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A COMPUTATIONAL MODEL OF HUMAN TRUST IN SUPERVISORY

CONTROL OF ROBOTIC SWARMS

Huao Li, M.S.

University of Pittsburgh, 2019

Trust is an important factor in the interaction between humans and automation to mediate

the reliance action of human operators. In this work, we study human factors in supervisory

control of robotic swarms and develop a computational model of human trust on swarm

systems with varied levels of autonomy (LOA). We extend the classic trust theory by adding

an intermediate feedback loop to the trust model, which formulates the human trust evolution

as a combination of both open-loop trust anticipation and closed-loop trust feedback. A

Kalman filter model is implemented to apply the above structure. We conducted a human

experiment to collect user data of supervisory control of robotic swarms. Participants were

requested to direct the swarm in a simulated environment to finish a foraging task using

control systems with varied LOA. We implement three LOAs: manual, mixed-initiative (MI),

and fully autonomous LOA. In the manual and autonomous LOA, swarms are controlled

by a human or a search algorithm exclusively, while in the MI LOA, the human operator

and algorithm collaboratively control the swarm. We train a personalized model for each

participant and evaluate the model performance on a separate data set. Evaluation results

show that our Kalman model outperforms existing models including inverse reinforcement

learning and dynamic Bayesian network methods.

In summary, the proposed work is novel in the following aspects: 1) This Kalman estima-

tor is the first to model the complete trust evolution process with both closed-loop feedback

and open-loop trust anticipation. 2) The proposed model analyzes time-series data to re-

veal the influence of events that occur during the course of an interaction; namely, a users
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intervention and report of levels of trust. 3) The proposed model considers the operators

cognitive time lag between perceiving and processing the system display. 4) The proposed

model uses the Kalman filter structure to fuse information from different sources to estimate

a human operator’s mental states. 5) The proposed model provides a personalized model for

each individual.
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1.0 INTRODUCTION

1.1 HUMAN-AUTOMATION TRUST

Trust is an important factor when human operators interact with automation. The term

refers to a human’s belief in automation’s capability and the willingness to rely on automation

in uncertain situations [14]. Human operators need to trust automation enough to rely on it

in conditions where this reliance would lead to improved performance [15, 13]. The situations

in which people fail to do so are recognized as distrust or undertrust because the human

lacks confidence in automation. As a result, the operator may undertake additional tasks

that could have been delegated to automation or issues unnecessary intervention, both of

which can harm joint performance. A running example could be a pilot who distrusts the

auto-pilot system, and tends to monitor all the state parameters, double-check the output

of automated systems, or even chooses to manually control the plane. Each additional task

increases the cognitive workload and occupies the mental resources of the pilot, which could

have been used instead for high-level activities, like communication and planning.

The other maladaptive attitude is called overtrust, where human operators hold unreal-

istic expectations of the capabilities of automation and thus over-rely on automation. Under

such circumstances, humans may fail to properly monitor automation or blindly accept the

recommendations of automation because they are overconfident about the reliability of au-

tomation systems [23]. Overtrust in automation prevents human operators from intervening

at necessary moments and can lead to severe consequences [16]. In the pilot case, the opera-

tor might overestimate the capacity of autonomous navigation system such that they accept

the advice without serious consideration or fail to respond to emergencies in a timely fashion.

Therefore, in human-automation interactions, a well-calibrated level of trust in automa-
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tion is needed to optimize collaboration and overall joint performance. As autonomous

systems become more intelligent and self-governed, their behaviors are no longer restricted

to the specific actions for which they have been designed and the situations to which they

need to respond also go beyond pre-programmed or anticipated cases. More flexibility comes

with more complexity in analyzing and modeling human trust in progress. A computational

model of human trust is necessary for autonomous systems to adapt to human operators and

calibrate their levels of trust. For example, when an auto-pilot system detects the dropping

of human trust, it may present a more defensive strategy or display more explanations for

its behavior to regain trust from the operator.

1.2 SUPERVISORY CONTROL AND LEVEL OF AUTOMATION

This thesis focuses on the supervisory control of robotic systems, which signify a supervisor-

worker relationship between human operators and robots [37]. In our task scenario, both the

human and robot work collaboratively toward a shared task goal. The autonomous agent

is capable of controlling robots to accomplish given tasks, while the human supervises the

whole progress and intervenes when necessary. Depending on different levels of automation

(LOA), the human operator and the autonomous system collaborate in different ways. For

example, in a relative low LOA, a human needs to issue commands to change the heading

direction of unmanned vehicles while the system automatically moves them to that direction

while avoiding obstacles along the way. When it comes to a higher LOA, the agent is able

to self-navigate vehicles around different areas to finish given tasks, but the operator can

intervene by taking direct control.

When supervising autonomous systems with diverse LOA, a human operator employs

different mental models and trust evolution processes. For instance, previous research has

indicated that participants give a more ”performance-centric” trust report when they are

only required to passively monitor the system, as compared to those in the active control

LOA [22]. The author proposed that in higher LOAs, participants were saved from constant

motor control and therefore had more cognitive resources to better perceive the overall status
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and performance of automation. On the other hand, in systems that can operate either

automatically or manually, control takeover is often considered a signal of trust dropping [15,

13]. For supervised automation systems that cannot be manually controlled, an operator’s

interventions in the ongoing tasks can be interrupted in a similar way. Therefore, it is

important to continue exploring the relationship between system LOA, control takeover,

and user intervention and human trust, and especially how those events that occur during

the course of interactions influence the time series of trust evolution.

1.3 ROBOTIC SWARM SYSTEM

A supervisor-worker relationship exists in diverse real-world contexts [31] e.g. remote control

of unmanned ground vehicles, human drivers operating a self-driving car, and human-robot

teaming. In this thesis, we concentrate on the control of swarm robots.

A robotic swarm is a group of simple, typically homogeneous robots that is capable of

accomplishing complex tasks. Individual swarm members are coordinated via local control

laws to form global behaviors (e.g. flocking, deployment, and rendezvous) which enable the

swarm to coherently interact with each other and the environment. Swarms benefit from

their decentralized nature, in that the system is robust to individual failure and does not

require extraordinary individual capability. Hence, swarms are theorized to be important

for large-scale applications in unknown and dynamic environments, including environmen-

tal monitoring [6], structure inspection [11], search and rescue [25], and even space explo-

ration [32].

From a human point of view, interacting with swarm robots is tremendously different

from controlling a single robot because of the unique characteristic of swarms. For instance,

the nonlinear dynamics of swarm systems [3] has been shown to prevent a human operator

from correctly perceiving the swarm’s state or performance [35], and further, issuing inter-

ventions in time (a.k.a. neglect benevolence [19]). Moreover, unlike automation systems

that are directly controlled by operator commands, swarms can only be indirectly influ-

enced by changing their control laws. In other words, human interventions are not directed

3



to each group member to tell them the heading direction and velocity; rather, operators

must issue commands to the whole swarm by changing their emergent behaviors or parame-

ters [17]. Such a feature inevitably extends the lag time of system feedback and complicates

the decision-making process of human operators. When considering the perception diffi-

culties and indirect control present in human-swarm interaction, there are significant time

delays in multiple steps within the operator’s cognitive processes. Most importantly, when

modeling human trust during this process, it is necessary to take additional feedback paths

and their own unique time lag into account.

1.4 THESIS STRUCTURE

This thesis will focus on the problem introduced in the previous section: modeling dynamic

trust evolution during supervisory control of robotic swarms. The following section begins

with a introduction of related work in Chapter 2. In addition to previous research that

only focuses on human control takeovers and interventions as the signal of a loss of trust,

we track the dynamic evolution of human trust in both directions. With the help of such

a computational model, an adaptive swarm system is envisioned to calibrate human trust

to optimize the overall joint performance. After the literature review, Chapter 3 shows the

experiment design and the observational results of supervisory swarm control. During the

experiment, we measure the operator’s in-progress trust during the course of their interaction,

which is believed to have higher reliability and validity. A novel trust model based on a

Kalman filter is introduced in Chapter 4. When considering the different cognitive paths in

processing system feedback and anticipated consequences of intervention in human swarm

interaction, two distinct modules with time lags are constructed in the model to represent

both processes. Based on the data collected from human experiments, the performance of our

Kalman-based model is verified and compared with other existing trust models in Chapter 5.

Finally, Chapter 6 discusses the contributions of this work and possible directions for future

research.
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2.0 RELATED WORK

2.1 THEORETICAL TRUST MODELS

Lee and See [14] have provided a thorough review of early research on the topic of trust in

automation. A formal definition of trust is given as, “the attitude that an agent will help

achieve an individual’s goals in a situation characterized by uncertainty and vulnerability”

considering its major characteristics. In addition, Lee and See also summarized the basis of

trust in three dimensions: purpose (why the automation was developed), process (how the

automation operates), and performance (what the automation does). Those three elements

provide important insights that human trust is not only influenced by whether the robot

could finish a given task, but also by the degree of the operator’s understanding of what the

robot is designed to do and how it functions.

Fig. 1 shows a fundamental dynamic model of trust and reliance on automation proposed

in Lee and See’s work. This theoretical model consists of a closed-loop evolution of trust,

the influence of context, and the role of information display in calibrating trust. In the core

closed-loop system, human operators perceive the physical state of the system from a display

and form their own beliefs about the system’s state. The trust level is then established based

on the belief in the automation’s capability and the current state. Based on the trust level,

the operator may form the intention to either use or intervene with the automation and finally

take the selected action. The action that operators take will affect the state of automation.

The bottom line of this closed-loop structure is that the dynamic interaction with the

automation influences trust and trust influences the dynamic interaction. When the operator

uses or relies on the automation, they can observe information about it and therefore have

a better chance to establish a robust level of trust in the automation [18]. Having a good
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Figure 1: Lee and See’s dynamic model, including the closed-loop trust evolution and factors

that influence this process.

understanding of the system’s capability and working conditions is vital to develop greater

trust in the automation. Unlike most theories that analyze the decision-making process, Lee

and See’s dynamic trust model is more suitable for analyzing trust in automation because it

better reflects the factors that influence reliance and their effect over time. Static approaches

that have been used to identify the mis-calibration of self-confidence in decision-making

address only cumulative experience, rather than the evolving experience and continuous

re-calibration that are critical for an appropriate level of reliance on automation.

In addition, the type of automation also has a huge effect on the evolution of human

trust. Depending on the stages of information processing that it involves, the automation

system can assist humans in information acquisition, information analysis, decision selection,

and action implementation [24]. This difference has been argued as the level of automation

(LOA) that combines the degree of automation in different types and stages [33]. Lee and

See proposed that different LOAs will significantly change the trust dynamics, especially

the observation process. For example, it is possible for operators to observe the behavior of
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information acquisition automation, even when they are not using it directly, because both

the raw and processed data are available. However, it is difficult for operators to observe

action implementation automation unless they are relying on it directly. This difficulty in

perceiving system performance may lead operators to fail to recover trust after adapting

manual control mode, even when the reliability of the automation improves [15]. Therefore,

it is important to compare the trust dynamic evolution in different LOAs.

An important consideration of trust in automation is the effect of system failures. The

occurrence of faults usually leads to the development and erosion of trust as a dynamic

process. Depending on the type and severity of the failure, trust may decline and recover

shortly (when the fault is mild and temporary) or decline until operators subjectively ac-

commodate it (when the fault permanently harms the capability of the automation) [10, 15].

The dynamic changes in trust that are brought about by failures do not happen immedi-

ately, but occur over a period of time [15]. As noted in an early work of Lee and Moray [13],

a time-series analysis has shown that the influence of automation failures on human trust

can be modeled by a first-order differential equation, in which the largest effect will be seen

immediately, with a residual effect distributed over time. This time-series analysis identifies

the time constant of trust and determines how quickly the trust changes to reflect changes

in capabilities of the automation.

Recently, Sheridan summarized three different types of approach analyzing trust in au-

tomation, including signal detection, statistical parameter estimation and model-based con-

trol [29]. As proposed in the paper, Lee and See’s trust model frames human trust as a

closed-loop model with six elements, as shown in Fig 1. The model structure can be easily

mapped with a classical control process with a minimum modification, as proposed in [30].

The trust evolution of the human operator refers to the internal model of reality that needs

to be estimated. Based on the trust level, the operator may form an intention to intervene in

the operation and finally take an action to influence the state. Those two elements represent

the state-based policy of action and physical action that modify the state in control theory.

The action that operators take will affect the system state of the automation. The physical

changing of reality will be feedback to the operator via the system display, which corresponds

to the measurement process in the language of control. Finally, the human operator takes
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Figure 2: Kalman estimation trust model.

the displayed information in and forms their own belief about the estimation of the state.

This theoretical model accurately captures important features of human trust evolution and

has been applied in a series of studies.

In the model-based control section, Sheridan proposed a modified Kalman estimation

model on the basis of Lee and See’s dynamic trust model (shown in Fig. 2). The key

improvement of this Kalman model is two intermediate feedback loops in the process of

trust evolution. The author proposed a loop that feeds the estimated automation state

back to the information analysis block, which compares the difference between the internal

model state and the actual system display. This process forms the basis of trust evolution

that adapts an internal belief to the changing reality. The second loop is uniquely proposed

in [29] in addition to Lee and See’s model, which allows the internal trust model to anticipate

the change in system state after it makes intervening decisions. Thus, the level of trust is

continually updated, based on the discrepancy between the model state and the actual

displayed state, as well as the anticipated effects of intervention.

By adding the above two loops, the trust model becomes a two-step system that consists

8



of trust anticipation and verification. First, the degree of trust is equivalent to the size of

the open-loop commitment and the anticipation made after the action of decision-making.

The closed-loop trust verification is equivalent to the difference between the actual displayed

system state and the internal desired state. As commented in [29]: ‘In this trust model,

the control law determines whether or how far to commit to open-loop action, based on the

internal model of the current state of the automation’s trustworthiness and in consideration

of ones vulnerability.’

Another concern in the evolution of trust is the time delays between perceiving and

processing information in the human cognitive system. Unlike classical control systems, in

which this value tends to be quite short, it takes much longer for human operators to correctly

perceive the displayed information and form their own belief of trust in automation. For

a longer time delay, a longer open-loop decision making process is taken, based on the

anticipation of automation. When the feedback from the actual system eventually arrives

after T time steps, the operator can use this feedback information to verify their own trust

belief. The longer the time lag, the lower the expectation that the internal belief and feedback

will match, and the more vital it becomes to involve both the open and closed loops to better

estimate the overall trust state.

This trust-action-verify structure is commonly used in modeling motor operating with a

response time lag. For example, factory operators making machine settings may not able to

see results for minutes or even hours, due to the slow response of the machine. The same

is true for teleportation robots in space: human supervisors give open-loop trust commands

and waits for closed-loop verification after several seconds of delay. As we can see, when the

time lag grows larger, there is more room for the operator to consider their trust criteria and

involve more cognitive consideration. In a human-swarm interaction, the unique physical

characteristics of swarms bring additional difficulties for operators to correctly perceive their

current behaviors and operational states. In addition, the control algorithm and communi-

cation constriction makes the swarm group slower in response command compared to single

robots. Therefore, a Kalman system that considers both open-loop trust anticipation and

closed-loop trust feedback is the optimal choice for modeling human trust in supervisory

control of robotic swarms.
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2.2 COMPUTATIONAL TRUST MODELS

In the work of Lee, a computational model based on the extended decision field theory

was developed to predict operator trust in and reliance on supervisory control [8]. The

application scenario had operators monitoring the operation of an orange juice pasteurization

plant, where a human can choose to either monitor automatic control or intervene manually.

The model tracked both the operator’s trust toward the automation and self-confidence of

their manual control capacity. The decision of whether or not to rely on a specific control

mode was made upon the accumulated difference between those two values over a period

of time. Basically, each of the two processes was represented by a closed-loop dynamic, as

in the classical model previously mentioned. If the operator holds a great estimation of

automation’s capacity, they would have a high trust towards it and would be more willing

to rely on the automatic control. While the operator is using automatic control, they gain

information from the system display and update their belief about the system’s capability.

On the other hand, the higher self-confidence that an operator has on their manual control

skills, the more likely they would be to choose to manually control the system. Thus, we

could have a preference indicator by calculating the difference between trust in automation

and self-confidence at a given time step. According to the decision field theory, while this

valence difference accumulates, an operator’s preference towards a certain control model

becomes stronger. When it finally goes beyond a certain threshold, the operator would

make the decision to either relay or intervene.

This computational model applied the closed-loop dynamic structure in Lee and See’s

theoretical trust model and provided decent results in predicting human reliance on automa-

tion. More importantly, it captured the accumulation of trust over time and considered the

influence of trust levels on decision making. However, this model has its own limitations

when applying to general task settings. First, this model focuses on the interaction between

a single operator and a single automation. When the human operator interacts with a multi-

agent system, the cognitive workload may increase and the mental model may become more

complex. Second, this model considers the use of automatic and manual control as purely

complementary, while this may not be true for many systems. Third, the parameters in this
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model are predefined without learning or adaptation to either the automation system or to

a human operator. However, many parameters such as the decision making threshold and

manual capabilities can vary widely from operator to operator.

Xu proposed a dynamic Bayesian inference trust model for a single robot [38]. The

model uses a robot’s performance to predict the operator’s latent trust state and constructs

a Bayesian network to consider influence from past time steps. The participants’ in-progress

trust report was used as the measurement of the latent trust state. The above model struc-

ture is based on the assumption that the changes in trust rise and fall, based on the task

performance of the robot. In Xu’s paper, the human operator was asked to monitor a UAV

taking a given boundary and to take over the control whenever they noticed a failure. Since

the task setting was fairly straightforward, the performance of robot can be easily recognized

by humans with no significant delay. The takeover behaviors of human operator also directly

indicate a loss of trust in automation. However, in the swarm control tasks, the automation

performance was not intelligent to humans, due to the characteristics of swarms. Humans

need more time to process complicated swarm behaviors, which brings a longer time delay

in the decision-making process. As a result, the effect of open-loop trust anticipation is even

more dominant and should be taken into consideration.

In [21], a computational trust model for human swarm interaction was proposed on the

basis of inverse-reinforcement learning. The task scenario in this research is a foraging task,

where the human operator was asked to control the swarm to search for hidden targets in

an unknown environment. In this case, because human interventions may not be necessarily

related to a drop in trust but may instead indicate a changing of intentional searching areas, a

classifier was developed to distinguish human interventions caused by trust loss and intention

shifting. The human trust evolution process is modeled as a Markov decision process (MDP),

in which the state space consists of the task performance, trust-related human intervention,

and swarm state. The model learns an individualized reward function from each operator’s

event log and uses it predict human trust at given states. In a later work [20], the author

extended this approach to human swarm systems with different LOAs. Although this model

provides an accurate and direct trust prediction, it does not consider the temporal sequence

of events that occur during human-swarm interaction.
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3.0 HUMAN EXPERIMENT

3.1 SUPERVISORY CONTROL OF ROBOTIC SWARMS

We considered a target search task where a swarm of robots is controlled by a human

operator to explore an unknown environment with static obstacles. Each robot is assumed

to have the capability of sensing surrounding environments, but with a limited field of view.

The human operator controls the swarm remotely via command inputs, as they select the

heading direction towards which the swarm should move. The swarm has leader robots who

receive command inputs from the operator and communicate heading directions towards

which the swarm should flock to swarm members via peer-to-peer communication. The

swarm is equipped with basic obstacle avoidance function, but is not able to change its

own heading direction; for example, escaping from a corner. Observable swarm parameters

include velocity, centroid, connectivity, mean heading angle, heading variance, and convex

hull area (Fig. 4).

We have three different levels of autonomy (LOAs) of the swarm: (1) the manual LOA,

(2) the autonomous LOA, and (3) the mixed-initiative (MI) LOA. In the manual LOA, the

human operator needs to give heading directions for the swarm to navigate (i.e., manual

search mode). In the autonomous LOA, the swarm searches the map by itself using a search

algorithm [4], while the operator is out of the control loop (i.e., autonomous search mode).

The search algorithm enables the swarm to search the entire space of an unknown area if

the time is sufficient. In the MI LOA, the operator is allowed to use both the manual and

autonomous search modes mentioned above to optimize the searching performance of swarm

robots. In addition, a recommendation system is used to automatically switch the control

mode, based on the performance within the current task. The system may recommend a
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mode switch if the performance remains low in the current mode; however, the operator

may or may not follow the recommendation and can switch the mode at any time, even

if there is no recommendation to switch. Here, we differentiate search mode and LOA as

different concepts. In the manual or the autonomous LOA, only the manual search mode

or autonomous search mode is accessible, respectively. In the MI LOA, the operator is

able to access a mix of the manual and autonomous search modes, which is determined by

interaction with the swarm and the recommendation system.

3.2 HUMAN-SWARM INTERFACE

A swarm simulator [34] was used for testing human-swarm interactions. Figure 3 illustrates

the simulation interface. The center panel gives the operator a top view of the undiscovered

map. Swarm robots, targets and static obstacles are represented by red dots, green stars, and

gray rectangles on the map respectively. The line between swarms refers to the peer-to-peer

communication link. The map is covered at the beginning of each trial, and will be explored

as long as the swarm can move and sense the environment. The left panel shows additional

task-related information, such as the time remaining for the current trial, the cumulative

number of targets found, a low-performance alert, a mode switch countdown given by the

recommendation system, and the current search mode (manual or autonomous). There is a

trust slider on the right panel of interface that the participants can adjust, using the mouse

wheel, to indicate their current subjective trust ratings. The participants were required to

report their level of trust toward swarms (trust feedback) every 30 seconds on a scale from

−10 (strongly distrust) to +10 (strongly trust). They were also encouraged to adjust this

value when they felt that their level of trust changed.

The swarm consisted of 32 homogeneous robots that were set at random positions at the

center of a 200 m× 200 m environment. In each trial, random environmental configurations

were generated for robot poses, obstacles, and targets. The operator could give commands

to navigate the swarm during flocking by dragging a line (the purple line shown in Fig. 3)

to indicate the heading direction. In different search modes, the swarm received the heading
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for flocking [26] either from the operator or the autonomous search algorithm. The data

from user command inputs (the angle and length of command vectors), swarm parameters

(the mean and variance of heading angles of the robots shown in Figure 4a, convex hull area

defined by the robots shown in Fig. 4b, connectivity), user or system initiated mode switch,

and the number of targets found were recorded for each time step (60 Hz).

3.2.1 Level of autonomy and Search mode

During the supervisory control task, the participants could use two different search modes to

finish the task, depending on the LOA of the system. In the manual LOA, only the manual

search mode was available to the operator, in which participants could give the swarm a

heading direction by dragging a line on the screen using the mouse. In the autonomous

LOA, the swarm could only be controlled by the algorithm in the autonomous search mode.

The MI LOA offered a flexible interaction between the human and the swarm by ap-

propriately adjusting the search mode. The simulator initially started with the autonomous

search mode, where the participants had no control over the swarm. However, the operator

could switch to the manual search mode by giving a mouse input or pressing a toggle key.

In the manual search mode, the participants could also use the toggle key to switch back to

the autonomous search mode.

In any mode, current task performance (i.e., number of targets found) both in total and

during the last 15 seconds (the red text on the left panel in Fig. 3) were shown on the

interface. If the swarm found less than three targets for the last 15 seconds (the predefined

threshold was determined by a pilot study), the recommendation system would prompt an

alert for low performance (in red) on the left panel. If the low performance continued for

10 seconds, the system recommended that the participants switch the mode in another 10

seconds (a countdown appeared on the left panel along with the recommendation). If the

operator did not initiate a mode switch before the countdown ended, the system switched the

mode automatically. However, the participants could reverse the forced switch by pressing

the toggle key or by giving a heading direction. The current search mode is always shown on

the interface in text with a color coding that corresponds to the map boundary to increase
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its visibility (e.g., the green text in the left panel and the green bounding box in Fig. 3).

Figure 3: An illustration of the swarm simulator. The swarm navigates in the unknown

area to find targets. The participants adjust the trust slider on the right panel by using the

mouse wheel to give trust feedback as their trust changes. The left panel shows task-related

information.

3.3 HUMAN EXPERIMENTS

3.3.1 Experimental Design

The experiment employed a 3-level within-subject design, in which each participant ran three

different LOAs in a counterbalanced sequence. In the beginning of experiment, participants

were asked to finish a survey in order to measure their general trust towards autonomy

(trust pre-test). The questionnaire was adopted from [5] considering three trust components

(performance, process, and purpose) in 5-Likert scale. For each of the three LOAs, a 2-min

training session and three 5-min identical trials were given to the participants. The main

task of participants was to navigate the swarm through the environment to discover 100

initially hidden targets. Participants were told to find as many targets as possible within
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(a) Heading variance (b) Convex hull area

Figure 4: Some swarm parameters: (a) the variance of the heading angles of all swarm

members; (b) the convex hull area that the swarm makes.

the given time (5 minutes). After finishing three trials in each LOA, the participants were

asked to fill out a survey to collect their subjective trust towards the swarm that they just

interacted with (trust post-test) and a NASA-TLX survey [9] to measure their workload.

The participants were told to consider the swarm (e.g., individual robots and the search

algorithm) and the system (e.g., the interface and the alert/recommendation) as a whole

when they rate trust. The experimental procedure lasted for 75 minutes.

3.3.2 Participants

20 participants were recruited from the University of Pittsburgh and Carnegie Mellon Uni-

versity communities with an average age of 24.1 (σ = 2.89). Each of them were paid $10

to finish a 75-minute experiment. The experiment’s protocol was approved by the Univer-

sity of Pittsburgh Institutional Review Board. Participants had no prior experience with

controlling a swarm of robots.
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3.4 EXPERIMENTAL RESULTS

The results from the experiment have been published in [22, 20], which focuses on user’s

different trust feedback and behavior among LOAs. In the present work, the analysis of the

results concentrates more on identifying trust-related factors in order to build the computa-

tional model.

3.4.1 Survey results

An one-way repeated measures ANOVA was run to analyze the post-test trust survey data.

Resutls showed that there was a significant difference in the post trust report between

LOAs (F (1.37, 19.20) = 7.80, p = 0.007, see Fig. 5a). Pairwise comparison showed that

the participants had a significantly lower trust towards the autonomous LOA than the

MI LOA (p = 0.001). Workload is also shown to be significantly different among LOAs

(F (1.38, 19.37) = 13.52, p = 0.001, see Fig. 5b), in which the workload of the autonomous

LOA is much less than the other two LOAs (p = 0.023, p = 0.001). This result is consistent

with our hypotheses and confirms previous findings on trust [1, 27] and workload [7] with

varied LOAs in a new domain of swarm supervisory control.

To take participants’ preexisted trust levels towards the autonomy into consideration, we

compared the difference between the pre- and post-trust survey (trust change) (Fig. 5c). In

all LOAs, trust decreased after the participants experienced swarm control which may due

to the low controllablility and intelligibility of swarm behaviors. Among all LOAs, the MI

LOA had the smallest negative change in trust. The survey results of trust and workload

show that the mode switching and recommendation in the MI LOA neither damaged trust

towards the swarms nor increased operator’s workload.

3.4.2 In-progress trust feedback

The average trust feedback values (i.e., the mean of the in-process ratings of trust) had

a significant difference among the three LOAs (one-way ANOVA, F (2, 57) = 3.35, p =

0.0423, shown as Fig. 6a). The participants had a significantly lower trust feedback values
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Figure 5: Results from surveys. Error bars are 1 Standard Error from means (SEM). (a)

The participants had a significantly low trust towards the autonomous LOA than the MI

LOA. (b) The workload of the autonomous LOA is much less than the other two LOAs. (c)

The participants had the smallest negative trust change in the MI LOA.

in the autonomous LOA whose mean was 2.571 while the manual LOA had the highest

trust feedback (the mean was 5.086). The MI LOA’s mean trust feedback was 4.014. A

likely explanation for the low trust in the auto LOA is that the searching algorithm is lack

of transparency and the participants did not like being excluded from the decision-making

loop.

3.4.3 Performance

The most common thought about human trust in automation is goal-oriented, which estab-

lishes trust in a robot’s performance in finishing given tasks.

The average task performance in different LOAs have a significant difference (F (2, 57) =

55.18, p � 0.01). The means of the targets found in the three LOAs are 74.3 (manual),

66.4 (MI), and 55.6 (autonomous), respectively (Fig. 6b). The result indicates that the

autonomous search algorithm did not outperform humans in the given environment, perhaps

owing to the presence of obstacles.

To identify if the current task performance influences the user’s reported level of trust,

we run a correlation analysis. The result shows that the correlation coefficients between task

performance and trust were low (−0.0768, −0.0140, 0.1353 in the manual, MI, autonomous

LOA respectively). This finding reveals an important fact: in human-swarm interaction, the
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performance of swarm robots is less intelligible to the operator in terms of evaluating trust.

As noted in [22], the different relationship between task performance and trust among LOAs

may be due to the operator’s diverse workload. For instance, the decreased workload in the

autonomous LOA would enable the participants to correctly perceive task performance. An

evidence is that, within the MI LOA, there was no statistically significant correlation between

the performance and trust feedback (R = 0.1230, p = 0.3620) in the manual search mode.

However, for the autonomous search mode, a correlation (R = 0.2715, p = 0.041) indicates

that participants were able to align their in-process trust feedback to task performance when

they were not actively engaged in controlling the swarm.
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Figure 6: Results from in-process measurements (error bars are SEM). (a) The participants

had a significantly lower average trust feedback values in the autonomous LOA while the

manual LOA had the highest trust feedback. (b) The task performance of the manual LOA

was significantly higher than the autonomous LOA.

3.4.4 User intervention commands

In [21], a classifier was developed to distinguish the human operator’s command input into

intervention and nonintervention categories. It was shown that only the parts of the hu-

man commands that correct the heading direction of the swarm occur due to low levels of

trust, which refers to intervention commands. Other nonintervention commands may be

due to non-trust-related factors, such as swarm deployment or a switch in intentions. The
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experimental data indicated a linear classifier, which uses the length of the vector drawn by

the participants to distinguish a command input. Shorter lines were associated with inter-

ventions that indicate levels of dissatisfaction with swarm behavior, while longer lines were

used to redirect the swarm to different search regions could indicate a change of intention

instead of a loss of trust. In this work, the same classifier is used to identify user commands,

because the experimental setting is identical to that of [21].

With 317 px as the threshold of the linear classifier, we compare the trust feedback

when users issued different kinds of commands. In both the manual and the MI LOA (the

autonomous LOA is not applicable since it does not have a command input), the two groups

showed a significant difference in the trust feedback (manual: 2-tailed t = 25.98, p� 0.001,

df = 1080058, MI: 2-tailed t = 32.76, p� 0.001, df = 1074381) with participants tending to

give low trust feedback when they issued interventions. The average trust feedback values

of the intervention and non-intervention groups were 4.789 and 5.114 in the manual LOA

(3.445 and 4.040 for the MI LOA), respectively (shown as Fig. 7). This finding indicates

that the participants issued intervention commands when their level of trust was lower.

Figure 7: The average trust feedback when users issued intervention or nonintervention

commands. Error bars are 1 standard error from the mean.
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Figure 8: The average trust feedback when the mode switches occurred (user-initiated vs.

system-initiated switches). Error bars are 1 standard error from the mean.

3.4.5 Mode switch in the MI LOA

Because participants were able to access both manual and autonomous search modes in the

MI LOA, another important indicator of operator’s trust is the control switch between two

modes. On one hand, human operators may take the control over autonomous searching

algorithm when they lose trust in it, or leave the control to the algorithm when they feel

confident. On the other hand, a control switch initiated by the recommendation system may

also influence human trust, since it is related to the performance of the swarm. The average

numbers of user-initiated and system-initiated switches in each trial were 6.500 (σ = 3.138)

and 5.050 (σ = 3.916), respectively. Trust feedback values when users or the system initiated

the mode switch were significantly different (2-tailed t = −8.988, df = 1045, p� 0.001). The

means of trust feedback were 1.858 and 3.954 (Fig. 8), which suggest that the participants

had significantly lower levels of trust when they switched the search mode themselves.
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4.0 HUMAN-SWARM TRUST MODEL

In this chapter, a novel computation model of human trust in supervisory control of robotic

swarms will be introduced. This model is based on a Kalman filter that estimates human

trust states from temporal events that occur during the course of interaction. Both the open-

loop trust anticipation and closed-loop trust feedback models are updated with processing

time lags to model the overall trust dynamics. A personalized model is obtained from each

individual’s interaction experience to provide a customized trust prediction that adapts to

an individual’s behavior and attitude.

This chapter starts with a brief introduction to the implementation of the Kalman esti-

mator and the extended assumptions made for human trust prediction settings. Next, the

model’s structure and chosen procedure of parameters are described in detail.

4.1 KALMAN ESTIMATOR

As previously mentioned, the modified theoretical trust model can be easily implemented

as a Kalman estimator. The internal model updates the trust estimation via two different

loops, as the process update and measurement update in a Kalman estimator.

It is assumed that the overall human trust state can be represented by the following

linear time-variant equation:

xk = Axk−1 +Buk−1 + wk−1 (4.1)

where xk represents the human trust state, uk−1 is the human’s control input to the system,
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and wk−1 refers to random disturbances. This equation reveals the open-loop trust evolution

over time. The first term Axk−1 is the natural evolution of the trust state, which remains the

same over time if parameter A is set as a vector consisting of ones. This setting is based on

the assumption that human trust will remain at the same level if no feedback from external

events or changing of internal belief is received. The second term Buk−1 refers to the influence

of trust anticipation when operators issued commands or controlled switches. While control

parameter B may be changing during each time step, we assume it as a constant for each

operator and learn it from individual interaction history. The last term wk−1 is a vector of

independent zero-mean normalized Gaussian white noises, which represents the unexpected

noise that occurs in this process.

The following equation represents the human operator’s perception process:

zk−τ = Cxk + vk (4.2)

where zk−τ is the observation that the human operator gets from the system display, the

perception parameter C is also assumed as a constant vector and learned from each operator’s

interaction history, vk is the Gaussian white noises during measurement. For simplification,

we assume that the displayed swarm parameters can be easily perceived by human operators

and that they have linear relationships with human trust evolution. The parameter C reveals

the relationship between the trust state x and the measurement z. In addition, as mentioned

in an earlier section, there is a time lag for human operators to perceive and analyze the

information from the system display. Therefore, τ seconds are subtracted from the time

step to indicate the later arrival of system feedback. This measurement update equation

corresponds to the closed-loop feedback in trust evolution.

The random variables wk−1 and vk represent the process and measurement noise, re-

spectively. They are assumed to be independent of each other, white, and with Gaussian

probability distributions of:

p(w) ∼ N(0, Q) (4.3)

p(v) ∼ N(0, R) (4.4)

We define x̂k
− ∈ <n to be our a priori state estimate at step k, given knowledge of the
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process prior to step k, and x̂k ∈ <n to be our a posteriori state estimate at step k, given

measurement zk−τ . A priori and a posteriori estimate errors can be defined as:

e−k = xk − x̂k−

ek = xk − x̂k

The a priori estimate error covariance is then:

P̂k
−

= E[êk
−êk

−T ] (4.5)

and the a posteriori estimate error covariance is:

P̂k = E[êkêk
T ] (4.6)

The goal of a Kalman filter is to find an equation that estimates an a posteriori state x̂k as

a linear combination of an a priori estimate x̂k
− and a weighted difference between a mea-

surement zk−τ and a measurement estimation Cx̂k
−. This difference is called residual, which

refers to any discrepancy between the predicted measurement and the actual measurement.

x̂k = x̂k
− +K(zk−τ − Cx̂k−) (4.7)

The matrix K in (4.7) is chosen to be the gain that minimizes the a posteriori error covariance

(4.6). One form of the resulting K that minimizes (4.6) is given as follows:

Kk = P−
k C

T (CP−
k C

T +R)−1 (4.8)

To put these equations together to estimate the human trust state, a discrete Kalman

filter algorithm is implemented, based on [2]. The Kalman filter estimates human trust at

some time steps and then obtains feedback in the form of measurements with both noise

and time lag. Thus, the equations for the Kalman filter are divided into two groups: process

update equations and measurement update equations. The process update equations are

responsible for projecting the current state and error covariance estimates forward to obtain

the a priori estimates for the next time step, while the measurement update equations are

responsible for the feedback; for example, incorporating a time-delayed measurement into
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the a priori estimate (when it is available) to obtain an improved a posteriori estimate.

Kalman filter process update equations:

xk = xk−1 +Buk−1 (4.9)

P−
k = Pk−1 +Q (4.10)

Kalman filter measurement update equations:

Kk = P−
k C

T (HP−
k C

T +R)−1 (4.11)

x̂k = x̂k
− +K(zk−τ − Cx̂k−) (4.12)

Pk = (I −KkC)P−
k (4.13)

The process update equations are a time-series function that projects the state and

covariance forward from time k − 1 to time k. The algorithm first computes the Kalman

gain Kk during the measurement update and then measures the state to obtain zk−τ . Notice

that the measurement has a time delay τ , so the measurement at time step at k − τ will

be used to generate an a posteriori state estimate at time k in (4.12). The final step is to

obtain an a posteriori error covariance estimate via (4.13).

With the process and measurement updates, this process repeats at each time step by

putting the a posteriori estimate at the last time step to predict the a priori estimates at the

current time step. The recursive fashion enables the Kalman filter to condition the current

estimate on all of the past measurements, which makes the Kalman filter’s implementation

much more practical and feasible than with previous methods.

4.2 MODEL PARAMETERIZATION

In the implementation of the Kalman filter, five sets of parameters need to be predefined to

run the simulation. They are process and measurement noise covariance Q and R, control

and perception parameters B and C, and processing time lag τ . The specific value of each

parameter is based on rules, as well as a combination of heuristic and grid search using a
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Figure 9: A block diagram of the implementation of a Kalman filter.

mean square error as the criterion; thus, the resulting fit might not be optimal.

4.2.1 Process and measurement noise

In the common practice of implementing Kalman filters, the measurement noise covariance

R is usually measured before operating the filter, because an off-line sample measurement

can help determine the variance of the measurement noise. The determination of the process

noise covariance Q is typically more difficult, because we have no access to the human trust

dynamic that we are estimating. A simplified but effective solution provided by previous

research is that providing enough uncertainty to the process via Q.

Literature on the Kalman filter has pointed out that tuning the filter parameters Q

and R can bring superior filter performance, even without a rational basis for choosing

the parameters [2]. Considering the lack of quantitative work in measuring human trust

dynamics and the influence of swarm physical state on human trust, the measurement noise

R and the process noise Q are tuned off-line when using the training data set. The tuning
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results are R = 1 and Q = 1 ∗ 10−3, and remain static throughout the following process.

4.2.2 Control parameters

Parameters B refer to the influence of temporal user control inputs that occur during the

interaction with a human operator’s level of trust. For the control inputs, we track the

control mode switch initiated by both the user and system and the command input issued

user by the user. Therefore, B becomes a parameter vector with three values that correspond

to three types of input.

Control takeovers between the automation and human indicate the changing trust state

of human operator. When humans decide to switch the control from automation to manual

search mode, their trust towards swarm robots’ autonomous searching algorithms are more

likely to drop because they have a higher self-confidence in their manual control skills. On the

other hand, the reverse control switch from manual search to autonomous search indicates

an improvement in levels of human trust in automation. The above assumptions are sup-

ported by the observational results presented in Section 3.4, which showed that participants

hold a significantly lower trust level when they initiated a control switch. Therefore, the

contribution of a user-initiated switch should be negative when the control switch direction

is from manual to auto, and positive in the opposite direction. When considering that the

trust rating ranges between 0 and 1, we set the searching rage of control parameter b1 from

0 to 0.1. The process of setting the parameters of a system-initiated control switch is similar

to setting the parameters of a user-initiated switch. However, the influence degree may be

of different significance for different individuals, so a separate searching process is run for b2

.

Based on the findings of the supervisory control of robotic swarms in [20, 21], users’

command inputs generally fall into one of two categories:intervention commands that occur

due to a loss of trust and nonintervention commands that occur due to other reasons, like

changing an intention. Here, only the intervention commands issued by operators are used

to predict human trust. Because intervention commands indicate a loss of trust, the range

of the corresponding parameter b3 is then set between -0.1 and 0.
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4.2.3 Perception parameters

Parameters C represent the influences of perceived swarm states on levels of human trust.

According to previous studies [20, 38], both robots’ task performance and physical states

have significant influence on human trust formation and updates to its levels. However,

when applying the model to human-swarm interaction scenarios, the overall performance

is shown to be less informative (see Section 3.4). Therefore, the performance increment in

each second is then adopted to predict human trust levels. The corresponding parameter

c1 is set as positive with a range between 0 and 0.1, because better performance usually

leads to greater levels of trust. When considering the unique physical characteristics of

swarms [20, 21], the heading variance and convex hull area are chosen as the indexes that

are most influential to human trust levels. The heading variance is the deviation of a given

swarm member’s heading direction, which reveals how coherently the swarm is moving. The

convex hull area equals to the area covered by connected swarm members, which refers to

how concentrated the swarm team is distributed in a given area. As shown in Section 3.4,

the impact of swarm physical parameters on human trust are different between LOAs, so

the parameter ranges of c2 and c3 are set from -0.1 to 0.1.

4.2.4 Time delay

Time delay τ represents the processing time for a human operator to correctly perceive the

swarm’s state and performance. Since similar Kalman filter structure has only been used

manual control task, published data of time delay only considers the neuromotor time, which

was reported as 0.15-0.25 seconds [12]. However, a previous study on neglect benevolence

in human swarm interaction [19] shows that the time for a closed-loop feedback from user

input to swarm behavior convergence ranges around several seconds. Considering that the

total length of a experiment trial is 5 minutes, we searched τ from 0 s to 30 s.
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4.2.5 Grid search

Because each individual has unique trust criteria and anticipation due to their previous ex-

periences, a personalized model is needed to reach a better overall level of fitness. Therefore,

a grid search process is employed to find the best parameter combination for each participant

that uses root mean square error as the metric. Grid search is a commonly used method of

hyperparameter selection for a given model with clearly defined criteria. When considering

the searching space and parameter number in our experiment settings, we adopted a modi-

fied version of the searching strategy. We employed this method to search the best control

parameter B, perception parameters C, and time lag τ for each participant. Based on the

estimated ranges introduced above, we equally sampled several values for each parameter

and tried out all possibilities for one single parameter once, with other parameters fixed at

the median value. The sampling step length is 0.01 for B and C and 1 for τ . The assumption

of applying a simplified grid search is based on the following reasons: 1) B and C are each a

vector with three elements, and the searching space of τ ranges from 0 - 30s, so exclusively

trying out all the combinations is computationally inefficient. 2) The Kalman filter is a

nearly linear system and the influence of each term and corresponding parameter is addable.

3) During the course of interaction, significant events (e.g. control switch or intervention

command) occur in a temporal sequence with considerable intervals. Therefore, we assume

that parameters do not have interaction effects with each other and only change one of them

during the search task.
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5.0 TRUST MODEL EVALUATION

Data collected from the human experiment was used to evaluate the proposed Kalman filter

model. In the experiment, each participant interacted with swarms in three different LOAs,

and in each LOA, they finished three 5-minute trials. During the interaction, human inputs

(user-initiated control switch, system-initiated control switch, and control commands) and

swarm states (heading variant, convex hull area, and task performance) were recorded with

a sampling rate of 60 Hz. To reveal the unique cognitive process of different individuals in

varied LOAs, separate models were trained for each participant in each LOA.

5.1 DATA PROCESS

First, the sampling rate of original data is 60 Hz, which is relatively high for a human

cognitive model. In order to better capture the temporal relationship of interaction events

and human trust, we compute the average value of recorded data during each second to

decrease the data sampling rate to one data point per second. Second, since data inputs

are at different scales and are unable to be normalized into a shared space, only the count

number or sign of incremental value is kept for further model computation. For control

inputs, we calculate the total number of events occurring during each second and use the

count number in our model (e.g. the number of user-initiated switches or the number of

intervention commands). For swarm states, we calculate the difference of physical parameters

or performance in each second and take the sign of it for the model. For example, 1 represents

a increase of heading variant during a certain time window (1 second in our case) and -1

represents a decrease of the value, while 0 represents the value remaining the same. Third,
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in order to compare the model performance with an existing model, we adopted the same

scale of depended variable, the reported level of trust. The original [-10,10] scale is linearly

transformed to [0,1].

Finally, the 5-minute experiment log of each trial was converted into three input matrices:

x, with a dimension of (300,1), consists of the average trust level during each second; u, with

a dimension of (300,3), consists of the count number of three types of user input; z, with a

dimension of (300,3), consists of the changing directions of swarm physical parameters and

overall performance.

5.2 MODEL TRAINING

To train the personalized model for each participant in each LOA, the data of first two trials

was used as training data, and the model was validated with the data of the last trial. A

modified grid search was used to learn the parameters B,C,and τ . For each simulation, a

combination of parameters was given and the root mean square error of model prediction

on the training data set was reported. The searching algorithm compares all possibilities

of parameters within the given search space and store the combination with least RMSE.

The learning results of two trials were combined by computing the arithmetic mean of each

parameter. In addition, the mean value of reported trust level in the first two trials was

calculated to be used as the a priori knowledge about each participants’ preference.

5.3 COMPARISON WITH EXISTING MODEL

In this section, we evaluate our Kalman filter model on the experimental data of 20 partici-

pants in three different LOAs. The inverse reinforcement learning model [20] and dynamic

Bayesian network model [38] were chosen as the baseline, to compare our model with state

of the art principles. The model implementation was conducted on a system with an AMD

Ryzen 1600X 3.80 Ghz chip with 16G RAM and Python 3.7. Fig. 10 shows three instances
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of the predicted result on the test data set. Each graph shows the predicted result of one

participant and the x and y axis represent the time step and the trust level, respectively. The

blue line represents model prediction outputs, while the green line shows user trust feedback

values. The average root mean square error between the predicted values and user feedback

values are reported in Table 1. The mean RMSE of Kalman Filter model in MI, Manual

and Auto LOAs are 0.107, 0.101,0.116, respectively. Because our human experiment has the

exactly same setting as in [20], the performance metrics (RMSE) can be directly compared

to one another. Based on the model prediction performance data reported in [20], the RMSE

of our Kalman filter model is significantly lower than that of the IRL and DBN models in

all three LOAs (ps < 0.001).

Table 1: The result of trust predictions (RMSE). The Kalman filter model is compared

with the IRL model proposed in [20] and DBN model in [38]). Fig. 10 shows the example

prediction results in graphs of three individual participants.

Model MI Manual Auto

Kalman Filter 0.107(0.047) 0.101(0.075) 0.116(0.059)

IRL 0.148(0.075) 0.159(0.108) 0.174(0.071)

DBN 0.233 (0.107) 0.264 (0.132) 0.245 (0.083)

5.4 DISCUSSION

When evaluating the data, our Kalman filter model had a better performance, as compared

to existing methods such as IRL and DBN models. There are several reasons for the im-

provement of trust prediction.

Our model is the first to consider human perception time lag in trust prediction. The

trained models are shown to have a time delay of around 10 seconds, which indicates a huge

gap between a user issuing commands and finally perceiving any feedback. The time delay
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Figure 10: Example predicted results on the test data set. Each graph shows the prediction

result of one participant and the x and y axis represent the time step and the trust level,

respectively. The blue line represent model prediction while green is user trust feedback

values.

is caused by both the non-linear dynamics of swarm systems and the characteristics of the

evolution of human trust levels. Since the trust we are tracking is a user-reported value, it

may take time for the internal trust increment to accumulate to exceed a certain threshold

that triggers a trust report.

The IRL model reduces the state space of MDP by encoding the swarm physical param-

eters into several categories. In the best-performing model (model 2) in [20], only two states

of heading variance and five states of convex hull area were considered. The reduced state

space may oversimplify the problem and miss important information in the dynamic features

of swarm parameters. On the other hand, the assumption of MDP is that the decision at a

given time is based on both the current and next transition states. This mechanism decreases

the ability of the IRL method to track the long-term temporal sequences of events that occur

during the interaction; for example, the accumulation of evidence in trust evolution. In the

Kalman filter, user intervention, control switches, and a swarm’s physical parameters are

included in the model, which provides a relatively larger state space. The iterative features

of the Kalman filter enables us to better track the features of a time-series event log.

The reason for the DBN model’s poor performance can be explained by different exper-

imental designs and data frameworks. The DBN model in [38] uses both the absolute and

relative trust feedback as the input. However, our data does not have relative feedback,
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so the DBN model cannot use this important piece of information. Also, we did not allow

the DBN model to use absolute trust feedback in testing for a fair comparison, because the

other two models directly predict those values. Last, the occurrence of interventions, which

is important evidence of trust in the DBN model, is less frequent in our swarm experiments

when compared with Xu’s experimental setting.

The Kalman Filter model does not show significantly different performance between

LOAs. Three LOAs have different input channels that user interventions are not valid in

the autonomous LOA and control switches are only valid in the mixed initiative LOA. Thus,

the only shared channel across three LOAs is the physical parameters of swarm. The above

fact leads to a conclusion that the swarms’ appearance is the most influential factor towards

human trust, which aligns with our previous findings [20].
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6.0 CONCLUSIONS

This work has developed a novel method of modeling human trust in a swarm control task

where humans are not readily able to perceive swarm states and overall task performance.

The proposed implementation method is based on a modified theoretical trust model, in

which the trust evolution process is framed as ”trust-action-verify.” In this model, the human

operator will first make an open-loop anticipation about the change in their trust state based

on the intervention action that has been made, then wait until they receive the displayed

feedback from the system to verify the initial anticipation. Thus, a trust update consists

of both an open-loop trust anticipation and a closed-loop trust feedback. A Kalman filter

is used to implement this process, which considers the trust anticipation as process update

equations and the perceived system feedback as the measurement update equations with a

time delay. A personalized model was created for individual operators to reveal different

preferences and previous experience.

In summary, the proposed model is novel in the following aspects: 1) This Kalman

estimator is the first to model the complete trust evolution process with both closed-loop

feedback and open-loop trust anticipation. 2) The proposed model analyzes time-series data

to reveal the influence of events that occur during the course of an interaction; namely, a users

intervention and report of levels of trust. 3) The proposed model considers the operators

cognitive time lag between perceiving and processing the system display. 4) The proposed

model uses the Kalman filter structure to fuse information from different sources to estimate

a human operators mental states. 5) The proposed model provides a personalized model for

each individual.

There are also several limitations in the current work, which can be addressed in future

studies. The Kalman filter assumes that there is a linear relationship between control in-
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put, measurement, and human trust; but when considering the limited knowledge in such

processes, more work needs to be done to provide a convincing basis for this method. An

extended Kalman filter may need to be employed to represent a non-linear relationship.

The parameter searching is merely a random grid search without gradient leaning; there-

fore, the search result is not guaranteed to be optimal, even within the searching range. To

address this issue, advanced learning techniques may be employed to reach a better fit.

A Kalman filter is directly used to predict the user’s reported trust level. However, the

reported trust level is only a measurement of the internal human trust state. As a result, it

may take time for trust state increments to accumulate until it exceeds a certain threshold

that triggers the trust report. A more reasonable way to construct the model should enable

it to track a latent state of human trust and to consider the influence of external factors

(e.g. user intervention) and the observation method (e.g. trust report).

As for future research directions, multiple options are available based on the findings and

model structure proposed in this work.

First, with this online computational trust model, human trust levels can be predicted

given the system states and user inputs. We envision the implementation of an adaptive

robotic system that is capable of sensing human trust levels and adapting to the human

accordingly. For example, when the system detects a drop in human trust levels, it may

increase the system’s transparency by providing explanations of its own behaviors, or hand

over control to the operator if necessary. Real-time detection of human cognitive states is

the foundation of such adaptive systems that can optimize joint performance across dynamic

scenarios. On the other hand, the adaptive behavior of a swarm could help human operators

to calibrate their trust to an appropriate level. For example, when the operator shows an

unrealistic expectation for existing levels of automation, the system may alert the human

operator to be prepared for automation failures and control takeovers.

Second, besides trust, inferring intent is another promising direction in building adaptive

systems. The command classifier used in this thesis is a simplified method to distinguish

users’ intent from intervention and nonintervention (e.g. redirection). More work is needed to

consider other metrics during the interaction (e.g. physiological measurements) to identify

human intent. Human intent modeling is especially important in human-agent teaming
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scenarios. Robots could have an optimized schedule that considers the changing intents of

human during the collaboration.

Third, we found in our experiment that human trust was more influenced by swarm’s

physical parameters (appearance) than by the number of targets found (performance) Those

findings could be attributed to the unintelligibility of swarm behaviors, due to the unique

physical characteristics of swarms and the complex interactions that occur among robots.

Previous research in human-robot interaction has shown that transparency can lead to an

improved calibration of trust levels [36, 28]. Thus, a better design for the interfaces of

human-swarm interaction is needed to to better communicate the system state and smooth

the control input.

Finally, the trained models are shown to have a huge time delay ( 10 seconds) between

a user issuing commands and finally perceiving the feedback. The composition of this delay

is quite complicated and requires further research. For example, the delay contains both

the time that the swarm team needs to respond to the user’s input and the time that

humans need to perceive the changing of swarm states. Since swarm robots have special

control laws and communication constraints, their response time is relatively long, and the

unique physical characteristics of swarms make their behaviors and states less intelligible to

human operators, as compared to single-robot systems. As a result, operators need more

time to perceive and process the displayed information from swarms. Finally, the trust we

are tracking is a user-reported value of trust, which is a measurement of the internal trust

state. It may take time for the trust state increment to accumulate to a level high enough to

exceed a certain threshold that triggers the trust report. It would be interesting to conduct

an in-depth investigation of this whole process in-depth and separate those compositions.
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