinants that differ by more than two orbitals will be zero).

Each eigenvector of this Hamiltonian matrix corresponds to a CI wave function with an

energy given by the corresponding eigenvalue. Often, one is only interested in at most a few

of these states, so it is possible to use efficient algorithms which return only a few eigenvalues

(rather than diagonalizing the entire matrix).

1.5.1.1 Full configuration interaction Full CI (FCI) uses as a basis all possible deter-

minants (possibly with some symmetry restrictions) with a given number of electrons. This

yields the exact nonrelativistic energy in a given basis, but it is prohibitively expensive for

systems above a moderate size.

The number of determinants grows as
(

2M
N

)
, where N and M are the number of electrons

and spatial orbitals, respectively. If one restricts Sz to be a certain value by fixing the
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number of spin-up and spin-down electrons (N↑ and N↓), then this is reduced to
(
M
N↑

)
×
(
M
N↓

)
,

which, although smaller, still scales exponentially (for a fixed ratio of N/M , this will scale

exponentially with N ; in certain limiting cases it is not exactly exponential).

1.5.1.2 Truncated configuration interaction One can also truncate Ĉ at a certain

order of excitation in order to decrease the size of the wave function: Ĉ = Ĉ1 gives CI singles

(CIS); Ĉ = Ĉ1 + Ĉ2 gives CI singles and doubles (CISD), and likewise for triples (CISDT),

quadruples (CISDTQ), etc. The additional number of determinants at excitation level m

grows as ∼
(
N
m

)
×
(

2M−N
m

)
, so even though these truncated CI approaches are less expensive

than FCI, they are still very costly (∼ O(Mm+2)−O(M2m+2)).

One significant disadvantage of truncated CI is that it is not size consistent. If EA
CISD and

EB
CISD are the energies of molecule A and molecule B evaluated with CISD, and EA+B

CISD is the

energy of the non-interacting system comprised of molecules A and B separated by a long

distance, then EA+B
CISD 6= EA

CISD + EB
CISD. This is due to the fact that certain excitations in the

direct product of the two individual molecule CISD wave functions are not present in the

combined system (e.g. a double excitation on A and a double excitation on B is a quadruple

excitation in A+B, which is not present in CISD).

1.5.1.3 Occupation restrictions Another way to reduce the cost of CI calculations is

to disallow certain excitations from the reference configuration. The most common type of

this restriction is to use a frozen core (i.e., to only include configurations in which the core

orbitals are all fully occupied). It is also often useful to disallow excitations into some of the

higher-lying virtual orbitals. Perhaps the simplest way to do this is with a complete active

space (CAS) CI: A certain set of orbitals is defined to be the active space; the occupancies

of all other orbitals are fixed, and the determinant basis is defined to include all possible

rearrangements of electrons within the active orbitals (while keeping the total number of

electrons constant).
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1.5.2 Coupled cluster

Coupled cluster is similar to CI in that it represents a correlated wave function in terms of

excitations from a reference determinant, but it differs from CI in the way that the excitation

operators are applied. Whereas CI uses a linear expansion over excitation operators, coupled

cluster uses an exponential expansion:f

|ΨCC〉 = eT̂ |Ψ0〉 , (1.37)

T̂ =
N∑
m=1

T̂m (1.38)

T̂1 =
∑
i,a

tai τ̂
a
i (1.39)

This exponential form means that even when T̂ is truncated, the wave function will still

contain excitations at all orders:

eT̂ = 1 + T̂ + T̂ 2

2! + T̂ 3

3! + . . . (1.40)

= 1 + T̂1 +
(
T̂2 + T̂ 2

1
2!

)
+
(
T̂3 + T̂1T̂2 + T̂2T̂1 + T̂ 3

1
3!

)
+ . . . (1.41)

Unlike with truncated CI, truncated CC is size consistent. The most frequently used variant

of CC is CCSD(T), in which the singles and doubles are treated fully, and a perturbative

correction is applied to approximate the effect of triples. In cases where HF is a good

reference, CCSD(T) gives accurate results, but it scales as ∼ O(n7)g with system size n, so it

is expensive for large systems.

fThis can also be expressed as a product of excitation operators, but the exponential form is usually used.
gthe leading term in the complexity scales as O(o3v4) in the number of occupied orbitals o and virtual

orbitals v
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1.5.3 Selected configuration interaction

The aforementioned CI methods all suffer from scaling issues due to their equivalent

treatment of all determinants within a particular subset (e.g. in CISD, all singles and doubles

are included in the space that is diagonalized, regardless of how strongly they contribute

to the wave function). In one study of relative importance of different determinants in CI

calculations on H2O, Ne, CO, and C2, it was found that ~99.99% of the correlation energy

could be recovered using only a small fraction of the full determinant space.7 In light of this

fact, it would be useful to have a method that selects determinants to include in the wave

function based on some measure of their importance.

One class of methods that has been developed for this purpose is selected CI (SCI).

In general, SCI methods are iterative, and at each iteration they evaluate some or all of

the determinants that are connected (by single or double excitations) to the current wave

function. From these connected determinants, the most important ones are added to the

wave function for the next iteration. There are different metrics by which these determinants

can be evaluated and selected, and this choice is part of what distinguishes the many different

SCI methods.

The basic ideas of SCI have been around for decades,8–10 but the field has recently

seen a resurgence in popularity with the development of several new SCI methods11–16 as

well as improvements to old methods.17–20 These methods allow near-FCI level results at a

fraction of the cost. They can also be used in a black-box way, without relying heavily on

any “chemical intuition” from the user. This separates them from traditional restricted CI

methods (e.g. CAS, RAS, ORMAS), which are most useful when the user is able to specify

chemically-relevant active spaces which include the most important determinants but are not

so large as to make the calculations prohibitively expensive.
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1.6 Monte Carlo methods

1.6.1 Monte Carlo integration

Eq. (1.3) shows that the energy of a square integrable wave function can be evaluated by

performing a multidimensional integral. In the HF and post-HF methods described above,

one often chooses to represent orbitals in terms of simple functions (usually Gaussians) in

order to keep the integrals easy to analytically evaluate; however, if one is willing to evaluate

the integrals numerically it becomes possible to evaluate the energy corresponding to an

arbitrary wave function. This allows the use of wave functions with some of the constraints

that describe the exact wave function (e.g., nuclear cusps, electron-electron cusps, explicit

r12 dependence, long range behavior).

Because the integral over all spatial coordinates of an N-electron wave function in 3-

dimensional space spans 3N dimensions, standard quadrature methods (i.e., those using fixed

abscissas and weights) are not efficient for systems of more than a few electrons. In general,

for a method where the error converges as n−p in one dimension, the error in D dimensions

will converge as n−p/Dtot , where n is the number of points in each dimension and ntot = nD is

the total number of points.

〈f〉 = 1
b− a

∫ b

a
f(x)dx ≈ 1

n

n∑
i=1

wif(xi) (1.42)

Instead of integrating by taking a weighted sum of values of the integrand at fixed points

within the integration domain, it is possible to approximate the same integral by a sum of

values of the function evaluated at randomly selected points; this is known as Monte Carlo

integration. The simplest way to implement this would be to take a set of points xi sampled

randomly from a uniform distribution over the domain of integration. The mean value 〈f〉 of

the integrand f(x) can be approximated by taking the mean f of the integrand evaluated at
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these points:

〈f〉 = 1
b− a

∫ b

a
f(x)dx (1.43)

fn = 1
n

n∑
i=1

f(xi), xi ∼ U(a, b) (1.44)

〈f〉 ≈fn ±
σf√
n

(1.45)

where U(a, b) is the uniform distribution on the interval (a, b), and the notation xi ∼ p means

that the random variates xi are sampled from distribution p. The error in the approximation

given in Eq. (1.44) depends on the standard deviation σf of f(x), and it decreases as n−1/2,

so that in the limit of infinite n, this sum converges to the exact value of the integral. This

convergence is statistical, not spatial, so it does not depend on the dimensionality of the

integral.

1.6.2 Importance sampling

The simple Monte Carlo method described in the previous section has two significant

limitations: it is not possible to sample uniformly over an infinite domain (e.g., when

integrating over an N -electron wave function which spans all of R3N), and there is no way

to decrease the σf factor in the error estimate. One way to solve both of these problems is

to transform the integrand and integration variable. Consider some function p(x) which is

defined on x ∈ [a, b] such that it is positive everywhere and normalized
∫ b
a p(x)dx = 1. The

integral in Equation (1.43) can be rewritten as

I =
∫ b

a

(
f(x)
p(x)

)
p(x)dx (1.46)

=
∫ b

a
g(x)p(x)dx (1.47)

where g(x) = f(x)
p(x) . The cumulative distribution function (CDF) y(x) of the distribution p(x)

is

y(x) =
∫ x

a
p(x′)dx′, (1.48)
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and this allows integration over y instead of x:

I =
∫ 1

0
g(x(y))dy (1.49)

≈ 1
n

n∑
i=1

g(x(yi)), yi ∼ U(0, 1) (1.50)

≈ 1
n

n∑
i=1

g(xi), xi ∼ p (1.51)

where x(y) is the inverse of y(x). This transformation solves the problem of integrating over

an infinite domain, and with a judicious choice of p(x) (so that σg is small) it can also reduce

the prefactor in the error estimate.

Because x(y) is the inverse CDF of p(x), taking x(yi) where yi are sampled uniformly

from [0, 1) is equivalent to sampling xi directly from p. If this is to be done directly (i.e.,

first sample yi and then transform according to the inverse CDF), it limits the choices of p

to distributions for which the inverse CDF can be evaluated. This greatly limits the ability

to choose a distribution that will give a low σg, so it is useful to find another method to

sample from p. One such method is the Metropolis-Hastings algorithm.21,22 This can be used

to sample from any probability distribution p(x) as long as it can be evaluated for any x in

the integration domain.

Beginning from some initial position x, a new position x′ is chosen from a transition

distribution T (x′ ← x); the move to x′ is accepted with probability A(x′ ← x). This

acceptance probability is not uniquely defined, but it must satisfy the following condition

(detailed balance):

A(x′ ← x)
A(x← x′) = T (x← x′)p(x′)

T (x′ ← x)p(x) (1.52)

A common choice for A is:

A(x′ ← x) = min
(

1, T (x← x′)p(x′)
T (x′ ← x)p(x)

)
(1.53)

If a set of points is generated according to this procedure, they will be distributed according

to p(x).
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1.6.3 Variational Monte Carlo

The use of Monte Carlo integration to evaluate or optimize expectation values of quan-

tum mechanical operators is known as variational Monte Carlo (VMC). Consider a slight

modification to Eq. (1.3) in which the wave function is not normalized; this can be rearranged

to have the same form as Eq. (1.50):

E = 〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 (1.54)

=
∫

Ψ∗(R)ĤΨ(R)dR∫
Ψ∗(R′)Ψ(R′)dR′

(1.55)

=
∫ (

|Ψ(R)|2∫
|Ψ(R′)|2dR′

)
ĤΨ(R)
Ψ(R) dR (1.56)

=
∫
p(R)EL(R)dR (1.57)

E ≈ 1
n

∑
i=1

nEL(Ri), Ri ∼ p (1.58)

where R represents the positions of all electrons in the system, and EL(R) = ĤΨ(R)
Ψ(R) is the

local energy evaluated at R. The Metropolis-Hastings algorithm can be used to sample points

Ri from |Ψ|2, so this integral can be performed with any wave function as long as one can

evaluate the value and laplacian (for the kinetic energy contribution to EL) at any point

in space. Because consecutive points generated by this algorithm are not independent, the

statistical error of the approximation given by Eq. (1.57) will be greater than σEL√
n
. If one

defines the correlation time tcorr to be the average number of steps between independent

samples, then the error is given by σEL

√
tcorr√
n

= σEL√
m

where m = n/tcorr is the number of

independent samples.

1.6.4 Projector Monte Carlo

Projector Monte Carlo techniques23,24 are a class of methods that take advantage of the

fact that imaginary time evolution of a wave function projects out all but the lowest-energy

stationary state. The time-dependent Schrödinger equation describes the time evolution of a

wave function Φ(R, t) for a given Hamiltonian Ĥ.

i
∂

∂t
Φ(R, t) = ĤΦ(R, t) (1.59)
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When the imaginary unit is incorporated into the differential, the equation describes evolution

in imaginary time (τ = it).

∂

∂τ
Φ(R, τ) = −ĤΦ(R, τ) (1.60a)

= 1
2∇

2Φ(R, τ)− V (R)Φ(R, τ) (1.60b)

When the initial wave function Φ(R, 0) is expressed as a linear combination of eigenfunctions

φi(R) of Ĥ,

Ĥϕi(R) = Eiϕi(R) (1.61)

Φ(R, 0) =
∑
j

cjϕj(R)) (1.62)

it becomes apparent that propagation in imaginary time results in convergence to the wave

function of the stationary state with the lowest energy. Shifting the Hamiltonian by E0 will

give a stationary solution as τ →∞.

Φ(R, τ) = e−(Ĥ−E0)τΦ(R, 0) =
∑
j

cjϕj(R)e−(Ej−E0)τ (1.63)

lim
τ→∞

Φ(R, τ) = c0ϕ0(R) (1.64)

In general, these projector methods use repeated application of a short-time propagator to

project to the ground state. The methods differ in their representation of the electronic wave

function and in the form of the short-time propagator. Much of the rest of this work will

focus on one such method, fixed-node diffusion Monte Carlo (DMC).3–5,25–28
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1.6.5 Diffusion Monte Carlo

DMC represents the electronic distribution by a set of walkers moving through the space of

electronic coordinates. When considered separately, each of the two terms in the Hamiltonian

describes a time evolution process that is simple to simulate. If the potential energy term

were not present, the time evolution over an interval ∆τ could be simulated by having each

walker undergo a random walk with steps from R to R′ (diffusive steps) sampled according

to Eq. (1.65)

pdiff(R′ ← R) = (2π∆τ)−3N/2 exp
(
−|R −R′|2

2∆τ

)
(1.65)

If the kinetic energy term were not present, the time evolution could be simulated by scaling

the weight of each walker in the distribution by exp[(V (R)− E0)∆τ ] (branching steps). To

simulate time evolution due to both of these terms, one must take both branching and

diffusive steps. Because the kinetic and potential energy operators do not commute, there is

an error due to this method of modeling the time evolution.

eĤ∆τ = e(T̂+V̂ )∆τ = eT̂∆τeV̂∆τ + [V̂ , T̂ ]
2 ∆τ 2 +O(∆τ 3) (1.66)

By taking small time steps and alternating between diffusive and branching steps, this error

can be reduced. One can also eliminate the quadratic term in Eq. (1.66) with the second

order Trotter-Suzuki formula:

eĤ∆τ = e(T̂+V̂ )∆τ = eV̂∆τ/2eT̂∆τeV̂∆τ/2 +O(∆τ 3) (1.67)

By this process, the distribution of walkers converges to that of the wave function of the

ground state for the given potential. To correct for the error due to the use of a finite time

step, one typically performs several calculations at different time steps, and the resulting

energies are extrapolated to a time step of zero.

The representation of the wavefunction as an ensemble of unsigned walkers means that

it will correspond to a nodeless (i.e. bosonic) state. In order to apply DMC to fermionic

systems, antisymmetry of the wave function must be enforced. In practice, this is done by

forming a mixed density ρ(R, τ), which is the product of a trial wave function ΨT (R) and the

“exact” wave function Φ(R, τ) (exact within the constraint of the given nodal surface). This
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density will have the same nodes as the trial wave function. Because these nodes are fixed,

the density will not converge to that of the (nodeless) bosonic ground state, and the energy

obtained by sampling this density will be that of the lowest energy wave function with the

given nodal surface. Formation of the mixed density not only solves the problem of enforcing

antisymmetry, but it also reduces statistical error by improving sampling, and it changes the

physical interpretation of the walker distribution to a density rather than a wave function.

The time propagation of the mixed density differs from that of the exact wave function:

multiplication by ΨT changes the branching term and introduces a new drift term in the

equation. This process can be modeled in a similar manner as described above.

∂

∂τ
ρ(R, τ) = 1

2∇
2ρ(R, τ)−∇ · (Vd(R)ρ(R, τ))− (EL(R)− ET ) ρ(R, τ) (1.68)

Vd(R) = ∇ΨT (R)
ΨT (R) (1.69)

The drift velocity Vd(R) acts to steer walkers away from nodes and toward regions

where the magnitude of the wave function is larger. In the stochastic simulation of the time

evolution of the distribution of walkers, the drift term introduces a deterministic step to the

algorithm.

1.6.6 Improved trial functions

Because of the fixed-node error and the effect of the wave function variance on DMC

convergence, it is important to use an accurate trial function (i.e., one with a low variance

and with nodes that closely approximate those of the exact system). DMC can be useful for

calculating interaction energies between molecules/clusters: one can calculate the energy of

the individual monomers and of the interacting system and then subtract one from the other.

If the trial functions for all calculations are of similar quality, then the errors in each will

roughly cancel and an accurate interaction energy can be obtained; however, evaluation of

the quality of a trial function is not straightforward. In cases of weakly interacting molecules,

it is often sufficient to use a single-determinant (SD) trial function.29,30 In these systems, the

nodal surface near each monomer (i.e., near each region of high electron density) is relatively
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unchanged when the other parts of the system are added; however, there are counterexamples

of weakly interacting systems for which SD trial functions are not sufficient, some of which

will be discussed in later chapters.

1.6.6.1 Jastrow correlation factor In DMC calculations, a determinant (or linear

combination of determinants) D(R) of single-particle orbitals is usually multiplied by a

Jastrow factor31–33 exp[J({rij}, {riI})] which is a positive function that depends explicitly on

electron-electron and electron-nucleus distances rij and riI , respectively. Because the Jastrow

factor is strictly positive, it does not alter the nodal surface of the trial function,

ΨT (R) = D(R) exp[J({rij}, {riI})] (1.70)

so it has no effect on the fixed-node error; however, it does decrease the variance of the

trial function, which leads to improved importance sampling and faster convergence of the

calculated energy. The Jastrow functions J used in this work consist of one-body (electron-

nucleus), two-body (electron-electron) and three-body (electron-electron-nucleus) terms, J1I ,

J2, and J3I , respectively, where the subscript I refers to a unique nucleus.

J1I =
Nelec∑
i

χI(riI) (1.71)

J2 =
Nelec∑
i<j

u(rij) (1.72)

J3I =
Nelec∑
i<j

fI(rij, riI , rjI) (1.73)

In this work, the functions χI , u, and fI are either polynomials or cubic splines, and separate

u and fI terms are used depending on whether pairs of electrons have the same or opposite

spins.
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1.7 DMC trial functions: several case studies

As mentioned above, single determinant trial functions are often assumed to be sufficiently

accurate to obtain chemically accurate results when used in DMC calculations. The following

chapters present three case studies in which we explore this assumption.

1.7.1 Benzene dimer

The parallel displaced benzene dimer is a model for π-stacking, the attractive interaction

between aromatic rings. Chapter 2 describes a study of the use of SD trial functions to

calculate the strength of this interaction. We find that the binding energy is significantly

underestimated, and that more sophisticated trial functions are necessary.

1.7.2 H4

By placing four hydrogen atoms at the corners of a square and then stretching it to a

rectangular geometry, one obtains a simple model system that is easily tunable by varying

a single parameter. At the square geometry, the frontier orbitals are degenerate; as the

system is stretched, this degeneracy breaks, and at long distances it resembles two isolated H2

molecules (although not at equilibrium bond length). In Chapter 3, we calculate the energy

of this system with several DMC trial functions and with traditional quantum chemistry

methods. We show that a SD trial function fails to give accurate results at or near the square

geometry, but that it becomes more accurate as the system is stretched. We show how the

fixed-node error associated with the use of a SD trial function compares to several measures

of the near-degeneracy and multiconfigurational nature of the system, including the ROHF

triplet orbital gap, the size of the leading determinant coefficient in a CAS calculation, and

the correlation energy recovered by a CAS calculation.
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1.7.3 Be2

In Chapter 4, we calculate the binding energy of the beryllium dimer with DMC. For

this weakly-interacting system, SD trial functions do not give a quantitatively correct

binding energy. In small determinantal expansions, the fixed-node error is also not balanced

between the atom and the dimer. We describe a novel method for extrapolating to the full

configurational space and find that this gives an accurate binding energy (within 0.1 kcal mol−1

of the best experimental estimate).

1.8 Future work: CIPSI

It is clear that there are many cases in which it is non-trivial to generate DMC trial

functions for interacting systems that will result in a cancellation of fixed-node error between

the isolated monomers and the full system. A procedure that could reliably generate

multideterminant trial functions of similar accuracy for isolated and interacting monomers

would allow much more accurate DMC energies to be obtained over a wider variety of systems.

The SCI methods discussed above are promising candidates for this type of trial function

generation. Chapter 5, which is adapted from Ref. [20], describes new features implemented

in Quantum Package, a software package that can perform SCI calculations. Quantum

Package offers several ways to estimate and control the quality of a multideterminant wave

function. If certain measures of wave function quality are determined to be strongly coupled

to fixed-node error, this could allow more reliable cancellation of error in DMC calculations.
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2.0 Diffusion Monte Carlo Study of the Parallel Displaced Form of the

Benzene Dimer

The text and figures in this chapter have been reprinted with permission from Gasperich,

K.; D. Jordan, K., Diffusion Monte Carlo Study of the Parallel Displaced Form of the

Benzene Dimer. In Recent Prog. Quantum Monte Carlo, Tanaka, S., Roy, P.-N., Mitas, L.,

Eds.; ACS Symposium Series, Vol. 1234; American Chemical Society: 2016, pp 107–117, DOI:

10.1021/bk-2016-1234.ch007. Copyright 2016 American Chemical Society. The author’s

contribution to the work included performing all calculations, generating all figures, and

editing/revising the manuscript.

2.1 Summary

The diffusion Monte Carlo (DMC) method is used to calculate the interaction energy

of the parallel displaced form of the benzene dimer. The calculations were performed with

single-determinant Slater-Jastrow trial functions at time steps between 0.0025 and 0.04 a.u.,

allowing for extrapolation to zero time step. Our calculated interaction energy is considerably

smaller in magnitude than the best coupled cluster singles and doubles with perturbative

triples [CCSD(T)] estimate, leading us to conclude that there is a sizable fixed-node error

due to the use of a single-determinant trial function.

2.2 Introduction

The π-stacked parallel displaced (PD) form of the benzene dimer is an important test

system for examining the performance of electronic structure methods at describing dispersion

interactions.35–49 In addition to serving as a prototype for π stacking, it is also a prototypi-

cal system for which the Møller-Plesset second-order perturbation theory (MP2) method1
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significantly overbinds the dimer due to its overestimation of the dispersion contribution to

the interaction energy.50 Insight into the origin of the overbinding at the MP2 level can be

gained by considering the definition of the dispersion energy in terms of the Casimir-Polder

integral51 over complex frequencies of the polarizabilities of the two monomers. The MP2

dispersion energy is equivalent to that obtained from the Casimir-Polder integral employing

uncoupled Hartree-Fock (UCHF) polarizabilities of the monomers.52 In the case of the PD

form of the benzene dimer, the magnitude of the dispersion contribution is significantly

reduced if the coupled perturbed Hartree-Fock (CPHF) polarizability function is used instead

of the UCHF polarizability function in evaluating the integral.48,53,54 The coupled cluster

singles and doubles with perturbative triples [CCSD(T)] method,2 when used with sufficiently

flexible basis sets, provides a quantitatively accurate description of the interaction between

the benzene rings;55 however, due to its O(N7) scaling with respect to system size, this

approach is computationally prohibitive for much larger systems. This has led naturally to an

interest in lower-scaling methods that can achieve accuracies comparable to that of CCSD(T).

Diffusion Monte Carlo (DMC)3–5,25,27,28 is one such method that is being increasingly em-

ployed to characterize weak interactions in dimers and larger clusters as well as in molecular

crystals and layered materials. DMC has several advantages over CCSD(T), including lower

scaling (∼ O(N3)) with system size, weaker sensitivity to the basis sets employed, and better

scalability over large numbers of CPU cores.

Most of the error in DMC energies in the zero time step limit is due to the fixed-node

approximation, which is made to ensure that a Fermionic wave function results. The vast

majority of DMC calculations employ a single Slater determinant of Hartree-Fock or density

functional theory (DFT) orbitals to impose the fixed nodes. In the calculation of interaction

energies for weakly interacting systems, it is generally assumed that the errors due to the

fixed-node approximation cancel when twice the energy of the monomer is subtracted from

the energy of the dimer at its equilibrium geometry.29,30 However, there are weakly interacting

dimers, e.g., Be2, for which the use of a single Slater determinant to impose the nodal surface

is known to be inadequate.56 In practice, in describing weakly interacting systems with DMC,

there are also the challenges of reducing the statistical and finite time step errors to a small

fraction of the interaction energy of interest. In this work, we apply the DMC method to the
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PD form of the benzene dimer. The motivation of the present study is to test the suitability

of single-determinant trial functions to fix the nodal surfaces in describing the interaction

energy of the PD benzene dimer.

2.3 Methodology

The quantum Monte Carlo calculations were carried out using the standard procedure

of first generating a single-determinant Slater-Jastrow trial function (i.e., a trial function

consisting of a single Slater determinant multiplied by a Jastrow factor31–33). The Jastrow

factor does not affect the nodal surface of the trial function. Trail-Needs AREP pseudopo-

tentials57,58 were employed together with contracted Gaussian-type-orbital (GTO) basis sets

that were designed for use with these pseudopotentials.59 5s5p2d1f and 5s2p1d basis sets

were used for C and H, respectively. The Becke3LYP60–63 density functional method was

used to generate the orbitals employed in the trial functions. The Jastrow factors included

electron-electron (e-e), electron-nuclear (e-n), and three-body electron-electron-nuclear (e-e-n)

terms, with 17, 22, and 34 parameters in the e-e, e-n, and e-e-n factors, respectively; these

parameters were optimized by means of the variational Monte Carlo (VMC) method. The

resulting trial functions were then used in carrying out the DMC calculations. The geometries

of the benzene monomer and PD dimer are taken from Miliordos et al.55 who optimized the

structures at the CCSD(T)/aug-cc-pVTZ64,65 level of theory, with the dimer geometry being

optimized with the constraint of rigid monomers. This structure has one benzene monomer

displaced with respect to the other as shown in Figure 1. The center to center displacement in

the plane of the rings (R1) is 1.6835Å, and the distance between the planes of the two rings

(R2) is 3.4507Å. Two different reference energies were used for calculating the interaction

energy: in one, the reference energy was taken to be twice the energy calculated for the

monomer, and, in the other, the reference energy was obtained from calculations on the dimer

with the two monomers separated by 10Å.

The DMC calculations were carried out with 64 000 walkers at time steps of 0.0025, 0.005,

0.0075, 0.01, and 0.04 a.u. The size-consistent version of the T-move method66 was used to
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Figure 1: PD form of the benzene dimer used in this study (R1 = 1.6835Å; R2 = 3.4507Å).

deal with the nonlocality of the pseudopotential. The orbitals for the trial functions were

generated using the Gaussian 09 program.67 The QMC calculations were carried out using

the CASINO code.27

2.4 Results

Figure 2 reports the energies of the PD benzene dimer at its equilibrium geometry, the

dimer at a separation of 10Å, and twice the energy of the monomer, all obtained from

DMC calculations with time steps of 0.0025, 0.005, 0.0075, and 0.01 a.u.. Figure 3 reports

the associated interaction energies. Both linear and quadratic (a + bτ + cτ 2) fits of the

data are presented. Linear extrapolation to zero time step yields interaction energies of

−1.86(12) and −2.02(14) kcal mol−1 when using as the reference twice the energy of the

monomer and the long distance dimer calculation, respectively. The corresponding results

with the quadratic fits are −1.80(30) and −1.90(34) kcal/mol. We place more confidence

in the latter values because the DMC moves were governed by the algorithm of Umrigar
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and coworkers4 which was designed to be quadratically convergent in the time step. Also,

as seen from the results in Figures 2 and 3, the τ → 0 limits of the energies obtained using

the two different reference energies agree much better when using the quadratic than when

using the linear fits. Comparison of the DMC values of the interaction energy with the large

basis set CCSD(T) result of −2.65(2) kcal mol−155 suggests that there is a ∼ 0.8 kcal mol−1

error in the DMC value of the interaction energy of the PD benzene dimer resulting from the

use of a single-determinant Slater-Jastrow trial function with B3LYP orbitals. Azadi and

Cohen68 recently reported DMC values of the interaction energy of the PD benzene dimer

obtained using a single-determinant Slater-Jastrow trial function both with and without a

backflow transformation69 which allows for a relaxation of the nodal surface. Their structure

for the dimer is similar to that employed in our calculations; for R1 fixed at 1.6Å, they

calculated DMC energies at several values of R2 to obtain a minimum in the interaction

energy at R2 = 3.8Å. In the absence of backflow, Azadi and Cohen obtained an interaction

energy of −1.8(2) kcal mol−1, which is consistent with our result. With backflow, Azadi and

Cohen obtained an interaction energy of −2.7(3) kcal mol−1, which is in agreement with the

CCSD(T) result. However, these results were obtained from linear extrapolation of DMC

energies obtained at 0.01 and 0.04 a.u. time steps, and it is not clear how large an error

may have resulted from a linear extrapolation of the interaction energies calculated at these

relatively large time steps. We return to this issue below. As the present paper was being

prepared, we learned of unpublished results of Dubecký and Mitas70 who obtained, using the

protocol described by Dubecký et al.71 (employing a single-determinant Slater-Jastrow trial

function with B3LYP/aug-TZV orbitals and a time step of 0.005 a.u.), an interaction energy

of −2.13(13) kcal mol−1 for the PD benzene dimer, in excellent agreement with our results.

The calculations of Dubecký and Mitas used the geometry from the S22 test set,50 which is

very close to that employed here, but the in-plane displacement of one ring relative to the

other is in a direction perpendicular to that considered here. Our calculations differ from

those of Dubecký and Mitas by our use of larger atomic basis sets to represent the orbitals in

the trial functions and by our use of multiple time steps and extrapolation to zero time step.

As noted above, Azadi and Cohen used time steps of 0.01 and 0.04 a.u. in their DMC

calculations, and one might expect that the 0.04 a.u. time step, in particular, is outside

29



the regime that a linear fit is valid. This motivated us to also carry out DMC calculations

(without backflow) on the PD benzene dimer and benzene monomer at a time step of 0.04 a.u.

time step. Figure 4 displays the results of our DMC calculations including the 0.04 a.u. time

step. It is clear from this figure that the energies at the 0.04 a.u. time step are indeed far

outside the linear regime and that linear extrapolation of the results at 0.04 and 0.01 a.u. time

steps results in much higher total energies than obtained from extrapolation of the energies

calculated at the 0.0025–0.01 a.u. time steps. Nonetheless, the values of the interaction

energy (−1.72(10) and −2.05(12) kcal mol−1 using as the reference twice the energy of the

monomer and the energy of the dimer with 10Å separation of the rings, respectively) obtained

from the linear extrapolation of total energies at 0.04 and 0.01 a.u. time steps are close to

those obtained from extrapolation of the small time step results (Figure 3 and Table 1)

(−1.86(12) and −2.02(14) kcal mol−1 using as the reference twice the energy of the monomer

and the energy of the dimer with 10Å separation of the rings, respectively) (or −1.83(12)

and −1.98(14) kcal mol−1 from extrapolation of the binding energy). However, this check was

done in the absence of backflow correlation, and there is still the possibility that a sizable

error could result from linear extrapolation of the interaction energies at 0.04 and 0.01 a.u.

time steps in the calculations including backflow.

In summary, we conclude that DMC calculations using a single-determinant trial function

significantly underestimate the magnitude of the interaction energy of the PD form of the

benzene dimer. It is expected that single-determinant trial functions are likely to prove

inadequate for accurate calculations of the interaction energies of π-stacked systems in general.

Although a recent study of Azadi and Cohen concluded that backflow correlation can remedy

this problem, we believe that it is necessary to extend such calculations to smaller time steps

than used in the Azadi/Cohen study to establish definitively that this is indeed the case. In

principle, the limitation of the use of single Slater determinants to define the nodal surfaces

can be overcome by the adoption of multi-configurational trial functions; the challenge

with such an approach is the selection of configuration spaces that introduce negligible size

consistency errors. In this context we note that Sorella et al.72 have carried out lattice

regularized DMC (LRDMC)73 calculations of the PD benzene dimer using Jastrow correlated

antisymmetrized geminal power wavefunctions74,75 to establish the nodal surfaces. These
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calculations gave an interaction energy of −2.2(3) kcal mol−1, which is only slightly larger in

magnitude than that obtained in this study using a single-determinant trial function. They

also use a geometry in which the rings are displaced similarly to those of the PD benzene

dimer from the S22 test set.
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Figure 2: Total energies from DMC calculations on the PD form of the benzene dimer at

its equilibrium geometry as well as on the dimer with 10Å separation between the rings

and twice the energy of the benzene monomer. Both linear and quadratic fits (dotted and

solid lines, respectively) of the energies at time steps ranging from 0.0025 to 0.010 a.u. are

presented.
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Figure 3: Interaction energies from DMC calculations on the PD form of the benzene dimer 

calculated as the difference between the energy at equilibrium geometry and either twice the 

energy of the monomer or the energy of the dimer with 10 Å separation between the rings. 

Both linear and quadratic fits of the energies at t ime steps ranging f rom 0 .0025 to 0.010 a.u. 

are presented (dashed and solid lines, respectively).

Table 1: DMC values of the interaction energy of the PD form of the benzene dimer.

Time step (a.u.) Interaction energy (kcal/mol)
2 × monomer ref. dimer at 10 Å ref.

0.01 -1.53(7) -1.89(9)
0.0075 -1.70(9) -1.99(11)
0.0050 -1.65(8) -1.95(9)
0.0025 -1.80(12) -1.97(13)
0a -1.86(12) -2.02(14)
0b -1.80(30) -1.90(34)
a extrapolated using a linear fit
b extrapolated using a quadratic fit
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Figure 4: DMC energies of the PD benzene dimer at its equilibrium geometry, the dimer

with the monomers separated by 10Å, and twice the energy of the monomer. In addition to

the data presented in Figure 2, DMC energies for the time step of 0.04 a.u. are reported.
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3.0 H4: A Model System for Assessing the Performance of Diffusion Monte

Carlo Calculations Using a Single Slater Determinant Trial Function

The text and figures in this chapter have been adapted from Gasperich, K.; Deible, M.;

Jordan, K. D. H4 : A model system for assessing the performance of diffusion Monte Carlo

calculations using a single Slater determinant trial function. J. Chem. Phys. 2017, 147,

074106, DOI: 10.1063/1.4986216, with the permission of AIP Publishing. The author’s

contribution to the work included performing all calculations, generating all figures, and

editing/revising the manuscript.

3.1 Summary

A model H4 system is used to investigate the accuracy of diffusion Monte Carlo (DMC)

calculations employing a single Slater determinant to fix the nodal surface. The lowest energy

singlet state of square H4 is a diradical which is poorly described by DMC calculations using a

single determinant (SD) trial function. Here we consider distortions to rectangular structures,

which decrease the amount of diradical character. The falloff of the error in the SD-DMC

energy with increasing separation between the two H2 molecules is found to be much more

rapid for small distortions away from square than for large distortions. This behavior is

shown to be correlated with the extent of mixing between the two configurations needed to

properly describe the diradical character. The error in the SD-DMC energy is found to be

sizeable (∼0.1 eV) even for separations at which the coefficient of the dominant configuration

in a four-electron, four-orbital complete active space self-consistent-field wave function is as

large as 0.9.
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3.2 Introduction

The diffusion Monte Carlo (DMC) method5,25 is increasingly being used to address

problems in electronic structure theory. In general, to ensure fermionic behavior, it is

necessary to employ a trial wave function to impose a nodal surface for exchange of electrons.5

In principle, fixed-node DMC calculations, if run for a sufficiently long time and extrapolated

to the zero time step, can yield the exact energy for the imposed nodal surface. The vast

majority of DMC calculations have employed a single Slater determinant of Hartree-Fock or

density functional theory orbitals to fix the nodal surface. While this approach has proven

successful for a wide range of problems, it is known to be inadequate for systems that have

a strong static correlation.56,77–80 However, the relationship between the error in SD-DMC

energies and the extent of configuration mixing, e.g., as found in multiconfigurational methods

such as complete active space self-consistent field (CASSCF)81 or configuration interaction

(CI), is not well understood. Except for a few model systems, knowledge of how the inclusion

of configuration mixing in the trial function impacts the nodal surface for exchange of electrons

is lacking.82–91 We are especially interested in quantifying how the error in the SD-DMC

energy depends on the energy gap between the frontier orbitals of a molecule or cluster. In

this work, we explore this issue for a model planar (H2)2 system.

The motivation for choosing the (H2)2 system for exploring the near degeneracy issue can

be seen from Fig. 5 which plots as a function of the separation between the two H2 molecules

the energies of the four valence molecular orbitals from restricted open-shell Hartree-Fock

(ROHF) calculations of the lowest energy triplet state. (Details of these calculations are given

below.) The nodal patterns of the valence orbitals are also depicted in Fig. 5. For the square

structure, the two frontier orbitals (of b2u and b3u symmetry as labeled in the D2h point group)

are degenerate; hence, the lowest energy singlet state of H4 is diradical in nature, requiring a

minimum of two Slater determinants for a proper description of its wave function. This state

belongs to the B1g representation in the D4h point group. By distorting the structure from

square to rectangular, with increasing (or decreasing) distance between the two H2 molecules,

one can tune the extent of configuration mixing in the wave function. In this study, SD-DMC

energies are calculated and compared with the results of full configuration interaction (FCI),
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coupled-cluster singles and doubles plus perturbative triples [CCSD(T)]2 calculations, as

well as of multi-determinant DMC calculations employing CAS(2,2) and CAS(4,4) trial wave

functions, where CAS(n,m) denotes CASSCF with n active electrons in m orbitals.

DMC calculations on square H4 using multi-configurational trial functions have been

reported by Anderson.78 The present study extends that of Anderson in that it considers

rectangular structures which remove the orbital degeneracy, employs a larger basis set for the

trial functions, includes a comparison with the results of FCI and CCSD(T) calculations, and

correlates the error in the SD-DMC energy with various measures of the near degeneracy in

the system.

Figure 5: Energies of the four valence orbitals of (H2)2 from ROHF (Guest and

Saunders)/cc-pVQZ calculations on the lowest energy triplet state as a function of the

distance between the two H2 molecules, with a bond length of 1.27Å).
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3.3 Computational details

The structure of square H4 with sides of 1.27Å was taken from a theoretical study of

Silver and Stevens.92 In generating rectangular structures, two parallel sides of the rectangle

were fixed at 1.27Å, and the lengths, R, of the other two sides were varied. Thus, one can

view the system as two interacting stretched H2 molecules. The Hartree-Fock (HF), CASSCF,

FCI, and CCSD(T) energies were calculated using the correlation-consistent cc-pVQZ basis

set.64 The HF and CASSCF trial wave functions used in the DMC calculations were expanded

in a basis set consisting of the s functions from the cc-pV5Z basis set64 and the p and d

functions from the cc-pVTZ basis set.64 The ROHF calculations on the triplet state used the

parametrization of Guest and Saunders93 to define the diagonal blocks of the Fock matrix.

The DMC calculations employed Slater-Jastrow trial functions, which are the products

of a Jastrow factor31 and a determinantal wave function, consisting of either a single Slater

determinant (from a HF calculation) or a linear combination of determinants (from a CASSCF

calculation). The one- and two-body Jastrow factors in this work are represented using

cubic B-splines as described by Esler et al.94 The form of the three-body Jastrow proposed

by Drummond et al.32 was also used. Because the Jastrow factors are positive everywhere,

they do not affect the nodal surface of an all-electron trial function; thus, the nodes (and

the fixed-node error) depend only on the Slater determinant part of the trial function. The

parameters in the Jastrowfactors were optimized via variational Monte Carlo (VMC) by

minimizing a cost function consisting of 95% energy and 5% variance.95 In the case of CASSCF

wave functions, the coefficients of the Slater determinants and the Jastrow parameters were

optimized simultaneously in the VMC step. The DMC calculations were carried out with

time steps of 0.005, 0.0025, and 0.001 a.u., with the resulting energies being extrapolated

to the zero time step using linear fits. (Due to the small values of the employed time

steps, similar results are obtained when using quadratic fits for the extrapolation.) The HF,

CCSD(T), CASSCF, and CI calculations were performed using the GAMESS program,96 and

the quantum Monte Carlo calculations were carried out using the QMCPACK program.97
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3.4 Results and discussion

Before reporting the energies from the various calculations, we first consider how configu-

ration mixing impacts the nodal surface of H4 in the square structure. Figure 6 reports cuts

through the nodal surfaces of the (1ag)2(1b2u)2 and (1ag)2(1b3u)2 configurations as well as of

the CAS(2,2) wave function involving these two configurations. The cuts are analogous to

those considered by Anderson in his study of square H4; two electrons of the same spin are

held stationary,and changes in the node are shown as the position of a third electron moves in

the plane of the molecule, i.e., the xy-plane. As expected, the nodal surface of the CAS(2,2)

wave function is fundamentally different from that of either of the single determinant wave

functions.

Figure 7 reports as a function of separation between the two H2 molecules the energies

obtained using various theoretical methods as well as the square of the coefficient of the

dominant Slater determinant in the CAS(4,4) wave function. As seen from this figure, the FCI

and CAS(4,4)-DMC potential energy curves are nearly identical, with the latter being slightly

lower in energy as a result of finite basis set errors in the FCI calculations. For the square

structure, the CAS(4,4)-DMC calculations give an energy of −2.119 31(4) a.u., compared to

the −2.091(26) a.u. DMC energy reported in Ref. [78]. Although not included in the figure,

we note that the potential energy curve from the CAS(2,2)-DMC calculations is very close

to that from the CAS(4,4)-DMC calculations. In contrast, the potential energy curve from

the SD-DMC calculations differs markedly from those from the FCI and CAS(4,4)-DMC

calculations, with the maximum error (∼0.9 eV) occurring for the square structure, at which

the CAS(4,4) wave function has two dominant configurations each entering with a coefficient

of 0.67 in magnitude. Moreover, the error in the SD-DMC energy is still ∼0.1 eV (relative to

the CAS(4,4)-DMC energy) when the dominant configuration in the CAS(4,4) wave function

has a coefficient of 0.9. Interestingly, the CCSD(T) potential energy curve lies close to the

FCI potential energy curve except for geometries very close to the square transition state

structure.

Figure 8 reports the error in the SD-DMC energy for R values between 1.27 and 3.0Å. In

each of the two regimes, R . 1.4Å and R & 1.8Å, the data points are well fit by exponentials,
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as shown in the figure. Since the DMC calculations using CAS(2,2) and CAS(4,4) trial

wave functions give nearly identical energies, which, in turn, are close to the full CI energies,

it follows that the true nodal surface is well represented by the two-configuration wave

function. This has motivated us to examine how the error in the SD-DMC energy correlates

with the extent of mixing between the two configurations as described in a minimum basis

set treatment. For this model, the orbitals are fully determined by symmetry, so that the

CAS(2,2) calculation is equivalent to the two-configuration CI given by 0 Kbc

Kbc 2∆


c1

c2

 = ∆E

1 0

0 1


c1

c2

 (3.1)

where the energy of the (1ag)2(1b2u)2 configuration is set to zero, 2Δ is the energy difference

between the (1ag)2(1b2u)2 and (1ag)2(1b3u)2 configurations, Kbc is the coupling of the two

configurations, and b and c are used to denote the 1b2u and 1b3u orbitals, respectively. The

solution of the eigenvalue problem gives the energy lowering due to the configuration mixing,

∆E = ∆−
√

∆2 +Kbc
2 (3.2)

where

∆ = εb − εc + 1
2 (Jcc − Jbb)− 2Jbc +Kbc (3.3)

The expression for Δ in Eq. 3.3 is in terms of the restricted HF orbitals of the (1ag)2(1b2u)2

configuration. If this is expressed instead in terms of the ROHF orbitals of the triplet state,

using the Guest-Saunders definition, Δ becomes equal to the orbital energy difference. There

are two limiting regimes for ∆E,

∆E ≈


−Kbc + ∆ ∆� Kbc

− Kbc
2

2∆ Kbc � ∆

(3.4a)

(3.4b)

The square of the normalized c2 coefficient is

c2
2 = Kbc

2

2
(

∆2 + ∆
√
Kbc

2 + ∆2 +Kbc
2
) (3.5)
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We note also that ∆E and c2 are related as

∆E = Kbcc2√
1− c22 (3.6)

Obviously, c2 also displays limiting regimes for ∆� Kbc and Kbc � ∆.

In light of these results, we now consider how the error in the SD-DMC energy correlates

with the energy lowering, ∆E, due to the mixing of the two configurations for R values

between 1.27 and 3.0Å. As seen from Fig. 9, for ∆E & 0.5 eV, the error in the SD-DMC

energy varies linearly with ∆E. For small (0.2–0.5 eV) ∆E values, the error in the SD-DMC

energy falls off with decreasing ∆E more slowly than would be expected from extrapolation

of the linear fit to the large ∆E data. (∆E remains finite at large separations between the

two H2 molecules due to electron correlation in the isolated monomers.)

Additional insight into the origin of the trends reported in Figs. 8 and 9 is provided by

the examination of how Kbc, ∆, and ∆E depend on R, with these results being reported in

Fig. 10, from which it is seen that both Kbc and ∆ display an exponential dependence on

R, with that in ∆ being much steeper than that in Kbc. It is also seen that ∆ ≈ Kbc near

R = 1.42Å at which ∆E ≈ 0.5 eV. Thus the crossover between the linear and the nonlinear

regimes in the plot of the SD-DMC error vs. ∆E (Fig. 9)corresponds to the region where

∆ ≈ Kbc. Figure 11 reports the error in the SD-DMC energy vs. the c2 coefficient from the

2× 2 CI calculation. Again, two limiting regimes are apparent, which is consistent with the

relationship between ∆E and c2 given above.

We now return to the R dependence of the error in the SD-DMC energy reported in Fig. 8,

where it was seen that there are two limiting regimes, one for 1.27Å < R . 1.31Å (near

the square structure) and the other for large R, each showing an exponential dependence on

R but with very different exponents. In these two regimes, ∆E is closely approximated by

Eqs. 3.4b and 3.4a, respectively. Given the dependence of the error in the SD-DMC energy

on ∆E and the exponential dependence of both Kbc and ∆ on R, it follows that each of the

two limiting regimes in the error in the SD-DMC vs. R plot (Fig. 8) displays an exponential

dependence on R.

Orbital energy gaps provide, perhaps, the simplest measure of the configuration mixing,

leading us to also examine how the error in the SD-DMC energy depends on ∆, the energy
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gap of the two singly occupied orbitals from the calculations on the triplet state. From

Fig. 12 it is seen that the error in the SD-DMC energy when reported vs. ∆ also displays two

limiting regimes, each displaying approximately exponential behavior. The switch over in the

behavior occurs near R = 1.5Å, which differs slightly from the R value at which ∆ = Kbc as

reported in Fig. 10. This difference is likely caused by the use of the cc-pVQZ basis set for

the calculation of the orbital energies used in Fig. 12 as compared to the minimal basis set

used in calculating the quantities shown in Fig. 10.

The errors in the SD-DMC energies for the H4 model system are due to the inadequacy of

a single Slater determinant for describing the nodal surface. Based on earlier studies, we know

that each of the (1ag)2(1b2u)2 and (1ag)2(1b3u)2 configurations for rectangular H4 has four

nodal domains, while the exact wave function is expected to have two nodal domains.82–85

Interestingly, exploratory calculations show that the error in the SD-DMC energy for the lowest

energy 2B1g state of square H +
4 , which, like the 1B1g state of H4, requires two configurations

—in this case, (1ag)2(1b2u)2 and (1ag)2(1b3u)2 (where the orbital symmetries are specified in

the D2h point group) —for a proper description of its wave function, is slightly larger than

that found in the SD-DMC calculations on the 1B1g state of H4.

Although the detailed nature of how the nodal surface of the H4 model is impacted

by the mixing of the second configuration in the CAS(2,2) wave function is not known,

it is instructive to focus on the cut that goes through (x, y) = (0, 0). This cut occurs at

θ = 0° and 90° for the two single determinant configurations but occurs at an intermediate

angle θ for the two-configuration wave function, with θ being 45° for the square structure and

between 0° and 45° for structures with R > 1.27Å. For the two-configuration wave function

tan(θ) = c2/c1, which, based on Eq. 3.6, can also be expressed as ∆E/Kbc. Hence, ∆E can

be viewed as a measure of the change in the nodal surface brought about by configuration

mixing.
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3.5 Conclusions

In this work, we have applied the DMC method to a (H2)2 model system in square and

rectangular geometries. It is demonstrated that the error in the energy calculated using the

DMC method with a single determinant trial function is sizable even for geometries in which

the magnitude of the coefficient of the leading configuration in a CAS(4,4) calculation is

as large as 0.9. Most significantly, for geometries where the orbital gap (determined from

ROHF calculations) is smaller than 4 eV, the CCSD(T) method outperforms the SD-DMC

method. The error in the SD-DMC energy is found to correlate with ∆E, the amount of

correlation energy recovered by a CAS(2,2) calculation. The dependence of the error in the

SD-DMC energy displays two limiting regimes when plotted against ∆E or R. From analysis

of a two-configuration wave function treatment of the system, it is seen that the two limiting

regimes correspond to the situations in which off-diagonal coupling is much larger or much

smaller than the energy gap between the two non-interacting configurations. We also find

that the error in the SD-DMC energy for the 2B1g state of square H +
4 is comparable to that

for the 1B1g state of the neutral molecule at the same geometry even though in the cation

there is one rather than two electrons in the a1g orbital engaged in exchange with electrons

in the frontier orbitals.
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Figure 6: Cuts of the nodal surface of the (a)(1ag)2(1b3u)2, (b)(1ag)2(1b2u)2, (c)CAS(2,2)

wave functions for square H4. The positions of the nuclei are indicated by the black circles,

and the positions of electrons 1 and 2 (both up spin) are indicated by blue dots. Several

Choices for the position of electron 3 (red dot) are considered, and the positions for electron

4 for which the wave function is zero are indicated by the curves.
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Figure 7: Energy from various theoretical methods and the square of the largest CAS(4,4)

vector coefficient as a function of separation between the H2 molecules, keeping the monomer

bond lengths fixed at the value of the square transition state structure. For R > 1.27Å, the

SD-DNC calculations used the (1ag)2(1b3u)2 configuration in the trial wave function, and for

R < 1.27Å, the (1ag)2(1b2u)2 configuration was employed.
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Figure 8: Error in the SD-DMC energy of H4 (relative to the CAS(4,4)-DMC energy) as a

function of the distance between the two H2 molecules.
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Figure 9: Error in the SD-DMC energy of H4 (relative to the CAS(4,4)-DMC energy) as

a function of ∆E, the HF-CAS(2,2) energy difference, for distances between the two H2

molecules ranging from 1.27 to 3.0Å.

47



Figure 10: Values of Kbc, ∆, and ∆E for H4 as a function of the distance between H2

molecules. Results obtained using a STO-6G basis set.
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Figure 11: Error in the SD-DMC energy as a function of c2, the coefficient of the (1ag)2(1b2u)2

configuration from CAS(2,2) calculations for distances between the two H2 molecules ranging

from 1.27 to 3.0Å. In each of the two limiting regimes (large and small ∆/K), the error in

the SD-DMC energy depends approximately exponentially on c2.
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Figure 12: Error in the SD-DMC energy of H4 vs. the orbital energy gap from ROHF/cc-pVQZ

calculations on the lowest energy triplet state.
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4.0 Quantum Monte Carlo Calculation of the Binding Energy of the

Beryllium Dimer

The text and figures in this chapter have been reprinted from Deible, M. J.; Kessler, M.;

Gasperich, K. E.; Jordan, K. D. Quantum Monte Carlo calculation of the binding energy of

the beryllium dimer. J. Chem. Phys. 2015, 143, 084116, DOI: 10.1063/1.4929351, with the

permission of AIP Publishing. The author’s contribution to the work included performing

single-determinant DMC calculations on the Be atom, creating/editing figures, and revising

the manuscript.

4.1 Summary

The accurate calculation of the binding energy of the beryllium dimer is a challenging

theoretical problem. In this study, the binding energy of Be2 is calculated using the diffusion

Monte Carlo (DMC) method, using single Slater determinant and multiconfigurational trial

functions. DMC calculations using single-determinant trial wave functions of orbitals obtained

from density functional theory calculations overestimate the binding energy, while DMC

calculations using Hartree-Fock or CAS(4,8), complete active space trial functions significantly

underestimate the binding energy. In order to obtain an accurate value of the binding energy

of Be2 from DMC calculations, it is necessary to employ trial functions that include excitations

outside the valence space. Our best estimate DMC result for the binding energy of Be2,

obtained by using configuration interaction trial functions and extrapolating in the threshold

for the configurations retained in the trial function, is 908 cm−1, only slightly below the

935 cm−1 value derived from experiment.

51

http://dx.doi.org/10.1063/1.4929351


4.2 Introduction

The beryllium dimer has been the subject of numerous experimental and theoretical

studies.74,98–129 In 1984, Bondybey and English, using ro-vibrational data from near the bottom

of the ground state 1Σ+
g potential energy curve of Be2, deduced a value of 790± 30 cm−1

for the binding energy (here defined from the potential energy minimum, i.e., neglecting

vibrational zero-point energy).98–100 Based on rotational structure in the v = 0 level, Bondybey

and English determined a bond length of 2.45Å. More recently, Merritt and coworkers

experimentally observed eleven vibrational levels of Be2, allowing them to obtain a more

refined estimate of 929.74 cm−1 for the well depth.101 This was subsequently revised to

934.9 cm−1 upon further analysis of the experimental data.102 Over the past few years, several

electronic structure calculations have been reported that obtained well depths close to the

recent experimental value.116–125 The keys to the successful calculations are the use of large,

flexible basis sets and the recovery of a large portion of the correlation energy including

contributions from the 1s core orbitals. To illustrate the difficulty of calculating an accurate

binding energy of Be2, we note that a complete basis set limit coupled cluster singles plus

doubles with perturbative triples [CCSD(T)] calculation including correlation of the 1s core

electrons underestimates the binding energy by 224 cm−1.124 Moreover, basis functions beyond

those included in the aug-cc-pCVQZ basis set130,131 contribute 79 cm−1 to the CCSD(T) value

of the binding energy.124

In this study, we apply the diffusion Monte Carlo (DMC) method5,25,26,28 to the Be dimer.

The DMC method is capable of giving the exact ground state energy under the constraint of

the fixed-node approximation,29,30,82,90,91 which is required to maintain the fermionic nature

of the wave function. The constraint is imposed by the use of a trial function often taken

to be a single Slater determinant of Hartree-Fock (HF) or density functional theory (DFT)

orbitals. If the nodal surface of the trial wave function were exact, then the DMC method, if

run for a sufficient number of steps and extrapolated to zero time step, would give the exact

ground state energy. It is generally assumed29 that for weakly interacting dimers, the errors

introduced by the use of single determinant trial functions to impose the fixed nodes largely

cancel when the interaction energy is calculated by subtracting the sum of the energies of
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the two monomers from that of the dimer, and this has been confirmed for systems such

as the water dimer and the methane dimer.127 However, it is not clear that this will be the

case for weakly interacting species for which static correlation effects are important. The

Be dimer is thus a particularly interesting test system, as the ground state wavefunction

of Be has considerable 2s2 → 2p2 character. Indeed, all-electron DMC calculations on Be

using a CAS(2,4), complete active space, trial function allowing for 2s2 → 2p2 mixing give a

significantly lower total energy than do DMC calculations using a single Slater determinant

trial function.74,90,120 However, DMC calculations using a CAS(4,8) trial function for the

dimer and a CAS(2,4) trial function for the atom considerably underestimate the binding

of the dimer.118 Harkless and Irikura120 used a truncated CAS(4,8) space and Anderson

and Goddard128 used a generalized valence bond (GVB) trial function and each reported

DMC values of the binding energy of Be2 in good agreement with experiment. As will be

discussed later in the manuscript, this is likely to be fortuitous. In the present study, we

calculate the binding energy of Be2 using the DMC method in conjunction with more flexible

multiconfigurational trial functions than were employed in earlier studies.

4.3 Computational details

The experimental value of the equilibrium bond length, 2.453 603Å,101 was used for all

calculations on the beryllium dimer. In the first set of calculations, single determinant

trial functions were considered, with the orbitals being obtained from the HF approxima-

tion and from several DFT methods including the local density approximation (LDA), the

Perdew-Burke-Ernzerhof (PBE)132 and Becke-Lee-Yang-Parr (BLYP)62,133 generalized gra-

dient approximation (GGA) functionals, and the Becke3LYP,60–63 PBE0,134 and Becke half

and half exchange plus LYP correlation (BH&HLYP)135 hybrid functionals, which contain

20 %, 25 %, and 50 % exact exchange, respectively. In addition, a trial function comprised

of a single Slater determinant of Brueckner orbitals136,137 was considered. The cc-pVQZ-g

5s4p3d2f contracted Gaussian-type orbital basis set130,131 was used to represent the orbitals

in the single Slater determinant trial functions. Both cc-pVQZ-fg and cc-pVQZ-g basis sets
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were used in generating the multiconfigurational trial functions. Here, -fg indicates that both

the f and g functions were omitted from the basis set, while -g indicates that only the g

functions were omitted.

DMC calculations were also carried out using multiconfigurational trial functions generated

from CAS and configuration interaction (CI) calculations. For the beryllium dimer, both

CAS(4,8) and CAS(4,16) trial functions were considered. The CAS(4,8) wave function

allows all arrangements of the four valence electrons in the space of the molecular orbitals

(MOs) derived predominantly from the 2s and 2p atomic orbitals (AOs). The CAS(4,16)

wavefunction expands the active space to include the πg, πu, σg, σu molecular orbitals derived

from the 3s and 3p atomic orbitals and has 816 configuration state functions (CSFs). The

DMC calculations were carried out retaining all CSFs with coefficients greater than 0.001,

0.0025, 0.005, and 0.01 in magnitude, and these results were used to extrapolate the energies

to the value for the full configuration space. The extrapolation is shown in Figure 13. With

the 0.001 coefficient threshold, 341 CSFs are retained from the CAS(4,16) space. Truncations

of the configuration space were carried out after the CAS (or CI) calculations using GAMESS

but prior to the optimizations in the variational Monte Carlo (VMC) calculations.

Figure 13: Extrapolation of the DMC energies of the beryllium dimer in the calculations

using the CAS(4,16)/cc-pVQZ-g trial function, as described in the text. The dashed red line

is a linear fit to the DMC energies (blue squares).

CI trial functions were generated by carrying out configuration interaction calculations,

allowing for up to four electron excitations from the valence space into the full virtual space
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and employing CAS(4,8) orbitals. Natural orbitals were then generated and used to carry out

subsequent CI calculations allowing up to quadruple excitations in the space of all natural

orbitals with occupations greater than 0.0001 in the first CI calculation (again keeping the

1σg and 1σu orbitals frozen). Trial functions with reduced configuration spaces were then

generated by discarding configurations with coefficients above particular thresholds (0.01,

0.005, 0.0025, and 0.001). For the smallest threshold (0.001) 484 of 4500 CSFs were retained.

For calculating the binding energy, a single plus double excitation CI (SDCI) calculation

was carried out on the atom using CAS(2,8) orbitals and followed by a subsequent SDCI

calculation using natural orbitals with occupations greater than 0.0001.

Each of the trial functions was combined with a Jastrow factor32 with electron-electron,

electron-nucleus, and electron-electron- nucleus terms. VMC calculations were used to

optimize the Jastrow factors via energy minimization. For the multiconfigurational trial

functions, the coefficients of the CSFs were optimized simultaneously with the parameters in

the Jastrow function. The resulting trial functions, including the Jastrow factors, were then

used to carry out DMC simulations using 40 000 to 50 000 walkers at a single time step of

0.001 a.u.. The correction scheme of Ma et al.138 was used to account for the electron-nuclear

cusps. For estimating statistical errors, the blocking procedure of Flyvbjerg and Petersen

was used.139 For one set of DMC calculations using the CAS(4,16) trial function, time steps

of 0.0005, 0.003, and 0.005 a.u. were also used, allowing extrapolation of the energies to the

zero time step limit. This extrapolation is shown in Figure 14.

The single determinant trial functions were generated using Gaussian0967 and the mul-

ticonfigurational trial functions were generated using GAMESS.96 The quantum Monte

Carlo calculations were carried out using the CASINO27 and QMCPACK97 codes for the

single determinant and multideterminant trial functions, respectively. QMCPACK was used

for the latter calculations due to its implementation of an efficient algorithm for handling

multideterminant trial functions.140
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Figure 14: Extrapolation to zero time step of the DMC energy of the Be dimer at the

equilibrium bond length of 2.453 603Å. The calculations were based on the CAS(4,16)/cc-

pVQZ-g trial function and used a 0.001 threshold on the CI coefficients.

4.4 Results

The results of the DMC calculations at the 0.001 a.u. time step are reported in Table 2.

With the HF trial function, the DMC calculations give a binding energy of 724 cm−1, sig-

nificantly smaller than the experimental value of 935 cm−1. On the other hand, the DMC

calculations using trial functions employing LDA or GGA orbitals considerably overestimate

the binding energy of Be2. Significantly, improved agreement with experiment is obtained

when using orbitals from hybrid functionals containing a component of exact exchange or from

Brueckner CCSD calculations. Specifically, the DMC calculations using PBE0, BH&HLYP,

and Brueckner orbitals give binding energies of 992, 966, and 955 cm−1, respectively. Toulouse

and Umrigar126 obtained a binding energy of 1008 cm−1 from DMC calculations using single

determinant trial functions but optimizing the orbitals and basis functions in the VMC

step. For both Be and Be2, regardless of the orbitals used, the DMC calculations using

single determinant trial functions give energies considerably above the exact energies of these

species, suggesting that the good agreement with experiment of these calculated binding

energies is fortuitous. Support for this conjecture is provided by Figure 15, from which it
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Table 2: Total energies of Be and Be2 dissociation energy computed with DMC using various

trial functions.
Total energy (a.u.)

Trial functiona Be Be2 De(cm−1)
HF/QZ-g -14.65730(4) -29.31789(6) 724(21)
LDA/QZ-g -14.65721(4) -29.31977(7) 1174(25)
PBE/QZ-g -14.65731(5) -29.31960(8) 1094(26)
BLYP/QZ-g -14.65725(4) -29.31956(8) 1113(26)
B3LYP/QZ-g -14.65727(3) -29.31946(8) 1079(23)
PBE0/QZ-g -14.65728(3) -29.31907(8) 992(21)
BH&HLYP/QZ-g -14.65726(5) -29.31891(7) 966(26)
BD/QZ-g -14.65718(4) -29.31872(7) 955(24)
CAS(4,8)/QZ-fgc -14.66723(1) -29.33707(3) 573(8)
CAS(4,16)/QZ-fgc -14.66730(1) -29.33832(3) 819(8)
Ext. CAS(4,16)/QZ-fg -14.66730(1) -29.33841(2) 838(7)
CAS(4,16)/QZ-gc -14.66727(2) -29.33838(3) 845(8)
Ext. CAS(4,16)/QZ-g -14.66727(2) -29.33845(2) 857(9)
CI/QZ-gc -14.66725(1) -29.33848(2) 873(6)
Ext. CI/QZ-g -14.66725(1) -29.33864(2) 908(6)
Experimentald -14.667356 -29.33897 934.9(4)
a QZ refers to the cc-pVQZ basis set. The “-g” and “-fg” indicate,
respectively, that the g functions and f and g functions were omitted
from the basis sets. Ext. refers to CAS and CI results extrapolated to
the full configuration space for the active orbital list as described in
the text.

b The DMC energies of the Be atom calculated using various single
determinant trial functions should agree. The spread of the energies
in the table is the result of statistical errors and the use of a finite
(0.001 a.u.) time step.

c 0.001 threshold on CI coefficients for retained configurations.
d The experimental De value for Be2 is from Ref. [101]. The non-
relativistic energy of the Be atom is from Ref. [141]

is seen that the calculations that give binding energies closest to experiment do so because

they give a higher energy for the dimer. It should be noted that all single determinant trial

functions should give the same DMC energy of the Be atom.142 The spread in the DMC

energies of the Be atom calculated using different single determinant trial functions is only

about 27 cm−1 with part of that being statistical and part being due to finite time step errors

(i.e., using a time step of 0.001 a.u.).

As expected, based on earlier studies,118,120 DMC calculations using valence-space CAS
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Figure 15: DMC energies of twice the beryllium atom and the dimer for several single-

determinant trial wave functions.

trial functions give significantly lower energies for the Be atom and dimer than do the DMC

calculations using the trial functions based on single Slater determinants. However, the DMC

calculations using the CAS(4,8) trial function for the dimer and CAS(2,4) for the atom give

a binding energy of only 573 cm−1, which is even smaller than that obtained using HF trial

functions. This indicates that use of valence space CAS trial functions does not result in

a balanced treatment of the nodal surfaces of the atom and molecule. Most of the error is

due to the inadequacy of the CAS(4,8) space in describing the nodal surfaces of the dimer

since the DMC calculations on the atom using the CAS(2,4) trial function give an energy

close to the current best estimate141 (−14.667 228 vs. −14.667 356 a.u.). Expanding the CAS

space to include also the MOs derived from the 3s and 3p AOs, giving CAS(2,8) for the

atom and CAS(4,16) for the dimer, lowers the DMC energies of the atom and dimer, by 10

and 300 cm−1, respectively, and results in a dimer binding energy of 845 cm−1, at the 0.001

coefficient threshold and using the cc-pVQZ-g basis set. The corresponding binding energy

obtained using the cc-pVQZ-fg basis set is 819 cm−1, indicating that the nodal surface of Be2
is slightly improved by including f functions in the basis set. Extrapolating these results

along the sequence of coefficient cutoffs gives binding energies of 838 and 857 cm−1 for trial

functions expanded in terms of the cc-pVQZ-fg and cc-pVQZ-g basis sets, respectively. The

extrapolation to zero time step of the DMC/CAS(4,16) energies obtained with the 0.001
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coefficient threshold when using the cc-pVQZ-g basis set gives a DMC binding energy of

849 cm−1 (see Figure 15) vs. the 845 cm−1 value obtained with the 0.001 a.u. time step. Thus,

we conclude that the error due to the use of the finite time step is inconsequential for the

calculation of the binding energy of the dimer.

The DMC calculations using CI trial functions with 0.001 coefficient cutoffs and the

cc-pVQZ-g basis set yielded a dimer binding energy of 873 cm−1, while the corresponding

result obtained by extrapolation to the full configuration space is 908 cm−1, which is only

27 cm−1 smaller than the experimental value of the binding energy. These results demonstrate

that correlation effects involving configurations outside the CAS(8,16) space are important

for describing the nodal surface of Be2.

It should be noted that the SDTQ CI calculations using the cc-pVQZ-g basis set and

freezing the 1s orbitals give a binding energy of only 601 cm−1, which is 334 cm−1 lower than

the experimental value. About 70 cm−1 of the error in this result is due to the neglect of

the correlation effects involving the core 1s orbitals,125 while the remaining error is due to

correlation effects that are not captured due to the basis set truncation. This underscores one

of the major advantages of the DMC method, namely, that it achieves convergence with much

smaller basis sets (for the trial functions) than required for traditional quantum chemistry

methods.

4.5 Conclusions

In conclusion, the binding energy of the beryllium dimer has been calculated using the

diffusion Monte Carlo method in conjunction with a wide variety of trial wave functions.

Even DMC calculations with a trial wave function as flexible as CAS(4,16) considerably

underestimate the binding energy of the beryllium dimer. CI trial functions allowing ex-

citations from the valence space into the entire virtual space give a binding energy within

27 cm−1 of the experimental value. It is possible that this small remaining discrepancy from

experiment is due to the neglect of excitations from the 1s orbitals in the trial functions used

for the DMC calculations. Although DMC calculations using small configurational spaces
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that give binding energies close to experiment have been reported for Be2, they also give

energies for the atom and dimer that are appreciably higher than those obtained using the

CI trial functions employed here. Thus, the good agreement of the binding energy of Be2
with the experimental value obtained with such small multiconfigurational trial function

spaces is likely fortuitous. We believe that our findings are relevant for a wide range of

other dimers, e.g., the benzene dimer, where there is appreciable configuration mixing in the

wave functions of the monomers. In particular, achieving well converged binding energies for

such systems is likely to require the use of multiconfigurational trial functions allowing for

high-order excitations as well as excitations outside the valence space.
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5.0 Quantum Package 2.0: An Open-Source Determinant-Driven Suite of

Programs

The text and figures in this chapter have been reprinted with permission from Garniron,

Y.; Applencourt, T.; Gasperich, K.; Benali, A.; Ferté, A.; Paquier, J.; Pradines, B.; Assaraf,

R.; Reinhardt, P.; Toulouse, J.; Barbaresco, P.; Renon, N.; David, G.; Malrieu, J.-P.; Véril,

M.; Caffarel, M.; Loos, P.-F.; Giner, E.; Scemama, A. Quantum Package 2.0: An Open-Source

Determinant-Driven Suite of Programs. J. Chem. Theory Comput. 2019, 15, 3591–3609,

DOI: 10.1021/acs.jctc.9b00176. Copyright 2019 American Chemical Society. The author

contributed to the implementation of the algorithm for generating spin-adapted sets of

determinants in addition to making minor revisions of the manuscript.

5.1 Summary

Quantum chemistry is a discipline which relies heavily on very expensive numerical

computations. The scaling of correlated wave function methods lies, in their standard

implementation, between O(N5) and O(eN), where N is proportional to the system size.

Therefore, performing accurate calculations on chemically meaningful systems requires i)

approximations that can lower the computational scaling, and ii) efficient implementations

that take advantage of modern massively parallel architectures. Quantum Package is

an open-source programming environment for quantum chemistry specially designed for

wave function methods. Its main goal is the development of determinant-driven selected

configuration interaction (sCI) methods and multi-reference second-order perturbation theory

(PT2). The determinant-driven framework allows the programmer to include any arbitrary

set of determinants in the reference space, hence providing greater methodological freedom.

The sCI method implemented in Quantum Package is based on the CIPSI (Configuration

Interaction using a Perturbative Selection made Iteratively) algorithm which complements

the variational sCI energy with a PT2 correction. Additional external plugins have been
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recently added to perform calculations with multireference coupled cluster theory and range-

separated density-functional theory. All the programs are developed with the IRPF90

code generator, which simplifies collaborative work and the development of new features.

Quantum Package strives to allow easy implementation and experimentation of new

methods, while making parallel computation as simple and efficient as possible on modern

supercomputer architectures. Currently, the code enables, routinely, to realize runs on roughly

2000 CPU cores, with tens of millions of determinants in the reference space. Moreover, we

have been able to push up to 12 288 cores in order to test its parallel efficiency. In the present

manuscript, we also introduce some key new developments: i) a renormalized second-order

perturbative correction for efficient extrapolation to the full CI limit, and ii) a stochastic

version of the CIPSI selection performed simultaneously to the PT2 calculation at no extra

cost.

5.2 Introduction

In 1965, Gordon Moore predicted that the number of transistors in an integrated circuit

would double about every two years (the so-called Moore’s law).143 Rapidly, this “law” was

interpreted as an expected two-fold increase in performance every 18 months. This became

an industrial goal. The development of today’s most popular electronic structure codes was

initiated in the 1990’s (or even before). At that time, the increase of computational power

from one supercomputer generation to the next was mostly driven by an increase of processors’

frequency. Indeed, the amount of random access memory was small, the time to access data

from disk was slow, and the energy consumption of the most powerful computer was 236 kW,

hence far from being an economical concern.144 At the very beginning of the 21st century,

having increased continuously, both the number of processors and their frequency raised the

supercomputer power consumption by two orders of magnitude, inflating accordingly the

electricity bill. The only way to slow down this frenetic growth of power consumption while

keeping alive Moore’s dream was to freeze the processor’s frequency (between 1 and 4 GHz),

and increase the number of CPU cores. The consequence of such a choice was that “free
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lunch” was over: the programmers now had to parallelize their programs to make them run

faster.145 At the same time, computer scientists realized that the increase of performance

in memory access was slower than the increase in computational power,146 and that the

floating-point operation (or flop) count would soon stop being the bottleneck. From now on,

data movement would be the main concern. This paradigm shift was named the memory

wall. Moore’s law is definitely near the end of its life.147

The traditional sequential algorithms of quantum chemistry are currently being redesigned

and replaced by parallel equivalents by multiple groups around the world.11–14,148–156 This has

obviously a significant influence on methodological developments. The most iconic example

of this move towards parallel-friendly methods is the recently developed full configuration

interaction quantum Monte Carlo (FCIQMC) method by Alavi and coworkers.11 FCIQMC

can be interpreted as a Monte Carlo equivalent of older selected configuration interaction (sCI)

algorithms8–10,14–16,18,19,156–185 such as CIPSI (Configuration Interaction using a Perturbative

Selection made Iteratively),10 that are iterative and thus a priori not well adapted to massively

parallel architecture. As we shall see here, things turn out differently, and the focus of the

present article is to show that sCI methods can be made efficient on modern massively parallel

supercomputers.

Quantum Package186 is an open-source suite of wave function quantum chemistry

methods mainly developed at the Laboratoire de Chimie et Physique Quantiques (LCPQ) in

Toulouse (France), and the Laboratoire de Chimie Théorique (LCT) in Paris. Its source code

is freely available on GitHub at the following address: https://github.com/QuantumPackage/

qp2. Quantum Package strives to allow easy implementation and experimentation of new

methods, while making parallel computation as simple and efficient as possible. Accordingly,

the initial choice of Quantum Package was to go towards determinant-driven algorithms.

Assuming a wave function expressed as a linear combination of determinants, a determinant-

driven algorithm essentially implies that the outermost loop runs over determinants. On the

other hand, more traditional integral-driven algorithms have their outermost loop running

on the two-electron integrals appearing in the expression of the matrix elements in the

determinant basis (see Sec. 5.3.2). Determinant-driven algorithms allow more flexibility than

their integral-driven counterparts,187 but they have been known for years to be less efficient
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than their integral-driven variant for solving electronic structure problems. In high-precision

calculations, the number of determinants is larger than the number of integrals, justifying

the integral-driven choice. However, today’s programming standards impose parallelism, and

if determinant-driven calculations prove to be better adapted to parallelism, such methods

could regain popularity. More conventional approaches have also been very successfully

parallelized: CCSD(T),188,189 DMRG,190 GW,191 QMC,192–194 and many others.

Quantum Package was used in numerous applications, in particular to obtain reference

ground-state energies165–169,195 as well as excitation energies19,181,196 for atomic and molecular

systems. For example, in Ref. [19], Quantum Package has been used to compute more

than hundred very accurate transition energies for states of various characters (valence,

Rydberg, n→ π∗, π → π∗, singlet, triplet, . . . ) in 18 small molecules. The high quality and

compactness of the CIPSI wave function was also used for quantum Monte Carlo calculations

to characterize the ground state of the water and the FeS molecules,169,173 and obtained highly

accurate excitation energies.174,197,198 Of course, the technical considerations were not the

main concern of the different articles that were produced. Because the present work focused

on the actual implementation of the methods at least as much as on the theory behind them,

this article is a perfect opportunity to discuss in depth their implementation.

This manuscript is organized as follows. In Sec. 5.3, we briefly describe the main

computational methods implemented in Quantum Package as well as newly developed

methods and extrapolation techniques. Section 5.4 deals with their implementation. In

particular, Sec. 5.4.1 discusses the computation of the Hamiltonian matrix elements using

determinant-driven algorithms, while Sec. 5.4.3 focuses on the acceleration of the Davidson

diagonalization, a pivotal point of sCI methods. In Sec. 5.4.4, we focus on the determinant

selection step used to build compact wave functions. In a nutshell, the principle is to

incrementally build a reference wave function by scavenging its external space for determinants

that interact with it. To make this step more affordable, we designed a new stochastic scheme

which selects on the fly the more important determinants while the second-order perturbative

(PT2) energy is computed using a hybrid stochastic-deterministic scheme.156 Therefore,

the selection part of this new stochastic CIPSI selection is virtually free as long as one is

interested in the second-order perturbative correction, which is crucial in many cases in order
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to obtain near full configuration interaction (FCI) results. Section 5.5 briefly explains how

we produce spin-adapted wave functions, and Sec. 5.6 describes parallelism within Quantum

Package. The efficiency of the present algorithms is demonstrated in Sec. 5.7.3 where

illustrative calculations and parallel speedups are reported. Finally, Sec. 5.8 discusses the

development philosophy of Quantum Package as well as other relevant technical details.

Unless otherwise stated, atomic units are used throughout.

5.3 Methods

5.3.1 Generalities

The correlation energy is defined as199

Ec = Eexact − EHF, (5.1)

where Eexact and EHF are, respectively, the exact (non-relativistic) energy and the Hartree-Fock

(HF) energy in a complete (one-electron) basis set.

To include electron correlation effects, the wave function associated with the kth electronic

state, |Ψk〉, may be expanded in the set of all possible N -electron Slater determinants, |I〉,

built by placing N↑ spin-up electrons in Norb orbitals and N↓ spin-down electrons in Norb

orbitals (where N = N↑+N↓). These so-called molecular orbitals (MOs) are defined as linear

combinations of atomic orbitals (AOs)

φp(r) =
Norb∑
µ

Cµpχµ(r). (5.2)

Note that the MOs are assumed to be real valued in the context of this work. The eigenvectors

of the Hamiltonian Ĥ are consequently expressed as linear combinations of Slater determinants,

i.e.,

|Ψk〉 =
Ndet∑
I

cIk |I〉 , (5.3)

where Ndet is the number of determinants. For sake of conciseness, we will restrict the

discussion to the ground state (i.e. k = 0) and drop the subscript k accordingly. Solving the

65



eigenvalue problem in this basis is referred to as FCI and yields, for a given basis set, the

exact solution of the Schrödinger equation. Unfortunately, FCI is usually computationally

intractable because of its exponential scaling with the size of the system.

5.3.2 Matrix elements of the Hamiltonian

In the N -electron basis of Slater determinants, one expects the matrix elements of Ĥ to

be integrals over 3N dimensions. However, given the two-electron nature of the Hamiltonian,

and because the MOs are orthonormal, Slater determinants that differ by more than two

spinorbitals yield a zero matrix element. The remaining elements can be expressed as sums

of integrals over one- or two-electron coordinates, which can be computed at a reasonable

cost. These simplifications are known as Slater-Condon’s rules, and reads

〈I|Ĥ|I〉 =
∑
i∈|I〉

(i|ĥ|i) + 1
2

∑
(i,j)∈|I〉

(ii||jj), (5.4a)

〈I|Ĥ|Irp〉 = (p|ĥ|r) +
∑
i∈|I〉

(pr||ii), (5.4b)

〈I|Ĥ|Irspq〉 = (pr||qs), (5.4c)

where ĥ is the one-electron part of the Hamiltonian (including kinetic energy and electron-

nucleus attraction operators),

(p|ĥ|q) =
∫
φp(r)ĥ(r)φq(r)dr (5.5)

are one-electron integrals, i ∈ |I〉 means that φi belongs to the Slater determinant |I〉, |Irp〉

and |Irspq〉 are determinants obtained from |I〉 by substituting orbitals φp by φr, and φp and

φq by φr and φs, respectively,

(pq|rs) =
∫∫

φp(r1)φq(r1)r−1
12 φr(r2)φs(r2)dr1dr2 (5.6)

are two-electron electron repulsion integrals (ERIs), r−1
12 = |r1 − r2|−1 is the Coulomb operator,

and (pq||rs) = (pq|rs)− (ps|rq) are the usual antisymmetrized two-electron integrals.

Within the HF method, Roothaan’s equations allow to solve the problem in the AO

basis.200 In this context, one needs to compute the O(N4
orb) two-electron integrals (µν|λσ) over
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the AO basis. Thanks to a large effort in algorithmic development and implementation,201–208

these integrals can now be computed very fast on modern computers. However, with post-HF

methods, the computation of the two-electron integrals is a potential bottleneck. Indeed,

when computing matrix elements of the Hamiltonian in the basis of Slater determinants,

ERIs over MOs are required. Using Eq. (5.2), the cost of computing a single integral (pq|rs)

scales as O(N4
orb). A naive computation of all integrals in the MO basis would cost O(N8

orb).

Fortunately, computing all of them can be scaled down to O(N5
orb) by transforming the

indices one by one.209 This step is known as the four-index integral transformation. In

addition to being very costly, this step is hard to parallelize in a distributed way, because

it requires multiple collective communications.210–213 However, techniques such as density

fitting (also called the resolution of the identity),214–216 low-rank approximations,217–220 or

the combination of both221 are now routinely employed to overcome the computational and

storage bottlenecks.

5.3.3 Selected CI methods

The sCI methods rely on the same principle as the usual configuration interaction

(CI) approaches, except that determinants are not chosen a priori based on occupation or

excitation criteria, but selected among the entire set of determinants based on their estimated

contribution to the FCI wave function. Indeed, it has been noticed long ago that, even

inside a predefined subspace of determinants, only a small number of them significantly

contributes.164,222 Therefore, an on-the-fly selection of determinants is a rather natural idea

that has been proposed in the late 1960’s by Bender and Davidson8 as well as Whitten and

Hackmeyer.9 sCI methods are still very much under active development. The main advantage

of sCI methods is that no a priori assumption is made on the type of electronic correlation.

Therefore, at the price of a brute force calculation, a sCI calculation is less biased by the

user’s appreciation of the problem’s complexity.

The approach that we have implemented in Quantum Package is based on the CIPSI

algorithm developed by Huron, Rancurel and Malrieu in 1973,10 that iteratively selects external

determinants |α〉 — determinants which are not present in the (reference or variational)
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zeroth-order wave function

|Ψ(0)〉 =
∑
I

cI |I〉 (5.7)

at a given iteration — using a perturbative criterion

e(2)
α = 〈Ψ(0)|Ĥ|α〉2

E(0) − 〈α|Ĥ|α〉
, (5.8)

where

E(0) = 〈Ψ
(0)|Ĥ|Ψ(0)〉
〈Ψ(0)|Ψ(0)〉

≥ EFCI (5.9)

is the zeroth-order (variational) energy, and e(2)
α the (second-order) estimated gain in correla-

tion energy that would be brought by the inclusion of |α〉. The second-order perturbative

correction

E(2) =
∑
α

e(2)
α =

∑
α

〈α|Ĥ|Ψ(0)〉2

E(0) − 〈α|Ĥ|α〉
(5.10)

is an estimate of the total missing correlation energy, i.e., E(2) ≈ EFCI−E(0), for large enough

expansions.

Let us emphasize that sCI methods can be applied to any determinant space. Although

presented here for the FCI space, it can be trivially generalized to a complete active space

(CAS), but also to standard CI spaces such as CIS, CISD or MR-CISD. The only required

modification is to set to zero the contributions associated with the determinants which do

not belong to the target space.

There is, however, a computational downside to sCI methods. In conventional CI methods,

the rule by which determinants are selected is known a priori, and therefore, one can map

a particular determinant to some row or column indices.223 As a consequence, it can be

systematically determined to which matrix element of Ĥ a two-electron integral contributes.

This allows for the implementation of so-called integral-driven methods that work essentially

by iterating over integrals. On the contrary, in (most) sCI methods, the determinants are

selected a posteriori, and an explicit list has to be maintained as there is no immediate way

to know whether or not a determinant has been selected. Consequently, we must rely on the

so-called determinant-driven approach in which iterations are performed over determinants

rather than integrals. This can be a lot more expensive, since the number of determinants

Ndet is typically much larger than the number of integrals. The number of determinants
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scales as O(Norb!) while the number of integrals scales (formally) as O(N4
orb). What makes

sCI calculations possible in practice is that sCI methods generate relatively compact wave

functions, i.e. wave functions where Ndet is much smaller (by orders of magnitude) than the

size of the FCI space. Furthermore, determinant-driven methods require an effective way to

compare determinants in order to extract the corresponding excitation operators, and a way

to rapidly fetch the associated integrals involved, as described in Sec. 5.4.1.

Because of this high computational cost, approximations have been proposed.157 Recently,

the semi-stochastic heat-bath configuration interaction (SHCI) algorithm has taken further

the idea of a more approximate but extremely cheap selection.14,170,180 Compared to CIPSI,

the selection criterion is simplified to

eSHCIα = max
I

(∣∣∣cI 〈I|Ĥ|α〉∣∣∣). (5.11)

This algorithmically allows for an extremely fast selection of doubly-excited determinants by

an integral-driven approach. Nonetheless, the bottlenecks of the SHCI are the diagonalization

step and the computation of E(2), which remain determinant driven.

As mentioned above, FCIQMC is an alternative approach of stochastic nature recently

developed in Alavi’s group,11–13 where signed walkers spawn from one determinant to con-

nected ones, with a probability that is a function of the associated matrix element. The

average proportion of walkers on a determinant converges to its coefficient in the FCI wave

function. A more “brute force” approach is the purely stochastic selection of Monte Carlo CI

(MCCI),224,225 where determinants are randomly added to the zeroth-order wave function.

After diagonalization, the determinants of smaller coefficient are removed, and new random

determinants are added.

A number of other variants exist but are not detailed here.8–10,14–16,18,19,156–181,226 Although

these various approaches appear under diverse acronyms, most of them rely on the very same

idea of selecting determinants iteratively according to their contribution to the wave function

or energy.
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5.3.4 Extrapolation techniques

5.3.4.1 Usual extrapolation procedure In order to extrapolate the sCI results to the

FCI limit, we have adopted the method recently proposed by Holmes, Umrigar and Sharma171

in the context of the SHCI method.14,170,171 It consists of extrapolating the sCI energy, E(0),

as a function of the second-order Epstein-Nesbet energy, E(2), which is an estimate of the

truncation error in the sCI algorithm, i.e E(2) ≈ EFCI −E(0).10 When E(2) = 0, the FCI limit

has effectively been reached. This extrapolation procedure has been shown to be robust,

even for challenging chemical situations.14,18,19,171–174,181 Below, we propose an improved

extrapolation scheme which renormalizes the second-order perturbative correction.

5.3.4.2 Renormalized PT2 At a given sCI iteration, the sCI+PT2 energy is given by

E = E(0) + E(2), (5.12)

where E(0) and E(2) are given by Eqs. (5.9) and (5.10), respectively. Let us introduce the

following energy-dependent second-order self-energy

Σ(2)[E] =
∑
α

〈α|Ĥ|Ψ(0)〉2

E − 〈α|Ĥ|α〉
. (5.13)

Obviously, we have Σ(2)[E(0)] = E(2). Now, let us consider the more general problem, which

is somewhat related to Brillouin-Wigner perturbation theory, where we have

E = E(0) + Σ(2)[E], (5.14)

and assume that Σ(2)[E] behaves linearly for E ≈ E(0), i.e.,

Σ(2)[E] ≈ Σ(2)[E(0)] + (E − E(0)) ∂Σ(2)[E]
∂E

∣∣∣∣∣
E=E(0)

. (5.15)

This linear behavior is corroborated by the findings of Nitzsche and Davidson.227 Substituting

Eq. (5.15) into (5.14) yields

E = E(0) + Σ(2)[E(0)] + (E − E(0)) ∂Σ(2)[E]
∂E

∣∣∣∣∣
E=E(0)

= E(0) + Z E(2),

(5.16)
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where the renormalization factor is

Z =
[
1− ∂Σ(2)[E]

∂E

∣∣∣∣∣
E=E(0)

]−1

, (5.17)

and
∂Σ(2)[E]
∂E

∣∣∣∣∣
E=E(0)

= −
∑
α

〈α|Ĥ|Ψ(0)〉2

(E(0) − 〈α|Ĥ|α〉)2
< 0. (5.18)

Therefore, the renormalization factor fulfills the condition 0 ≤ Z ≤ 1, and its actual

computation does not involve any additional cost when computed alongside E(2) as they

involve the same quantities. This renormalization procedure of the second-order correction,

that we have named rPT2, bears obvious similarities with the computation of quasiparticle

energies within the G0W0 method.228–231 Practically, the effect of rPT2 is to damp the value

of E(2) for small wave functions. Indeed, when Ndet is small, the sum E(0) + E(2) usually

overestimates (in magnitude) the FCI energy, yielding a pronounced non-linear behavior

of the sCI+PT2 energy. Consequently, by computing instead the (renormalized) energy

E(0) + Z E(2), one observes a much more linear behavior of the energy, hence an easier

extrapolation to the FCI limit. Its practical usefulness is illustrated in Sec. 5.7.2.

5.4 Implementation

In this section, we give an overview of the implementation of the various methods present

in Quantum Package. The implementation of the crucial algorithms is explained in detail

in the PhD thesis of Dr Y. Garniron232 as well as in the Appendix of the present manuscript.

5.4.1 Determinant-driven computation of the matrix elements

For performance sake, it is vital that some basic operations are done efficiently and,

notably, the computation of the Hamiltonian matrix elements. This raises some questions

about the data structures chosen to represent the two-electron integrals and determinants, as

well as their consequences from an algorithmic point of view. This section is going to address

these questions by going through the basic concepts of our determinant-driven approach.
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5.4.1.1 Storage of the two-electron integrals In Quantum Package, the two-

electron integrals are kept in memory because they require a fast random access. Considering

the large number of two-electron integrals, a hash table is the natural choice allowing the

storage of only non-zero values with a data retrieval in near constant time.233 However,

standard hashing algorithms tend to shuffle data to limit the probability of collisions. Here,

we favor data locality using the hash function given in Algorithm 1. This hash function i)

returns the same value for all keys related by permutation symmetry, ii) keeps some locality in

the storage of data, and iii) can be evaluated in 10 CPU cycles (estimated with MAQAO234)

if the integer divisions by two are replaced by right bit shift instructions.

Function HASH(i, j, k, l): /* Hash function for two-electron integrals */
Data: i, j, k, l are the orbital indices

Result: The corresponding hash

p← min(i, k) ;

r ← max(i, k) ;

t← p+ r(r − 1)/2 ;

q ← min(j, l) ;

s← max(j, l) ;

u← q + s(s− 1)/2 ;

v ← min(t, u) ;

w ← max(t, u) ;

return v + w(w − 1)/2 ;
Algorithm 1: Hash function that maps any orbital quartet (i, j, k, l) related by per-

mutation symmetry to a unique integer.

The hash table is such that each bucket can potentially store 215 consecutive key-value

pairs. The 15 least significant bits of the hash value are removed to give the bucket index

[ibucket = bhash(i, j, k, l)/215c], and only those 15 bits need to be stored in the bucket for the

key storage [hash(i, j, k, l) mod 216]. Hence, the key storage only requires two bytes per key,

and they are sorted in increasing order, enabling a binary search within the bucket. The key

search is always fast since the binary search is bounded by 15 misses and the maximum size

of the key array is 64 kiB, the typical size of the L1 cache. The efficiency of the integral
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storage is illustrated in Section 5.12.1.

5.4.2 Internal representation of determinants

Determinants can be conveniently written as a string of creation operators applied to

the vacuum state |〉, e.g., a†ia
†
ja
†
k|〉 = |I〉. Because of the fermionic nature of electrons, a

permutation of two contiguous creation operators results in a sign change a†ja
†
i = −a†ia

†
j,

which makes their ordering relevant, e.g., a†ja
†
ia
†
k|〉 = − |I〉. A determinant can be broken

down into two pieces of information: i) a set of creation operators corresponding to the set

of occupied spinorbitals in the determinant, and ii) an ordering of the creation operators

responsible for the sign of the determinant, known as phase factor. Once an ordering operator

Ô is chosen and applied to all determinants, the phase factor may simply be included in the

CI coefficient.

The determinants are built using the following order: i) spin-up (↑) spinorbitals are placed

before spin-down (↓) spinorbitals, as in the Waller-Hartree double determinant representa-

tion235 Ô |I〉 = Î|〉 = Î↑Î↓|〉, and ii) within each operator Î↑ and Î↓, the creation operators are

sorted by increasing indices. For instance, let us consider the determinant |J〉 = a†ja
†
ka
†
ī
a†i |〉

built from the set of spinorbitals {i↑, j↑, k↑, i↓} with i < j < k. If we happen to encounter

such a determinant, our choice of representation imposes to consider its re-ordered expression

Ô |J〉 = −a†ia
†
ja
†
ka
†
ī
|〉 = − |J〉, and the phase factor must be handled.

The indices of the creation operators (or equivalently the spinorbital occupations), are

stored using the so-called bitstring encoding. A bitstring is an array of bits; typically, the

64-bit binary representation of an integer is a bitstring of size 64. Quite simply, the idea is to

map each spinorbital to a single bit with value set to its occupation number. In other words,

0 and 1 are associated with the unoccupied and occupied states, respectively. Additional

information about the internal representation of determinants can be found in Appendix

5.12.2.
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5.4.3 Davidson diagonalization

Finding the lowest root(s) of the Hamiltonian is a necessary step in CI methods. Standard

diagonalization algorithms scale as O(N3
det) and O(N2

det) in terms of computation and storage,

respectively. Hence, their cost is prohibitive as Ndet is usually, at least, of the order of

few millions. Fortunately, not all the spectrum of Ĥ is required: only the first few lowest

eigenstates are of interest. The Davidson diagonalization236–240 is an iterative algorithm

which aims at extracting the first Nstates lowest eigenstates of a large matrix. This algorithm

reduces the cost of both the computation and storage to O(NstatesN
2
det) and O(NstatesNdet),

respectively. It is presented as Algorithm 2 and further details about the present Davidson

algorithm implementation are gathered in Appendix 5.12.3.

5.4.4 CIPSI selection and PT2 energy

5.4.4.1 The basic algorithm The largest amount of work for this second version of

Quantum Package has been devoted to the improvement of the CIPSI algorithm imple-

mentation.241 As briefly described in Sec. 5.3, this is an iterative selection algorithm, where

determinants are added to the reference wave function according to a perturbative criterion.

The nth CIPSI iteration can be described as follows:

1. The zeroth-order (reference or variational) wave function

|Ψ(0)〉 =
∑
I∈In

cI |I〉 (5.19)

is defined over a set of determinants In — characterized as internal determinants — from

which the lowest eigenvector of Ĥ are obtained.

2. For all external determinants |α〉 /∈ In but connected to In, i.e., 〈Ψ(0)|Ĥ|α〉 6= 0, we

compute the individual perturbative contribution e(2)
α given by Eq. (5.8). This set of

external determinants is labeled An.

3. Summing the contributions of all the external determinants α ∈ An gives the second-order

perturbative correction provided by Eq. (5.10) and the FCI energy can be estimated as

EFCI ≈ E(0) + E(2).
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Function DAVIDSON_DIAG(Nstates,U):
Data: Nstates: Number of requested states

Data: Ndet: Number of determinants

Data: U: Guess vectors, Ndet ×Nstates

Result: Nstates lowest eigenvalues eigenvectors of H

converged ← FALSE ;

while ¬converged do

Gram-Schmidt orthonormalization of U ;

W← H U ;

h← U†W ;

Diagonalize h : eigenvalues E and eigenvectors y ;

U′ ← U y ;

W′ ←W y ;

for k ← 1, Nstates do

for i← 1, Ndet do

Rik ←
EkU′

ik−W′
ik

Hii−Ek
;

end

end

converged← ‖R‖ < ε ;

U← [U,R] ;

end

return U;
Algorithm 2: Davidson diagonalization procedure. Note that [., .] stands for column-

wise matrix concatenation.
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4. We extract |α?〉 ∈ A?n, the subset of determinants |α〉 ∈ An with the largest contributions

e(2)
α , and add them to the variational space In+1 = In ∪ A?n. In practice, in the case of

the single-state calculation, we aim at doubling the size of the reference wave function at

each iteration.

5. Iterate until the desired convergence has been reached.

All the details of our current implementation are reported in Appendix 5.12.4. In the

remaining of this section, we only discuss the algorithm of our new stochastic CIPSI selection.

5.4.4.2 New stochastic selection In the past, CIPSI calculations were only possible in

practice thanks to approximations. The first approximation restricts the set An by defining a

set of generators. Indeed, it is very unlikely that |α〉 will be selected if it is not connected

to any |I〉 with a large coefficient, so only the determinants with the largest coefficients are

generators. A second approximation defines a set of selectors in order to reduce the cost of e(2)
α

by removing the determinants with the smallest coefficients in the expression of Ψ(0) in E(2).

This approximate scheme was introduced in the 80’s and is known as three-class CIPSI.157

The downside of these approximations is that the calculation is biased and, consequently,

does not strictly converge to the FCI limit. Moreover, similar to the initiator approximation

in FCIQMC,13 this scheme suffers from a size-consistency issue.242 The stochastic selection

that we describe in this section (asymptotically) cures this problem, as there is no threshold

on the wave function: if the calculation is run long enough, the unbiased FCI solution is

obtained.

Recently, some of us developed a hybrid deterministic/stochastic algorithm for the

computation of E(2).17 The main idea is to rewrite the expression of

E(2) =
∑
α

cα 〈Ψ(0)|Ĥ|α〉 (5.20)

into elementary contributions labeled by the determinants of the internal space:

E(2) =
∑
I

∑
α∈AI

cα 〈Ψ(0)|Ĥ|α〉 =
∑
I

εI , (5.21)

where

cα = 〈Ψ(0)|Ĥ|α〉
E(0) − 〈α|Ĥ|α〉

(5.22)
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is the corresponding coefficient estimated via first-order perturbation theory, and AI is the

subset of determinants |α〉 connected to |I〉 by Ĥ such that |α〉 /∈ ∪K<IAK . The sum is

decomposed into a stochastic and a deterministic contribution

E(2) =
∑
J∈D

εJ +
∑
K∈S

εK , (5.23)

where D and S are the sets of determinants included in the deterministic and stochastic

components, respectively.

The |I〉’s are sorted by decreasing c2
I , and two processes are used simultaneously to

compute the contributions εI . The first process is stochastic and |I〉 is drawn according to

c2
I . When a given εI has been computed once, its contribution is stored such that if |I〉 is

drawn again later the contribution does not need to be recomputed. The only update is to

increment the number of times it has been drawn for the Monte Carlo statistics. In parallel,

a deterministic process is run, forcing to compute the contribution εI with the smallest

index which has yet to be computed. The deterministic component is chosen as the first

contiguous set of εI . Hence, the computation of E(2) is unbiased, and the exact deterministic

value can be obtained in a finite time if the calculation is run long enough. The stochastic

part is only a convergence accelerator providing a reliable error bar. The computation of

E(2) is run with a default stopping criterion set to |δE(2)/E(2)| = 0.002, where δE(2) is the

statistical error associated with E(2). We would like to stress that, thanks to the present

semistochastic algorithm, the complete wave function is considered, and that no threshold is

required. Consequently, size-consistency will be preserved if a size-consistent perturbation

theory is applied.

While performing production runs, we have noticed that the computation of E(2) was

faster than the CIPSI selection. Hence, we have slightly modified the routines computing E(2)

such that the selection of determinants is performed alongside the computation of E(2). This

new on-the-fly CIPSI selection performed during the stochastic PT2 calculation completely

removes the conventional (deterministic) selection step, and the determinants are selected

with no additional cost. We have observed that, numerically, the curves of the variational

energy as a function of Ndet obtained with either the deterministic or the stochastic selections

are indistinguishable, so that the stochastic algorithm does not harm the selection’s quality.
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For the selection of multiple states, one PT2 calculation is run for each state and, as

proposed by Angeli et al.,243 the selection criterion is modified as

ẽ(2)
α =

Nstates∑
k

cαk
maxI c2

Ik

〈Ψ(0)
k |Ĥ|α〉 , (5.24)

with

cαk = 〈Ψ(0)
k |Ĥ|α〉

〈Ψ(0)
k |Ĥ|Ψ

(0)
k 〉 − 〈α|Ĥ|α〉

. (5.25)

This choice gives a balanced selection between states of different multi-configurational nature.

5.5 Spin-adapted wave functions

Determinant-based sCI algorithms generate wave functions expressed in a truncated space

of determinants. Obviously, the selection presented in the previous section does not enforce

that Ĥ commutes with Ŝ2 in the truncated space. Hence, the eigenstates of Ĥ are usually

not eigenvectors of Ŝ2, although the situation improves when the size of the internal space

tends to be complete. A natural way to circumvent this problem is to work in the basis of

configuration state functions (CSFs), but this representation makes the direct computation of

the Hamiltonian less straightforward during the Davidson diagonalization.

Instead, we follow the same path as the MELD and SCIEL codes,244–246 and identify

all the spatial occupation patterns associated with the determinants.247 We then generate

all associated spin-flipped configurations, and add to the internal space all the missing

determinants. This procedure ensures that Ĥ commutes with Ŝ2 in the truncated space, and

spin-adapted states are obtained by the diagonalization of Ĥ. In addition, we apply a penalty

method in the diagonalization by modifying the Hamiltonian as248

H̃ = H + γ
(
S2 − I〈S2〉target

)2
, (5.26)

where I is the identity matrix and γ is a fixed parameter set to 0.1 by default. This improves

the convergence to the desired spin state, but also separates degenerate states with different

spins, a situation that can potentially occurs with Rydberg states. In the Davidson algorithm,
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this requires the additional computation of S2 U, for which the cost is expected to be the

same as the cost of H U (see Algorithm 2). The cost of computing H U and S2 U is mostly

due to the search of the connected pairs of determinants, namely the determinants 〈I| and

|J〉 for which 〈I|Ĥ|J〉 and 〈I|Ŝ2|J〉 are not zero due to Slater-Condon’s rules. We have

modified the function computing H U so that it also computes S2 U at the same time. Hence,

the search of connected pairs is done once for both operations and S2 U is obtained with no

extra computational cost.

Working with spin-adapted wave functions increases the size of the internal space by a

factor usually between 2 and 3, but it is particularly important if one is willing to obtain

excited states.19,173,174,181 Therefore, the default in Quantum Package is to use spin-adapted

wave functions.

5.6 Parallelism

In Quantum Package, multiple parallelism layers are implemented: a fine-grained layer

to benefit from shared memory, an intermediate layer to benefit from fast communication

within a group of nodes, and a coarse-grained layer to interconnect multiple groups of

nodes. Fine-grained parallelism is performed with OpenMP249 in almost every single routine.

Then, to go beyond a single compute node, Quantum Package does not use the usual

single program/multiple data (SPMD) paradigm. A task-based parallelism framework is

implemented with the ZeroMQ library.250 The single-node instance runs a compute process

as well as a task server process, while helper programs can be spawned asynchronously on

different (heterogeneous) machines to run a distributed calculation. The helper programs can

connect via ZeroMQ to the task server at any time, and contribute to a running calculation.

As the ZeroMQ library does not take full advantage of the low latency hardware present in

HPC facilities, the helper programs are parallelized also with the message passing interface251

(MPI) for fast communication among multiple client nodes, typically for fast broadcasting of

large data structures.

Hence, we have 3 layers of parallelism in Quantum Package: OpenMP, MPI and
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ZeroMQ. This allows for an elastic management of resources: a running calculation taking

too much time can be dynamically accelerated by plugging in more computing resources, by

submitting more jobs in the queue or possibly in the cloud, i.e. outside of the HPC facility.

This scheme has the advantage that it is not necessary to wait for all the nodes to be free to

start a calculation, and hence minimizes the waiting time in the batch queue. It also gives

the possibility to use altogether different helper programs. For instance, one could use a

specific GPU-accelerated helper program on a GPU node while CPU-only helpers run on the

CPU-only partition of the cluster. It is also possible to write a helper program that helps only

one PT2/selection step and then exit, allowing to gather resources after the PT2/selection

has started, and freeing them for the following diagonalization step.

The current limitation of Quantum Package is the memory of the single-node instance.

We have not yet considered the possibility to add more compute nodes to increase the available

memory, but this can be done by transforming the main program into an MPI program using

scattered data structures.

We now describe how the Davidson and PT2/selection steps are parallelized.

5.6.1 Davidson diagonalization

In the direct Davidson diagonalization method, the computational bottleneck is the matrix

product W = H U, and only this step needs to be distributed. The calculation is divided into

independent tasks where each task builds a unique piece of W containing 40 000 consecutive

determinants. Communicating the result of all the tasks scales as O(Ndet), independently of

the number of parallel processes. On the other hand, U needs to be broadcast efficiently at

the beginning of the calculation to each slave process.

The computation of a task is parallelized with OpenMP, looping in a way that guarantees

a safe write access to W, avoiding the need of a lock. When idle, a slave process requests

a task to the ZeroMQ task server, computes the corresponding result and sends it to the

collector thread of the master instance via ZeroMQ. As the OpenMP tasks are not guaranteed

to be balanced, we have used a dynamic scheduling, with a chunk size of 64 elements. The

reason for this chunk size is to force that multiple threads access to W at memory addresses
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far apart, avoiding the so-called false sharing performance degradation that occurs when

multiple threads write simultaneously in the same cache line.252 When the task is fully

computed, the computed piece of W is sent back to the master process and a new task is

requested, until the task queue is empty.

The U and W arrays are shared among threads, as well as all the large constant data

needed for the calculation such as the ERIs. Sharing U also provides the benefit to reduce the

amount of communication since U needs to be fetched only once for each node, independently

of the number of cores. To make the broadcast of U efficient, the slave helper program is

parallelized with MPI in a SPMD fashion, and each node runs a single MPI process. The

U matrix is fetched from the ZeroMQ server by the process with rank zero, and then it is

broadcast to the other slave processes within the same MPI job via MPI primitives. Then,

each MPI process behaves independently and communicates via ZeroMQ with the task server,

and with the master node which collects the results. A schematic view of the communication

is presented in Fig 16.

5.6.2 CIPSI selection and PT2 energy

In the computation of E(2) and the CIPSI selection, each task corresponds to the compu-

tation of one εJ or εK in Eq. (5.23), together with the selection of the associated external

determinants. To establish the list of tasks, the Monte Carlo sampling is pre-computed on

the master node. We associate to each task the number of drawn Monte Carlo samples such

that running averages can be computed when the results of the tasks have been received by

the collector thread. When the convergence criterion is reached, the task queue is emptied

and the collector waits for all the running tasks to terminate.

As opposed to the Davidson implementation where each task is parallelized with OpenMP,

here each OpenMP thread handles independently a task computed on a single core. Hence,

there are multiple ZeroMQ clients per node, typically one per core, requesting tasks to the

task server and sending the results back to the collector thread (see Fig. 17). Here, all the

OpenMP threads are completely independent during the whole selection, and this explains

the pleasing scaling properties of our implementation, as shown in Sec. 5.7.3. As in the
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Figure 16: Communications in the Davidson diagonalization for a calculation with a master

node and two helper MPI jobs, each using 4 cores for the computation. Red arrows represent

the broadcast of U starting from the compute process of the master node, gray arrows the

exchange of ZeroMQ messages with the task server and blue arrows the collection of the

results.
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Davidson distributed scheme, when the helper programs are run with MPI all the common

data are communicated once from the ZeroMQ server to the rank-zero MPI process. Then,

the data is broadcast to all the other processes with MPI primitives (there is one MPI process

per node).

5.7 Results

5.7.1 Capabilities of Quantum Package

Before illustrating the new features of Quantum Package in the next subsection. We

propose to give an overview of what can be achieved (in terms of system and basis set sizes)

with the current implementation of Quantum Package. To do so we propose to review

some of our very recent studies.

In Ref. [19], we studied 18 small molecules (water, hydrogen sulfide, ammonia, hydrogen

chloride, dinitrogen, carbon monoxide, acetylene, ethylene, formaldehyde, methanimine, thio-

formaldehyde, acetaldehyde, cyclopropene, diazomethane, formamide, ketene, nitrosomethane,

and the smallest streptocyanine) with sizes ranging from 1 to 3 non-hydrogen atoms. For

such systems, using sCI expansions of several million determinants, we were able to compute

more than hundred highly accurate vertical excitation energies with typically augmented

triple-ζ basis sets. It allowed us to benchmark a series of 12 state-of-the-art excited-state

wave function methods accounting for double and triple excitations.

Even more recently,181 we provided accurate reference excitation energies for transitions

involving a substantial amount of double excitation using a series of increasingly large diffuse-

containing atomic basis sets. Our set gathered 20 vertical transitions from 14 small- and

medium-size molecules (acrolein, benzene, beryllium atom, butadiene, carbon dimer and

trimer, ethylene, formaldehyde, glyoxal, hexatriene, nitrosomethane, nitroxyl, pyrazine, and

tetrazine). For the smallest molecules, we were able to obtain well converged excitation

energies with augmented quadruple-ζ basis set while only augmented double-ζ bases were

manageable for the largest systems (such as acrolein, butadiene, hexatriene and benzene).
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Figure 17: Communications in the stochastic selection for a calculation with a master node

and one helper MPI job, each using 4 cores for the computation. Red arrows represent the

broadcast of the common data starting from the compute process of the master node, gray

arrows the exchange of ZeroMQ messages with the task server and blue arrows the collection

of the results.
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Note that the largest sCI expansion considered in this study had more than 200 million

determinants.

In Ref. [196], Giner et al. studied even larger systems containing transition metals:

[CuCl4]2– , [Cu(NH3)4]2+ and [Cu(H2O)4]2+. They were able, using large sCI expansions, to

understand the physical phenomena that determine the relative energies of three of the lowest

electronic states of each of these square-planar copper complexes.

5.7.2 Extrapolation

To illustrate the extrapolation procedure described in Sec. 5.3.4, we consider a cyanine

dye253 H2N−CH−−NH +
2 (labeled as CN3 in the remaining) in both its ground state and first

excited state.18,254,255 The geometry is the equilibrium geometry of the ground state optimized

at the PBE0/cc-pVQZ level.255 The ground state is a closed shell, well described by a single

reference, while the excited state is singly excited and requires, at least, two determinants to

be properly modeled. The calculations were performed in the aug-cc-pVDZ basis set with

state-averaged natural orbitals obtained from an initial CIPSI calculation. All the electrons

were correlated, so the FCI space which is explored corresponds to a CAS(24,114) space. The

reference excitation energy, obtained at the CC3/ANO-L-VQZP level is 7.18 eV254 (see also

Ref. [18]). Note that this particular transition is fairly insensitive to the basis set as long

as at least one set of diffuse functions is included. For example, we have obtained 7.14 and

7.13 eV at the CC3/aug-cc-pVDZ and CC3/aug-cc-pVTZ levels, respectively.19

In Fig. 18, we plot the energy convergence of the ground state (GS) and the excited state

(ES) as a function of the number of determinants Ndet, with and without the second-order

perturbative contribution. From the data gathered in Table 3, one can see that, although E(2)

is still large (roughly 0.02 a.u.), the sCI+PT2 and sCI+rPT2 excitation energies converge

to a value of 7.20 eV compatible with the reference energy obtained in a larger basis set.

We have also plotted the sCI+rPT2 energy given by E(0) + ZE(2) (see Sec. 5.3.4.2) and we

clearly see that this quantity converges much faster than the usual sCI+PT2 energy. Even

for very small reference wave function, the energy gap between GS and ES is qualitatively

correct. The graph of Fig. 19, which shows the zeroth-order energy E(0) as a function of the
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second-order energy E(2) (dotted lines) or its renormalization variant Z E(2) (solid lines), also

indicates that it is practically much easier to extrapolate to the FCI limit using the rPT2

correction.

As a second test case for rPT2, we consider the widely-studied example of the chromium

dimer (Cr2) in its 1Σ+
g ground state.14,156,170,256–266 This system is notoriously challenging as it

combines dynamic and static correlation effects hence requiring multi-configurational methods

and large basis sets in order to have a balanced treatment of these two effects. Consequently,

we compute its ground-state energy in the cc-pVQZ basis set with an internuclear distance

RCr−Cr = 1.68Å close to its experimental equilibrium geometry. Our full-valence calculation

corresponds to an active space CAS(28,198) and the computational protocol is similar to the

previous example. The second-order corrected value E(0) + E(2) as well as its renormalized

version E(0) + ZE(2) as a function of the number of determinants in the reference wave

function are reported in Table 4 and depicted in Fig. 20. Here also, we observe that rPT2 is

clearly a superior extrapolation framework compared to the standard PT2 version as it yields

a much straighter extrapolation curve, even in the case of a strongly correlated system such

as Cr2. The renormalization factor Z [see Eq. (5.17)] mitigates strongly the overestimation

of the FCI energy for small wave functions by damping the second-order energy E(2). Linear

extrapolations of the PT2 and rPT2 energies based on the two largest wave functions yields

extrapolated FCI energies of -2087.734 and -2087.738, respectively (see also Table 4). The

difference between these two extrapolated FCI energies provides a qualitative idea of the

extrapolation accuracy.

5.7.3 Speedup

In this Section, we discuss the parallel efficiency of the algorithms implemented in

Quantum Package. The system we chose for these numerical experiments is the benzene

molecule C6H6 for which we have performed sCI calculations with the 6-31G* basis set.

The frozen-core approximation has been applied and the FCI space that we explore is a

CAS(30,90). The measurements were made on GENCI’s Irene supercomputer. Each Irene’s

node is a dual-socket Intel(R) Xeon(R) Platinum 8168 CPU@2.70GHz with 192GiB of RAM,
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Figure 18: Energy convergence of the ground state (GS, in blue) and excited state (ES, in

red) of CN3 with respect to the number of determinants Ndet in the reference space. The

zeroth-order energy E(0) (dashed) , its second-order corrected value E(0) + E(2) (dotted) as

well as its renormalized version E(0) + ZE(2) (solid) are represented. See Table 3 for raw

data.

87



●
●

●
●

●

●

●

●

●

●

●
●

●
●●●●●●●

■
■

■

■

■

■

■

■

■

■
■

■■■■■■■■

●
●
●

●
●

●

●

●

●

●

●

●
●

●
●●●●●●●

■
■

■
■

■

■

■

■

■

■

■

■
■

■■■■■■■■

●

■

-��� -��� -��� -��� -��� -��� ���

-�����

-�����

-�����

-�����

-�����
●

●

●

●
●

●
●

●
●

● ●

●

●

●

●
●

●
●

●
●

● ●

-���� -���� -���� -���� ����

-������

-������

-������

-������

-������

■

■

■

■
■

■
■

■
■

■ ■

■

■

■

■

■
■

■
■

■
■

■ ■

-���� -���� -���� -���� ����

-������

-������

-������

-������

Figure 19: Zeroth-order energy E(0) as a function of the second-order energy E(2) (dotted

lines) or its renormalized variant Z E(2) (solid lines). A linear fit (dashed lines) of the last 6

points is also reported for comparison. See Table 3 for raw data.

with a total of 48 physical CPU cores. Parallel speedup curves are made up to 12 288 cores

(i.e. 256 nodes) for i) a single iteration of the Davidson diagonalization, and ii) the hybrid

semistochastic computation of E(2) (which includes the CIPSI selection). The speedup

reference corresponds to the single node calculation (48 cores).

First, we measure the time required to perform a single Davidson iteration as a function of

the number of CPU cores for the two largest wave functions (Ndet = 25× 106 and 100× 106).

The timings are reported in Table 5 while the parallel speedup curve is represented in Fig. 21.

The parallel efficiency increases together with Ndet, as shown in Fig. 21. For the largest wave

function, a parallel efficiency of 66% is obtained on 192 nodes (i.e. 9216 cores). We note that

the speedup reaches a plateau at 3 072 cores (64 nodes) for Ndet = 25× 106. For this wave

function, there are 625 tasks computing each 40 000 rows of W. When the number of nodes

reaches 64, the number of tasks is too small for the load to be balanced between the nodes,

and the computational time is limited by the time taken to compute the longest task. The

same situation arises for Ndet = 100× 106 with 9 408 cores (192 nodes), with 2 500 tasks to
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Table 3: Zeroth-order energy E(0), second-order perturbative correction E(2) and its renormal-

ized version ZE(2) (in hartree) of CN3 for increasingly large wave functions. The excitation

energy ∆E (in eV) is the energy difference between the ground state (GS) and the excited

state (ES). The statistical error, corresponding to one standard deviation, is reported in

parenthesis.
E(0) E(0) + E(2) E(0) + ZE(2)

Ndet GS (a.u.) ES (a.u.) GS (a.u.) ES (a.u.) ∆E (eV) GS (a.u.) ES (a.u.) ∆E (eV)

28 -149.499 574 -149.246 268 -150.155(1) -149.863(1) 7.95(5) -150.020(1) -149.743(1) 7.54(5)

58 -149.519 908 -149.261 390 -150.134(1) -149.853(1) 7.67(5) -150.018(1) -149.744(1) 7.48(5)

131 -149.537 424 -149.277 496 -150.118(1) -149.842 7(9) 7.52(4) -150.017(1) -149.744 9(9) 7.39(4)

268 -149.559 465 -149.298 484 -150.103 5(9) -149.830 8(9) 7.42(4) -150.015 8(9) -149.745 7(9) 7.35(4)

541 -149.593 434 -149.323 302 -150.084 5(8) -149.818 6(8) 7.24(4) -150.015 2(8) -149.746 3(8) 7.32(4)

1 101 -149.627 202 -149.354 807 -150.068 3(8) -149.804 5(8) 7.18(3) -150.013 7(8) -149.746 0(8) 7.28(3)

2 207 -149.663 850 -149.399 522 -150.054 9(7) -149.787 9(7) 7.26(3) -150.013 2(7) -149.746 2(7) 7.27(3)

4 417 -149.714 222 -149.448 133 -150.040 9(6) -149.776 2(6) 7.20(3) -150.013 0(6) -149.747 8(6) 7.22(3)

8 838 -149.765 886 -149.496 401 -150.029 6(5) -149.765 5(5) 7.19(2) -150.012 4(5) -149.747 3(5) 7.21(2)

17 680 -149.817 301 -149.545 048 -150.023 9(4) -149.761 5(4) 7.14(2) -150.014 1(4) -149.750 5(4) 7.17(2)

35 380 -149.859 737 -149.587 668 -150.021 6(3) -149.758 2(3) 7.17(1) -150.016 1(3) -149.751 8(3) 7.19(1)

70 764 -149.893 273 -149.623 235 -150.020 7(2) -149.756 6(3) 7.18(1) -150.017 4(2) -149.753 0(3) 7.19(1)

141 545 -149.919 463 -149.650 109 -150.021 4(2) -149.757 2(2) 7.189(8) -150.019 4(2) -149.755 0(2) 7.196(8)

283 108 -149.937 839 -149.669 735 -150.022 4(2) -149.757 6(2) 7.206(7) -150.021 1(2) -149.756 2(2) 7.209(7)

566 226 -149.950 918 -149.683 278 -150.023 3(1) -149.758 0(1) 7.217(6) -150.022 3(1) -149.757 0(1) 7.219(6)

1 132 520 -149.960 276 -149.693 053 -150.023 8(1) -149.758 8(1) 7.212(5) -150.023 1(1) -149.758 0(1) 7.214(5)

2 264 948 -149.968 203 -149.700 907 -150.024 0(1) -149.759 0(1) 7.211(4) -150.023 5(1) -149.758 4(1) 7.212(4)

4 529 574 -149.975 230 -149.708 061 -150.024 5(1) -149.759 4(1) 7.215(4) -150.024 1(1) -149.758 9(1) 7.216(4)

9 057 914 -149.981 770 -149.714 526 -150.024 63(9) -149.759 81(8) 7.206(3) -150.024 34(9) -149.759 48(8) 7.207(3)

18 110 742 -149.987 928 -149.720 648 -150.024 95(7) -149.760 25(8) 7.203(3) -150.024 74(7) -149.760 00(8) 7.204(3)

36 146 730 -149.993 593 -149.726 253 -150.025 27(6) -149.760 65(7) 7.198(3) -150.025 02(6) -149.760 47(7) 7.198(3)
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Table 4: Zeroth-order energy E(0), second-order perturbative correction E(2) and its renor-

malized version ZE(2) (in hartree) as a function of the number of determinants Ndet for the

ground-state of the chromium dimer Cr2 computed in the cc-pVQZ basis set. The statistical

error, corresponding to one standard deviation, is reported in parenthesis.

Ndet E(0) E(0) + E(2) E(0) + ZE(2)

1 631 -2086.742 321 -2087.853(3) -2087.679(2)

3 312 -2086.828 496 -2087.821(2) -2087.688(1)

6 630 -2086.920 161 -2087.792(1) -2087.694(1)

13 261 -2087.008 701 -2087.764(1) -2087.694(1)

26 562 -2087.091 669 -2087.743(1) -2087.692(1)

53 129 -2087.165 533 -2087.725(1) -2087.689(1)

106 262 -2087.234 564 -2087.710 2(9) -2087.685 0(8)

212 571 -2087.293 488 -2087.703 0(8) -2087.685 0(7)

425 185 -2087.343 762 -2087.697 3(7) -2087.684 4(7)

850 375 -2087.386 276 -2087.697 8(6) -2087.688 1(6)

1 700 759 -2087.422 707 -2087.698 9(6) -2087.691 6(5)

3 401 504 -2087.454 427 -2087.700 7(5) -2087.695 1(5)

6 802 953 -2087.482 238 -2087.703 2(4) -2087.698 8(4)

13 605 580 -2087.506 838 -2087.705 6(4) -2087.702 2(4)

27 210 163 -2087.528 987 -2087.709 2(4) -2087.706 4(4)

54 415 174 -2087.549 261 -2087.711 6(3) -2087.709 5(3)

Extrap. -2087.734 -2087.738
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Figure 20: Left: Energy convergence of the ground state of Cr2 with respect to the number of

determinants Ndet in the reference space. The zeroth-order energy E(0) (dashed) , its second-

order corrected value E(0) + E(2) (dotted) as well as its renormalized version E(0) + ZE(2)

(solid) are represented. Right: Zeroth-order energy E(0) as a function of the second-order

energy E(2) (dotted lines) or its renormalization variant Z E(2) (solid lines). A linear fit

(dashed lines) of the last 2 points is also reported for comparison. See Table 4 for raw data.
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compute.

Second, we analyze the parallel efficiency of the calculation of E(2) for the sCI wave

function with Ndet = 25× 106. The stopping criterion during the calculation of E(2) is given

by a relative statistical error below 2 × 10−3 of the current E(2) value. The speedups are

plotted in Fig. 21 (see also Table 5). For 192 nodes, one obtains a parallel efficiency of 89%.

The present parallel efficiency is not as good as the one presented in the original paper.17

The reason behind this is a faster computation of e(2)
α , which reduces the parallel efficiency

by increasing the ratio communication/computation.

5.8 Developing in Quantum Package

5.8.1 The Quantum Package philosophy

Quantum Package is a standalone easy-to-use library for developers. The main goals

of Quantum Package are to i) facilitate the development of new quantum chemistry

methods, ii) minimize the dependency on external programs/libraries, and iii) encourage the

collaborative and educative work through human readable programs. Therefore, from the

developer point of view, Quantum Package can be seen as a standalone library containing

all important quantities needed to perform quantum chemistry calculations, both involving

wave function theory, through the determinant driven algorithms, and DFT methods, thanks

to the presence of a quadrature grid for numerical integrations and basic functionals. These

appealing features are made more concrete thanks to the organization of Quantum Package

in terms of core modules and plugins (see Sec. 5.8.3) together with its programming language

(see Sec. 5.8.2), which naturally creates a very modular environment for the programmer.

Although Quantum Package is able to perform all the required steps from the calcula-

tion of the one- and two-electron integrals to the computation of the sCI energy, interfacing

Quantum Package, at any stage, with other programs is relatively simple. For example,

canonical or CASSCF molecular orbitals can be imported from GAMESS,96 while atomic

and/or molecular integrals can be read from text files like fcidump. Thanks to this flexibility,
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Table 5: Wall-clock time (in seconds) to perform a single Davidson iteration and a second-

order correction E(2) calculation (which also includes the CIPSI selection) with an increasing

number of 48-core compute nodes Nnodes. The statistical error obtained on E(2), defining the

stopping criterion, is 0.17× 10−3 a.u.

Nnodes Wall-clock time (in seconds)

Davidson for Davidson for PT2/selection

Ndet = 25× 106 Ndet = 100× 106 Ndet = 25× 106

1 3 340 65 915 406 840

32 142 2 168 12 711

48 109 1 497 8 515

64 93 1 181 6 421

96 93 834 4 323

128 93 674 3 287

192 96 522 2 435

256 96 519 1 996
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Figure 21: Speedup obtained for a single Davidson iteration (blue and yellow curves) and the

combination of CIPSI selection and PT2 calculation (red curve) as a function of the number

of CPU cores. For the Davidson diagonalization, two sizes of reference wave functions are

reported (Ndet = 25× 106 and 100× 106), while for the PT2/selection calculation only results

corresponding to the smallest wave function (Ndet = 25× 106) are reported. See Table 5 for

raw data.
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Etot

Enuc Eele

Ekin Epot

Figure 22: Production tree of the energy computed by IRPF90.

some of us are currently developing plugins for performing sCI calculations for periodic

systems.

5.8.2 The IRPF90 code generator

It is not a secret that large scientific codes written in Fortran (or in similar languages)

are difficult to maintain. The program’s complexity originates from the inter-dependencies

between the various entities of the code. As the variables are more and more coupled, the

programs become more and more difficult to maintain and to debug. To keep a program

under control, the programmer has to be aware of all the consequences of any source code

modification within all possible execution paths. When the code is large and written by

multiple developers, this becomes almost impossible. However, a computer can easily handle

such a complexity by taking care of all the dependencies between the variables, in a way

similar to how GNU Make handles the dependencies between source files.

IRPF90 is a Fortran code generator.267 Schematically, the programmer only writes

computation kernels, and IRPF90 generates the glue code linking all these kernels together

to produce the expected result, handling all relationships between variables. To illustrate

in a few words how IRPF90 works, let us consider the simple example which consists of

calculating the total energy of a molecular system as the sum of the nuclear repulsion and

the electronic energy Etot = Enuc + Eele. The electronic energy is the sum of the kinetic and

potential energies, i.e., Eele = Ekin + Epot.

The production tree associated with the computation of the total energy is shown in

95



Fig. 22. Within the IRPF90 framework, the programmer writes a provider for each entity, i.e.,

a node of the production tree. The provider is a subroutine whose only goal is to compute

the value associated with the entity, assuming the values of the entities on which it depends

are computed and valid. Hence, when an entity is used somewhere in the program (in a

subroutine, a function or a provider), a call to its provider is inserted in the code before it is

used such that the corresponding value is guaranteed to be valid.

Quantum Package is a library of providers designed to make the development of new

wave function theory and DFT methods simple. Only a few programs using these providers

are part of the core modules of Quantum Package, such as the sCI module using the CIPSI

algorithm or the module containing the semi-stochastic implementation of the second-order

perturbative correction. The main goal of Quantum Package is to be used as a library of

providers, and programmers are encouraged to develop their own modules using Quantum

Package.

5.8.3 The plugin system

External programmers should not add their contributions by modifying directly Quantum

Package’s core, but by creating their own modules in independent repositories hosted and

distributed by themselves. This model gives more freedom to the developers to distribute

modules as we do not enforce them to follow any rule. The developers are entirely responsible

for their own plugins. This model has the advantage to redirect immediately the users to the

right developer for questions, installation problems, bug reports, etc.

Quantum Package integrates commands to download external repositories and integrate

all the plugins of these repositories into the current installation of Quantum Package.

External plugins appear exactly as if they were part of Quantum Package, and if a plugin

is useful for many users, it can be easily integrated in Quantum Package’s core after all

the coding and documentation standards are respected.

Multiple external plugins were developed by the authors. For instance, one can find

a multi-reference coupled cluster program,17,268 interfaces with the quantum Monte Carlo

programs QMC=Chem,192 QMCPack194 and CHAMP,269 an implementation of the shifted-Bk

96



method,18 a program combining CIPSI with RSDFT,270 a four-component relativistic RSDFT

code,271 and many others.

In particular, Quantum Package also contains the basic tools to use and develop

range-separated density-functional theory (RSDFT, see, e.g., Refs. [272] , [273]) which

allows to perform multi-configurational density-functional theory (DFT) calculations within

a rigorous mathematical framework. In the core modules of Quantum Package, single-

determinant approximations of RSDFT are available, which fall into the so-called range-

separated hybrid274,275 (RSH) approximation. These approaches correct for the wrong long-

range behavior of the usual hybrid approximations thanks to the inclusion of the long-range

part of the HF exchange. Quantum Package contains all necessary integrals to perform

RSDFT calculations, including the long-range interaction integrals and Hartree-exchange-

correlation energies and potentials derived from the short-range version of the local-density

approximation (LDA)276 and a short-range generalized-gradient approximation (GGA) based

on the Perdew-Burke-Ernzerhof (PBE) functional.277 All numerical integrals are performed

using the standard Becke quadrature grid278 associated with the improved radial grids of

Mura et al.279 With these tools, more evolved schemes based on RSDFT have been developed,

such as an energy correlation functional with multideterminantal reference depending on

the on-top pair density280 or a basis set correction.270 The corresponding source code can be

found as external plugins (see, for example, https://gitlab.com/eginer/qp_plugins_eginer).

5.9 Conclusion

Significant improvements were brought to the second version of Quantum Package.

Some were single-core optimizations, and others focused on the algorithm adaptation to

large-scale parallelism (load balancing in particular). Currently, the code has a parallel

efficiency that enables routinely to realize runs on roughly 2 000 CPU cores, with tens of

millions of determinants in the reference space. Moreover, we have been able to push up to

12 288 cores (256 nodes) on GENCI’s supercomputer Irene. Such a gain in efficiency has and

will lead to many more challenging chemical applications.19,165–169,174,181,197,198
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The Davidson diagonalization, which is at the center of sCI and FCI methods, suffers from

the impossibility to fully store the Hamiltonian in the memory of a single node. The solution

we adopted was to resort to direct methods, i.e., recomputing on the fly the matrix elements

at each iteration. While an extremely fast method was already available to detect zero

matrix elements,281 the former implementation still had to search over the O(N2
det) matrix

elements for interacting determinant pairs. Now, determinants are split in disjoint sets entirely

disconnected from each other. Thus, only a small fraction of the matrix elements need to be

explored, and an algorithm with O(N3/2
det ) scaling was proposed. While the parallelization

of this method was somewhat challenging due to the extremely unbalanced nature of the

elementary tasks, a distributed implementation was realized with satisfying parallel speedups

(typically 35 for 50 nodes) with respect to the 48-core single-node reference.

Significant improvements were also realized in the computation of the second-order

perturbative correction, E(2). A natural idea was to take into account the tremendous number

of tiny contributions via a stochastic Monte Carlo approach. E(2) being itself an approximate

quantity used for estimating the FCI energy, its exact value is indeed not required, as long as

the value is unbiased and the statistical error is kept under control. Our scheme allows to

compute E(2) with a small error bar for a few percent of the cost of the fully deterministic

computation.

Similarly, the CIPSI selection is now performed stochastically alongside the PT2 calcula-

tion. Therefore, the selection part of the new stochastic CIPSI selection is virtually free as

long as one is interested in the second-order perturbative correction.

Finally, efforts have been made to make this software as developer friendly as possible

thanks to a very modular architecture that allows any developer to create his/her own module

and to directly benefit from all pre-existing work.

5.10 License

Quantum Package is licensed under GNU Affero General Public License (AGPLv3).
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5.12 Implementation details

5.12.1 Efficiency of integral storage

The efficiency of the storage as a hash table was measured on a dual socket Intel Xeon

E5-2680 v2@2.80GHz processor, taking the water molecule with the cc-pVQZ basis set (115

MOs). The time to access all the integrals was measured by looping over the entire set of

ERIs using different loop orderings. The results are given in Table 6, the reference being the

storage as a plain four-dimensional array.

In the array storage, the value of 170 ns/integral in the random access case is typical of

the latency to fetch a value in the RAM modules, telling that the requested integral is almost

never present in any level of cache. When the data is accessed with a stride of one (i, j, l, k

storage), the hierarchical architecture of the cache levels accelerates the access by a factor of

18, down to 9.71 ns/integral, corresponding mostly to the overhead of the function call, the

retrieval of the data being negligible.

With the hash table, the random access is only 2.18 times slower than the random access

in the array. Indeed, two random accesses are required: one for the first element of the key
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Table 6: Time to access integrals (in nanoseconds/integral) with different access patterns.

The time to generate random numbers (measured as 67 ns/integral) was not counted in the

random access results.

Access Array Hash table

i, j, k, l 9.72 125.79

i, j, l, k 9.72 120.64

i, k, j, l 10.29 144.65

l, k, j, i 88.62 125.79

l, k, i, j 88.62 120.64

Random 170.00 370.00

bucket to do the search, and one for the value of the integral. The remaining time corresponds

to the binary search. The results show that data locality is exploited: when the access is

done with a regular access pattern, the data is fetched roughly 3 times faster than using a

random access, giving a latency below the latency of a random access in the array.

A CIPSI calculation was run once with the array storage, and once with the hash table

storage. With the hash storage, the total wall clock time was increased only by a factor of

two. To accelerate the access to the most frequently used integrals and reduce this overhead,

we have implemented a software cache. All the integrals involving the 128 MOs closest to the

Fermi level are copied in a dense array of 1284 elements (2 GiB), and benefit from the fastest

possible access.

5.12.2 Internal representation of determinants

Determinants can be conveniently written as a string of creation operators applied to

the vacuum state |〉, e.g., a†ia
†
ja
†
k|〉 = |I〉. Because of the fermionic nature of electrons, a

permutation of two contiguous creation operators results in a sign change a†ja
†
i = −a†ia

†
j,

which makes their ordering relevant, e.g., a†ja
†
ia
†
k|〉 = − |I〉. A determinant can be broken

down into two pieces of information: i) a set of creation operators corresponding to the set

100



of occupied spinorbitals in the determinant, and ii) an ordering of the creation operators

responsible for the sign of the determinant, known as phase factor. Once an ordering operator

Ô is chosen and applied to all determinants, the phase factor may simply be included in the

CI coefficient.

The determinants are built using the following order: i) spin-up (↑) spinorbitals are placed

before spin-down (↓) spinorbitals, as in the Waller-Hartree double determinant representa-

tion235 Ô |I〉 = Î|〉 = Î↑Î↓|〉, and ii) within each operator Î↑ and Î↓, the creation operators are

sorted by increasing indices. For instance, let us consider the determinant |J〉 = a†ja
†
ka
†
ī
a†i |〉

built from the set of spinorbitals {i↑, j↑, k↑, i↓} with i < j < k. If we happen to encounter

such a determinant, our choice of representation imposes to consider its re-ordered expression

Ô |J〉 = −a†ia
†
ja
†
ka
†
ī
|〉 = − |J〉, and the phase factor must be handled.

The indices of the creation operators (or equivalently the spinorbital occupations), are

stored using the so-called bitstring encoding. A bitstring is an array of bits; typically, the

64-bit binary representation of an integer is a bitstring of size 64. Quite simply, the idea is to

map each spinorbital to a single bit with value set to its occupation number. In other words,

0 and 1 are associated with the unoccupied and occupied states, respectively.

For simplicity and performance considerations, the occupations of the spin-up and spin-

down spinorbitals are stored in different bitstrings, rather than interleaved or otherwise

merged in the same one. This allows to straightforwardly map orbital index p to bit index

p − 1 (orbitals are usually indexed from 1, while bits are indexed from 0). This makes

the representation of a determinant a tuple of two bitstrings, associated with respectively

spin-up and spin-down orbitals. A similar parity representation of the fermionic operators is

commonly used in quantum computing.282

The storage required for a single determinant is, in principle, one bit per spinorbital, or

2×Norb bits. However, because CPUs are designed to handle efficiently 64-bit integers, each

spin part is stored as an array of 64-bit integers, the unused space being padded with zeros. The

actual storage needed for a determinant is 2×64×Nint bits, where Nint = b(Norb − 1)/64c+1

is the number of 64-bit integers needed to store one spin part.

Taking advantage of low-level hardware instructions,281 we are able, given two arbitrary

determinants |I〉 and |J〉, to find with a minimal cost the excitation operator T̂ such that
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|J〉 = T̂ |I〉. This is a necessary step to obtain the (i, j, k, l) indices of the two-electron

integral(s) involved in the Hamiltonian matrix element between |I〉 and |J〉. Then, fetching

the values of the integrals can be done quickly using the hash table presented in Sec. 5.4.1.

Because the data structure used to store determinants implies an ordering of the MOs, we

also need to compute a phase factor. Here, we propose an algorithm to perform efficiently the

computation of the phase factor. For a determinant |I〉 that is going to be used repeatedly

for phase calculations, we introduce a phase mask represented as a bitstring:

PI [i] = 1 ∧
i∑

k=0
I[k], (5.27)

where ∧ denotes the and bitwise operation, and I[k] is the kth bit of bitstring I, corresponding

to the (k + 1)th spinorbital of determinant |I〉 (remember that the orbital indices start at 1

and the bit indices start at 0). In other words, the ith bit of the phase mask is set to 1 if the

number of electrons occupying the i+ 1 lowest spinorbitals is odd, and 0 otherwise. When

an electron of determinant |I〉 is excited from orbital h to p, the associated phase factor is
+(−1)PI [h−1]⊕PI [p−1], if p > h,

−(−1)PI [h−1]⊕PI [p−1], if h > p,

(5.28)

where ⊕ denotes the exclusive or (xor) operation. So if the phase mask is available, the

computation of the phase factor only takes a few CPU cycles. Another important aspect

is to create efficiently the phase masks. We propose Algorithm 3, which computes it in a

logarithmic time for groups of 64 MOs, taking advantage of the associativity of the exclusive

or operator. Indeed, the “for” loop executes 6 cycles to update the mask for 26 = 64 MOs.
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Function PhasemaskOfDet(I):
Data: I : 64-bit string representation of |I〉

Result: P : phase mask associated with |I〉, as a 64-bit string.

for σ ∈ {↑, ↓} do

r ← 0 ;

for i← 0, Nint − 1 do

Pσ[i]← Iσ[i]⊕ (Iσ[i]� 1) ;

for d← 0, 5 do

Pσ[i]← Pσ[i]⊕ (Pσ[i]� (1� d)) ;

end

Pσ[i]← Pσ[i]⊕ r ;

if (‖Iσ[i]‖ ∧ 1) = 1 then

r ← ¬r ;

end

end

end

return P ;

‖I‖ : number of bits set to 1 in I (popcnt),

∧ : bitwise and,

⊕ : bitwise xor,

(I � k) : shift I by k bits to the left,

¬ : bitwise negation.
Algorithm 3: Function that returns a phase mask as a bitstring.
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5.12.3 Davidson diagonalization

Within Quantum Package, the Davidson diagonalization algorithm is implemented in

its multi-state version. Algorithmically, the expensive part of the Davidson diagonalization

is the computation of the matrix product H U. As mentioned above (see Sec. 5.3), two

determinants |I〉 and |J〉 are connected via H (i.e. 〈I|Ĥ|J〉 6= 0) only if they differ by no

more than two spinorbitals. Therefore, the number of non-zero elements per row in H is

equal to the number of single and double excitation operators, namely O(N2
↑ (Norb −N↑)2).

As H is symmetric, the number of non-zero elements per column is identical. This makes H

very sparse. However, for large basis sets, the whole matrix may still not fit in a single node

memory, as the number of non-zero entries to be stored is of the order of NdetN
2
↑ (Norb−N↑)2.

One possibility would be to distribute the storage of H among multiple compute nodes, and

use a distributed library such as PBLAS283 to perform the matrix-vector operations. Another

approach is to use a so-called direct algorithm, where the matrix elements are computed on

the fly, and this is the approach we have chosen in Quantum Package. This effectively

means iterating over all pairs of determinants |I〉 and |J〉, checking whether |I〉 and |J〉

are connected by H and if they are, accessing the corresponding integral(s) and computing

the phase factor. Even though it is possible to compute the excitation degree between

two determinants very efficiently,281 the number of such computations scales as N2
det, which

becomes rapidly prohibitively high. To get an efficient determinant-driven implementation it

is mandatory to filter out all pairs of determinants that are not connected by H, and iterate

only over connected pairs. To reach this goal, we have implemented an algorithm similar to

the Direct Selected Configuration Interaction Using Strings (DISCIUS) algorithm.187

The determinants of the internal space are re-ordered in linear time as explained in

Ref. [193], such that the wave function can be expressed as

|Ψ(0)〉 =
N↑

det∑
I

N↓
det∑
J

CIJ |I↑J↓〉 , (5.29)

where we take advantage of the Waller-Hartree double determinant representation.235

Moving along a row or a column of C keeps the spin-up or spin-down determinants

fixed, respectively. For a given determinant, finding the entire list of same-spin single and
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double excitations can be performed in O(N↑det) = O(N↓det) = O(
√
Ndet), while finding the

opposite-spin double excitations is done via a two-step procedure. First, we look for all the

spin-up single excitations. Then, starting from this list of spin-up single excitations, we

search for the spin-down single excitation such that the resulting opposite-spin doubly-excited

determinant belongs to Ψ(0). Hence, the formal scaling is reduced to O(N3/2
det ). It could be

further reduced to O(Ndet) at the cost of storing the list of all singly- and doubly-excited

determinants for each spin-up and spin-down determinant, but we preferred not to follow

this path in order to reduce the memory footprint as much as possible.

5.12.4 CIPSI selection and PT2 energy

There are multiple ways to compute the e(2)
α ’s. One way is to loop over pairs of internal

determinants |I〉 and |J〉, generate the list of external determinants {|α〉} connecting |I〉 and

|J〉 and increment the corresponding values e(2)
α stored in a hash table. Using a hash table to

store in memory a list of |α〉’s without duplicates and their contributions e(2)
α is obviously

not a reasonable choice since the total number of |α〉’s scales as O(NdetN
2
↑ (Norb −N↑)2). To

keep the memory growth in check, we must design a function that can build a stream of

unique external determinants, compute their contribution e(2)
α and retain in memory only the

few most significant pairs (|α〉, e(2)
α ).

In Quantum Package, we build the stream of unique external determinants as follows.

We loop over the list of internal determinants (the generators) sorted by decreasing c2
I .

For each generator |I〉, we generate all the singly- and doubly-excited determinants {|α〉},

removing from this set the internal determinants and the determinants connected to any

other generator |J〉 such that J < I. This guarantees that the |α〉’s are considered only once,

without any additional memory requirement.

For each generator |I〉, before generating its set of |α〉’s, we pre-compute the diagonal of

the Fock matrix associated with |I〉. This enables to compute the diagonal elements 〈α|Ĥ|α〉

involved in Eq. (5.8) for a few flops.284 The computation of 〈Ψ(0)|Ĥ|α〉 = ∑
J cJ 〈J |Ĥ|α〉

is more challenging than the diagonal term since, at first sight, it appears to involve the

Ndet internal determinants. Fortunately, most of the terms amongst this sum vanish due
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to Slater-Condon’s rules. Indeed, we know that the terms where |J〉 is more than doubly

excited with respect to |α〉 vanish, and these correspond to the determinants |J〉 which

are more than quadruply excited with respect to |I〉.284 To compute efficiently 〈Ψ(0)|Ĥ|α〉,

for each generator |I〉, we create a filtered wave function |Ψ(0)
I 〉 by projecting |Ψ(0)〉 on a

subset JI of internal determinants {|J〉} where 〈J |Ĥ|α〉 is possibly non-zero. This yields

〈Ψ(0)|Ĥ|α〉 = 〈Ψ(0)
I |Ĥ|α〉, where Ψ(0)

I is a much smaller determinant expansion than Ψ(0).

In addition, as we have defined the |α〉’s in such a way that they do not interact with |J〉

when J < I, all these |J〉’s can also be excluded from JI . This pruning process yielding to

|Ψ(0)
I 〉 will be referred to as the coarse-grained filtering. A fine-grained filtering of |Ψ(0)

I 〉 is

performed in a second stage to reduce even more the number of determinants, as we shall

explain later.

To make the coarse-grained filtering efficient, we first filter out the determinants that

are more than quadruply excited in the spin-up and spin-down sectors separately. Using

the representation shown in Eq. (5.29), this filtering does not need to run through all the

internal determinants and scales as O(N↑det) = O(
√
Ndet). It is important to notice that, at

this stage, the size of JI is bounded by the number of possible quadruple excitations in both

spin sectors, and does not scale any more as O(Ndet). Next, we remove the determinants

that are i) quadruply excited in one spin sector and excited in the other spin sector, ii) triply

excited in one spin sector and more than singly excited in the other spin sector, and iii) all

the determinants that are doubly excited in one spin sector and more than doubly excited in

the other spin sector.

The external determinant contributions are computed in batches. A batch Ipq is defined

by a doubly-ionized generator |Ipq〉 = apaq |I〉. When a batch is created, the fine-grained

filtering step is applied to JI to produce JIpq and Ψ(0)
Ipq

, such that 〈Ψ(0)
Ipq
|Ĥ|α〉 = 〈Ψ(0)

I |Ĥ|α〉.

Each external determinant produced in the batch Ipq is characterized by two indices r

and s with Ôa†ra†sapaq |I〉 = |Irspq〉. The contribution associated with each determinant of a

given batch will be computed incrementally in a two-dimensional array A(r, s) as follows. A

first loop is performed over all the determinants |J〉 belonging to the filtered internal space

JIpq . Comparing |J〉 to |Ipq〉 allows to quickly identify if |J〉 will be present in the list of

external determinants, and consequently tag the corresponding cell A(r, s) as banned. Banned
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cells will not be considered for the computation of e(2)
α nor the determinant selection, as

they correspond to determinants already belonging to the internal space. A second loop

over all the |J〉 ∈ JIpq is then performed. During this loop, all the (r, s) pairs where |Irspq〉

is connected to |J〉 are generated, and the corresponding cells A(r, s) are incremented with

cJ 〈J |Ĥ|Irspq〉. After this second loop, A(r, s) = 〈Ψ|Ĥ|Irspq〉 and all the contributions e(2)
α of the

batch can be obtained using A(r, s). The running value of E(2) is then incremented, and the

Ndet most significant determinants are kept in an array sorted by decreasing |e(2)
α | .

Figure 23 shows the number of determinants retained in Ψ(0)
I or Ψ(0)

Ipq
after filtering out

disconnected determinants of the ground state of the CN3 molecule with 935 522 determinants

(see Sec. 5.12). This example shows that, starting from Ψ(0), the coarse-grained process

which consists of removing the determinants more than quadruply excited with respect to

the generator |I〉 produces wave functions Ψ(0)
I with a typical size of 120 000 determinants, a

reduction by a factor 8. Then, starting from Ψ(0)
I , the fine-grained filtering, specific to the

batch generating Ψ(0)
Ipq

, reduces even more the number of determinants (by a factor 3), down

to a typical size of 40 000 determinants, which represents only 4% of the total wave function

Ψ(0).
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Figure 23: Histograms representing the number of determinants remaining after the coarse-

grained (purple) and fine-grained (green) filtering processes applied to the ground state of

the CN3 molecule with Ndet = 935 522.
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Appendix A Strategy for Creating Rational Fraction Fits to Stabilization

Graph Data on Metastable Electronic States

The text and figures in this chapter have been reprinted with permission from Gasperich,

K.; Jordan, K. D.; Simons, J. Strategy for creating rational fraction fits to stabilization graph

data on metastable electronic states. Chem. Phys. 2018, 515, 342–349, DOI: 10.1016/j.

chemphys.2018.07.019. Copyright 2018 Elsevier. The author’s contribution to the work

included writing code to generate data, generating/editing figures, and editing/revising the

manuscript.

A.1 Summary

An exactly soluble model of two diabatic electronic states interacting through a coupling

of strength V is used to generate data for testing the rational fraction analytic continuation

technique for determining the energies and widths of metastable states of anions. By making

analytical connections between the coefficients in the rational fraction and the parameters of

the model, we are able to suggest how to choose the orders of the polynomials and the range

of the scaling parameter, Z, within which to compute the energies for a given precision. This

analysis also allows us to specify the range of Z-values to use in constructing the rational

fraction in a manner that allows determination of all parameters of the model for a given

precision. The constraint on the Z-value ranges can be used as a guide for constructing

rational fractions of data obtained in electronic structure calculations on actual resonance

states.
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A.2 Introduction

When treating metastable electronic states of atomic and molecular anions, the stabi-

lization technique introduced by Hazi and Taylor286 has proven to be very useful. In its

most commonly employed form, the energies of several electronic states of the excess-electron

system are computed for a range of values of a parameter (Z) that controls the radial extent

of the basis functions used in the calculations.287 These energies are then plotted as functions

of Z to generate stabilization plots such as that shown in Fig. 24.

Such stabilization plots typically display three characteristics that merit attention:

1. One or more plateau regions within which the energy of one of the branches changes

slowly as the scaling parameter is varied. In Fig. 24, such plateaus occur at energies

near 1.5 and 4.1 eV. The energies of the plateau regions approximate the energies of the

metastable states being studied.

2. A series of states whose energies change more rapidly as the scaling parameter is varied;

these energies describe pseudo-continuum states that correspond to a “free” particle in a

pseudo-continuum orbital. In Fig. 24 the energies of these states increase with the scaling

parameter Z, which controls the radial extent of the basis set.

3. As Z is varied, one encounters regions where two types of states approach one another

and undergo avoided crossings. The regions of these avoided crossings play a central role

in determining the lifetime of the metastable state. In Fig. 24 we see that the plateau

regions are interrupted by a series of avoided crossing thus limiting the range of Z-values

over which any given plateau persists.

There is another class of stabilization methods that involves adding a stabilizing potential

that converts the resonance into a bound state followed by analytically continuing the bound-

state energy into the resonance region;288 however, we do not consider these approaches

here.

The example illustrated in Fig. 24 shows how the energies of several excess-electron states

vary as the scaling parameter is changed. Electronic structure methods such as configuration

interaction, equation-of-motion coupled cluster (EOM-CC),289,290 Koopmans’ theorem,291
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and many-body Green’s functions292 can be used to extract multiple roots for constructing

stabilization plots. Given the energies of several roots as functions of the scaling parameter,

it is then usually relatively straightforward to identify regions of avoided-crossings within

a range of Z-values. The rational fraction (RF) method, which is the subject of this study,

is designed to fit the energy of a single root of the stabilization calculation as a function of

the scaling factor, and it is usually a root whose energy lies within a plateau region that is

used.293

A.3 Extracting the energy and lifetime of the metastable state from a

stabilization plot

A.3.1 RF and quadratic equation approaches for fitting stabilization-plot data

In the Siegert picture,294 a metastable state, also called a resonance, is associated with a

complex energy ER−iΓ/2, where ER is the resonance position and Γ the width is proportional

to the reciprocal of the lifetime. This complex energy, when substituted into e−iEt/~, describes

a state that decays in time. Correspondingly, one can view such a state as having an

energy uncertainty (or width) Γ . The resonance parameters ER and Γ can be obtained by

analytically continuing the energy as a function of Z into the complex plane, locating the

stationary points Zsp where ∂E/∂Z = 0, and then evaluating E at Zsp.295 In the RF method,

analytic continuation is performed after using computed energy values to construct a rational

fraction:

E(Z) = N(Z)
D(Z) (A.1)

where

N(Z) =
n∑
j=0

njZ
j (A.2)

and

D(Z) =
d∑
j=0

djZ
j (A.3)

When the coefficients in the numerator and denominator are determined from the co-

efficients of a Taylor series expansion of a function, the RF is also referred to as a Padé
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approximant;296 when the coefficients are determined using numerical data giving E at various

Z-values, the term RF is preferred.

The [n, d] approximant has n + d + 2 parameters; however, only n + d + 1 of these

are independent, because the energy depends on the ratio N/D rather than on N and D

individually. Often, one opts to set d0 = 1, but other choices are possible. After using

the computed energies to determine the values {nj, dj} of the expansion coefficients, the

derivative of the energy with respect to Z is evaluated and set equal to zero,

∂E

∂Z
= 0 (A.4)

Solving Eq. (A.4) for the Z-values at which this equation holds gives the complex

stationary points Zsp, which are then substituted into the rational fraction expression to

generate complex stationary energies

Esp = ER ± iΓ/2 (A.5)

Although the primary goal of this paper is to analyze the RF method, it is useful to also

consider the alternative quadratic equation (QE) approach,287,295,297 in which one introduces

the following expression for how the energy E varies with the scaling parameter Z:

P (Z) [E (Z)]2 +Q(Z)E(Z) +R(Z) = 0 (A.6)

where P , Q, and R are polynomials in Z:

P (Z) =
p∑
j=0

pjZ
j (A.7)

Q(Z) =
q∑
j=0

qjZ
j (A.8)

R(Z) =
r∑
j=0

rjZ
j (A.9)

This expression has p+ q + r + 3 total parameters, but, as with the RF, the energy is

unchanged when all polynomials in Z are scaled by a constant factor; therefore, the number
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of independent parameters is p+ q + r + 2, and a common choice is to set p0 = 1. After the

polynomial coefficients {pj, qj, rj} are determined by fitting, one solves for E, obtaining

E(Z) = −
[
Q(Z)
2P (Z)

]
±

√√√√[ Q(Z)
2P (Z)

]2

− R(Z)
P (Z) (A.10)

The derivative of the energy expression in Eq. (A.10) with respect to Z is then set

to zero to determine (complex) values of Z at which E(Z) is stationary, which are then

substituted into Eq. (A.10) to generate the complex energies associated with the stationary

points, yielding Esp = ER ± iΓ/2 as discussed above. In general, the stationary points

Zsp associated with a resonance arising from a pair of coupled diabatic states are not far

from the complex branch points associated with the avoided crossing between discrete and

pseudo-continuum diabatic states.295 The branch points of Eq. (A.10) occur at values of Z

where [Q(Z)]2 − 4P (Z)R(Z) = 0. The QE framework builds into its working equations the

existence of branch points, whereas the RF method does not.

If one utilizes the same number of E(Zk) data points as one has parameters in either

the RF or QE analytic continuation expression, one obtains a system of linear equations to

be solved for the polynomial coefficients. In the RF approach, one can cast the problem

in the form of a continued fraction, which allows the coefficients to be determined by a

recursion relation.298 Alternatively, one can employ more data points than parameters and

use a least-squares procedure to optimize the parameters. The details of how one fits the

calculated energy values to either Eq. (A.1) or Eq. (A.6) will not be further discussed in

this work; rather our focus will be on how to determine optimal ranges of Zk values used to

compute the energies used in the fits and what order of polynomials should be used in the

RF fits.

A.3.2 Selecting data points for RF fits that are not too far from avoided cross-

ings

Pairs of diabatic states of the same symmetry that cross as the scale parameter is varied

undergo avoided crossings when they are allowed to interact as shown in Fig. 24, resulting

in adiabatic energies that display complex branch points. This behavior is the primary
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motivation for introducing the QE analytic continuation procedure. In the QE approach, the

data for the fitting generally employs data points from the vicinity of an avoided crossing

but may also include values more distant from the avoided crossing; moreover, in the QE

approach, the data points can be chosen from a single branch or from both branches involved

in the chosen avoided crossing. RFs of the form given in Eq. (A.1) do not properly describe

the branch points but generally have poles and zeros at Z-values close to where the diabatic

states cross. If one were performing the analytic continuation using a simple power series,

one would then have to avoid data points “close” to the crossing point of the diabatic curves

because such points might be outside the radius of convergence of the series. With RFs, this

is less of an issue as convergence can be achieved even when using data points close to the

crossing region, although the inclusion of such points may slow down the rate of convergence,

and, in practice, one often avoids using such data points.

As we illustrate later, the RF approach will not be able to accurately describe the

resonance if one only uses data points from a stabilization plot that are “far” from the avoided

crossing. In that case, the E(Z) vs. Z data contain too little information about the strength

of the coupling between the two diabatic states. A main goal of this work is to provide a

path by which one can estimate how close to the crossing point one must include E(Z) data

points given the precision to which one knows the Z-variation of the energies contained in the

stabilization plot. Alternatively, we show to what precision one must, if feasible, determine

the E-values for a given choice of Z-values.

A.4 Model for which the exact energy and width are known

A.4.1 What is the purpose of introducing an analytically solvable model?

We use E(Z) vs. Z data generated from a model’s exact solution and from expansions

of the model’s exact solution valid through various orders in the coupling strength V to

illustrate the problems that arise if one employs data points too far from a crossing point

in forming a RF. We provide explicit formulas, in terms of the model’s parameters, for the
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ranges of Z within which data should be calculated given the precision ε to which variations

in the energies E(Z) are known as Z varies and given the order in V to which one wishes to

determine the resonance state’s width.

We suggest that the lessons learned from testing RF methodology on this exactly soluble

model can be applied to ab initio electronic structure stabilization graphs. In particular,

by using data from an ab initio stabilization graph’s plateau-region and from its region

approaching an avoided crossing to make connections to the model’s parameters, the analytical

expressions obtained for the model can be used to estimate the range of Z-values to use in

creating an RF fit to the ab initio data.

A.4.2 The model energy expression and its resonance energy and width

The avoided crossings that pairs of diabatic states undergo can be qualitatively described

using a two-state Hamiltonian matrix whose diagonal elements H11 and H22 describe the

energies of the diabatic states as functions of the scaling parameter and whose off-diagonal

element V describes the coupling. The two eigenvalues of the resulting matrix are given by
1
2{(H11 +H22)±

√
4V 2 + (H11 −H22)2}. Distant from an avoided crossing, the energies of

the diabatic states generally vary monotonically with the scaling factor Z, which suggests

that H11 and H22 can be represented as low-order polynomials in Z.

The most elementary reasonable model299 of a stabilization plot’s avoided crossing region

assumes two diabatic states whose energies vary linearly (in the region of their crossing) with

the scaling parameter Z

H11 =− b1 + a1Z (A.11a)

H22 =− b2 + a2Z (A.11b)

These diabatic states intersect at the point

Z0 = b2 − b1

a2 − a1
(A.12)

where their common energy is

H11(Z0) = −b1 + a1Z0 = H22(Z0) = −b2 + a2Z0 = E0 (A.13)

115



The parameter Z could be the factor by which selected diffuse atomic basis functions

are scaled. Alternatively, it could be (1/R2), where R is the radius of a spherical box within

which continuum radial basis functions are constrained. In any case, it is best to define Z in

a manner that makes the Z-dependence of the diabatic pseudo-continuum states as linear as

possible.

The energy of the diabatic discrete state (here designated as H11) would be expected

to be independent of or only weakly dependent on Z. However, the overlap between the

pseudo-continuum basis functions and the discrete state can introduce a Z-dependence to H11.

Assuming the two orthogonalized diabatic states couple with an off-diagonal Hamiltonian

matrix element, V , solution of the associated 2× 2 secular equation gives the expression

E = E0 + a(Z − Z0)±

√√√√V 2 +
[
δa

2 (Z − Z0)
]2

(A.14)

where a = a1+a2
2 and δa

2 = a2−a1
2 .

As can be seen from Fig. 24, the diabatic states that undergo an avoided crossing in

a stabilization plot do not rigorously vary linearly with the scaling parameter; moreover,

although we take V to be constant within our model, in general it will depend on Z, because

of the Z-dependence in the coupling between the diabatic states and the impact of the

overlap contribution.300 For these reasons, the analytical results obtained here are certainly

approximate representations of stabilization graphs from electronic structure calculations.

Our analysis could readily be extended to treat cases in which V depends on Z and the

diabatic states’ energies vary non-linearly with Z; however, here we will limit most of our

discussion to the simplest case in which the diabatic energies (accounting for overlap between

the discrete and pseudo-continuum states) are assumed to vary linearly and V is assumed to

be constant.

In this paper, we use Eq. (A.14) to generate values of E(Zk) to use as input data for

Eq. (A.1) to subsequently determine the energies and widths of the resonance. We do so for

three sets of parameters describing resonances with widths differing by a factor of 10 and

resonances with clear plateaus and one in which the plateau has a substantial slope. We will

refer to energies computed from Eq. (A.14) as the exact energies for the model problem. We

suggest that employing Eq. (A.14) to generate “test data” to use in Eq. (A.1) can provide
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valuable insight into the performance of the RF method for different choices of input data

because plots of energies obtained from Eq. (A.14) display the essential characteristics of

actual stabilization plots. Moreover, as we illustrate later, the functional form given in

Eq. (A.14) can offer guidance about what powers of Z to use and what range of Z-values to

use in forming an effective RF. We suggest that any RF whose polynomials do not contain

at least these minimum powers of Z or that do not use data from the recommended range

of Z-values will not only fail to give accurate resonance energies and widths for the model

problem used here but will also fail when applied to stabilization plot data for real chemical

systems.

The exact stationary points for the above model are

Zsp = Z0 ± 2iV a

δa
√
a1a2

(A.15)

with the associated energies being

Esp = E0 ± 2iV
√
a1a2

δa
(A.16)

The branch points for the model occur at Zbp = Z0± 2i V
δa
; hence the stationary points lie

further off the real axis than the branch points by a factor of a/√a1a2.

For the remainder of this paper, we will assume that

(i) |a2| > |a1|

(ii) a2 and a1 have the same sign

(iii) data from only the branch having the smaller slope (i.e., the plateau branch with slope

a1) is being used to generate the E(Zk) data employed in the RF analysis.

A similar analysis could be carried out using data from the branch having the larger slope.

Moreover, simply for convenience, we will assume that the {Zk} values are selected to the

right of the crossing point Z0 so that all δZk = Zk − Z0 values are positive.
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A.4.3 Guidance offered by the model on how to select powers of Z and Z-values

at which to compute energies

The first thing to point out is that Eq. (A.14) contains five parameters (E0, Z0, V , a, and

δa). Together, the expression for the exact stationary points, Eq. (A.15), and that for the

corresponding resonance energy, Eq. (A.16), require knowledge of all five of these parameters.

This suggests that to accurately predict Zsp and Esp, any reasonable RF fit should contain at

least five parameters.

As discussed earlier, applications293 of the RF approach generally utilize E(Zk) energies

at Zk values chosen distant from the avoided crossing region of the stabilization plot to avoid

approaching the branch points. As we make more quantitative below, when forming a RF

utilizing only Z-values that are far from the crossing point Z0 the E(Zk) data might not be

known with sufficient precision to accurately characterize the stationary point. Although most

ab initio electronic structure calculations are performed using double precision arithmetic,

issues such as the tolerance to which one converges matrix eigenvalues limit the final precision

of the stabilization-plot energy data. Based on our experience, a precision of ca. 10−5 eV is a

reasonable estimate and one that we use in this paper.

As noted above, RFs with coefficients determined from fitting data points are closely

related to PAs where the coefficients are determined by reproducing a fixed number of

terms in a power series expansion about an appropriate point. In particular, RFs can be

viewed as employing coefficients that correspond to use of derivatives evaluated by numerical

differentiation. For that reason, we find it useful to expand Eq. (A.14) in a power series

about a point Z ′ chosen to be located approximately in the middle of the set of grid points

employed in the RF fit. With the choices of grid points describe above, this necessarily

locates Z ′ to the right of Z0 (i.e., Z ′ > Z0). The resulting series expansion through terms of
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order (Z − Z ′)4 is:

E =E0 + a∆Z ±K +

a±
(
δa
2

)2
∆Z

K

 (Z − Z ′)±

(
δa
2

)2
V 2 (Z − Z ′)2

2K3 ∓

(
δa
2

)4
V 2∆Z (Z − Z ′)3

2K5 ∓ (A.17)(
δa
2

)4
V 2∆Z (5V 2 − 4K2) (Z − Z ′)4

8K7 + . . .

where K =
√
V 2 +

(
δa
2

)2
∆Z2 and ∆Z = Z ′ − Z0.

For addressing the question concerning the location of Z ′, rather than the distribution of

data points around Z ′, we need only substitute Z ′ into Eq. (A.14) giving

E = E0 + a∆Z ±

√√√√V 2 +
(
δa

2

)2

∆Z2 (A.18)

If Z ′ obeys
∣∣∣ 2V
δa∆Z

∣∣∣ < 1, which it will for points within a plateau region, one can estimate

the contributions to E at various powers of V by expanding Eq. (A.18) as

E = E0 +
(
a± δa

2

)
∆Z ± V 2

δa∆Z ∓
V 4

δa3∆Z3 ± . . . (A.19)

For the root of Eq. (A.14) having the smaller (plateau) slope a1 at large-Z this becomes

E = E0 + a1∆Z − V 2

δa∆Z + V 4

δa3∆Z3 − . . . (A.20)

This allows us to specify how close Z ′ must be to Z0 (i.e., how small ∆Z must be) for terms

proportional to V 2 or V 4 to exceed the precision ε to which the electronic structure energies

have been computed. In particular, to accurately determine the V 2

δa∆Z term in the series

expansion requires that ∆Z < V
δa
V
ε
, which is likely achievable in most stabilization calculations

as we illustrate later. The next two terms in the energy expansion are V 4

δa3∆Z3 and 2V 6

δa5∆Z5 .

The V 4 and V 6 terms exceed ε in magnitude when ∆Z < V
δa

(
V
ε

) 1
3 and ∆Z < V

δa

(
2V
ε

) 1
5 ,

respectively. Later we will show that selecting data in ranges that satisfy ∆Z < V
δa
V
ε
is

usually straightforward, but to select data that satisfy the V 4 condition ∆Z < V
δa

(
V
ε

) 1
3 can

be challenging, and to satisfy the V 6 condition is even more so.
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A.4.4 Stationary points and energies from the series expansion

The energy expression given by Eq. (A.17) when truncated at order V 2 has the stationary

points

Zsp = Z0 ±
iV√
a1δa

(A.21)

with the corresponding energy

Esp = E0 ± 2iV
√
a1

δa
(A.22)

Note that even if one knows a1 from large-Z results, these expressions for Esp and Zsp do not

allow one to extract individual values for V or a2.

If we consider the expansion in Eq. (A.17) through order V 4, we find

Zsp = Z0 ±
iV J√
a1δa

(A.23)

and

Esp = E0 ± iV
√
a1

δa

(
J + 1

J
+ a1

δaJ3

)
(A.24)

where

J =

√√√√√1±
√

1 + 12
(
a1
δa

)
2 (A.25)

Notice that the V 4 expression for the width involves factors of a1 and V√
δa

as well as an

expression that depends on the ratio a1
δa
, so only by reaching the V 4 level in Esp and Zsp is

one able to access all three of a1, a2, and V (assuming that a1 is available from large-Z data).

We will refer to the energy and half-width of Eq. (A.24) as the values through order V 4 in

the expansion of the square root in Eq. (A.14).
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A.4.5 Guidance for creating rational fractions

A major advantage of Padé approximants is that they provide approximations to higher

order terms in the Taylor series that were not used in the fitting, and, as a result, they can

often accurately represent the function at points more distant from the expansion point than

can the original truncated Taylor series. However, in application to stabilization calculations,

one uses numerical energy data from a grid of points rather than the coefficients of a Taylor

series, giving rise to what are termed RFs.

When Z ′ � Z0, and reasonable values are chosen for the various parameters in the model,

it is found that the power of Z in the numerator of the PA is essentially one higher than that

in the denominator even if one constructs a PA having a higher power denominator. This is

illustrated below by examining the [2,2] PA of Eq. (A.17) for the case Z ′ = 1.2 and using the

S3 set of (a1, a2, V , E0, and Z0) parameters that are defined in the next Section.

PA[2, 2] = 1.727− 5.069Z − 21.337Z2

1− 5.334Z − 0.165× 10−4Z2 (A.26)

Examination of this PA reveals that the coefficient of the Z2 term in the denominator is

essentially 0, effectively reducing this to the [2,1] PA, which is reported along with the [1,1],

and [3,2] PAs in the Supplementary Material. Similarly, the [3,3] PA is found to be essentially

equivalent to the [3,2] PA. For this reason only [n+ 1, n] RFs are considered in the subsequent

discussion. We note that the conclusion about the power of Z in the numerator being one

higher than that in the denominator would be altered were one or more of H11, H22, and

V to assume more complicated Z dependencies than assumed here. Another observation to

make is that the large-Z slopes of the [2,1] and [3,2] PAs are very close to the exact value of

4.0. This shows that these low-order PAs provide accurate values for the a1 slope parameter

of the model.

Using the exact energies of Eq. (A.14) as numerical input, we will form [n+ 1, n] RFs of

the form

RF1 = n0 + n1Z + n2Z
2

1 + d1Z
(A.27)

and

RF2 = n0 + n1Z + n2Z
2 + n3Z

3

1 + d1Z + d2Z2 (A.28)
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for the three sets of test data whose parameters are given in Table 7. The goal of this

numerical experiment is to determine the choices of Z-values for which the stationary points

Zsp and resonance energies of RF1 and RF2 approach the V 2 or V 4 or exact values (of the

model). Because RFs containing N parameters are designed to represent data better than

Taylor series expansions containing N parameters, we do not expect RF1 results to match

V 2 results or RF2 to match V 4. However, because RF1 contains four parameters, as does

the V 2-level expansion of Eq. (A.19), we expect the RF1- and V 2-level results to be similar.

Likewise, because RF2 contains six parameters while the V 4-level expansion of Eq. (A.19)

and the exact expression of Eq. (A.14) contain only five parameters, we expect RF2 to be

able to match or exceed the V 4-level results.

A.5 Comparing results of RF fits of model data to the exact, V 2, and V 4

results

We created three sets of test data (labeled S1-S3) by inserting three choices of parameters

(E0, Z0, a1, a2, and V) into Eq. (A.14). In all cases, E0 was taken to be 2.50 eV and Z0 was

set equal to 0.200. The energy ranges and coupling strengths V are typical of low-energy

electronic shape resonances in atoms and molecules. In Table 7, we list the V , a1, and a2

parameters for each case and give the value of Z for which δZ equals V
δa

(
V
ε

) 1
3 or V

δa

(
V
ε

)
with

the energy-precision parameter ε set equal to 10−5 eV.

The Z-values shown in the third column are the Z-value bounds beyond which the V 4

contribution to the energy falls below ε. Those shown in the fourth column are the bounds

beyond which the V 2 contribution is below this same ε.

Fig. 25 depicts the exact solutions of Eq. (A.14) for the S1 parameter set together with

two sets of data points considered in Sec. A.8. One set satisfies the V 4 bound, and the other

does not. The figure also depicts the curves obtained from the RF1 and RF2 fits, respectively.

For any value of ε, the range of acceptable Z-values is much broader if one only wants to

assure that the V 2 contribution exceeds ε. The very large values listed in the right column of

Table 7 would likely never be realized in an ab initio stabilization plot since other avoided
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crossings would constrain Z to smaller values. For example, in Fig. 24, the blue plateau

region with energy near 0.45 eV exists only for Z-values between ca. 1 and 2 with the avoided

crossing near Z = 2 providing the upper limit to Z. On the other hand, the data in the third

column in Table 7 suggest that one has to be careful in selecting Z-values if results accurate

to V 4 are required to characterize the resonance.

Let us now examine for these three data sets the performance of RF1 and RF2 using

various choices for Z-values at which the energies are computed. For comparison, we list in

Table 8 the half-widths obtained using Eqs. (A.22) and (A.24) that result from expansions

of the square root factor through orders V 2 and V 4, respectively, and the exact values from

Eq. (A.16).

The primary differences among cases S1-S3 are as follows:

(i) S1 produces a narrow resonance (Γ/2 = 0.07 eV) because it has both a small value for

V and a large difference between a1 and a2

(ii) S2 produces a broad resonance (Γ/2 = 0.70 eV) because it has a large value for V (it

has the same values for a1 and a2 as in S1)

(iii) S3 produces a broad resonance (Γ/2 = 0.49 eV) not because it has a large value for V

(it has the same value as in S1) but because its slopes a1 and a2 do not differ much.

Because case S3 displays the largest differences among the V 2, V 4, and exact half-widths,

it offers the best opportunity to highlight the interplay between the energy precision (ε) and

the values of Z used to form the RF fit. For this reason, we will discuss case S3 in detail

while placing analogous data for cases S1 and S2 in Sec. A.8.

A.5.1 Results of [n+ 1, n] RF fits for S3

We now determine the extent to which the stationary points and resonance energies

obtained by fitting numerical data from Eq. (A.14) to RF1 do or do not reproduce the results

of V 2 and the extent to which fitting numerical data to RF2 can yield stationary points

and resonance energies close to those of V 4. In Table 9 we show the results of forming an

RF1 using the four Z-values listed. From inspection of the stabilization plot (not shown), it

was clear that Z = 1.6 is well within the near-linear region while Z = 0.4 is in a region of
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significant curvature. The real and imaginary parts of the stationary point Zsp, and the real

and imaginary values of the resonance energy Esp are indicated for three different choices of

the precision (10−5, 10−7, and 10−12 eV) in the input data. In specifying the precision, we

are indicating the number of figures retained to the right of the decimal point. Although in

ab initio calculations the precision is likely to be limited to at most 10−5 eV, for our model

we also report results for precisions of 10−7 and 10−12 eV to illustrate how the results would

evolve if one had more precise data.

From Table 7 it is seen that the V 2 and V 4 bounds for this case occur at Z = 500 and

1.28 (for ε = 10−5 eV). Because all four of the Z-values employed lie well within the V 2

bound, it is no surprise that the half-widths obtained at the three precision levels considered

are very close to the V 2 value 0.2828 eV listed in Table 8. Although the [2,1] RF1 fit does not

yield an accurate value for the half-width, it does provide an accurate a1 (4.0 as we pointed

out earlier) and reasonably accurate values for Z0 (0.18 compared to the exact 0.20) and E0

(2.4 eV compared to the exact 2.5 eV).

In Table 10 we show the results of forming RF2 (i.e., [3,2]) fits for the S3 parameter

set using six Z-values ranging from 0.4 to 1.4; again, the smaller Z-values lie in the curved

region of the stabilization plot while the larger Z-values lie in the near-linear portion of the

stabilization plot.

Earlier we noted that the V 4 bound for a precision of 10−5 eV is 1.28. We see that even

though five of the six Z-values used in forming this RF2 fit are below 1.28, the half-width

obtained using data points at the 10−5 precision level is essentially the same as the RF1 (V 2)

value. Even using [4,3], [5,4], or [6,5] RF fits with the above five Z-values below 1.28 together

with additional Z-values above 1.28, at a precision of 10−5 eV, the same V 2 level half-width

was obtained. This shows that it is not the level of the RF but the values of Z that prevent

RF2 from doing better than V 2 level with data at a precision of 10−5 eV. It also shows that

one needs to have all six of the Z-values below or very near to the V 4 bound because when the

precision is increased to 10−7 eV (where the V 4 bound is Z = 5.20), a half-width significantly

better than the V 4 value (0.38 eV) and close to the exact value (0.49 eV) is achieved.

The inability of [3,2] (or higher) fits to achieve half-widths close to (or better than as one

might expect for RF fits) the V 4 value with only five of six Z-values below the V 4 bound and

124



using data at 10−5 precision raises the issue that we address in the next Section —namely,

how to improve on the choice of Z-values by using results from the RF fits to estimate the

V 2 and V 4 bounds and to use these results to form more accurate fits.

A.5.2 How to improve the choice of Z-values to create better [n+ 1, n] RFn fits

As noted earlier, not all of the Z-values used to form the [3,2] and higher RF fits whose

results are shown in Table 10 are below the V 4 bound for an energy precision of ε = 10−5 eV.

Moreover, any [n+ 1, n] fit we tried using five Z-values below the V 4 bound did not improve

the situation. This suggests that we need to focus on placing at least six data points at or

below the V 4 bound. In the case of the S3 example, we know ahead of time where this bound

is because we know the values of V and δa, and, as we showed earlier, these two quantities

cannot be obtained from the results of the [2,1] fit. Because the [3,2] fit shown above did not

improve on the [2,1] level half-width at a precision of 10−5 eV, we cannot use the results of

this [3,2] fit to obtain these parameters. However, there are two routes through which an

estimate of the V 4 bound can be made as we now demonstrate.

We know that a [2,1] (i.e., RF1) fit using four Z-values within the wide range below the

V 2 bound should be capable of yielding reasonable values for a1, Z0, E0, and V 2/δa. The

value of a1 is easily obtained from the slope at large Z, which for the [2,1] RF is 4.0. Knowing

a1, V 2/δa can be obtained from the V 2 expression for the half-width 2
√

V 2a1
δa

. Using the [2,1]

results shown in Table 9 (at any of the levels of precision as they are all essentially the same),

we can offer the following estimates: Z0 = 0.18, E0 = 2.4 eV, and 4a1V
2/δa = (0.29 eV)2,

hence V 2/δa = 5.3× 10−3 eV. However, we need one more piece of information (a2) to

estimate the V 4 and V 2 bounds.

If one has sufficient knowledge about the slope of the other diabatic state’s energy far from

Z0, one can use that value as a2 and the [2,1] value of V 2

δa
plus a1 obtained from the large-Z

slope to estimate the V 4 bound as δZ = V
δa

(
V
ε

)1/3
. This route is the most straightforward

and should be followed if a reasonable estimate of a2 is available. However, in the absence of

direct knowledge of a2, another route must be found.

The fact that the [3,2] RF described in Table 10 as well as results from [4,3] and higher
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RFs using the Z-values in Table 11 and higher Z-values did not improve the results suggests

that one or more of the Z-values used are above the V 4 bound. We therefore replaced

the six Z-values whose [3,2] results are shown in Table 10 by six new values ranging from

Z =0.25–1.00. Doing so produced a new [3,2] RF2 fit the results of which are shown in

Table 11.

The first thing to notice is that the half-width obtained at a precision of 10−5 eV has

moved from 0.29 eV (see Table 10) to 0.49 eV, close to the exact value. Even when we reduced

the precision to 10−3 or 10−4 eV, the half-width changed significantly from the V 2 value of

0.29 eV. The good agreement between the width calculated using data at the 10−5 precision

level and the exact value for the width is partially fortuitous, as seen by the sizable error in

the location of the stationary point and in the calculated position of the resonance. Indeed,

as shown in Table 11, the half-width drops down to about 0.44 when calculated using [3,2]

fits at higher precision values. This indicates that for the S3 model one needs to accurately

characterize contributions higher than V 4 to the energy in order to accurately characterize the

resonance. Indeed [4,3] and [5,4] RF fits using appropriately placed Z-values and sufficiently

high precision gave half-widths near the exact value of 0.49 eV.

Seeing that placing six Z-values sufficiently low causes the new [3,2] RF to produce a

half-width significantly different from that of the [2,1] RF, we now use the ratio of the new

[3,2] and [2,1] half-widths to estimate the V 2 and V 4 bounds and to then verify whether at

least six data points fall below or near to the V 4 bound. To do so, we note that the exact

half-width of the model is 2
√

V 2a1a2
δa2 , so the ratio of the exact half-width to the [2,1] value

should be
√

a2
δa
. Taking the [3,2] half-width of 0.44–0.49 eV obtained using the new set of

data points as an estimate to the exact value and using 0.29 eV as the [2,1] half-width gives
a2
δa

=2.3–2.9, which allows us to solve for a2 =6.1–6.9, so we estimate δa =2.1–2.9. Finally,

using V 2/δa = 5.3× 10−3, we obtain V =0.11–0.12 eV.

We can now make use of these approximations to a1, a2, and V , to estimate the V 2 and

V 4 bounds, which can then be used to improve upon the choice of Z-values used to verify

the validity of the new [3,2] or to create higher RF fits. For example, assuming that we

have energy data whose variation is precise to ε = 10−5 eV, we estimate these bounds to be

(using the average of the parameter estimates given above, i.e., V = 0.115 eV and δa = 2.5),
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we obtain δZ = V 2

εδa
= 529 (the exact value is 500), and δZ = V

δa

(
V
ε

)1/3
= 1.04 (the exact

value is 1.28). This suggests that the Z-values used to form the new [3,2] fit do lie below the

V 4 bound. As commented on earlier, the V 2 bound is likely irrelevant in real stabilization

calculations as additional avoided crossings will limit the scaling parameter; however, this

path does offer a route for estimating the more important V 4 bound.

This process allows us to be confident that the final six lowest Z-values in Table 11 used

to form the [3,2] and higher RF fits were located in a manner that allowed us to obtain V 4

quality (or higher) resonance energies and widths. It used information from the [2,1], [3,2],

and higher fits obtained using Z-values some of which were above the V 4 bound to guide

us toward using lower Z-values for an improved [3,2] fit. This resulted in a new [3,2] fit of

sufficient accuracy to generate an estimated V 4 bound to offer valuable guidance about where

to choose Z-values for forming a subsequent series of higher order RF fits.

In the Supplementary Material we present analogous discussions of how to find appropriate

Z-values for forming [2,1] and [3,2] RFs for the S1 and S2 cases. As the reader will see, in

the S2 case it became clear that one should not locate all of the Z-values too far below the

V 4 bound for either the [3,2] or the [2,1] RF because doing so can cause the evaluation of the

a1 slope parameter to fail; one needs at least one data point in the nearly-linear region of the

stabilization plot.

A.6 Conclusions and suggestions for application to ab initio stabilization plot

data

A five-parameter model of a stabilization graph which is based on two diabatic states

undergoing an avoided crossing, is used to generate test data (energy vs. a scaling parameter

Z) for creating RF approximants. Our analysis allowed us to conclude that:

1. when forming a RF1 approximant to achieve results accurate to order V 2, one needs to

use four (or more, if least squares fitting to determine parameters) data points below

Z = Z0 + V
δa
V
ε
where the second order contribution to the energy falls below the precision

ε to which the energies are known (ε of ca. 10−5 eV range was assumed), but it is also
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important to include at least one point in the quasilinear portion of the stabilization plot

to extract the a1 slope parameter;

2. when forming a RF2 approximant to achieve results accurate to order V 4, one needs to

use six (or more, if least squares fitting to determine parameters) data points below or

very near Z0 + V
δa

(
V
ε

)1/3
beyond which the fourth order contributions fall below ε, but

again it is important to include at least one point in the quasi-linear region to extract a1.

We also note that stabilization graphs for real molecular resonances often require fits with

eight or more parameters to extract an accurate value of the resonance width.300 This indicates

the importance of higher-order V -dependence than V 4, which would force one to select data

points even closer Z0 than Z0 + V
δa

(
V
ε

)1/3
. For example, if terms of the order V6 were

important, one would have to choose points at or below Z0 + V
δa

(
2V
ε

)1/5
, which would be

Z =0.28, 1.48, and 0.56 for S1, S2, and S3, respectively. In our opinion, these facts argue in

favor of using the QE-type methods rather than RFs that emphasize the quasilinear large-Z

regions of stabilization graphs.

Based on these observations, we suggest a strategy to use in constructing a [n + 1, n]

RF representation of data on a single branch of a stabilization plot involving ab initio data

in a manner that begins with first identifying a quasi-linear plateau region. For such cases,

one generally does not know ahead of time how to select points optimal for accurately

determining the metastable state’s energy and width because one does not know how close

to the more curved region of the stabilization plot one must characterize to achieve results of

reasonable accuracy. However, the results obtained here can provide guidance if the ab initio

stabilization plot displays two essential features that our model relies upon —(i) a portion

that varies approximately linearly with Z at large-Z (described in our model by the terms

E0 + a1(Z −Z0)) and (ii) a part (arising in our model from the term ±
√
V 2 +

[
δa
2 (Z − Z0)

]2
with curvature that increases in magnitude as Z moves closer to the avoided-crossing point

Z0.

For a stabilization plot that shows these characteristics, we suggest the following pathway

can allow one to confidently evaluate the reliability of a RF and of the location of its data

points.
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i. First, one should search the energy data set for a region sufficiently far from Z0 for

which the energy varies approximately linearly with Z. The slope in this region can

be associated with a1 of our model. We suggest looking at our discussion of the S2

case in the Supplementary Material where our first choice of Z-values did not meet

this criterion, and consequently, reasonable values of the resonance parameters did not

result.

ii. Then, one should examine the data set at smaller Z-values until finding a region where

the data begin to deviate significantly from the near-linear form found in step i. Using

at least one data point in the near-linear region and the remaining data points in the

region of significant curvature, one can form a RF1 approximant.

iii. Since the stationary points of RF1 are expected to occur near the V 2 value of

Zsp = Z0 ± iV√
a1δa

where the complex energy is Esp = E0 ± 2iV
√

a1
δa
, one can use Zsp and

Esp to estimate three more model-system parameters (with a1 having been estimated

from the near-linear region’s slope)

V 2

δa
= a1 [Im (Zsp)]2 (A.29)

E0 = Re(Esp) (A.30)

and

Z0 = Re(Zsp) (A.31)

This knowledge then allows one to compute Z = Z0 + V
δa
V
ε
, which one can use to

verify whether the four data points used to create the ab initio RF1 lie below the V 2

bound. If not, it is recommended that one adjust the choice of Z-values to form a new

RF1. However, as noted earlier, it is likely that all Z-values between successive avoided

crossings lie within this V 2 bound in ab initio stabilization graphs.

iv. If one has a reasonable estimate of a2, one can multiply the V 2 width by the ratio√
a2

a2−a1
(see Eq. (A.16)) to obtain an estimate of the exact width. Moreover, knowing

a2, one has enough knowledge to evaluate the point Z0 + V
δa

(
V
ε

)1/3
at which the V 4

contributions to the energy fall below ε, so one can estimate where to place data points

in forming a subsequent RF2 approximant.
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v. If one does not have a good estimate for a2, to form RF2, one can search the energy

data for a range even closer to the crossing point within which the energy deviates

significantly from E0 + a1 (Z − Z0)− V 2

δa(Z−Z0) (using the values of E0, a1, Z0 and V 2/δa

obtained in step iii). One can then use at least six data points in the region where the

data deviates from E0 +a1 (Z − Z0)− V 2

δa(Z−Z0) (being careful to include one point as near

as possible to the near-linear region) to form a RF2 approximant. As outlined earlier,

the ratio of the half-width obtained from the RF2 to that from the RF1 is approximately√
a2
δa

, which allows one to estimate a2.

Knowing all five parameters of a model derived from the ab initio RF1 and RF2 then

allows one to compute the point at which the fourth order contributions to the energy fall

below ε Z0 + V
δa

(
V
ε

)1/3
and to thus verify whether all of the Z-values used to form the RF2

approximant in step v lie below Z0 + V
δa

(
V
ε

)1/3
. Knowing even approximate values for V

δa
V
ε
and

(especially) V
δa

(
V
ε

)1/3
would allow one to wisely choose Zk values in forming any higher-order

[n+ 1, n] RF approximant of the ab initio data, and it is likely that such higher-order RFs

would then produce the most reliable Esp and Zsp values to use in ab initio determinations of

resonance-state energies and lifetimes.
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A.8 Supplementary material

A.8.1 Expressions for Padé approximants to Eq. (A.17) in the case of the S3

set of parameters and expansion about Z = 1.2

PA[1, 1] = 1.68195325 + 4.07888304Z
1 + 0.00123177369Z (A.32)

PA[2, 1] = 1.72676374− 4.94765568Z − 21.0525664Z2

1− 5.26315789Z (A.33)

PA[2, 2] = 1.72748245− 5.06898903Z − 21.3365122Z2

1− 5.33422746Z + 0.0000164636478Z2 (A.34)

PA[3, 2] = 1.72334449− 12.655213Z + 4.03651879Z2 + 101.007557Z3

1− 9.72292191Z + 25.2518892Z2 (A.35)

As noted in the main text, the [2, 2] RF is essentially a [2, 1] RF, and the large-Z slopes

of these RFs are all 4.0, the correct a1 value for the S3 case.

A.8.2 Results for S1 and S2 test cases

Below we present stationary points (Zsp) and resonance energies (Esp) obtained from RF

fits to data generated using Eq. (A.14) with the V , a1, and a2 parameters listed in Table 7

for the test cases labeled S1 and S2. In each Table, we specify the precision ε to which the

energies were evaluated, and we list the values of Z used. We also give the exact values of

Zsp and Esp (from Eqs. (A.15) and (A.16), respectively) as well as the half-widths correct

through orders V 2 (Eq. (A.22)) and V 4 (Eq. (A.24)). Recall from earlier discussion in the

main text that RF1-level results are expected to be similar to, but not match exactly, the

V 2-level results while RF2-level results should be close to V 4-level results.

For the S1 test case, the exact stationary-point and resonance energy values are: Zsp =

0.200 − 0.0386501i and Esp = 2.50 − 0.0702728i. The V 2 half-width is 0.0667 eV, the V 4

half-width is 0.0697 eV, and the exact half-width is 0.0703 eV. The value of Z at which the

V 4 contribution falls below 10−5 eV is 0.44 and the corresponding V 2 cut-off is 111. The

three largest Z-values used for the RF1 and RF2 fits lie outside the ε = 10−5 eV V 4 cut-off.

Beginning with a Z-value of 1.6, where the stabilization plot was judged to be nearly linear
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and placing three more data points at smaller Z-values, we generated the [2,1] fits for which

the extracted stationary points and associated energies are summarized in Table 12.

We see that the [2,1] RF cannot achieve the V 4 half-with of 0.0697 eV even if data of very

high accuracy are employed (e.g., for ε = 10−7 eV the V 4 bound is Z = 2.42 below which all

four Z-values in Table 12 lie). As discussed in the text, the functional form of the [2,1] RF

contains only four parameters and is only capable of achieving V 2-level results (half-width of

0.0667 eV) as it does using four Z-values within the V 2 cut-off. The fact that the [2,1] RF

gives a half width near the V 2 value suggests that the four data points used were below the

V 2 bound and that they included enough information from the near-linear region to describe

the a1 parameter.

Next, we chose six Z-values including at least one from the near-linear region and the

remaining below that and formed the [3,2] RF whose results appear in Table 13. This [3,2]

RF contains six parameters and should be capable of achieving close to V 4-level results if the

energy data employed is of sufficient precision. The V 4-level bound is Z = 0.44 at ε = 10−5 eV,

but three of the six Z-values used do not fall below this value and, as a result, the 0.0784 eV

half-width obtained differs considerably from the V 4 value of 0.0697 eV. However, when using

energy data precise to ε = 10−7 eV, where the V 4 cut-off is Z = 24, the [3,2] RF achieves a

half-width (0.0705 eV) very close to the V 4 value and to the exact value 0.0703 eV.

Seeing that the ε = 10−5 eV half-width changed from 0.066 to 0.078 eV when moving from

RF1 to RF2 suggests that some of the six Z-values used in the RF2 lie below or near the

V 4 bound, but the discussion of case S3 in the main text informs us that one likely needs

all six Z-values to be below this bound making sure to have at least one data point in the

near-linear region. For this reason, we next consider selecting six even smaller Z-values (but

keeping one within the near-linear region) whose results are shown in Table 14. The V 4

cut-off is Z = 0.44 at ε = 10−5 eV, and five of the Z-values fall below this bound, and one

is just above it. As a result, this [3,2] RF achieves a half-width between the V 4 and exact

values. For the test case labeled S2, the exact stationary-point and resonance energy values

are: Zsp = 0.200− 0.386501i and Esp = 2.50− 0.702728i. The V 2 half-width is 0.6667 eV, the

V 4 half-width is 0.6973 eV, and the exact half-width is 0.7027 eV. The value of Z at which

the V 4 contribution falls below 10−5 eV is 5.4, and the corresponding V 2 cut-off is Z = 11.000
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(again, this V 2 bound is likely irrelevant in ab initio cases).

Because S1 and S2 have the same a1 and a2 slope parameters and differ only in their V

values, we initially used the same four Z-values as used for Table 12. This [2,1] RF would

be expected to closely approximate the V 2 half-width of 0.6667 eV since it has all four Z

data points well inside the V 2 bound. However, it is not expected to come close to the V 4

half-width of 0.6973 eV even though all of its Z data points are inside the V 4 bound, because

of its [2,1] functional form. Regardless of the precision value ε, a half-width of 0.736 eV is

obtained, which is far from either the V 2 or V 4 value. Moreover, the real part of Zsp (ca.

0.11) is not very close to the correct value of 0.20, so something appears to be wrong in this

case.

If we cluster the four Z-values closer to the crossing point (Z = 0.20) and farther below

the V 4 Z-value cut-off, we obtain even worse half-widths and Re(Zsp) regardless of the value

of ε. This suggests that having all four data points far below the V 4 Z cut-off of 5.4 can be

counterproductive. After further examining a plot of the S2 dataset, we realized that neither

of the sets of Z-values considered above included any points in the near-linear region where

the a1(Z − Z0) term is dominant, a result of which is that the a1 slope parameter could not

be accurately determined. We therefore selected four new Z-values including some in the

region where the relevant curve in the stabilization plot is essentially linear. This generated

the [2,1] fit described in Table 16.

The RF fit at ε = 10−5 eV has a large-Z slope of 0.999, which gives us the correct value

of the a1 parameter. Also, the half-width of 0.685 eV is close to the V 2 value of 0.697 eV,

reinforcing the conclusion that one must not concentrate all four Z-values so far below the

V 4 bound that the large-Z slope cannot be determined.

We now consider [3,2] RFs using six Z-values (Table 17). As noted above, for ε = 10−5 eV,

the V 4 cut-off is Z = 5.4, thus it is no surprise that the [3,2] RF obtains the V 4 half-width

because all six of its data points are below 5.4, and it appears that at least one of the data

points is within the near-linear region, so the a1 parameter could be obtained.

133



Figure 24: Example of a stabilization plot from a 1D model potential. The parameter Z scales

the radial extent of the basis set. The colored dashed regions show examples of the features

described in Section A.2. The regions surrounded in blue illustrate two of the plateaus,

those in red illustrate four of the avoided crossings, and those in green illustrate two of the

pseudo-continuum regions (see text).
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Figure 25: Resonance model (Eq. (A.14)) with the S1 parameter set. The dashed green

curves represent the exact energies. The circles denote the data points listed in Table 12,

and the blue curves the RF1 fit to those points. The squares denote the data points listed in

Table 14 and the orange curves are the RF2 fits to these points.

Table 7: Description of the S1, S2, and S3 parameter sets and the upper limits for Z at the

V 4 and V 2 levels for the model given by Eq. (A.14) with ε = 10−5 eV.

Test Case V (eV);a1;a2
V
δa

(
V
ε

)1/3
+ Z0

V
δa

(
V
ε

)
+ Z0

S1 0.1;1;10 0.439 111

S2 1.0;1;10 5.36 11100

S3 0.1;4;6 1.28 500
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Table 8: Resonance half-widths (eV) for the model given by Eq. (A.14) using the S1-S3

parameter sets defined in Table 7.

Test Case V 2 Half-width V 4 Half-width Exact Half-width

S1 0.0667 0.0697 0.0703

S2 0.6667 0.6973 0.7027

S3 0.2828 0.3810 0.4899

Table 9: Zsp and Esp (eV) from RF1 fits to energy values at Z = 0.4, 0.8, 1.2, 1.6 for the model

described by Eq. (A.14) with the S3 parameter set at different levels of precision ε (eV).

ε Zsp Esp

10−5 0.175840862 - 0.0367804471 i 2.40399052 – 0.294207598 i

10−7 0.177067499 - 0.0366038349 i 2.40877481 – 0.292804475 i

10−12 0.17700637 - 0.036613091 i 2.40853738 – 0.292877948 i

Table 10: Zsp and Esp (eV) from RF2 fits to energy values at Z = 0.4, 0.6, 0.8, 1.0, 1.2, 1.4 for

the model described by Eq. (A.14) with the S3 parameter set at different levels of precision ε

(eV).

ε Zsp Esp

10−5 0.185646153 - 0.0358910308 i 2.44266485 - 0.28711605 i

10−7 0.185462414 - 0.0779571285 i 2.45378066 - 0.430534863 i

10−12 0.188780918 - 0.076937987 i 2.46415775 - 0.426152109 i
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Table 11: Zsp and Esp (eV) from RF2 fits to energy values at Z = 0.25, 0.40, 0.55, 0.70, 0.85, 1.00

for the model described by Eq. (A.14) with the S3 parameter set at different levels of precision

ε (eV).

ε Zsp Esp

10−3 0.123918560 - 0.0481745490 i 2.20867287 - 0.384156255 i

10−4 0.147948561 - 0.0406098407 i 2.29477962 - 0.324741394 i

10−5 0.128442525 - 0.0851233013 i 2.27808877 - 0.489209000 i

10−7 0.177648487 - 0.0797605779 i 2.42936543 - 0.439177037 i

10−10 0.177045193 - 0.0803243612 i 2.42773751 - 0.441438257 i

Table 12: RF1 [2,1] results using Z = 0.4, 0.8, 1.2, 1.6.

ε (eV) Zsp Esp (eV)

10−5 0.200790514 - 0.0331593265 i 2.50076741 - 0.0663195508 i

10−7 0.199009626 - 0.0333702074 i 2.49901165 - 0.0667403774 i

10−12 0.198967011 - 0.0333753786 i 2.49896962 - 0.066750703 i

Table 13: RF2 [3,2] results using Z = 0.2, 0.3, 0.4, 0.50, 0.60, 0.80.

ε (eV) Zsp Esp (eV)

10−5 0.187449988 - 0.0438278308 i 2.49338587 - 0.0784035553 i

10−7 0.198130369 - 0.0384601071 i 2.49898306 - 0.0704764399 i

10−12 0.198139183 - 0.0384389399 i 2.49898494 - 0.0704588588 i

Table 14: RF2 [3,2] results using Z = 0.20, 0.25, 0.30, 0.35, 0.40, 0.45.

ε (eV) Zsp Esp (eV)

10−5 0.196801783 - 0.0362839933 i 2.49717195 - 0.0695614783 i

10−7 0.197970877 - 0.0393868362 i 2.49915003 - 0.0711634188 i

10−12 0.197973989 - 0.0394145454 i 2.49916333 - 0.071180649 i
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Table 15: S2 RF1 [2,1] results using Z = 0.4, 0.8, 1.2, 1.6.

ε (eV) Zsp Esp (eV)

10−5 0.107211538 - 0.3702366 i 2.42892618 - 0.735843273 i

10−7 0.107300967 - 0.37014767 i 2.42893615 - 0.735687203 i

10−12 0.107301691 - 0.370146837 i 2.42893599 - 0.735685833 i

Table 16: S2 RF1 [2,1] results using Z = 0.4, 2.07, 3.73, 5.4.

ε (eV) Zsp Esp (eV)

10−5 0.137723706 - 0.342471258 i 2.43952012 - 0.684829025 i

10−7 0.13786842 - 0.342360368 i 2.43962073 - 0.684611524 i

10−12 0.137867479 - 0.342361078 i 2.43962003 - 0.684612928 i

Table 17: S2 RF2 [3,2] results using Z = 0.4, 0.8, 1.2, 1.6, 2.0, 2.4.

ε Zsp Esp

10−5 0.184618417 - 0.364902059 i 2.48487808 - 0.693311191 i

10−7 0.187777833 - 0.388309498 i 2.4947076 - 0.706424753 i

10−12 0.187767906 - 0.388327002 i 2.49470624 - 0.706439517 i
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