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ABSTRACT 

The multiple indicator cluster survey (MICS) is a household survey tool designed to obtain 

internationally comparable, statistically rigorous data of standardized indicators related to the 

health situation of children and women. Missing data in a large number of categorical variables 

are a serious concern for MICS, following complex dependency structures and inconsistency 

problems that impose severe challenges to the investigators. Despite the popularity of multiple 

imputation of missing data, its acceptance and application still lag in large-scale studies with 

complicated data sets such as MICS. We propose interdependent hybrid multiple imputation 

(HMI) techniques which combines features of existing MI approaches to handle complex 

missing data in large scale household surveys. The iterative HMI approach is observed to be a 

good competitor to the existing approaches, with often smaller root mean square errors, 

empirical standard errors and standard errors. Regardless of any combination, the iterative HMI 

method is markedly superior to the existing MI methods in terms of computational efficiency. 

Results from household data example support the capacity of proposed method to handle 

complex missing data. 

Keywords: word; Survey data; hybrid multiple imputation; household data; complex;MICS 
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1. Introduction 

Key indicators or background variables related to the health situation of children and women are 

measured in complex household surveys e.g. multiple indicator cluster survey (MICS). These 

indicators enable countries to produce data that can further be used in policies and programs. 

Datasets of such surveys have mixed type variables that are both multilevel categorical and 

continuous variables. However, missing data in a large number of variables are a serious concern 

for household surveys, following complex dependency structures and inconsistency problems 

that impose severe challenges to the investigators.  For example the MICS 2014 house hold data 

file that we analyze, 26819 only out of 41413 observations have complete data on a set of more 

than 200 background variables. Respondent’s may refuse to provide a requested piece of 

information based on various reasons, such as unwillingness, lack of  capability to answer, 

reservation on  sensitivity of question, confidentiality and privacy etc. This results in the failure 

to collect complete information. Generally, this non-response behavior is referred to as item non-

response (INR). Most typically, high rate of INR occurs for simple demographic variables such 

as age, sex or marital status however, questions related to income or wealth are often related to 

high rate of INR (e.g. Riphahn and Serfling 2005; Hawkes and Plewis 2006).  Beside INR 

general reasons for the missing datasets include data entry errors, system failures etc.  

Analysis of data for scientific investigations becomes complicated, biased and less 

efficient in presence of missing information. In recent decades, lots of effort has been made in 

development of statistical methods to carter missing data. Missing data can be handled by 

“Multiple Imputation” (MI).   MI, first introduced by Rubin (1987), is widely regarded as the 

“gold standard” approach to handle missing data problem, with many documented advantages 

over complete case analyses. Multiple random values for the missing data under a statistical 
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model can be generated to estimate the values multiple times using MI. This results in M >1 

multiple complete datasets.  MI combines the results which account extra variability caused by 

the missing data. The complete datasets can be analyzed by using standard statistical procedures 

or so called “Rubin’s inference”. Multivariate normal model, the log linear model, or the general 

location model (Schafer 1997) are examples of MI.  Despite the popularity of MI, its acceptance 

and application still lag in large-scale studies with complicated data sets such as MICS data. 

Hence, MI is restricted in one or the other way and not dedicated to the complex household 

survey data. 

The paper is organized as follows: First, we provide a description of notations and 

assumptions of missing mechanisms then briefly describing some fundamentals of missing data 

and MI. In Section 3 we describe hybrid architectures in detail. In Section 4 we present the 

simulations studies, the methods used in the analyses and relevant results to evaluate our 

proposed approach.  Section 5 presents the imputation of the household data. We conclude with a 

discussion in Section 6. 

2. Fundamentals of Missing Data and Multiple Imputation (MI) 

2.1. Notations and Assumptions of Missing Mechanisms 

In general, there are three types of missingness generating mechanisms. Missing categories can 

be classified into: (i) missing completely at random (MCAR), (ii) missing at random (MAR), (iii) 

missing not at random (MNAR) (Little and Rubin 2002).  Let 𝑌 be the data with n × p 

dimensions. Assume,  𝑦𝑖𝑗 refers to the ith value of variable j from  𝑌 where i=1,…, n and j=1,…, 

p. Suppose, there are two components of the data set 𝑌 = {𝑌𝑚𝑖𝑠𝑠 ,𝑌𝑜𝑏𝑠} where, the first 

component denotes the observed part of the data and the second component is the missing data.  
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Let 𝐻 be a response indictor matrix with same dimensions as 𝑌 indicating, if an element of 𝑌 is 

missing.  

𝐻𝑖𝑗 = �
0  𝑖𝑓 𝑦𝑖𝑗 𝑖𝑠  𝑚𝑖𝑠𝑠𝑖𝑛𝑔

1  𝑖𝑓 𝑦𝑖𝑗 𝑖𝑠  𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 

Missing Completely At Random (MCAR):  𝑃𝑟�𝐻ǀ𝑌𝑚𝑖𝑠𝑠 ,𝑌𝑜𝑏𝑠� =  𝑃𝑟(𝐻).  

Missing At Random (MAR):  𝑃𝑟�𝐻ǀ𝑌𝑚𝑖𝑠𝑠 ,𝑌𝑜𝑏𝑠� =  𝑃𝑟(𝐻ǀ𝑌𝑜𝑏𝑠).  

Missing Not At Random (MNAR): �𝐻ǀ𝑌𝑚𝑖𝑠𝑠,𝑌𝑜𝑏𝑠� ≠ 𝑃𝑟(𝐻ǀ𝑌𝑜𝑏𝑠). 

The third assumption is also called non-ignorable (NI) (Little and Rubin 2002) and not further 

used in the paper.  

2.2. Rubin’s inference 

In general any measure of interest Q (e.g. parameter estimates 𝜃�) is assessed by the average 

 𝑄𝑀= 1
𝑀

  ∑   𝑄𝑚�𝑀
𝑚=1                                      (1) 

using 𝑀 estimates   𝑄𝑚�   derived from the imputed complete data sets. The total variability of the 

estimate is given by 

 𝑇𝑀 =  �1 + 1
𝑀
�𝐵𝑀 + 𝑊𝑀                (2) 

where 

                       𝑊𝑀 = 1
𝑀

 ∑   𝑊𝑚�𝑀
𝑚=1  (3) 

and                   
                                                𝐵𝑀= 1

𝑀−1
  ∑ � 𝑄𝑚� −  𝑄𝑀�

2𝑀
𝑚=1         (4) 
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 are the averages of the within-imputation variances   𝑊𝑚� and the between-imputation variance, 

respectively. 

2.3. Literature Review of Existing Studies in Large-Scale Complex Surveys 

There are two general approaches for MI. Fully conditional specification (FCS; also 

known as sequential regression and MI using chained equations (MICE)) and MI based on the 

joint posterior distribution of incomplete variables, often referred to as joint modelling (JM) 

(Raghunathan et al. 2001; van Buuren 2007; Schafer 1997; van Buuren et al. 2006). 

FCS is an iterative process which cycles through incomplete variables one at a time and 

imputes data on a variable-by-variable basis. A conditionally specified imputation model known 

as MICE, visits sequentially each incomplete variable and draws alternately the imputation 

parameters and the imputed values. FCS MI approach imputes variables one at a time from a 

series of univariate conditional distributions (van Buuren et al. 2006). FCS approach requires 

existence of joint distribution for convergence, which is a major downside of this approach. It is 

possible to get the joint distribution under rather general conditions (Liu et al. 2014; Zhu and 

Raghunathan 2015). However, correct specification of conditional distributions can guarantee 

consistency of inferences based on the imputed data even in the absence joint distribution. In 

MICE missing values can be present in many variables and user can specifies regression methods 

according to the types of variables. For example classification and regression tree (CART) 

(Burgette and Reiter 2010) for categorical variables and predictive mean matching (PMM) 

(Rubin and Schenker 1986) which is the default imputation technique for continuous data. CART 

is a nonparametric method. CART uses splitting algorithms to divide the values of a variable into 

homogeneous subgroups. On the other hand, PMM approach uses predicted value obtained by a 
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linear regression model to impute an observed value.  The predicted value is among the values of 

donor pool which are closest to the value predicted for the missing one. Software packages 

implementing MICE includes “mice” (van Buuren and Groothuis-Oudshoorn 2011; van Buuren 

2012),  “mi” in R (Su et al. 2011) and  “IVEware” in SAS (Raghunathan et al. 2002). Despite of 

many advantages, MICE has few downsides for example, MICE mostly use parametric models. 

Those models are hard to implement due to lack of compatibility and complex dependencies 

among variables. Moreover, implementation is difficult due to higher order interactions effects or 

many nonlinear relations in regression model (see Burgette and Reiter (2010)). Implementation 

of MICE becomes very time consuming in presence of large number of categorical variables. 

PMM can be problematic, when sample size is large (van Buuren 2011) and CART can subject 

to odd behaviors in high dimensions. Another limitation of CART is that the corresponding joint 

distribution based on conditional models might not exist (Si and Reiter 2013). Moreover, 

variables with many levels are preferred to variables with few levels in CART, e.g. Breiman et 

al. (1984) and Kim and Loh (2001). 

Joint modeling (JM) draws missing values simultaneously for all incomplete variables 

using a multivariate distribution (Schafer 1997). Draws from fitted distribution are used to create 

imputations. Dirichlet Process Mixture of Products of Multinomial Distributions Model 

(DPMPM) provides a fully Bayesian, non-parametric JM approach to MI for high dimensional 

categorical data (Manrique-Vallier and Reiter 2015; Si and Reiter 2013).  Dunson and Xing 

(2009) proposed DPMPM for the first time. This approach uses nonparametric Bayesian versions 

of latent class models to multiply impute high-dimensional categorical data (Vermunt et al. 

2008). The DPMPM imputation routines are implemented in the R software package, 

“NPBayesImputeCat” (Quanli et al. 2018). Softwares “Realcom-impute” (Carpenter and 
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Kenward 2011), R package “pan” (Schafer and Zhao 2014), R package “jomo” (Quartagno and 

Carpenter 2015) implement JM approach. 

Like many complex models, the effectiveness of DPMPM still lags in capturing the many 

features of empirical data. It is not possible to implement JM approach in the multilevel context 

if missingness also occurs in the random slope variable(s) (Carpenter and Kenward 2011). 

Modeling mixed type variables can make the specification of a joint distribution very difficult.  

MI approaches described above are available in standard computer packages (SAS, Stata and R). 

See Horton and Kleinman (2007) for an overview of available MI procedures and packages. FCS 

and JM MI approaches were originally proposed for dealing with item nonresponse in cross-

sectional data sets. Despite of being commonly available in existing softwares, these methods are 

hard to implement in large scale data sets with many categorical variables and many levels.  

In large-scale complex surveys many types of variables with special data situations have 

to be handled. To do so, several methods have been proposed in the literature over recent years. 

For example Audigier et al. (2018) deal with quantitative variables. Manrique-Vallier and Reiter 

(2014, 2015), Audigier et al. (2017) among many deal for qualitative and Audigier et al. (2016) 

and Murray and Reiter (2016) deal for mixed data.  Methods for qualitative and mixed data tend 

to perform well particularly for small number of observations and dataset having multilevel 

categorical variables. Moreover, these methods often require less execution time. However, some 

of these approaches require knowledge of complicated models and other need transformations 

(or other tricks) for continuous variables or assume missing values in few variables. Categorizing 

of continuous variables can subject to considerable loss of information (van Buuren and 

Groothuis-Oudshoorn 2011). Husson et al. (2019) have proposed a MI method based on 

multilevel singular value decomposition (SVD) for quantitative, categorical, or mixed data. This 
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method performs SVD on between and within groups variability of the data. Downside of this 

method is that it does not take into account the uncertainty associated with predicting missing 

values from observed values. Goßmann (2016) proposed the application of CART in 

combination with multiple imputation and data augmentation for large-scale survey. Mislevy 

(1991) presented the idea to combine multiple imputation with latent variables that were used to 

estimate population characteristics when individual values were missing in complex surveys. A 

Bayesian approach for flexible handling of missing values is proposed by Aßmann et al. (2016) 

which handles continuous and categorically scaled background variables in large-scale surveys. 

Stekhoven and Bühlmann (2012) have presented a machine learning technique based on non-

parametric models called random forest models to impute ordinal missing data. It has many 

desirable properties such that can be applied to a variety of categorical data, a mix of categorical 

and continuous data. It does not require any specific distributional assumption. It can handle 

nonlinear relationships among variables (Doove et al. 2014; Shah et al. 2014). Random forest 

approach to MI is implemented in R packages “mice” (van Buuren and Groothuis-Oudshoorn 

2011; van Buuren 2012) and “missForest” (Doove et al. 2014; Stekhoven and Bühlmann 2012). 

Shah et al. (2014) found that random forest-based MICE tends to perform better than parametric 

MICE on survival data. Hybrid MI based on dependence models (Razzak and Heumann 2019) is 

another approach to impute complex household survey data. The dependence models impute 

continuous covariates using FCS MI given the categorical covariates already imputed using JM 

MI.  The Hybrid MI based on dependence models not only yields better predictive performance 

of generalized linear models (GLMs) (Nelder and Wedderburn 1972) for binary response 

(Razzak and Heumann 2019) but are also observed to be a good competitor to the existing 

approaches, with often smaller root mean square errors and less computational cost. However, 
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hybrid dependence models do not use the information of continuous covariates for imputing 

categorical covariates. In this article, we extend the hybrid imputation approach based on 

dependence models by categorizing continuous variables. We propose two iterative hybrid 

imputation approaches for mixed data in complex household surveys where missing values in 

continuous covariates are imputed by using the information of already imputed categorical 

variables and continuous variables are categorized to impute categorical variables. We review 

inference in GLMs with binary response and mixed type missing covariates in large scale survey 

for a proposed and existing methods. 

3. Proposed Hybrid Architectures 

Consider the motivational question in section one. Performance of JM and FCS approaches to 

obtain complete information on mixed type covariates in large scale surveys are limited and 

subject to specific tasks. Moreover, these approaches are generally not equipped to handle a wide 

range of complexities in large scale data, categorical variables, and different heretical relations. 

We propose that various features of JM and FCS methods can be combined to obtain complete 

data with the limitations discussed above. To do so, we propose two easy and simple to 

implement variants of hybrid architecture that use the idea of categorizing continuous data. In 

first variant of hybrid architecture, we use the concept of categorizing continuous variables 

before the imputation of categorical data. Second variant uses initial imputed values. These 

values are obtained by categorization of continuous data before the imputation of categorical 

data. Unlike existing approaches, where categorization results in loss of power, proposed 

approaches restore the continuous variables in their original form. These variants are 

computational fast and can be applied to both categorical and continuous data in high 

dimensions.  
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3.1. Proposed Hybrid Architecture 1 

 

The first variant of proposed hybrid architecture generates a complete data set in three steps.  

Incomplete data is divided in to two sub groups (i.e. one containing incomplete continuous data 

(Missnum) and other having incomplete categorical data (Misscat)). Step 1: variables in Missnum are 

categorized Missnum.cat. Step 2: JM technique is applied on Misscat  given additional covariates 

Missnum.cat   to generate complete categorical data. Complete categorical data generated in this 

step contains complete categorical variables Impcat and complete categorized variables  

Impnum.cat.. In first step, categorization allows the information on continuations variables to 

impute categorical variables. Step3:  FCS technique is applied to impute missing values in  

original continuous variables Missnum given additional categorical variables Impcat. Step 3, allows 

the information on categorical variables to impute continuous variables. Steps 1 to 3 are repeated 

M times to generate multiple copies of complete data sets. Inference (e.g. mean, regression) can 

be run on each of the newly created, imputed datasets. Finally, estimates can be combined by 

using ‘Rubins rules’. Algorithm 1 explains the proposed method in detail. Schematic diagram 

illustrating the proposed hybrid architecture 1can be seen in supplementary file (see Figure S1). 

Algorithm 1:  Iterative Hybrid MI 1 
Require: P nxp matrix with incomplete data 
           Misscat , Missnum ← Division of p variables into  factor and continuous subsets.  

 for z= 1, …,Z do 
                  for m= 1, …,M do  
 𝐼𝑚𝑝𝑛𝑢𝑚_𝑐𝑎𝑡𝑚

𝑧    ← Categorizing Missnum.        

               𝐼𝑚𝑝𝑐𝑎𝑡𝑚
𝑧    ←  imputation  using  JM approach for  Miss.cat⃒𝐼𝑚𝑝𝑛𝑢𝑚_𝑐𝑎𝑡𝑚

𝑧 . 

              𝐼𝑚𝑝𝑛𝑢𝑚𝑚
𝑧    ←  imputation  using  FCS approach for  Miss.num⃒  𝐼𝑚𝑝𝑐𝑎𝑡𝑚

𝑧 . 
                      end for 

                  end for 
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3.2. Proposed Hybrid Architecture 2 

 

The second variant of proposed hybrid architecture is a two steps approach. Step 1: (a) Initialize 

values for categorical variables (𝐼𝑚𝑝𝑐𝑎𝑡_𝑖 ) by applying JM approach to Misscat. (b) Given the 

initial values for categorical variables, single iteration of the FCS algorithm is run to Missnum for 

initialization of values for continuous variables 𝐼𝑚𝑝𝑛𝑢𝑚_𝑖. Information on categorical variables is 

used for the generation of 𝐼𝑚𝑝𝑛𝑢𝑚_𝑖 whereas, no information available on continuous variables is 

used in generation of 𝐼𝑚𝑝𝑐𝑎𝑡_𝑖. (c) Initial values for continuous variables  𝐼𝑚𝑝𝑛𝑢𝑚_𝑖 are 

categorized 𝐼𝑚𝑝𝑛𝑢𝑚.𝑐𝑎𝑡_𝑖 to allow usage of information available on continuous variables for 

imputing categorical variables. Step 2: (a) Given the initial categorized variables (𝐼𝑚𝑝𝑛𝑢𝑚.𝑐𝑎𝑡_𝑖) 

as additional covariates, complete categorical variables with updated values (𝐼𝑚𝑝𝑐𝑎𝑡 ) are  

Algorithm 2:  Iterative Hybrid MI 2  
Require: P nxp matrix with incomplete data 

       0.     Misscat , Missnum ← Division of p variables into  factor and continuous subsets.  
1. Initialization 

(a) Initialize missing values for categorical variables:𝐼𝑚𝑝𝑐𝑎𝑡_𝑖← single imputation 
using  JM approach for Miss.cat. 
(b) Initialize missing values for continuous variables:𝐼𝑚𝑝𝑛𝑢𝑚_𝑖← single imputation 

using  FCS approach for Missnum⃒𝐼𝑚𝑝𝑐𝑎𝑡_𝑖. 
(c) Initialize categorized values for continuous variables:𝐼𝑚𝑝𝑛𝑢𝑚_𝑐𝑎𝑡𝑖

𝑧  ← Categorizing 
𝐼𝑚𝑝𝑛𝑢𝑚_𝑖 
          for z= 1, …,Z do 
                  for m= 1, …,M do  

2. Update imputed values 

(a)  𝐼𝑚𝑝𝑐𝑎𝑡𝑚
𝑧    ←  imputation  using  JM approach for  Miss.cat⃒𝐼𝑚𝑝𝑛𝑢𝑚_𝑐𝑎𝑡_𝑖. 

(b)  𝐼𝑚𝑝𝑛𝑢𝑚𝑚
𝑧    ←  imputation  using  FCS approach for  Miss.num⃒  𝐼𝑚𝑝𝑐𝑎𝑡𝑚

𝑧 . 
(c)  𝐼𝑚𝑝𝑛𝑢𝑚_𝑐𝑎𝑡𝑚

𝑧    ← Categorizing   𝐼𝑚𝑝𝑛𝑢𝑚𝑚
𝑧 . 

                      end for 
                  end for 
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generated by applying JM approach to Misscat. (b) Given updated values of additional covariates 

𝐼𝑚𝑝𝑐𝑎𝑡, complete continuous variables (𝐼𝑚𝑝𝑛𝑢𝑚) with updated values  are generated by applying 

single iteration of  FCS  approach to Missnum. (c) Updated values of complete continuous 

variables are categorized (𝐼𝑚𝑝𝑛𝑢𝑚.𝑐𝑎𝑡). Steps 2(a-c) are repeated M times with new updated  

values of 𝐼𝑚𝑝𝑐𝑎𝑡, 𝐼𝑚𝑝𝑛𝑢𝑚 and 𝐼𝑚𝑝𝑛𝑢𝑚.𝑐𝑎𝑡 to obtain M complete data sets. Algorithm 2 explains 

the proposed method in detail. Schematic diagram illustrating the proposed hybrid architecture 2 

is provided in supplementary file (see Figure S2). 

 

4. A Simulation study 

To investigate the performance of hybrid architectures via simulation, somewhat large numbers 

(X=39) of mixed type variables are generated. To generate first thirty one binary (Xb) variables a 

multivariate normal (MVN) distribution is used and correlated random covariates Ci 

compromising 1000 observations are generated. The marginal distributions are: Ci ~ N (0, 0.5), 

where i={1,…,31}.The correlation structure is given as:   

                                          R = �
1 ⋯ 𝜌
⋮ ⋱ ⋮
𝜌 ⋯ 1

�. 

Where 𝜌 = 0.5. Random covariates (Ci) are transformed into binary values (Xb) using the 

following threshold: 

𝑋𝑏𝑖 =  � 0   𝑖𝑓    𝐶𝑖  ≤ 0 ,   
     1    𝑖𝑓     𝐶𝑖  > 0 .         

Where i={1,…,31}.  
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In order to generate outcomes for the two multilevel categorical covariates i.e. (𝑋𝑚1 and 𝑋𝑚2 ), 

we first generate two random covariates from normal distributions (ND) given 

as:   𝐶32  ~ 𝑁 (𝜇1;√2),   𝐶33 ~ 𝑁 �𝜇2;√2�, where 𝜇1 and 𝜇2 are described as: 

𝜇1  =  0.1 + 0.1 �𝑋𝑏𝑖 

31

𝑖=1

+ 0.1𝑋𝑏2 𝑋𝑏3 + 0.1𝑋𝑏5 𝑋𝑏8 + 0.1𝑋𝑏2 𝑋𝑏29                                            (5)   

𝜇2 = 0.1 + 1.1 �𝑋𝑏𝑖 + 0.1 � 𝑋𝑏𝑖 +
31

𝑖=20

19

𝑖=1

0.1𝐶32 + 0.1𝑋𝑏2 𝑋𝑏3 + 0.1𝑋𝑏5 𝑋𝑏8 + 1.1𝑋𝑏2 𝑋𝑏29 . (6)  

..                                                                                                                                                                                                                                                                                                                                                                                                                                  

Further, all observations in 𝐶31and 𝐶32 are randomly split into various homogeneous groups and 

two multilevel categorical variables 𝑋𝑚1 and 𝑋𝑚2  are formed with four and six categories 

respectively. To encode complex dependence relationships with higher order interactions, we 

generate another binary covariate 𝑋𝑏32  from Bernoulli distribution with probabilities governed by 

the logistic regression with  

𝑙𝑜𝑔𝑖𝑡 𝑃𝑟 (𝑋𝑏32) = 0.001 −  0.01𝑋𝑏1 −  0.09𝑋𝑏2 − 0.09𝑋𝑏3 − 0.09𝑋𝑏4 + 0.05𝑋𝑏5 +
0.08𝑋𝑏6 −  0.02 𝑋𝑏7 + 0.08 𝑋𝑏8  + 0.01𝑋𝑏9 +  0.01 𝑋𝑏10 − 0.02 𝑋𝑏11 + 0.01𝑋𝑏𝑖12 −  𝑋𝑏13  +
0.02𝑋𝑏14 − 0.01𝑋𝑏15 +  0.02 𝑋𝑏16 − 0.03𝑋𝑏17 − 0.02𝑋𝑏18 −  0.07𝑋𝑏19 + 0.08𝑋𝑏20 +
0.08𝑋𝑏21 + 0.01𝑋𝑏22 + 0.09𝑋𝑏23 + 0.09𝑋𝑏24  +  0.05𝑋𝑏25 + 0.08𝑋𝑏26 − 0.02𝑋𝑏27  +
0.08𝑋𝑏28 + 0.08𝑋𝑏29 − 0.01𝑋𝑏30 + 0.09 𝑋𝑏31 + 0.02 𝐶32 + 0.02𝐶33 +  0.02 𝑋𝑏12 𝑋𝑏29 −
0.02𝑋𝑏15𝑋𝑏18 𝑋𝑏29 .                                                                                                                            (7)       
We then generate outcomes for the two continuous covariates i.e. 𝑋𝑛1  and 𝑋𝑛2   from normal 
distributions (ND).  Description is as follows 

𝑋𝑛1  ~ N (𝜇3;√0.5). 

Where,  𝜇3 =  0.002 +  0.5𝑋𝑏1 −  0.15𝑋𝑏2 + 0.25 𝑋𝑏3 − 0.6 𝑋𝑏4 − 0.88𝑋𝑏5 + 0.11 𝑋𝑏6 +
0.2𝑋𝑏7 − 0.5𝑋𝑏8 + 0.1𝑋𝑏9 − 0.2𝑋𝑏10 + 0.3𝑋𝑏11 + 5𝑋𝑏12 − 0.2𝑋𝑏13 + 0.3𝑋𝑏14  + 0.4𝑋𝑏15  +
0.1𝑋𝑏16  + 0.1𝑋𝑏17 − 0.1𝑋𝑏18 − 0.1𝑋𝑏19 − 0.10𝑋𝑏20  − 0.1𝑋𝑏21 − 0.1𝑋𝑏22 − 0.2𝑋𝑏23 −
0.1𝑋𝑏24 + 𝑋𝑏25 + 𝑋𝑏26 + 0.1𝑋𝑏27 + 0.1𝑋𝑏28  + 0.1𝑋𝑏29 + 0.1𝑋𝑏30 + 0.1𝑋𝑏31 + 0.2𝐶32 −
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0.1 𝐶33 + 0.5 𝑋𝑏32 + 0.2𝑋𝑏11 𝑋𝑏12 𝑋𝑏13 − 0.2 𝑋𝑏15𝑋𝑏18 + 0.2𝑋𝑏12  𝑋𝑏29 .                                    (8)                                                 
                                                                                                                                                                                          
                                                    𝑋𝑛2   ~ N (𝜇4;√0.5).               
                                                
Where, 𝜇4 =  3 − 0.5𝑋𝑏1 − 0.2𝑋𝑏2 + 0.05𝑋𝑏3  − 0.6𝑋𝑏4 − 0.08𝑋𝑏5 + 0.01𝑋𝑏6 + 0.2𝑋𝑏7 +
0.2𝑋𝑏8 + 0.1𝑋𝑏9 − 0.1𝑋𝑏10 + 0.2𝑋𝑏11  + 0.5𝑋𝑏12 − 0.2𝑋𝑏13 + 0.3𝑋𝑏14 + 0.4𝑋𝑏15 + 0.1𝑋𝑏16 +
0.1𝑋𝑏17 − 0.1𝑋𝑏18 − 0.1𝑋𝑏19 − 0.1𝑋𝑏20 − 0.1𝑋𝑏21 − 0.1𝑋𝑏22 − 0.2𝑋𝑏23 − 0.1𝑋𝑏24 +
0.1𝑋𝑏25 + 0.1𝑋𝑏26 + 0.1𝑋𝑏27 +  0.1𝑋𝑏28 + +0.1𝑋𝑏29 + 0.1𝑋𝑏30 + 0.1𝑋𝑏31 + 0.2𝐶32 −
0.1 𝐶33 + 0.5 𝑋𝑏32 + 0.2𝑋𝑏11 𝑋𝑏12 𝑋𝑏13 − 0.2 𝑋𝑏15𝑋𝑏18 + 0.2𝑋𝑏12  𝑋𝑏29+  𝑋𝑛1 .       (9)     
                                                                           
Both continuous covariates are highly positively correlated i.e. 𝑟 = 0.9. 

Covariate dependent binary response 𝑦 is generated from Bernoulli distributions with 

probabilities governed by the logistic regression with  

𝑙𝑜𝑔𝑖𝑡𝑃𝑟(𝑦) = -3 − 3𝑋𝑏1 + 3𝑋𝑏2 + 3𝑋𝑏3  + 3𝑋𝑏4 − 3𝑋𝑏5 + 3𝑋𝑏6 − 3𝑋𝑏7 + 3𝑋𝑏8 + 3𝑋𝑏9 +
3𝑋𝑏10 + 2𝑋𝑏11  + 3𝑋𝑏12 − 2𝑋𝑏13 + 3𝑋𝑏14 + 3𝑋𝑏15 + 3𝑋𝑏16 − 4𝑋𝑏17 − 0.3𝑋𝑏18 − 0.3𝑋𝑏19 −
0.3𝑋𝑏20 − 0.3𝑋𝑏21 − 3𝑋𝑏22 − 3𝑋𝑏23 − 3𝑋𝑏24 − 3𝑋𝑏25 − 3𝑋𝑏26 − 3𝑋𝑏27 − 3𝑋𝑏28 − 3𝑋𝑏29 +
3𝑋𝑏30 + 3𝑋𝑏31 + 3𝑋𝑚1_2 + 3𝑋𝑚1_3 + 1𝑋𝑚1_4 + 1𝑋𝑚1_5 + 1𝑋𝑚1_6 + 3𝑋𝑚2_2 + 3𝑋𝑚2_3 +
3𝑋𝑚2_4 − 3𝑋𝑏32 + 3𝑋𝑛1 + 3 𝑋𝑛2 − 3𝑋𝑏9 𝑋𝑏15 − 3 𝑋𝑏1𝑋𝑏17 + 3𝑋𝑏13  𝑋𝑏30 .                               (10)   
                                                                                         

Equations 5–10 include high-order interactions to represent the type of complex 

dependence structures. Imputation approaches based on log-linear models or chained equations 

may fail to capture these structures. There is no particular importance of the specific values of 

the coefficients. Nonzero coefficients are specified for higher order interactions for generating 

complex dependencies. The analysis model of interest is the GLMs with link “logit”. The 

observations in all covariates are missing (at random) with the probabilities based on a logistic 

probability distribution model. Probabilities for a random covariate X are given as: 

                                                             𝜋𝑋𝑖=    𝑒(−2−𝑋𝑗)

(1 + 𝑒(−2−𝑋𝑗))
 .                                                (11) 

        
Where i={1,…,39} and j ≠ i. Missingness in 𝑋𝑖 is attributed solely to other observed variable 𝑋𝑗. 

This yields 10% of the observations to be MAR. 
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We use a JM technique called DPMPM MI for categorical variables. DPMPM MI 

technique is selected due its ability to identify complex dependencies structure among 

categorical variables and computational efficient qualities in high dimensions.  We use a FCS 

technique called MICE for continuous variables. MICE is selected due to its popularity and 

applications in wide range of fields.  For comparison, two MICE based MI methods namely 

“MiceCART” (classification and regression trees (CART)) and “MiceDEF” (which uses logistic 

regression models for categorical and “PMM” for continuous variables as default) are used. 

Proposed hybrid architectures are implemented as “H.CART” and “H.DEF”. The mixtures of 

multinomial distributions approach is combined with the MICE algorithms “CART” and 

“Default” in H.CART” and “H.DEF” respectively. Further, we express “H.CART” as 

“H.CART1” and “H.CART2” indicating first and second hybrid architectures based on CART. 

Similarly first and second hybrid architectures based on “default” are expressed as “H.DEF1” and 

“H.DEF2” respectively. JM technique in hybrid architectures is implemented with prior 

specifications 𝑎𝛼= 0.25, 𝑏𝛼 = 0.25, and somewhat large number of mixture components i.e. 

k=80. We used R (R Core Team 2018) version 3.0.1 to perform all calculations. The packages 

“mice” (van Buuren and Groothuis-Oudshoorn 2011), version 2.17 and “NPBayesImputeCat” 

(Quanli et al. 2018), version 0.6 were used to perform MICE for continuous data and Non-

Parametric Bayesian MI for categorical variables, respectively. These blended versions of joint 

and sequential modeling MI techniques make it possible to obtain complete datasets with 

information available on both types of variables. The imputation model contains all of the 

variables from the generated data in order to preserve the relationships between the variables of 

interest (Schafer 1997; Moons et al. 2006; White et al. 2011; van Buuren 2012). The parameters 

of interest are estimated using Rubin’s aforementioned method on Z =1000 simulation runs. Ten 
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imputed data sets for each of the proposed and the MICE MI methods are generated for realistic 

applications (Fichman and Cummings 2003). Table 1 displays the performance of MI methods 

for simulated data. Graphical comparisons of the imputation methods based on boxplots (White 

et al. 2011; van Buuren 2012) of standard errors and point estimates across 1000 simulations for 

regression coefficients  are presented in Figures 1 and 2 respectively.  

 4.1.  Evaluation Criteria 

The quality of MI methods is evaluated based on two error-based measurements i.e. root mean 

square error (RMSE) and empirical standard errors (ESE) (Akande 2017; Armina et al. 2017). 

RMSE is computed as a combination of the bias and variance of the estimate (Burton et.al 2006). 

ESEs can be considered to access the between imputation variations. The smaller values for 

RMSEs and ESEs indicate better performance (Oba et al. 2003).  RMSE and ESE are calculated 

using the following formulas: 

                    Root mean square error (RMSE 𝑞𝑚) =�∑ �𝑞�𝑀
𝑧 − 𝛽 �

2𝑍
𝑧=1

𝑍
,                (12)    

                                                    

      Empirical standard errors (ESE 𝑞𝑚) =�∑ �𝑞�𝑀
𝑧 − 𝑞� �

2𝑍
𝑧=1

𝑍
,                             (13)                                                                           

 
where 𝑞�𝑀𝑧  denote the estimated parameter pooled over M imputed data sets and Z simulation runs 

and β  denote original parameters.  

4.2. Results 

There seem to be similarities in structure among all MI methods i.e. all methods are upward 

biased for binary covariates e.g. 𝑋𝑏1,  whereas, the average point estimates based on default and 

H.DEF methods are closer to the corresponding true values as compared to other methods. 

CART and hybrid methods are slightly downward biased for multilevel covariate with six levels 

e.g. 𝑋𝑚1_5 𝑋𝑏1. The average point estimates for multilevel covariate with six levels based on 
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CART and H.CART methods are closer to the corresponding true values as compared to H.DEF 

methods. All methods are downward biased for the interaction terms e.g. 𝑋𝑏13 𝑋𝑏30 ,  whereas, the 

average point estimates based on default, CART, H.DEF methods and  H.CART2 method are 

closer to the corresponding true values as compared to H.CART1 (Figure  1). Hybrid and CART 

methods tend to have smaller standard errors as compared to default method for all covariates, 

whereas the hybrid methods tend to have similar standard errors as compared to CART for most 

of the cases (Figure 2).  The estimated ESEs for the all hybrid methods are smaller for all types 

of covariates except the binary covariate. H.DEF methods and H.CART2 show similar or slightly 

higher ESEs as compared to default and CART methods for the binary covariate. The estimated 

ESEs for the H.CART1 are smallest for the multilevel covariate with six levels and H.DEF2 has 

smallest ESEs for the interaction terms. All hybrid methods tend to have smaller estimated 

RMSEs for binary covariate where H.DEF2 has smallest RMSEs as compared to all methods.  

The estimated RMSEs for all hybrid methods are slimier to default and CART methods for the 

multilevel covariate with six levels whereas the H.CART1 has the smallest RMSEs among 

others. Similarly for interaction term, all hybrid methods tend to have smaller RMSEs for most 

of the cases where H.DEF2 shows smallest RMSE among the remaining methods (Table 1). The 

estimated ESEs(RMSEs) and averages of point estimates(standard errors) for all coefficients 

under hybrid architecture 1 and 2 are provided in supplementary file (Tables S1-S4). Boxplots 

for point estimates(standard errors) for all coefficients under hybrid architecture 1 and 2 are 

given in supplementary file (Figures S3-S18). 
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Figure1. Simulated data: Boxplots for the point estimates across 1000 simulations by imputation 
methods under Missing at Random (MAR) and ten imputations with 10% of missing data. Point 
estimates are shown for only three regression coefficients, i.e. for variables 𝑋𝑏1 , 𝑋𝑚1_5 , 
 𝑋𝑏13 𝑋𝑏30 .The horizontal red lines indicate the respective “true” values. 

Figure2. Simulated data: Boxplots for the standard errors across 1000 simulations by imputation 
methods under Missing at Random (MAR) and ten imputations with 10% of missing data.  
Standard errors are shown for only three regression coefficients, i.e. for variables 𝑋𝑏1 , 𝑋𝑚1_5 , 
 𝑋𝑏13 𝑋𝑏30 . 
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Table1. Simulated data: The performance of methods for MI based on RMSEs, ESEs (top), 
means of Rubin’s estimates i.e. Est(point estimates) and SE(standard errors) (middle) and 
amount of bias (bottom) under Missing at Random (MAR) with 10% of missing data.  Estimated 
bias is simply a difference between root mean square error and empirical standard error. All 
results are based on 10 imputations and 1000 simulations. Estimates are shown for only three 
regression coefficients (Coef.) i.e. for variables 𝑋𝑏1 , 𝑋𝑚1_5 , 𝑋𝑏13 𝑋𝑏30 . Bold figures indicate the 
smallest mean root mean square errors, mean empirical standard errors and amount of bias 
among various imputation variants.  
 

 Coef.  MICEDEF  MICECART  H.DEF1  H.CART1  H.DEF2  H.CART2 

B
ia

s  
   

   
  E

st
(S

E)
   

 E
SE

S (
R

M
SE

s)
 

     
 

  

𝑋𝑏1  
𝑋𝑚1_5  
𝑋𝑏13 𝑋𝑏30  
 
 
𝑋𝑏1  
𝑋𝑚1_5  
𝑋𝑏13 𝑋𝑏30  
 
𝑋𝑏1  
𝑋𝑚1_5  
𝑋𝑏13 𝑋𝑏30  

0.51(2.04) 
0.59(0.60) 
0.75(1.34) 
 
 
-1.329(0.935) 
1(0.976) 
2.258(1.260) 
 
 
1.53 
0.01 
0.59 

0.51(2.04) 
0.59(0.60) 
0.75(1.34) 
 
 
-1.029(0.760) 
0.876(0.810) 
1.893(1.040) 
 

 
1.53 
0.01 
0.59 

0.53(1.99) 
0.57(0.61) 
0.72(1.31) 
 
 
-1.084(0.773) 
0.772(0.825) 
1.904(1.061) 
 

 
 1.46 
0.04 
0.59 

  

0.52(2.03) 
0.55(0.58) 
0.71(1.35) 
 
 
-1.037(0.759) 
0.835(0.814) 
1.8498(1.043) 
 
 
1.51 
0.03 
0.64 

0.51(1.96) 
0.57(0.61) 
0.68(1.27) 
 
 
-1.106(0.768) 
0.785(0.820)  
1.927 (1.058) 

 
 
1.45 
0.04 
0.59 

0.54(2.01) 
0.57(0.60) 
0.70(1.29) 
 
 
-1.061(0.758) 
0.833(0.813)  
1.920(1.041) 
 
 
1.47 
0.03 
0.59 
 

 

5. Motivation 

Multiple Indicator Cluster Survey (MICS) is an international household survey tool. MICS is 

developed by the United Nations Children’s Fund (UNICEF) to obtain internationally 

comparable, statistically rigorous data of standardised indicators related to the health situation 

of children and women. MICS household questionnaire contains information of following 

dimensions of household head life: education, household characteristics, water and sanitation, 

salt iodization, hand washing facilities, water quality testing and results etc. Such background 

variables are important for data analysis, modeling, and policy research. 

 National study like Government of Pakistan Economic survey (2008) highlighted that 

nearly 50 million individuals are deprived from safe drinking water in Pakistan. Our motivation 

stems from data obtained from MICS Punjab, 2014. MICS in Punjab was conducted in the 
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Punjab province of Pakistan with joint collaboration of the Bureau of Statistics (BOS) Punjab 

and the United Nations Children's Fund (UNICEF). Final and key findings report, survey plan, 

list of indicators, questionnaires and training agenda of MICS Punjab 2014 is available for 

download via a dedicated BOS Punjab website (www.bos.gop.pk). MICS Punjab questionnaire 

for household contains more than two hundred indicators on variety of household’s conditions. 

For example indicators on house conditions (e.g. number of rooms used for sleeping, main 

material of floor and roof etc.), access to general facilities (e.g. electricity, radio, television, non-

mobile phone, refrigerator etc.), source of drinking water (e.g. main source of drinking water and 

other purposes, location of the water source, duration to get water and come back, person 

collecting water, treatment for water to make safer for drinking etc.),  sanitation facilities (e.g. 

type of toilet facility, water available at the place for hand washing, soap or detergent present at 

place of hand washing etc.). Binary logistic regressions models can be fitted to describe 

household trends in access to improved water sources and sanitation facilities. Associated factors 

like location, demographic and socio-economic etc. can be further use for prediction. 

Information based indicators described above can prove to be very useful in policy making in 

order to improve quality of drinking water and sanitation in Punjab. 

5.1. Imputation of MICS Household Data 

We use a secondary household data from the Punjab Multiple Indicator Cluster Survey in 2014 

and use a GLM with a logit link is used to describe associations between access to water and 

sanitation, and geographic, demographic, and socio-economic factors. Most of the background 

variables related to geographic, demographic, and socio-economic characteristics in MICS data 

for household are categorical with many categories having complex data structures and large 

amount of missingness. For example geographical region of Punjab is divided into 36 districts. 
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Living area has two levels i.e. urban or rural. Statistical models based on survey data sets contain 

both, continuous and categorical variables and it can be tedious for MICE to specify imputation 

models and interaction terms in presence of such complications (Van Buuren, and Oudshoorn 

1999). Therefore for the proper comparisons, multiple categories for categorical variables were 

reduced by merging them and a sub-sample of fifty seven variables is selected which contains 

information on water and sanitization, hand washing and household characteristics. For the sake 

of keeping the analysis comparable and challenging at the same time, variable “Main material of 

exterior walls” is included in the sub-sample which has fifteen levels. Among all these variables, 

forty nine variables are categorical with multiple categories and remaining are continuous, only 

two variables are fully observed.  The missing data rates in most items were moderate. Items 

carrying great substantive importance, such as “Person collecting water”, 83% values were 

missing; “Energy use for cooking” indicator was missing at approximately 68%; the indicator on 

whether the child needed to be physically punished to be brought up properly was missing at 

approximately 37% (see supplementary file (Tables S5-S6)). We assume items are MAR in data 

under consideration.  The R package “VIM” (Templ et al. 2012) is utilized for exploring data and 

the pattern of missing values. Graphics for the all variables in sub sample are provided in a 

supplementary file (see Figures S19-S25).  

5.2. Logistic Regression Model 

To identify key determinants of water quality, we use a dichotomous variable indicating whether 

the household  do anything to the water to make it safer to drink. That is, 

 𝑊𝑇 = �
      0   𝑖𝑓    ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑑𝑜 𝑛𝑜𝑡 𝑑𝑜 𝑎𝑛𝑦𝑡ℎ𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑤𝑎𝑡𝑒𝑟 𝑡𝑜 𝑚𝑎𝑘𝑒 𝑖𝑡 𝑠𝑎𝑓𝑒𝑟 𝑡𝑜 𝑑𝑟𝑖𝑛𝑘 ,   

1    𝑖𝑓    ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑑𝑜 𝑎𝑛𝑦𝑡ℎ𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑤𝑎𝑡𝑒𝑟 𝑡𝑜 𝑚𝑎𝑘𝑒 𝑖𝑡 𝑠𝑎𝑓𝑒𝑟 𝑡𝑜 𝑑𝑟𝑖𝑛𝑘 .         
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where 𝑊𝑇 denotes water treatment status. 

We determine two explanatory variables associated with the binary response "𝑊𝑇". 

We then used a Logistic regression model, given by 

                                 𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑙𝑛 � 𝑝
1−𝑝

� =  𝛽0 +  𝛽1𝑋1 + 𝛽2𝑋2,                                         (14) 

where 𝑋1,𝑋2 are the predictor variables, “type of area (rural or urban)” and  “soap/other material 

available for washing hands (yes or no)”,  respectively and p denoted the probability that the 

household do not do anything to the water to make it safer to drink. The binary predictor 

“soap_avilb_wash_hand ” has the highest amount of missing values (i.e. about 9%) while the 

amount is rather small in the other two variables (i.e. less than 8% for response 

“treat_water_make_safe” and less than 6% for predictor “area”). See supplementary file for 

summary of all variables. Since there are no true values to compare for real data example, we 

calculated complete case (CC) estimates for comparison purpose. The CC analysis uses only the 

complete cases (i.e. n = 26819). The point estimates of GLM for “type of area” and “soap/other 

material available for washing hands” are 1.361 and 1.111 respectively. Whereas, standard errors 

for “type of area” and “soap/other material available for washing hands” are 0.106 and 0.052 

respectively. Similar to simulation study, point estimates and standards for M=10 completed data 

sets across 50 simulations are calculated for real data (see Figures 3-4). ESEs and means of point 

estimates (standard errors) and computational time for various MI methods are shown in Tables 

2 and 3 respectively.  
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5.3. Results 

We note that the standard errors for all of the coefficients are smaller compared to their point 

estimates under all MI methods (see Figures 3-4). The empirical example with real data indicated 

that the MICE methods and HMI variants yielded differing point estimates. We noticed that 

point estimates in both default and CART methods are nearer to the estimates in CC analysis for 

all cases with larger standard errors as compared to hybrid methods (see Table 2).  Figure 4 

displays smaller standard errors for hybrid variants (i.e. H.DEF1, H.CART1, H.DEF2, H.CART2) 

as compared to default and CART methods. ESEs and means of standard errors for hybrid 

variants are also smaller as compared to other methods (see Table 2) whereas these estimates are 

smaller for H.DEF2 and H.CART2 as compared to H.DEF1 and H.CART1, suggesting better 

performance over default and CART. Given the results produced by the MI methods, a look at 

the computation times in Table 3 may be useful for a further comparison. We found that hybrid 

variants ran quite fast followed by default method whereas, it took almost 5 days by CART to 

run on standard computers for a small subset of incomplete household data. Surprisingly, this 

time was reduced to almost half a day when hybrid methods were applied. We also found that 

hybrid variants also resulted in satisfactory performance when applied the full MICS household 

data set with hundreds of variables and categories with multiple levels whereas, methods based 

on MICE were not even able to run this large dataset due to complex structures. Thus, there exist 

significant differences in terms of the computational efficiency among the MI methods. 
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Figure3.  Real data: Boxplots for point estimates across 50 simulations by imputation methods 
under Missing at Random (MAR) and ten imputations. 

 
 
Figure4.  Real data: Boxplots for standard errors across 50 simulations by imputation methods 
under Missing at Random (MAR) and ten imputations.  
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Table2. Real data: Means of point estimates (standard errors) for two categorical regression 
coefficients for M=10 completed data sets across 50 simulations under various MI methods.  
  

Estimates Methods              Coefficients 
         area              soap_avilb_wash_hand 

M
ea

ns
 o

f  
Es

t(S
E)

 
MICEDEF 
MICECART 
H.DEF1  

H.CART1  
H.DEF2 

H.CART2 
  

1.332(0.052)              0.957(0.137) 
1.334(0.051)              0.947(0.143) 
1.272(0.050)              0.976(0.124) 
1.271(0.050)              0.985(0.124) 
1.307(0.049)              1.103(0.103) 
1.293(0.050)              1.034(0.102) 

  

ES
Es

 

MICEDEF 
MICECART 
H.DEF1  

H.CART1  
H.DEF2 

H.CART2 
  

0.0061                        0.0290 
0.0061                             0.0350 
0.0056                             0.0286 
0.0056                             0.0209 
0.0032                             0.0118 
0.0045                             0.0130 

 
Here Est and SE stand for point estimates and standard errors respectively. Cases where both 
Hybrid architectures result in minimum standard errors and ESEs as compared to default and 
CART are highlighted in bold.  
 

Table3. Real data: Time taken for various MI methods 

Method MICEDEF MICECART H..DEF1 H.CART1 H..DEF2 
 

H.CART2 
 

Time 2.37d 4.87d 12.48h. 13.67h 12.99h 13.03h 

Note: time = the time to complete 10 multiple imputation by variants of MI across 1000 
simulations, h = hours, d = days. The maximum number of iterations is set to 200.  
 
6. Conclusion and future research 

This paper describes the mechanisms of two hybrid strategies to handle missing data in large 

scale survey data with complex dependence structures among categorical variables and high 

percentage of missing information. After compering the performance of  various multiple 

imputation algorithms, we showed that both proposed hybrid variants of the multiple imputation 

algorithms were clearly superior to MICE MI methods not only in terms of the accuracy of 

imputation, but were also markedly superior to the others in terms of  the computational 
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efficiency.  Practitioners can easily use our proposed methods to handle complex survey data 

because our techniques rely mostly on previously implemented algorithms. Our current work is 

limited to MAR mechanism, however, we believe that the biases due to wrongly assumed 

missingness mechanism are minimal when the imputation models are kept as rich as possible to 

the extent where they are estimable. We also believe that a data generating processes considered 

in simulation study can be generalized to a large number of situations. However, we have no 

sound grounding to prove that the comparisons we make here will always apply for any data. In 

particular, we have not yet considered alternative categorizations for continuous variables such 

as ordinal, unordered or multiple categories. Issues like convergence and appropriate selection of 

predictors is beyond the scope of the present paper. This study has for the first time provided an 

overview and a systematic comparison of previous approaches to MI for large scale complex 

data implemented in conditional models. We propose that the performance of proposed 

algorithms can be improved by extending the categorization process of continuous variables to 

ordinal or multiple categories. Since proposed approach requires the covariates to be strongly 

correlated in order to work properly, further evaluations with diversity of experimental settings 

will undoubtedly be needed to account for this.  

 References 

Aßmann, C., Gaasch, C., Pohl, S., & Carstensen, C. (2016). Estimation of plausible values 
considering partially missing backround information: A data augmented MCMC 
approach. In H.-P. Blossfeld, J. von Maurice, J. Skopek, & M. Bayer (Eds.), 
Methological Issues of Longitudinal Surveys (pp. 505-522).Wiesbaden: Springer. 

Audigier, V., Husson, F., & Josse, J. (2016). A principal component method to impute missing 
values for mixed data. Advances in Data Analysis and Classification,10 (1), 5–26. 

 Audigier, V., Husson, F., & Josse, J. (2017). Mimca: multiple imputation for categorical 
variables with multiple correspondence analysis. Statistics and Computing, 27 (2), 501–
518. 



27 
 

Akande, O., LI, F., Reiter, J., (2017). An empirical comparison of multiple imputation methods 
for categorical data. The American Statistician,71, 162–170. 

Armina, R., Zain, A.M., Ali, N.A., & Sallehuddin, R. (2017). A review on missing value 
estimation using imputation algorithm. Journal of Physics: Conference Series, 892(1), 4. 

Audigier, V., I. White, I.R., Jolani, S., Debray, T., Quartagno, M., Carpenter, J., S. van Buuren, 
S., &  Resche-Rigon, M. (2018). Multiple imputation for multilevel data with continuous 
and binary variables. Statistical Science, 33(2), 160-183. 

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. 
New York: Chapman and Hall.  

Burton, A., Altman, D.G., Royston, P., & Holder, R.L. (2006). The design of simulation studies 
in medical statistics. Statistics in Medicine, 25(24), 4279–92. 

Burgette, L. F., & Reiter, J. P. (2010). Multiple Imputation for Missing Data via Sequential 
Regression Trees. American Journal of Epidemiology, 172(9), 1070-1076.  

Carpenter, J.R., & Kenward, M.G. (2011). REALCOM-IMPUTE software for multilevel 
multiple imputation with mixed response types. Journal of Statistical Software, 45(5), 1–
14. 

Dunson, D. B., & Xing, C. (2009). Nonparametric Bayes modeling of multivariate categorical 
data. Journal of the American Statistical Association, 104, 1042-1051. 

Doove, L., van Buuren, S., & Dusseldorp, E. (2014). Recursive partitioning for missing data 
imputation in the presence of interaction effects. Computational Statistics & Data 
Analysis, 72, 92-104. 

Fichman, M., & Cummings, J. N. (2003). Multiple Imputation for Missing Data: Making the 
most of What you Know. Organizational Research Methods, 6(3), 282–308. 

Government of Pakistan, Economic Survey of Pakistan. 2008–09. 

Goßmann, S.D. (2016), The application of nonparametric data augmentation and imputation 
using classification and regression trees within a large-scale panel study, PhD 
Dissertation Presented to the Faculty for Social Sciences, Economics, and Business 
Administration at the University of Bamberg. 

Hawkes, D., & Plewis, I. (2006). Modelling non-response in the National Child Development 
Study. Journal of the Royal Statistical Society Series A, 169. 479–491. 

Horton, N.J., & Kleinman, K.P. (2007). Much ado about nothing: a comparison of missing data 
methods and software to fit incomplete data regression models. American Statistician, 
61,79–90. 



28 
 

Husson, F., Josse, J., Narasimhan, B., Robin, G., & Traumabase (2019): Imputation of mixed 
data with multilevel singular value decomposition, Journal of Computational and 
Graphical Statistics, DOI: 10.1080/10618600.2019.1585261 

Kim, H., & Loh, W.-Y. (2001). Classification Trees With Unbiased Multiway Splits. Journal of 
the American Statistical Association, 96(454), 589-604. 

 Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data. New York, Wiley. 

Liu, J., Gelman, A., Hill, J., Su, Y.-S. & Kropko, J. (2014). On the stationary distribution of 
iterative imputations. Biometrika, 101, 155–173. 

Mislevy, R.J. (1991). Randomization-based inference about latent variables from complex 
samples. Psychometrika,56(2), 177-196. 

Moons, K.G.M., Donders, R.A.R.T., Stijnen, T., & Harrell, F.E. (2006). Using the outcome for 
imputation of missing predictor values was preferred. Journal of Clinical Epidemiology, 
59(10), 1092–101.  

Manrique-Vallier, D., & Reiter, J. P. (2014). Bayesian multiple imputation for large-scale 
categorical data with structural zeros. Survey Methodology, 40,125–134.  

Manrique-Vallier, D., & Reiter, J. P. (2015). Bayesian simultaneous edit and imputation for 
multivariate categorical data. Technical Report. Dept. of Statistics, Duke University.  

 Murray, J. S. and Reiter, J. P. (2016). Multiple imputation of missing categorical and continuous 
values via Bayesian mixture models with local dependence. Journal of the American 
Statistical Association, 111, 1466–1479.  

Nelder, J. A. and Wedderburn, R. W. M.  (1972). Generalized linear models. Journal of the 
Royal Statistical Society, Series A 135, 370-384. 

Oba, S., Sato, M., Takemasa, I., Monden, M., Matsubara, K., & Ishii, S. (2003), A Bayesian 
missing value estimation method for gene expression profile data.  Bioinformatics,19, 
2088 –2096. 

Quartagno, M., & Carpenter, J. (2015). Multiple imputation for IPD meta-analysis: allowing for 
heterogeneity and studies with missing covariates. Statistics in Medicine,35(17), 2938–
54. 

 Quanli, W., Danial, M.V., Reiter, J.P., & Jigchen, H. (2018). NPBayesImputeCat: Non-
Parametric Bayesian Multiple Imputation for Categorical Data. R package version 0.1, 
https://CRAN.R-project.org/package=NPBayesImputeCat. 

Rubin, D. B., & Schenker, N. (1986). Multiple imputation for interval estimation from simple 
random samples with ignorable nonresponse. Journal of the American Statistical 
Association, 81, 366–374. 



29 
 

Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys.New York: John Wiley. 

Raghunathan, T.E., Lepkowski, J.M., Van Hoewyk, J., & Solenberger, P. (2001). A multivariate 
technique for multiply imputing missing values using a sequence of regression models. 
Survey methodology, 27(1), 85–96.  

Raghunathan, T. E., Solenberger, P., & Van Hoewyk, J. (2002), IVEware: imputation and 
variance estimation software user guide. Survey Research Center, Institute for Social 
Research, University of Michigan. 

Riphahn, R. T. & Serfling, O. (2005). Item Non-response on Income and Wealth Questions. 
Empirical Economics, 30(2), 521-538. 

R Core Team (2018). R: A Language and Environment for Statistical Computing, Vienna, 
Austria: R Foundation for Statistical Computing. 

Razzak, H., & Heumann, C. (2019). Predictive performance of a hybrid technique for the 
multiple imputation of survey data. Paper presented at NTTS 2019. Available at: 
https://coms.events/ntts2019/data/abstracts/en/abstract_0108.html. 

Razzak, H., & Heumann, C. (2019). Hybrid multiple imputation in a large scale complex survey. 
  Statistics in Transition new series, forthcoming. 

Schafer, J.L. (1997). Analysis of incomplete multivariate data. New York: Chapman & Hall. 

Su, Y.S., Gelman, A., Hill, J., & Yajima, M. (2011). Multiple Imputation with Diagnostics (mi) 
in R:Opening Windows into the Black Box. Journal of Statistical Software, 45(2), 1{31. 
URL: http://www.jstatsoft.org/v45/i02/. 

Stekhoven, D. J., & Bühlmann, P. (2012). Missforest-non-parametric missing value imputation 
for mixed-type data.Bioinformatics, 28(1), 112-118. 

Si, Y., & Reiter, J. P. (2013). Nonparametric bayesian multiple imputation for incomplete 
categorical variables in large-scale assessment surveys. Journal of educational and 
behavioral statistics, 38(5), 499-521. 

Stata Corporation, Stata statistical software, Release 13, College Station, Texas, TX, USA. 
2013.  

SAS Institute, Base SAS 9. 4 Procedures Guide: Statistical Procedures. Cary: SAS Institute; 
2014.  

Schafer, J. L., & Zhao, J. H. (2014). pan: Multiple imputation for multivariate panel or clustered 
data (Version 0.9) [Computer software]. Retrieved from http://CRAN.R-
project.org/package=pan 



30 
 

Shah, A. D., Bartlett, J. W., Carpenter, J., Nicholas, O., & Hemingway, H. (2014). Comparison 
of Random Forest and Parametric Imputation Models for Imputing Missing Data Using 
MICE: A CALIBER Study. American Journal of Epidemiology, 179, 764–774. 

Templ, M., Andreas, A., Alexander, K., & Bernd, P. (2012). VIM: Visualization and Imputation 
of Missing Values. http://cran.r-project.org/web/packages/VIM/VIM.pdf. 

van Buuren, S., & Oudshoorn, C.G.M. (1999). Flexible multivariate imputation by 
MICE. Technical report, TNO Prevention and Health, Leiden. 

van Buuren, S., & Brand, J.P., Groothuis-Oudshoorn, C., & Rubin, D.B. (2006). Fully 
conditional specification in multivariate imputation. Journal of Statistical Computation 
and Simulation, 76(12), 1049–64. 

van Buuren, S. (2007). Multiple imputation of discrete and continuous data by fully conditional 
specification. Statistical Methods in Medical Research, 16(3), 219–42.   

Vermunt, J. K., Van Ginkel, J. R., Van der Ark, L. A.,  Sijtsma, K. (2008). Multiple imputation 
of incomplete categorical data using latent class analysis.  Sociological Methodology, 38, 
369-397. 

van Buuren, S., & Groothuis‐Oudshoon, K. (2011). mice: Multivariate Imputation by Chained 
Equations in R. Journal of Statistical Software, 45(3), 1–67.  

van Buuren, S. 2012. Flexible imputation of missing data. Florida: CRC press. 

White, I.R., Royston, P., & Wood, A.M. (2011). Multiple imputation using chained equations: 
issues and guidance for practice. Statistics in Medicine, 30(4), 377–99.  

Zhu, J. & Raghunathan, T.E. (2015). Convergence properties of a sequential regression multiple 
imputation algorithm. Journal of the American Statistical Association, 110(511),1112–
1124. 

 

 
 

 

 

 

 

 



31 
 

Supplementary file 

TableS1. ESEs and RMSEs for all coefficients for various MI methods and hybrid architecture 1 

ESEs RMSEs 
Coef.          MICEDEF         MICECART    H.DEF1    H.CART1 MICEDEF  MICECART   H.DEF1  H.CART1 

𝑋𝑏3 
𝑋𝑏4 
𝑋𝑏5  

𝑋𝑏6 

𝑋𝑏8 
𝑋𝑏9 
𝑋𝑏10  

𝑋𝑏11 

𝑋𝑏13 
𝑋𝑏14 
𝑋𝑏15  

𝑋𝑏16 

𝑋𝑏18 
𝑋𝑏19 
𝑋𝑏20  

𝑋𝑏21 

𝑋𝑏23 
𝑋𝑏24 
𝑋𝑏25  

𝑋𝑏26 

𝑋𝑏28  
𝑋𝑏29  
𝑋𝑏30  
𝑋𝑏31  
𝑋𝑚1_2  
𝑋𝑚1_3  
𝑋𝑚1_4  
𝑋𝑚1_5  
𝑋𝑚1_6  
𝑋𝑚2_2  
𝑋𝑚2_3  
𝑋𝑚2_4  
𝑋𝑛1  

𝑋𝑏1  
𝑋𝑏2   

𝑋𝑏7   

𝑋𝑏12   

𝑋𝑏17   

𝑋𝑏22   

𝑋𝑏27   

0.51      
0.41      
0.40      
0.40      
0.44      
0.40      
0.41      
0.41  
0.48      
0.39      
0.40      
0.68      
0.49      
0.40      
0.51      
0.41      
0.58  
0.39      
0.43      
0.39      
0.36      
0.40      
0.42      
0.42      
0.44      
0.41  
0.42      
0.39      
0.42      
0.47      
0.42       
0.48      
0.51      
0.67      
0.59  
0.75      
0.52      
0.80      
1.10      
0.35       

0.51      
0.41      
0.40      
0.40      
0.44      
0.40      
0.41      
0.41  
0.48      
0.39      
0.40      
0.68      
0.49      
0.40      
0.51      
0.41      
0.58  
0.39      
0.43      
0.39      
0.36      
0.40      
0.42      
0.42      
0.44      
0.41  
0.42      
0.39      
0.42      
0.47      
0.42      
0.48      
0.51      
0.67      
0.59  
0.75      
0.52      
0.80      
1.10      
0.35      

0.53      
0.40      
0.41      
0.42      
0.42      
0.41      
0.40      
0.42  
0.48      
0.40      
0.39      
0.67      
0.49      
0.42      
0.50      
0.41      
0.60  
0.39      
0.43      
0.40      
0.39      
0.41      
0.41      
0.43      
0.42      
0.42  
0.42      
0.41      
0.44      
0.47      
0.42      
0.46      
0.51      
0.63      
0.57  
0.74      
0.51      
0.78      
1.06      
0.34      

0.52      
0.41      
0.40      
0.40      
0.44      
0.41      
0.40      
0.42  
0.49      
0.41      
0.39      
0.65      
0.48      
0.40      
0.50      
0.41      
0.56      
0.39      
0.43      
0.38      
0.37      
0.38      
0.42      
0.39      
0.41      
0.41  
0.41      
0.40      
0.42      
0.47      
0.41      
0.45      
0.48      
0.64      
0.55  
0.71      
0.50      
0.79      
1.06      
0.33      

2.04      
1.38      
1.57      
1.29      
1.42      
1.65      
1.24      
1.46  
1.46      
1.32      
0.88      
1.03      
0.98      
1.36      
1.93      
1.18      
1.46  
1.49      
0.98      
1.98      
1.52      
1.61      
1.55      
1.43      
1.37      
1.76  
1.64      
1.48      
1.38      
1.58      
1.69      
1.30      
1.17      
0.71      
0.60  
0.83      
1.64      
2.27      
2.61      
1.51      

2.04      
1.38      
1.57      
1.29      
1.42      
1.65      
1.24      
1.46  
1.46      
1.32      
0.88      
1.03      
0.98      
1.36      
1.93      
1.18      
1.46  
1.49      
0.98      
1.98      
1.52      
1.61      
1.55      
1.43      
1.37      
1.76  
1.64      
1.48      
1.38      
1.58      
1.69      
1.30      
1.17      
0.71      
0.60  
0.83      
1.64      
2.27      
2.61      
1.51      

1.99      
1.31      
1.53      
1.23      
1.48      
1.64      
1.21      
1.39 
1.44      
1.28      
0.87      
0.92      
0.98      
1.37      
1.94      
1.18      
1.42  
1.47      
0.98      
1.94      
1.47      
1.57      
1.53      
1.38      
1.26      
1.66  
1.61      
1.45      
1.30      
1.56      
1.59      
1.36      
1.27      
0.76      
0.61  
0.88      
1.59      
2.19      
2.55      
1.60      

2.03      
1.39      
1.55      
1.32      
1.43      
1.64      
1.24      
1.45 
1.49      
1.32       
0.85      
0.84      
1.00      
1.38      
1.95      
1.19      
1.43  
1.47      
0.99      
1.95      
1.49      
1.57      
1.54      
1.40      
1.35      
1.74  
1.64      
1.48      
1.32      
1.54      
1.63      
1.36      
1.24      
0.72      
0.58  
0.77      
1.61      
2.23      
2.60      
1.61      
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TableS2. Point estimates and Standard errors for all coefficients under various MI methods and 
hybrid architecture 1. 

𝑋𝑛2  

𝑋𝑏32  

𝑋𝑏9𝑋𝑏15  

𝑋𝑏1𝑋𝑏17  

𝑋𝑏13𝑋𝑏30  

 

 

 

 
0.21      
0.11      
0.69      
0.71  
0.75 

0.21      
0.11      
0.69      
0.71 
0.75 

0.20      
0.12      
0.70      
0.76  
0.72 

0.21      
0.11      
0.71      
0.72  
0.71  
 

1.32      
0.36      
1.75      
1.61  
1.34 

1.32      
0.36      
1.75      
1.61  
1.34 

1.28      
0.37      
1.77      
1.60      
1.31 
 

1.31      
0.39      
1.79      
1.58    
1.35 

Point estimates Standard errors 
Coef.              MICEDEF  MICECART   H.DEF1  H.CART1 MICEDEF MICECART    H.DEF1      H.CART1 

𝑋𝑏3 
𝑋𝑏4 
𝑋𝑏5  

𝑋𝑏6 

𝑋𝑏8 
𝑋𝑏9 
𝑋𝑏10  

𝑋𝑏11 

𝑋𝑏13 
𝑋𝑏14 
𝑋𝑏15  

𝑋𝑏16 

𝑋𝑏18 
𝑋𝑏19 
𝑋𝑏20  

𝑋𝑏21 

𝑋𝑏23 
𝑋𝑏24 
𝑋𝑏25  

𝑋𝑏26 

𝑋𝑏28  
𝑋𝑏29  
𝑋𝑏30  
𝑋𝑏31  

𝑋𝑏1  
𝑋𝑏2   

𝑋𝑏7   

𝑋𝑏12   

𝑋𝑏17   

𝑋𝑏22   

𝑋𝑏27   

-1.329  
2.183  
1.887  
2.230 
 -1.981  
1.816  
-2.245  
2.017  
1.961  
2.242  
1.474  
3.055  
-1.418  
2.127  
1.417  
2.346 
 -3.259  
-1.947 
 -2.636 
 -1.369 
 -1.964 
 -1.850 
 -1.869 
 -2.090  
-2.117  
-1.738  
-1.760  
-1.924  
-2.181  
1.981  
1.812  
2.204  

-1.029  
1.681  
1.481  
1.776 
 -1.654  
1.404  
-1.831  
1.600  
1.616  
1.743  
1.219  
2.229  
-1.154  
1.696  
1.136  
1.889  
-2.666 
 -1.558 
-2.116  
-1.062 
 -1.526 
-1.436 
 -1.504 
-1.634 
 -1.703    
-1.291  
-1.417 
 -1.575 
-1.688  
1.490  
1.368  
1.794  

-1.084  
1.754  
1.530  
1.848 
 -1.581  
1.408 
 -1.858  
1.679  
1.640  
1.789  
1.221  
2.372  
-1.156  
1.692  
1.123  
1.896  
-2.711 
 -1.579 
-2.115 
 -1.103 
-1.583  
-1.485 
 -1.521 
 -1.688 
-1.815    
-1.391 
 -1.445 
-1.614 
 -1.774  
1.506  
1.470  
1.717  

-1.037  
1.674  
1.502  
1.745  
-1.634  
1.416 
 -1.827  
1.612  
1.592  
1.741  
1.244  
2.470  
-1.121  
1.676  
1.114  
1.884  
-2.682 
 -1.582  
-2.102  
-1.090 
 -1.557  
-1.481  
-1.514 
 -1.653  
-1.713  
-1.307  
-1.409 
 -1.575 
 -1.745  
1.534  
1.423  
1.718  

0.935 
0.754 
0.744 
0.767 
0.756 
0.731 
0.737 
0.757 
0.821 
0.750 
0.697 
1.239 
0.867 
0.744  
0.890 
0.724 
1.024 
0.728 
0.763 
0.698 
0.707 
0.717 
0.730 
0.738 
0.745 
0.721 
0.765 
0.733 
0.773  
0.911 
0.776 
0.818 

0.760 
0.596 
0.588 
0.604 
0.610 
0.580 
0.581 
0.604 
0.674 
0.593 
0.570 
0.985 
0.708 
0.586  
0.730 
0.575 
0.822 
0.579 
0.602 
0.565 
0.561 
0.571 
0.590 
0.586 
0.588 
0.576 
0.612 
0.590 
0.606  
0.733 
0.621 
0.669 

0.773 
0.608 
0.604 
0.613 
0.612 
0.586 
0.591 
0.615 
0.682 
0.604 
0.574 
0.987 
0.714 
0.604  
0.734 
0.579 
0.832 
0.588 
0.612 
0.575 
0.571 
0.582 
0.597 
0.597 
0.602 
0.591 
0.624 
0.595 
0.618  
0.742 
0.637 
0.672 

0.759 
0.598 
0.595 
0.601 
0.608 
0.581 
0.583 
0.602 
0.673 
0.594 
0.568 
0.979 
0.702 
0.587  
0.722 
0.574 
0.826 
0.578 
0.606 
0.565 
0.561 
0.574 
0.589 
0.586 
0.594 
0.577 
0.616 
0.590 
0.611    
0.732 
0.621 
0.658 



33 
 

 

TableS3. ESEs and RMSEs for all coefficients for various MI methods and hybrid architecture 2 

ESEs RMSEs 
 Coef.               MICEDEF  MICECART   H.DEF2  
H.CART2 

MICEDEF  MICECART   H.DEF2 H.CART2 

𝑋𝑏1  
𝑋𝑏2   

𝑋𝑏3 
𝑋𝑏4 
𝑋𝑏5  

𝑋𝑏6 
𝑋𝑏7   

𝑋𝑏8 
𝑋𝑏9 
𝑋𝑏10  

𝑋𝑏11 
𝑋𝑏12   

𝑋𝑏13 
𝑋𝑏14 
𝑋𝑏15  

𝑋𝑏16 
𝑋𝑏17   

𝑋𝑏18 
𝑋𝑏19 
𝑋𝑏20  

𝑋𝑏21 
𝑋𝑏22   

𝑋𝑏23 
𝑋𝑏24 

0.65      
0.53      
0.52      
0.55      
0.54      
0.51      
0.53      
0.54  
0.60      
0.55      
0.50      
0.94      
0.61      
0.56      
0.59      
0.54      
0.78  
0.55      
0.59      
0.50      
0.49      
0.52      
0.54      
0.54      
0.55      

0.51      
0.41      
0.40      
0.40      
0.44      
0.40      
0.41      
0.41  
0.48      
0.39      
0.40      
0.68      
0.49      
0.40      
0.51      
0.41      
0.58  
0.39      
0.43      
0.39      
0.36      
0.40      
0.42      
0.42      
0.44      

0.51      
0.42      
0.40      
0.41      
0.43      
0.42      
0.41      
0.42  
0.48      
0.41      
0.38      
0.65      
0.49      
0.39      
0.49      
0.40      
0.58  
0.39      
0.42      
0.39      
0.38      
0.41      
0.42      
0.42      
0.42      

0.54      
0.41      
0.40      
0.40      
0.42      
0.41      
0.39      
0.41  
 0.51      
0.41      
0.40      
0.69      
0.49      
0.40      
0.49      
0.40      
0.58  
0.39      
0.43      
0.40      
0.36      
0.41      
0.41      
0.42      
0.43      

1.79      
0.97      
1.23      
0.95      
1.15      
1.29      
0.93      
1.12  
1.20      
0.94      
0.73      
0.94      
0.84      
1.04      
1.69      
0.85      
1.07  
1.19      
0.69      
1.71      
1.14      
1.26      
1.25      
1.06      
1.04      

2.04      
1.38      
1.57      
1.29      
1.42      
1.65      
1.24      
1.46  
1.46      
1.32      
0.88      
1.03      
0.98      
1.36      
1.93      
1.18      
1.46  
 1.49      
0.98      
1.98      
1.52      
1.61      
1.55      
1.43      
1.37      

1.96      
1.32      
1.54      
1.20      
1.49      
1.68      
1.21      
1.38  
1.44      
1.30      
0.87      
0.94      
0.96      
1.36      
1.94      
1.20      
1.45  
1.49      
0.99      
1.94      
1.50      
1.56      
1.52      
1.37      
1.27      

2.01      
1.36      
1.56      
1.31      
1.44      
1.65      
1.26      
1.46  
1.50      
1.35      
0.86      
0.89      
0.97      
1.39      
1.94      
1.18      
1.49  
1.48      
1.01      
1.96      
1.49      
1.58      
1.53      
1.39      
1.35      

𝑋𝑚1_2  
𝑋𝑚1_3  
𝑋𝑚1_4  
𝑋𝑚1_5  
𝑋𝑚1_6  
𝑋𝑚2_2  
𝑋𝑚2_3  
𝑋𝑚2_4  
𝑋𝑛1  

𝑋𝑛2  

𝑋𝑏32  

𝑋𝑏9𝑋𝑏15  

𝑋𝑏1𝑋𝑏17  

𝑋𝑏13𝑋𝑏30  

 

 

2.246  
0.806  
1.000  
0.892  
1.797  
1.129  
0.674 
 -1.832  
1.996  
0.774  
-1.592 
 -1.973  
2.258 
 

1.946  
0.764  
0.876  
0.635  
1.440  
0.881  
 0.630  
-1.531  
1.695  
0.663 
 -1.394 
-1.557  
1.893  
 

1.840  
0.568  
0.772  
0.527  
1.492  
0.958  
0.680  
-1.433  
1.735  
0.645 
 -1.373 
-1.592  
1.904 

1.851  
0.678  
0.835  
0.693  
1.464  
0.913  
 0.623 
 -1.421  
1.707  
0.624  
-1.351 
 -1.587  
1.849 
  
 

0.827 
1.074 
0.976 
1.404 
0.989 
1.563 
2.224 
0.628 
0.429 
0.215 
1.194 
1.320  
1.260 

0.686 
0.897 
0.810 
1.132 
0.801 
1.271 
1.806 
0.501 
0.326 
0.169 
0.996 
1.092  
1.040  
 

0.686 
0.907 
0.825 
1.153 
0.808 
1.283 
1.818 
0.504 
0.332 
0.171 
1.010 
1.119  
1.061 

0.677 
0.894 
0.814 
1.140 
0.795 
1.265 
1.803 
0.496 
0.321 
0.166 
1.003 
1.109  
1.043  
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𝑋𝑏25  

𝑋𝑏26 
𝑋𝑏27   

𝑋𝑏28  
𝑋𝑏29  
𝑋𝑏30  
𝑋𝑏31  
𝑋𝑚1_2  
𝑋𝑚1_3  
𝑋𝑚1_4  
𝑋𝑚1_5  
𝑋𝑚1_6  
𝑋𝑚2_2  
𝑋𝑚2_3  
𝑋𝑚2_4  
𝑋𝑛1  

𝑋𝑛2  

𝑋𝑏32  

𝑋𝑏9𝑋𝑏15  

𝑋𝑏1𝑋𝑏17  

𝑋𝑏13𝑋𝑏30  

 

0.53       
0.54      
0.54      
0.57      
0.61      
0.54      
0.62      
0.64      
0.81      
0.72  
0.97      
0.70      
1.16      
1.61      
0.43      
0.27      
0.15      
0.75      
0.89  
0.86 
 

0.41       
0.42      
0.39      
0.42      
0.47      
0.42      
0.48      
0.51      
0.67      
0.59     
0.75      
0.52      
0.80      
1.10      
0.35      
0.21      
0.11      
0.69      
0.71  
0.75 

0.41        
0.41      
0.42      
0.43      
0.48      
0.42      
0.46      
0.49      
0.65      
0.57 
 0.71      
0.51      
0.79      
1.09      
0.32      
0.20      
0.11      
0.67      
0.71      
0.68  
 

0.41      
0.42      
0.41      
0.43      
0.47      
0.41      
0.47      
0.49      
0.63      
0.57  
0.71      
0.50      
0.77      
1.06      
0.34      
0.22      
0.11      
0.67      
0.75  
0.70  
 

1.37       
1.35      
1.20      
1.00      
1.19      
1.30      
1.01      
0.99      
0.83      
0.72  
0.98      
1.39      
2.20      
2.83      
1.25      
1.04      
0.27      
1.60      
1.36  
1.14  
 

1.76  
1.64      
1.48      
1.38      
1.58      
1.69      
1.30      
1.17      
0.71      
0.60  
0.83      
1.64      
2.27      
2.61      
1.51      
1.32      
0.36      
1.75      
1.61  
1.34 

1.65      
1.63      
1.48      
1.29      
1.59      
1.59      
1.35      
1.25      
0.77      
0.61  
0.86      
1.59      
2.20      
2.56      
1.61      
1.27      
0.38      
1.77      
1.57  
1.27  
 

1.74       
1.64      
1.45      
1.33      
1.57      
1.64      
1.36      
1.24      
0.69      
0.60  
0.79      
1.61      
2.19      
2.55      
1.62      
1.31      
0.40      
1.78      
1.60  
 1.29 

 

TableS4. Point estimates and Standard errors for all coefficients under various MI methods and 
hybrid architecture 2 

Point estimates Standard errors 
Coef.               MICEDEF  MICECART   H.DEF2    
H.CART2 

MICEDEF  MICECART   H.DEF2 H.CART2 

𝑋𝑏1  
𝑋𝑏2   

𝑋𝑏3 
𝑋𝑏4 
𝑋𝑏5  

𝑋𝑏6 
𝑋𝑏7   

𝑋𝑏8 
𝑋𝑏9 
𝑋𝑏10  

𝑋𝑏11 
𝑋𝑏12   

𝑋𝑏13 
𝑋𝑏14 
𝑋𝑏15  

𝑋𝑏16 
𝑋𝑏17   

-1.329  
2.183  
1.887  
2.230 
 -1.981  
1.816 
 -2.245  
2.017  
1.961  
2.242  
1.474  
3.055  
-1.418  
2.127  
1.417  
2.346  
-3.259  

-1.029  
1.681  
1.481  
1.776 
 -1.654  
1.404 
 -1.831  
1.600  
1.616  
1.743  
1.219 
2.229  
-1.154  
1.696  
1.136 
1.889 
 -2.666  

-1.106  
1.754  
1.517  
1.869  
-1.574  
1.371  
-1.861  
1.685  
1.640  
1.770  
1.221  
2.321  
-1.175  
1.701  
1.119  
1.874 
 -2.669  

-1.061  
1.701  
1.489  
1.754 
 -1.622  
1.402  
-1.799  
1.595  
1.591  
1.710  
1.242  
2.431  
-1.165  
1.670  
1.124  
1.890  
-2.628 

0.935 
0.754 
0.744 
0.767 
0.756 
0.731 
0.737 
0.757 
0.821 
0.750 
0.697 
1.239 
0.867 
0.744  
0.890 
0.724 
1.024 

0.760 
0.596 
0.588 
0.604 
0.610 
0.580 
0.581 
0.604 
0.674 
0.593 
0.570 
0.985 
0.708 
0.586  
0.730 
0.575 
0.822 

0.768 
0.605 
0.602 
0.615 
0.609 
0.584 
0.590 
0.612 
0.676 
0.602 
0.576 
0.986 
0.713 
0.598  
0.730 
0.578 
0.829 

0.758 
0.596 
0.590 
0.598 
0.604 
0.579 
0.580 
0.598 
0.669 
0.595 
0.565 
0.972 
0.700 
0.584  
0.720 
0.574 
0.820 
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𝑋𝑏18 
𝑋𝑏19 
𝑋𝑏20  

𝑋𝑏21 
𝑋𝑏22   

𝑋𝑏23 
𝑋𝑏24 
𝑋𝑏25  

𝑋𝑏26 
𝑋𝑏27   

𝑋𝑏28  
𝑋𝑏29  
𝑋𝑏30  
𝑋𝑏31  
𝑋𝑚1_2  
𝑋𝑚1_3  
𝑋𝑚1_4  
𝑋𝑚1_5  
𝑋𝑚1_6  
𝑋𝑚2_2  
𝑋𝑚2_3  
𝑋𝑚2_4  
𝑋𝑛1  

𝑋𝑛2  

𝑋𝑏32  

𝑋𝑏9𝑋𝑏15  

𝑋𝑏1𝑋𝑏17  

𝑋𝑏13𝑋𝑏30  

-1.947 
 -2.636  
-1.369  
-1.964 
 -1.850 
 -1.869  
-2.090 
 -2.117  
-1.738 
 -1.760  
-1.924  
-2.181  
1.981  
1.812  
2.204  
2.246  
0.806  
1.000  
0.892  
1.797  
1.129  
0.674 
 -1.832  
1.996  
0.774 
 -1.592  
-1.973  
2.258 

-1.558 
 -2.116 
 -1.062 
 -1.526 
 -1.436 
 -1.504 
 -1.634 
 -1.703  
-1.291 
 -1.417 
 -1.575 
 -1.688  
1.490  
1.368  
1.794  
1.946  
0.764  
0.876  
0.635  
1.440  
0.881  
 0.630  
-1.531  
1.695  
0.663 
 -1.394 
 -1.557  
1.893 
 

-1.562 
 -2.098 
 -1.100 
 -1.548 
 -1.492 
 -1.539 
 -1.693 
 -1.797  
-1.406 
 -1.426 
 -1.586 
 -1.786  
1.489  
1.469  
1.728  
1.852  
0.596  
0.785  
0.515  
1.495  
0.949  
 0.687  
-1.424  
1.742  
0.636 
 -1.364 
 -1.593  
1.927 

 -1.577 
 -2.086  
-1.077 
 -1.551 
 -1.478 
 -1.521 
 -1.679 
 -1.716  
-1.308 
 -1.417 
 -1.609 
 -1.744  
1.504  
1.412  
1.729  
1.864  
0.720  
0.833  
0.658  
1.469  
0.953  
0.685  
-1.413  
1.708  
0.620 
 -1.350  
-1.587  
1.920 
 

0.728 
0.763 
0.698 
0.707 
0.717 
0.730 
0.738 
0.745 
0.721 
0.765 
0.733 
0.773  
0.911 
0.776 
0.818 
0.827 
1.074 
0.976 
1.404 
0.989 
1.563 
2.224 
0.628 
0.429 
0.215 
1.194 
1.320  
 1.260 

0.579 
0.602 
0.565 
0.561 
0.571 
0.590 
0.586 
0.588 
0.576 
0.612 
0.590 
0.606  
0.733 
0.621 
0.669 
0.686 
0.897 
0.810 
1.132 
0.801 
1.271 
1.806 
0.501 
0.326 
0.169 
0.996 
1.092  
1.040 
 

0.585 
0.612 
0.572 
0.568 
0.582 
0.596 
0.592 
0.602 
0.592 
0.620 
0.593 
0.619  
0.740 
0.635 
0.671 
0.688 
0.903 
0.820 
1.149 
0.801 
1.274 
1.811 
0.500 
0.331 
0.169 
1.006 
1.122  
1.058  
 

0.580 
0.598 
0.564 
0.563 
0.570 
0.582 
0.584 
0.592 
0.577 
0.612 
0.588 
0.608  
0.727 
0.617 
0.660 
0.679 
0.895 
0.813 
1.130 
0.793 
1.259 
1.791 
0.493 
0.319 
0.166 
0.995 
1.110 
1.041  
 

 

TableS5. Real data: Summary of all categorical variables 

No.     Variable                                        Description                                           Levels                    %miss 
1     T.fuel                                Energy use for cooking                                         3                                  68 
2     Cooking_loc                     Cooking location                                                   3                                  43 
3     physically_punished         Child needs to be physically                                 2                     37 
                                                 punished to be brought up properly                                                                          
4     Mother_tongue                 Mother tongue of household head                         4                                    7                                                                                 
5     Elec                                   Electricity                                                              2                                    7                                           
6     material_floor                   Main material of flooring                                      3                                    7                                  
7     material_exterior              Main material of exterior walls                             15                                  7                                                      
8     area                                   Area of Residence                                                  2                                   5                   
9     refrigrator                         Refrigerator                                                            2                                   7                      
10  wash_machine.dryer         Washing machine/ Dryer                                        2                   7 
11  A.C                                    Air conditioner                                                       2                   7 
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12  Air_cooler.fan                   Air cooler/ Fan                                                       2                    7 
13  copmuter                           Computer                                                                2                   7 
14   Radio                                Radio                                                                      2                   7 
15  no _mobile                         Non-mobile phone                                                 2                   7 
16  gas                                     Gas                                                                          2                  7 
17  water_filter                       Water filter                                                              2                   7 
18   Microwave                       Cooking range/ Micro wave                                   2                  7 
19 sew.nitt_machine               Sewing/ Knitting Machine                                      2                  7 
20  iron                                    Iron                                                                          2                 7 
21  Dunkey_pump.turbine       Dunky pump/ Turbine                                            2                7 
22  watch                                 Watch                                                                      2                7 
23  Trac_troly                          Tractor trolley                                                         2             7 
24   Bicycle                             Bicycle                                                                     2              7 
25  Animal_drawn_cart          Animal-drawn cart                                                   2              7 
26  motercycle                        Motorcycle or scooter                                              2              7 
27  boat_w_moter                   Boat with motor                                                       2              7 
28   car_or_van                       Car or Van                                                                2                    7 
29  Bus.truck                           Bus or truck                                                             2                    7 
30  mobile                               Mobile telephone                                                     2                    7 
31  soap_avilb_wash_hand     Soap or detergent present at place                           2  9 
                                                 of handwashing      
32  water_place_hand_wash   Water available at the place                                     2           9 
                                                 for handwashing  
33   gov_init_lowincome         Government initiatives are                                      2 7 
                                                  benifiting the low income groups   
34  HH_rec_remmitence          HH recieved any remittances                                  2 7 
                                                  during last year    
35  HH_rec_pension                Any HH member recieved any                                2 7 
                                                  pension benefits during last year 
36  HH_bought_utility_store    HH purchased consumable items                           2 7 
                                                  from utility store  
37  HH_rec_benif_gov             HH received any benifit from                                 2 7 
                                                  Government   
38  memb_outside.V.C.            Family member working outside                            2 7 
                                                   village/city/country                           
39  sex_head_HH                     Sex of household head                                             2                                7 
40  fam_memb_work_outside  Number of HH member working 7 
                                                  outside   
41  person_coll_water               Person collecting water                                            7                             83 
42  loc_water_source                 Location of the water source                                   2                             19 
43  bank_acc_saving_sertif       Any household member have 7 
                                                   account in Bank, PO or 
                                                   National Saving Centre 
44  HH_own_animal                 Household own any animals                                    2                               7 
45  HH_own_dwelling              Household owns the dwelling                                  3                               7 
46  treat_water_make_safe       Treat water to make safer for drinking                     2                               7 
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47  HH_own_land_agri            Any household member own land                            2  7 
                                                   that can be used for agriculture  
48  Type.of.toilet.facility           Type of toilet facility                                              13                              7                                
49   T.V.                                     Television                                                                 2 7 
“Levels” indicates number categories of categorical variables and “% mis” indicates percentage of 
missing observations in all variables. 

 

TableS6. Real data: Summary of all continuous variables 

No.       Variabels                                  Discription                                                                %miss 
1          time_inmin_get_water    Time (in minutes) to get water and come back          83 
2          no.HHmem                      Number of HH members 13 
3          T.C.age_1_17                  Total children aged 1-17 years 7 
4          no.W._15_19                   Number of women 15 - 49 years 7 
5          No_rooms_use_sleeping  Number of rooms used for sleeping  7 
6          no.C._und5                       Number of children under age 5 7 
7          hhweight                           Household sample weight  0 
8          stweight                            Salt testing’s sample weight 0 
 “% mis” indicates percentage of missing observations in all variables 

 

FigureS1. Schematic diagram illustrating the proposed hybrid architecture 1 
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FigureS2. Schematic diagram illustrating the proposed hybrid architecture 2 
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FigureS3. Simulated data: Boxplots of point estimates for coefficients 𝑋𝑏1, 𝑋𝑏2  , 𝑋𝑏3 , 𝑋𝑏4 , 𝑋𝑏5 , 

𝑋𝑏6under various MI methods over 1000 simulations 
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FigureS4. Simulated data: Boxplots of point estimates for coefficients 𝑋𝑏7, 𝑋𝑏8  , 𝑋𝑏9 , 𝑋𝑏10 , 𝑋𝑏11 , 

𝑋𝑏12under various MI methods over 1000 simulations 
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FigureS5. Simulated data: Boxplots of point estimates for coefficients 𝑋𝑏13, 𝑋𝑏14  , 𝑋𝑏15 , 𝑋𝑏16 , 

𝑋𝑏17 , 𝑋𝑏18under various MI methods over 1000 simulations 
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FigureS6. Simulated data: Boxplots of point estimates for coefficients 𝑋𝑏19, 𝑋𝑏20  , 𝑋𝑏21 , 𝑋𝑏22 , 

𝑋𝑏23 , 𝑋𝑏24   under various MI methods over 1000 simulations 
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FigureS7. Simulated data: Boxplots of point estimates for coefficients 𝑋𝑏25, 𝑋𝑏26  , 𝑋𝑏27 , 𝑋𝑏28 , 

𝑋𝑏29 , 𝑋𝑏30   under various MI methods over 1000 simulations 
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FigureS8. Simulated data: Boxplots of point estimates for coefficients 𝑋𝑏31, 𝑋𝑚1_2 , 
𝑋𝑚1_3 , 𝑋𝑚1_4 ,𝑋𝑚1_5 , 𝑋𝑚1_6  under various MI methods over 1000 simulations 
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FigureS9. Simulated data: Boxplots of point estimates for coefficients 𝑋𝑚2_2 ,𝑋𝑚2_3 ,𝑋𝑚2_4 ,Xb32, 
𝑋𝑛1 , 𝑋𝑛2 under various MI methods over 1000 simulations 
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FigureS10. Simulated data: Boxplots of point estimates for coefficients 𝑋𝑏9 𝑋𝑏15 , 𝑋𝑏1 𝑋𝑏17  

𝑋𝑏13 𝑋𝑏30 under various MI methods over 1000 simulations 
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FigureS11. Simulated data: Boxplots of standard errors for coefficients 𝑋𝑏1, 𝑋𝑏2  , 𝑋𝑏3 , 𝑋𝑏4 , 𝑋𝑏5 , 

𝑋𝑏6under various MI methods over 1000 simulations 
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FigureS12. Simulated data: Boxplots of standard errors for coefficients 𝑋𝑏7, 𝑋𝑏8  , 𝑋𝑏9 , 𝑋𝑏10 , 𝑋𝑏11 , 

𝑋𝑏12under various MI methods over 1000 simulations 
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FigureS13. Simulated data: Boxplots of standard errors for coefficients 𝑋𝑏13, 𝑋𝑏14  , 𝑋𝑏15 , 𝑋𝑏16 , 

𝑋𝑏17 , 𝑋𝑏18under various MI methods over 1000 simulations 
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FigureS14. Simulated data: Boxplots of standard errors for coefficients 𝑋𝑏19, 𝑋𝑏20  , 𝑋𝑏21 , 𝑋𝑏22 , 

𝑋𝑏23 , 𝑋𝑏24   under various MI methods over 1000 simulations  
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FigureS15. Simulated data: Boxplots of standard errors for coefficients 𝑋𝑏25, 𝑋𝑏26  , 𝑋𝑏27 , 𝑋𝑏28 , 

𝑋𝑏29 , 𝑋𝑏30   under various MI methods over 1000 simulations  
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FigureS16. Simulated data: Boxplots of standard errors for coefficients 𝑋𝑏31, 𝑋𝑚1_2 , 
𝑋𝑚1_3 , 𝑋𝑚1_4 ,𝑋𝑚1_5 , 𝑋𝑚1_6  under various MI methods over 1000 simulations 
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FigureS17. Simulated data: Boxplots of standard errors for coefficients 𝑋𝑚2_2 ,𝑋𝑚2_3 ,𝑋𝑚2_4 ,Xb32, 
𝑋𝑛1 , 𝑋𝑛2 under various MI methods over 1000 simulations  
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FigureS18. Simulated data: Boxplots of standard errors for coefficients 𝑋𝑏9 𝑋𝑏15 , 𝑋𝑏1 𝑋𝑏17 , 
𝑋𝑏13 𝑋𝑏30 under various MI methods over 1000 simulations 

 

FigureS19. Real data: Aggregate plots in R, graphics of incomplete variables i.e. 
"HH_own_dwelling,"HH_own_land_agri","Type.of.toilet.facility”,"HH_own_animal","treat_wa
ter_make_safe", "bank_acc_saving_sertif","loc_water_source","person_coll_water" 
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 FigureS20. Real data: Aggregate plots in R, graphics of incomplete variables i.e. "mobile 
","Bicycle","motercycle","Amimal_drawn_cart","Bus.truck","boat_w_moter","car_or_van","Tra
c_troly" 

 

FigureS21. Real data: Aggregate plots in R, graphics of incomplete variables i.e. "Radio", 
"no_mobile", refrigrator","gas"," copmuter ", "A.C", "wash_machine.dryer ", "Air_cooler.fan" 
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 FigureS22. Real data: Aggregate plots in R, graphics of incomplete variables i.e. “Microwave", 
"sew.nitt_machine ","iron", "water_filter", "Dunkey_pump.turbine ", "watch” 

 

 

FigureS23.Real data: Aggregate plots in R, graphics of incomplete variables i.e. 
"memb_outside.V.C.","HH_rec_remmitenc","HH_rec_pension","HH_rec_benif_gov","HH_bou
ght_utility_store","gov_init_lowincome","water_place_hand_wash","soap_avilb_wash_hand" 
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FigureS24. Real data: Aggregate plots in R, graphics of incomplete variables i.e. "area", 
"physically_punished","Mother_tongue","material_floor","material_exterior","T.fuel","Cooking
_loc","Elec" 

 

 

FigureS25. Real data: Aggregate plots in R, graphics of incomplete variables i.e."no.HHmem", 
"no.W._15_19","no.C._und5","T.C.age_1_17","No_rooms_use_sleeping","time_inmin_get_wat
er", "hhweight", "stweight" 
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