

BEHAVIOUR OF UNDER-REINFORCED SHALLOW FIBROUS CONCRETE BEAMS SUBJECTED TO PURE TORSION

FERHAD RAHIM KARIM

UNIVERSITI SAINS MALAYSIA

2016

BEHAVIOUR OF UNDER-REINFORCED SHALLOW FIBROUS CONCRETE BEAMS SUBJECTED TO PURE TORSION

by

FERHAD RAHIM KARIM

Thesis submitted in fulfillment of the requirements

for the degree of

Doctor of Philosophy

December 2016

ACKNOWLEDGEMENTS

I wish to express my profound gratitude to Allah for his protection and infinite mercy from the beginning of my journey till now. I would most like to express my deepest gratitude to my supervisors; Prof. Dr. Badorul Hisham Abu Bakar, Assoc. Prof. Dr. Choong Kok Keong and Prof. Dr. Omar Qarani Aziz for all their help during the research.

Special thanks are due to the Ministry of High Education in Kurdistan –Iraq for its financial support and my sincere thanks also goes to Mr. Fauzi, Mr. Abdullah, Mr. Fadzil and Mr. Shahril for their special help during the experiment and who gave access to the laboratory and research facilities.

Last but not the least, I would like to thank my family: my lovely wife, my lovely father and mother and my father and mother in law for supporting me spiritually throughout this study and my life in general. My sincere thanks also goes to my lovely son.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	xii
LIST OF FIGURES	xix
LIST OF PLATES	xxxi
LIST OF SYMBOLS	xxxix
LIST OF ABBREVIATIONS	xlvii
ABSTRAK	xlix
ABSTRACT	1
CHAPTER ONE: INTRODUCTION	
1.1 An overview	1
1.2 Background	3
1.3 Problem statements	6
1.4 Research objectives	11
1.5 Scope of work	11
1.6 Thesis outline	11
CHAPTER TWO: LITERATURE REVIEW	
2.1 Steel fibre reinforced concrete	14
2.1.1 Introduction	14
2.1.2 Failure mechanism	15

	2.1.3 Shape of steel fibre	15
	2.1.4 Limitation to add fibre in concrete	16
	2.1.5 Classification of concrete	17
	2.1.6 Mechanical properties of steel fibre reinforced concrete	17
	2.1.7 Ultra-high performance fibre reinforced concrete	18
2.2	Fibrous concrete beams under pure torsion	19
	2.2.1 Theories for analysis of beams under pure torsion	19
	2.2.1 (a) Pre-cracking stage	20
	2.2.1 (b) Post-cracking stage	23
	2.2.2 Experimental works on plain and under-reinforced fibrous concrete beams	27
	2.2.2 (a) Plain fibrous concrete beams under pure torsion	29
	2.2.2 (b) Under-reinforced fibrous concrete beams under pure torsion	38
2.3	Summary	47
СН	APTER THREE: METHODOLOGY	

3.1	Introduction	50
3.2	Selection of materials	50
	3.2.1 Cement	52
	3.2.2 Silica fume	54
	3.2.3 Silica flour	54
	3.2.4 Silica sand	56
	3.2.5 Quartz sand	56
	3.2.6 Crushed stone pebbles	57

3.2.7 Admixtures	58
3.2.8 Mixing water	58
3.2.9 Copper micro steel fibre	59
3.2.10 Steel reinforcement	59
3.2.11 Concrete spacer	60
3.3 Mixing detail	61
3.3.1 Mix proportion	61
3.3.1 (a) Mix proportion of steel fibre normal strength concrete	61
3.3.1 (b) Mix proportion of steel fibre high strength concrete	61
3.3.1 (c) Mix proportion of ultra-high performance fibre reinforced concrete	62
3.3.2 Mixing method	67
3.3.2 (a) Procedure of mixing for fibrous normal and high strength concrete	67
3.3.2 (b) Procedure of mixing ultra-high performance fibre reinforced concrete beams	67
3.3.3 Casting and curing	69
3.3.3 (a) Casting and curing of fibrous normal and high strength concrete beams	69
3.3.3 (b) Casting and curing of ultra-high performance fibre reinforced concrete beams	69
3.4 Testing of under-reinforced fibrous normal and high strength concrete	71
3.4.1 Properties of fibrous normal and high strength concrete	71
3.4.1 (a) Compressive test for cylinder	71
3.4.1 (b) Compressive test for cubes	72
3.4.1 (c) Splitting tensile test	72

3.4.1 (d) Flexural test	74
3.4.1 (e) Ultrasonic pulse velocity test	76
3.4.1 (f) Pull-out test	76
3.4.2 Properties of ultra-high performance fibre reinforced concrete	77
3.4.2 (a) Compressive test for cubes	78
3.4.2 (b) Split tensile test	78
3.4.2 (c) Flexural test	80
3.4.2 (d) Ultrasonic pulse velocity test	80
3.4.2 (e) Pull-out test	81
3.4.3 Detail of the under-reinforced fibrous concrete beams	81
3.4.3 (a) Beam basic dimensions	82
3.4.3 (b) Details of reinforcement	83
3.4.4 Detail of the arms in fibrous concrete beams	84
3.4.5 Fabrication of under-reinforced fibrous concrete beams	84
3.4.6 Curing of under reinforced fibrous concrete beams	99
3.4.6 (a) Curing of fibrous normal and high strength concrete beams	99
3.4.6 (b) Curing of ultra-high performance fibre reinforced concrete beams	100
3.4.7 Test measurements and instrumentations	100
3.4.7 (a) Load measurements	101
3.4.7 (b) Twisting angle measurement	107
3.4.7 (c) Concrete strain measurement	108
3.4.7 (d) Concrete cover measurement	109

3.4.7 (e) Reinforcement steel strain measurements	10
3.4.7 (f) Preparation and installation of the LVDT on the concrete surface	10
3.4.7 (g) Preparation and installation of the strain gauges on the concrete surface	11
3.4.7 (h) Preparation and installation of the strain gauges on the steel reinforcement	12
3.4.7 (i) Loading structure	12
3.4.7 (j) Supports 1.	12
3.5 Testing procedure 1	12
3.6 Summary	17

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1 Introduction	118
4.2 Mechanical properties of fibrous concrete	118
4.2.1 Mechanical properties of under-reinforced fibrous normal strength concrete beams	118
4.2.2 Mechanical properties of under-reinforced fibrous high strength concrete beams	118
4.2.3 Mechanical properties of under-reinforced ultra-high performance fibre reinforced concrete beams	119
4.3 Bond strength between reinforcements and fibrous concrete matrixes	120
4.4 Under-reinforced fibrous concrete beams	120
4.4.1 Under-reinforced fibrous normal strength concrete beams	121
4.4.1 (a) Effect of additional reinforcements in the idealized core zone	122
4.4.1 (b) Effect of concrete cover thickness on torsional strength	139

4.4.1 (c) Effect of reinforcement indexes and bond strength between reinforcements and fibrous normal strength concrete	153
4.4.2 Under-reinforced fibrous high strength concrete beams	168
4.4.2 (a) Effect of additional reinforcements in the idealize core zone	168
4.4.2 (b) Effect of concrete cover thickness on torsional strength	185
4.4.2 (c) Effect of reinforcement indexes and bond strength between reinforcements and fibrous high strength concrete	201
4.4.3 Under-reinforced ultra-high performance fibre reinforced concrete beams	217
4.4.3 (a) Effect of additional reinforcements in the idealized core zone	218
4.4.3 (b) Effect of concrete cover thickness on torsional strength	235
4.4.3 (c) Effect of reinforcement indexes and bond strength between reinforcements and ultra-high performance fibre reinforced concrete	252
4.5 Summary	267

CHAPTER FIVE: THEORETICAL ANALYSIS

5.1 Introduction	268
5.2 Modification of space truss analogy theory	269
5.2.1 Introduction	269
5.2.2 Contribution of reinforcements in the idealized core zone to resist torsion	271
5.2.3 Contribution of extra thickness of concrete cover to the torsional resistance	277
5.2.3 (a) Torsional resistance provided by idealized solid section	280

5.2.3 (b) Torsional resistance provided by idealized hollow section	283
5.2.4 Contribution of bond strength to resist torsion	284
5.2.4 (a) Contribution of bond strength of transverse reinforcements	284
5.2.4 (b) Contribution of bond strength of longitudinal reinforcement to resist torsion	288
5.3 Dimensional analysis	290
5.3.1 Introduction	290
5.3.2 The advantages and limitations of using dimensional analysis	290
5.3.3 The Buchingham П-technique	291
5.3.3 (a) Prediction of torsional resistance at crack load	293
5.3.3 (b) Prediction of torsional resistance provided by reinforcement and fibre after cracking	300
5.3.3 (c) Prediction of torsional resistance provided by reinforcement and fibre including the effect of bond strength of reinforcement in fibrous concrete	309
5.3.3 (d) Prediction of bond strength of reinforcement in fibrous concrete	319
5.3.3 (e) Prediction of minimum spacing between spiral cracks	322
5.4 Evaluation of proposed equations	329
5.4.1 Prediction of torsional resistance at crack load in fibrous normal strength concrete beams under pure torsion	329
5.4.2 Prediction of torsional resistance at crack load in fibrous high strength concrete beams under pure torsion	330
5.4.3 Prediction of torsional resistance at crack load in ultra-high performance fibre reinforced concrete beams under pure torsion	337
5.4.4 Prediction of torsional resistance provided by reinforcements and fibres in fibrous normal strength concrete beams under pure torsion	340

ar	rediction of torsional resistance provided by reinforcements and fibres in fibrous high strength concrete beams under pure prsion	343
ar	rediction of torsional resistance provided by reinforcements and fibres in ultra-high performance fibre reinforced concrete eams under pure torsion	344
th	quation based on modified space truss analogy to contribute the inclusion of reinforcements in the idealized core zone for esisting torsional moment	347
	quation based on modified space truss analogy to contribute the thickness of concrete cover for resisting torsional moment	348
tru re	quations based on dimensional analysis and modified space uss analogy to contribute bond strength between sinforcements and matrix of fibrous concrete for resisting prisonal moment	350
5.5 Summar	ry	351

CHAPTER SIX: CONCLUSIONS AND RECOMMENDATIONS

6.1	Conclusions	352
6.2	Recommendations for future works	354

355

REFERENCES

APPENDICES

Appendix A	Mix proportion for fibrous normal strength concrete
Appendix B	Mix proportion for fibrous high strength concrete
Appendix C	Mix proportion for ultra-high performance fibre reinforced concrete
Appendix D	Sample of design calculation
Appendix E	Contribute of additional reinforcement in the idealize core zone to resist torsion
Appendix F	Contribute of thickness of concrete cover to resist torsion
Appendix G	Contribute of bond strength between reinforcements and fibrous concrete to resist torsion

- Appendix H Under- reinforced shallow fibrous normal strength concrete beams under pure torsion
- Appendix I Under- reinforced shallow fibrous high strength concrete beams under pure torsion
- Appendix J Under- reinforced shallow ultra-high performance fibre reinforced concrete beams under pure torsion

LIST OF PUBLICATIONS

KELAKUAN RASUK GENTIAN KONKRIT CETEK BERTETULANG KURANGAN DI BAWAH KILASAN TULEN

ABSTRAK

Rintangan kilasan untuk rasuk gentian konkrit cetek kurangan-tetulang di bawah pengaruh zon tegangan unggul, ketebalan penutup konkrit, ikatan kekuatan dan indek tetulang telah dikaji. Sehingga ini, sumbangan zon tegangan unggul dan penutup konkrit untuk merintangi kilasan berdasarkan tiub berdinding nipis, analogi kekuda ruang telah diabaikan. Dalam kajian ini, tigapuluh (30) rasuk gentian konkrit cetek kurangan-tetulang telah disediakan dan diuji di bawah kilasan tulin. Didapati rintangan kilasan pada beban puncak telah bertambah baik disebabkan kemasukan tetulang tambahan pada luas keratan zon tegangan unggul, penambahbaikan ikatan kekuatan tetulang membujur dan matrik gentian konkrit dan pengurangan dalam indek tetulang. Dalam pada itu, rintangan kilasan pada beban puncak dan keretakan ditambah baik hasil daripada penebalan penutup konkrit. Walau pun keterikan tetulang membujur memberi kesan terhadap bilangan keretakan pada rasuk gentian konkrit pada kegagalan, didapati indek tetulang dan ikatan kekuatan dipengaruhi sudut kecondongan keretakan pada kegagalan. Analisis dimensi dan model kekuda ruang yang sedia wujud telah diubahsuai untuk mencadangkan satu pendekatan baru bagi membuktikan kesan kemasukan tetulang tambahan pada zon tegangan unggul, ketebalan penutup konkrit dan ikatan kekuatan tetulang bagi rasuk konkrit gentian terhadap kapasiti kilasan. Kesimpulannya, kajian ini telah membuktikan sumbangan parameter-parameter yang disebut di atas dan rumusan-rumusan yang dicadangkan untuk meramal rintangan kilasan pada retak dan beban puncak adalah munasabah dengan dapatan.

BEHAVIOUR OF UNDER-REINFORCED SHALLOW FIBROUS CONCRETE BEAMS SUBJECTED TO PURE TORSION

ABSTRACT

Torsional resistance of under-reinforced shallow fibrous concrete beams with the influence of the idealized core zone, thickness of concrete cover, bond strength and reinforcement indexes were investigated. Up-to-date, the contribution of the idealized core zone area and thickness of concrete cover to resist torsion based on thin-walled tube, space truss analogy have been ignored. In this investigation, thirty samples (30) of under-reinforced shallow fibrous concrete beams were prepared and tested under pure torsion. As a result, the torsional resistance of peak load was improved due to additional reinforcements in the idealized core zone area of the section, enhancement of bond strength between longitudinal reinforcement and fibrous concrete matrix, and reduction in the reinforcement indexes. Meanwhile, the torsional resistance at the crack and peak loads were improved due to thickening of concrete cover. Although the strain in longitudinal reinforcement was effected on crack number in fibrous concrete beams at failure, the reinforcement indexes and their bond strength in fibrous concrete were found to influence on the inclination angle of the crack at failure. The dimensional analysis and space truss model based on the established models were modified to propose a new approach for proving the effect of additional reinforcements in the idealized core zone, thickness of concrete cover and bond strength of embedded reinforcement in fibrous concrete on the torsional capacity of the beam. In conclusion, this study has proven the contribution of all the above mentioned parameters and the proposed equations for predicting torsional resistance at crack and peak loads are reasonably agreed with the results.

LIST OF TABLES

Table 2.1	Range of proportions of normal weight fibre reinforce concrete (ACI544.1-08, 2011)	17
Table 3.1	Physical properties of cement	53
Table 3.2	Chemical compositions of the Tasek cement ⁺	53
Table 3.3	Physical properties of silica fume	54
Table 3.4	Particle size analysis of silica flour	55
Table 3.5	Physical properties of silica flour	55
Table 3.6	Chemical compositions of silica flour	55
Table 3.7	Grading of silica sand	56
Table 3.8	Physical properties of silica sand (ASTM-C29/C29M 2009; ASTM-C70 2006; ASTM C566 2004)	56
Table 3.9	Grading of quartz sand A and B	57
Table 3.10	Physical properties of quartz sand A and B (ASTM-C29/C29M 2009; ASTM-C70 2006)	57
Table 3.11	Physical properties of crushed stone pebbles (ASTM-C127 2007)	57
Table 3.12	Grading of crushed stone	58
Table 3.13	Physical properties of admixture	58
Table 3.14	Properties of copper coated micro steel fibre	59
Table 3.15	Engineering properties of steel reinforcement	60
Table 3.16	Detail of plastic wheel spacers	60
Table 3.17	Mix proportion of fibrous normal strength concrete	62
Table 3.18	Mix proportion of fibrous high strength concrete	62
Table 3.19	Mix proportion of ultra-high performance fibre reinforced concrete	63

Table 3.20	Denotation of fibrous under-reinforced concrete beams	82
Table 3.21	Design dimension of fibrous under-reinforced concrete beams	83
Table 3.22	Dimensions of the arms for all type of beams A, B, C and D	83
Table 3.23	Measured dimensions of fibrous normal strength concrete beams	89
Table 3.24	Measured dimensions of fibrous high strength concrete beams	89
Table 3.25	Measured dimensions of ultra-high performance fibre reinforced concrete beams	90
Table 3.26	Detail of main reinforcement in fibrous normal and high strength concrete beams	90
Table 3.27	Detail of main reinforcement in ultra-high performance fibre reinforced concrete beams	91
Table 3.28	Detail of additional reinforcement in core zone in fibrous normal, fibrous high strength and ultra-high performance fibre reinforced concrete beams	91
Table 3.29	Details of reinforcements in the arms for all type of beams A, B, C and D	99
Table 4.1	Mechanical properties of fibrous normal strength	119
Table 4.2	Mechanical properties of fibrous high strength under- reinforced concrete beams	119
Table 4.3	Mechanical properties of under-reinforced ultra-high performance fibre reinforced concrete beams	120
Table 4.4	Bond strength between reinforcement and fibrous concrete mixtures	121
Table 4.5	Torsional moment and twisting angle at cracking and ultimate loads in fibrous normal strength concrete beams	122
Table 4.6	Ratio of area covered by full reinforcement in the idealized core zone in uncracked section	123
Table 4.7	Ratio of area covered by full reinforcement in the idealized core zone in cracked section	123

Table 4.8	Stiffness of the beam sections based on elastic theory (Fang and Shiau, 2004)	127
Table 4.9	Calculated shear strain in concrete based on Rosette method (Philpot, 2011)	127
Table 4.10	Strain in longitudinal and transverse reinforcements at ultimate loads	129
Table 4.11	Detail of spiral cracks in fibrous normal strength concrete beams	131
Table 4.12	Detail of effective depth of concrete strut before and after cracking	140
Table 4.13	Stiffness of fibrous normal strength concrete beams in group C before and after cracking	142
Table 4.14	Shear strain in concrete and strain in reinforcements at cracking and ultimate loads	144
Table 4.15	Detail of cracks in fibrous normal strength concrete group C	146
Table 4.16	Properties of the reinforcements in fibrous normal strength concrete beams	153
Table 4.17	Stiffness of fibrous concrete before and after cracking	155
Table 4.18	Shear strain in concrete at cracking and ultimate loads	157
Table 4.19	Strain in transverse and longitudinal reinforcements at ultimate and yield points	158
Table 4.20	Yield stress in transverse and longitudinal reinforcements in concrete and bare steel reinforcement in tension test	159
Table 4.21	Detail of spiral cracks in fibrous normal strength concrete beams group D	160
Table 4.22	Torsional moment and twisting angle at cracking and ultimate loads in fibrous high strength concrete beams	169
Table 4.23	Ratio of area covered by full reinforcement in idealized core zone for uncracked section	169
Table 4.24	Twisting angle at ultimate and cracking loads	173
Table 4.25	Shear strain in concrete at cracking and ultimate loads	174

Table 4.26	Strain in longitudinal and transverse reinforcements in idealized shear flow and core zones	175
Table 4.27	Detail of spiral cracks in fibrous high strength concrete beams group B	178
Table 4.28	Detail of effective depth of concrete strut before and after cracking	185
Table 4.29	Twisting angle at cracking and ultimate loads	189
Table 4.30	Uncracked and cracked stiffness of fibrous high strength concrete beams	189
Table 4.31	Strain in fibrous concrete before cracking	191
Table 4.32	Strain in fibrous concrete at ultimate load	191
Table 4.33	Strain in reinforcements at crack load	193
Table 4.34	Strain in reinforcements at ultimate load	193
Table 4.35	Detail of spiral cracks in fibrous high strength concrete beam group C	194
Table 4.36	Detail of steel bar reinforcements	201
Table 4.37	Stiffness of the section at crack and peak loads	203
Table 4.38	Strain in fibrous high strength concrete at crack and ultimate loads	206
Table 4.39	Value of yield stress of the reinforcements in fibrous concrete and tensile test	208
Table 4.40	Detail of cracks in fibrous high strength concrete group D	210
Table 4.41	Measured and calculated inclination of crack at failure	210
Table 4.42	Torsional moment and twisting angle at cracking and ultimate loads in the ultra-high performance fibre reinforced concrete beams	217
Table 4.43	Ratio of area covered by full reinforcement inside of idealized core zone in uncracked section	218
Table 4.44	Twisting angle at ultimate and cracking loads	221
Table 4.45	Strain in ultra-high performance fibre reinforced concrete	222

Table 4.46	Strain in main and secondary transverse and longitudinal reinforcements at crack and peak loads in ultra-high performance fibre reinforced concrete beams	226
Table 4.47	Detail of cracks in ultra-high performance fibre reinforced concrete beams in group B	227
Table 4.48	Measured and predicted inclination of crack at failure in ultra-high performance fibre reinforced concrete beams in group B	227
Table 4.49	Detail of effective depth of concrete strut before and after cracking for ultra-high performance fibre reinforced concrete beams group C	235
Table 4.50	Twisting angle at cracking and ultimate loads	240
Table 4.51	Strain in ultra-high performance fibre reinforced concrete group C at crack and peak loads	242
Table 4.52	Strain in reinforcements at crack load	244
Table 4.53	Strain in reinforcements at ultimate load	244
Table 4.54	Detail of cracks in ultra-high performance fibre reinforced concrete beams in group C	244
Table 4.55	Measured and predicted inclination of crack at failure in ultra-high performance fibre reinforced concrete beams in group C	245
Table 4.56	Detail of steel bar reinforcements in ultra-high performance fibre reinforced concrete beams group D	252
Table 4.57	Bond strength and strain in reinforcements at peak load	255
Table 4.58	Twisting angle at cracking and peak loads	256
Table 4.59	Strain in ultra-high performance fibre reinforced concrete group D at crack and peak loads	258
Table 4.60	Value of yield stress of reinforcements in ultra-high performance fibre reinforced concrete and tensile test	260
Table 4.61	Detail of cracks in ultra-high performance fibre reinforced concrete beams in group D	261
Table 4.62	Measured and predicted inclination of crack at failure in ultra-high performance fibre reinforced concrete beams in group D	261

Table 5.1	Methods of analysis of under-reinforced fibrous concrete beams for resisting torsion	269
Table 5.2	Torsional resistance provided by idealized solid and hollow section	279
Table 5.3	Principal tensile stress prior to cracking versus square root of compressive strength	281
Table 5.4	Primary dimension in MLT and FLT systems of variables in $\{V\}$ which influence on cracking torsional resistance in fibrous normal strength concrete beams	294
Table 5.5	Primary dimension in MLT and FLT systems of variables in $\{V\}$ which influence on cracking torsional resistance in fibrous high strength concrete beams	296
Table 5.6	Primary dimension in MLT and FLT systems of variables in {V} which influence on cracking torsional resistance in ultra-high performance fibre reinforced concrete beams	298
Table 5.7	Primary dimension in MLT and FLT systems of variables in {V} which influence on torsional resistance provided by reinforcement and fibre in fibrous normal strength concrete beams	301
Table 5.8	Primary dimension in MLT and FLT systems of variables in $\{V\}$ which influence on torsional resistance provided by reinforcement and fibre in fibrous high strength concrete beams	304
Table 5.9	Primary dimension in MLT and FLT systems of variables in $\{V\}$ which influence on torsional resistance provided by reinforcement and fibre in ultra-high performance fibre reinforced concrete beams	307
Table 5.10	Primary dimension in MLT and FLT systems of variables in $\{V\}$ which influence on torsional resistance provided by reinforcement and fibre in fibrous normal strength concrete beams including the effect of bond strength	310
Table 5.11	Primary dimension in MLT and FLT systems of variables in $\{V\}$ which influence on torsional resistance provided by reinforcement and fibre in fibrous high strength concrete beams including the effect of bond strength	313

Table 5.12	Primary dimension in MLT and FLT systems of variables in $\{V\}$ which influence on torsional resistance provided by reinforcement and fibre in ultra-high performance fibre reinforced concrete beams including the effect of bond strength	317
Table 5.13	Primary dimension in MLT and FLT systems of variables in $\{V\}$ which influence on the bond strength between reinforcement and matrix of fibrous concrete	320
Table 5.14	Primary dimension in MLT and FLT systems of variables in {V} which influence on spacing between spiral cracks in fibrous normal strength concrete beams	323
Table 5.15	Primary dimension in MLT and FLT systems of variables in {V} which influence on spacing between spiral cracks in fibrous high strength concrete beams	326
Table 5.16	Comparing cracking torsional moment in fibrous normal strength concrete beams under pure torsion by various proposed equations	330
Table 5.17	Comparing cracking torsional moment in fibrous high strength concrete beams under pure torsion by various proposed equations	330
Table 5.18	Comparing cracking torsional moment in ultra-high performance fibre reinforced concrete beams under pure torsion by various proposed equations	337
Table 5.19	Comparing measured torsional resistance provided by reinforcement and fibre in fibrous normal strength concrete beams under pure torsion by various proposed equations	340
Table 5.20	Comparing measured torsional resistance provided by reinforcement and fibre in fibrous high strength concrete beams under pure torsion with predicted values by proposed equations	343
Table 5.21	Comparing measured torsional resistance provided by reinforcement and fibre in ultra-high performance fibre reinforced concrete beams under pure torsion with predicted values by proposed equations	345

LIST OF FIGURES

Page

Figure 1.1	Example of statically determinate torsional moment (ACI 318M-14, 2015)	2
Figure 1.2	Example of statically indeterminate torsional moment (ACI 318M-14, 2015)	2
Figure 1.3	Idealized shear flow and core zones in space truss model at pre-cracking stage	3
Figure 1.4	Diagonal compression strut in space truss model (ACI318M-14, 2015)	4
Figure 1.5	Shear stress in concrete section before and after cracking (Prabaghar and Kumaran, 2011)	5
Figure 1.6	Idealized shear flow and core zones in space truss model at post-cracking stage	6
Figure 1.7	Idealized shear flow and core zones in space truss model (Nilson et al., 2004)	8
Figure 1.8	Spalling of corners of beams loaded in torsion (ACI318M- 14, 2015)	9
Figure 1.9	Effect of conical bond action on the stress in the reinforcement (Maekawa et al., 2003)	10
Figure 2.1	Load versus deflection curve for unreinforced and fibrous concrete (ACI544.1R-96)	15
Figure 2.2	Failure mechanism and effect of fibre (IB 39, 2015)	16
Figure 2.3	Different shapes of steel fibre (IB 39, 2015)	16
Figure 2.4	Member of circular section subjected to torsion (O'Brien and Dixon, 1995)	21
Figure 2.5	Member of rectangular section subjected to torsion (O'Brien and Dixon, 1995)	21
Figure 2.6	Hipped roof surface for a rectangular section beams (Allen, 1988)	22

Figure 2.7	Inclined failure of plain concrete beams (Buyukozturk, 2004)	23
Figure 2.8	Forces acting on skew-bending failure section (Chu-Kia <i>et al.</i> , 2007)	24
Figure 2.9	Idealized thin-walled tube after cracking (Nilson et al., 2004)	26
Figure 2.10	Distribution of shear stress inside of the beam section during torsion (Wight and MacGregor, 2009)	26
Figure 3.1	Flow chart of experimental work	51-52
Figure 3.2	Flow chart of trial mix procedure in SFNSC and SFHSC	64
Figure 3.3	Flow chart of trial mix procedure in UHPFRC	65-66
Figure 3.4	Mixing procedure in fibrous concrete	68
Figure 3.5	Layout and the dimension of cross-section in fibrous concrete beams type A with arms	85
Figure 3.6	Layout and the dimension of the cross-section in fibrous concrete beams type B with arms	86
Figure 3.7	Layout and the dimension of cross-section in fibrous concrete beams type C with arms	87
Figure 3.8	Layout and the dimension of cross-section in fibrous concrete beams type D with arms	88
Figure 3.9	Detail of reinforcement in concrete beams in group B	92
Figure 3.10	Detail of reinforcement in concrete beams in group C	93
Figure 3.11	Detail of reinforcement in concrete beams in group D	94
Figure 3.12	Longitudinal section of fibrous normal and high strength concrete beams in groups C and D	95
Figure 3.13	Longitudinal section of UHPFRC beams in groups C and D	95