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KONSENSUS KERJASAMA PERSETEMPATAN DAN PEMETAAN 

SERENTAK UNTUK SISTEM BERBILANG KAPAL UDARA 

ABSTRAK 

Navigasi dalam persekitaran lautan dengan sedikit ciri-ciri statik dan menggunakan 

dinamik air sebagai latar belakang adalah bidang yang mencabar untuk diterokai oleh 

sistem berbilang ejen. Ini adalah kerana wujud pengukuran yang tidak seragam di 

permukaan lautan kerana pengagihan ciri spatial yang kerap berubah-ubah. Oleh itu, 

adalah wajar untuk mereka bentuk satu rangka kerja kerjasama persetempatan dan 

pemetaan yang mampu untuk mengendalikan pengukuran palsu, mengurangkan 

ketidaktentuan persetempatan ejen dan mampu mencapai keputusan yang cepat dan 

baik. Objektif utama kajian ini adalah untuk mereka bentuk satu keedah kerjasama 

persetempatan dan pemetaan serentak untuk berbilang kapal udara yang melibatkan 

permukaan air yang dinamik sebagai latar belakang dan konsensus kawanan kecil 

sebagai kaedah keputusan kumpulan. Rangka kerja koperasi yang baru bagi sistem 

berbilang kapal udara yang terdiri daripada tiga kapal udara dan pelampung isyarat 

telah dibangunkan dan direka bagi tujuan ini. Algoritma persetempatan dan pemetaan 

serentak telah direka dengan menyatupadukan tiga kaedah iaitu Penapis Kalman 

Lanjutan, Pengubah Ciri Peningkatan Skala dan Petunjuk Kekuatan Isyarat Penerima 

bagi meningkatkan proses pengurusan data. Persepsi arah dalam kumpulan 

berdasarkan konsensus kawanan haiwan kecil telah digunakan dalam proses 

pengurusan data. Konsensus kerjasama persetempatan dan pemetaan serentak ini, 

didapati telah berjaya mengurangkan bilangan dan mengesan ciri-ciri yang 

dikehendaki dalam persekitaran air jernih dan keruh. Di samping itu, berdasarkan 

penandaarasan konsensus kerjasama, kaedah ini telah berjaya mencapai persetujuan 
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yang lebih cepat sehingga 8.3% dan 42% berbanding model skala bebas dan model 

klemm-eguilez. Selain itu, ketepatan arah telah ditemui bertambah baik sehingga 30% 

dan 76% daripada model skala bebas dan model klemm-eguilez. Secara keseluruhan, 

pendekatan yang dicadangkan telah mencapai keputusan yang baik dan terbukti boleh 

dipercayai dengan ketara dan boleh dilaksanakan di dalam sistem pemantauan 

pemerhatian lautan. 
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COOPERATIVE CONSENSUS SIMULTANEOUS LOCALIZATION AND 

MAPPING USING MULTI BLIMP SYSTEM 

ABSTRACT 

Navigation in an ocean environment with few static features and dynamic water 

background is an adventurous field to be explored by multi-agent system. This is 

because of its non-uniform availability of measurement on the ocean surface since the 

spatial feature distribution is greatly varied. Thus, it is desirable to design a cooperative 

localisation and mapping framework that is capable to handle spurious detection, 

reduce the localisation uncertainty of an agent and achieve fast and good decision. The 

main objective of this research is to design a cooperative simultaneous localisation and 

mapping method for multi blimp system involving the dynamic water surface as the 

background and small flock consensus as the group decision method. A new 

cooperative framework for the multi blimp system consisting of three blimps and 

buoys was developed and designed for this purpose. The simultaneous localisation and 

mapping were designed by integrating three methods which are the Extended Kalman 

Filter, the enhanced Scale Invariant Feature Transform and Received Signal Strength 

Indicator to improve the data association process. The group perception of direction 

based on small flock of animal consensus was taken into the data association process. 

It was discovered that this cooperative consensus simultaneous localisation and 

mapping was able to reduce the number of feature points and detect the desired features 

in clear and dark water environments. In addition, based on cooperative consensus 

benchmarking, this method was able to achieve faster consensus to up to 8.3 % and 42 

% than the scale free model and klemm-eguilez model respectively. On top of these, 

its heading accuracy was found to be more accurate to up to 30 % and 76 % than the 
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