COOPERATIVE CONSENSUS SIMULTANEOUS LOCALIZATION AND MAPPING FOR MULTI BLIMP SYSTEM

by

HERDAWATIE BINTI ABDUL KADIR

Thesis submitted in the fulfilment of the requirements for the degree of Doctor of Philosophy

March 2017

ACKNOWLEDGEMENTS

Alhamdulillah. Thank you Allah for blessing me with healthiness, strength and guidance in completing this research work and thesis. This thesis would not have been possible without the support of a number of people. First of all, my thanks go to my adviser, Professor Ir. Dr. Mohd. Rizal Arshad, for his constant encouragement and guidance, for the long hours of passing along his knowledge and experience, for pushing me beyond my own limitations, and for his seemingly endless supply of interesting research problems.

Thanks also go to my URRG labmates, Khalid Isa, Song Yoong Siang, Shariffah Shafinar Syed Zain, Mohd Norzaidi Mat Nawi, Khairul Izman Abdul Rahim, Siti Sarah Samsuri, Muhammad Faiz Abu Bakar, Mohd Hafiez Mohd Mokthar, Mad Helmi Ab. Majid, Mohd Faid Yahya and Noorazliza Sulaiman with all of whom I haveshared hours of discussion, cooperation, laughter, food, and play.

Most importantly, none of this would have been possible had it not been for the unwavering support and love of my family. Even though my studies limit my time from home, my family have always done everything for me to fullfield responsibility, and have never failed to believe in me, my husband, Sabran, my children, Farihin, Faheem and Nurul Iman has shared with me all the ups and downs of life as a student.

Lastly, I am also indebted to Universiti Sains Malaysia (USM), Universiti Tun Hussein Onn Malaysia (UTHM) and Malaysia Ministry of Science, Technology and Innovation (MOSTI), e-Science 305/PELECT/6013410 for funding this research, as well as allowances and living expenses. Thank you for supporting my study and this research.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xiv
LIST OF SYMBOLS	xvii
ABSTRAK	xxii
ABSTRACT	xxiv

CHAPTER ONE : INTRODUCTION

1.1	Background	1
1.2	Problem Statements	5
1.3	Research Objectives	7
1.4	Research Scopes	7
1.5	Thesis Outline	9

CHAPTER TWO : LITERATURE REVIEW

2.1	Introduction		11
	2.1.1	Historical Overview of SLAM	11
	2.1.2	Simultaneous Localization and Mapping (SLAM)	14
	2.1.3	Filters in SLAM	16
2.2	Single S	SLAM algorithms	19
	2.2.1	Visual SLAM (VSLAM)	22
	2.2.2	Feature Detection and Descriptor	24

2.3	Multi-agent SLAM algoritms		28
	2.3.1	Applications of multi-agent SLAM	28
	2.3.2	Multi-agent interaction	30
	2.3.3	Multi-agent flight formation	31
	2.3.4	Multi-agent communication	37
2.4	Multi-ag	gent group decision	39
	2.4.1	Human group decision	39
	2.4.2	Animal group decision	41
2.5	Non-Rig	gid Airship	43
2.6	.6 Summary		46

CHAPTER THREE : METHODOLOGY AND IMPLEMENTATION

3.1	Introduc	ction	48
3.2	Propose	Proposed SLAM design for blimp	
	3.2.1	Blimp design	53
	3.2.2	Modeling of a blimp	55
	3.2.3	Proposed RF-VSLAM design for blimp	59
	3.2.4	EKF-SLAM algorithms	60
	3.2.5	Feature detector and descriptor	64
		3.2.5 (a) Standard SIFT algorithm	65
		3.2.5 (b) Enchacement of SIFT algorithm	69
	3.2.6	Range estimation	74
	3.2.7	Data association	75
3.3	Multi A	gent framework	80
	3.3.1	Cooperative framework	81
	3.3.2	Multi-agent formation	86

		3.3.2 (a) Drag estimation	88
		3.3.2 (b) Numerical method	88
	3.3.3	Multi-agent communication framework via RSSI	91
	3.3.4	Multi-agent interaction	94
3.4	Decision	n Making	99
	3.4.1	Animal Consensus	99
3.5	Prototyp	pe Development	102
	3.5.1	Mechanical design and fabrication	102
		3.5.1 (a) Gondola	104
		3.5.1 (b) Fitting rope/frame	104
		3.5.1 (c) Fin	105
	3.5.2	Electronic components and system integration	106
		3.5.2 (a) Controller module	106
		3.5.2 (b) Sensor module	107
	3.5.3	Propulsion module	110
	3.5.4	Communication module	111
	3.5.5	Data Logger module	112
	3.5.6	Lifting Gas	113
	3.5.7	Beacon	114
3.6	Blimp e	experiment dataset	116
3.7	Summa	ry	120

CHAPTER FOUR : RESULTS AND DISCUSSIONS

4.1	Introduc	tion	121
4.2	The SLA	AM design for aerial vehicle	121
	4.2.1	Analysis of double-hull blimp model motion behaviour	121

	4.2.2	Comparison of hull selection	127
	4.2.3	The EKF_SLAM algorithm	129
	4.2.4	Selection of Detector and Descriptor	130
		4.2.4 (a) Scale / rotation	134
		4.2.4 (b) Affine transformations	135
		4.2.4 (c) Illumination	136
		4.2.4 (d) Compression	136
		4.2.4 (e) Blurring	137
		4.2.4 (f) Matching	138
		4.2.4 (g) Comparision of Standard SIFT and Enhanced SIFT	140
	4.2.5	Range Estimation using RSSI	142
	4.2.6	Data association for water scene using enhanced SIFT	146
4.3	Multi-ag	gent Framework	152
	4.3.1	Multi-agent small flock formation	152
		4.3.1 (a) Impact of forces and coefficient of each blimp	156
		4.3.1 (b) Total drag coefficient of multi blimp	157
		4.3.1 (c) Speed variation effect on vee configuration of	
		multi blimp	158
	4.3.2	Multi-agent communication	161
		4.3.2 (a) Range Test	165
		4.3.2 (b) Data Transmission	166
		4.3.2 (c) Multi-agent interaction	169
4.4	Group D	Decision Making	171
4.5	Prototy	pe Testing and Experimentation	181
	4.5.1	Payload and buoyancy test	182
	4.5.2	Operational Test	184

	4.5.3	Final design of double-hull blimp	187
	4.5.4	Loop closure navigation	192
4.6	Summa	ary	197
CHA	PTER	FIVE : CONCLUSIONS AND FUTURE WORKS	
5.1	Conclu	sion	198
5.2	Future	Work	201
REF	REFERENCES 203		
APP	ENDIC	ES	
Appe	endix A	: SIFT library	
Appe	endix E	: Analysis of motion behaviour for single hull blimp	
		model	
Appe	endix C	2: Matlab code	
Appe	endix D	: Feature detection method	
Appe	endix E	: Simulation of network formation	

LIST OF PUBLICATIONS

LIST OF TABLES

Page

Table 2.1	Filter methods in SLAM	20
Table 2.2	Camera configuration	23
Table 2.3	Summary of VSLAM work	25
Table 2.4	Application of Multi-agent SLAM	29
Table 2.5	Multi-agent SLAM design and interactions scheme	32
Table 2.6	Summary of the airship projects in recent years	45
Table 3.1	Blimp characteristics	54
Table 3.2	Notations for the blimp	57
Table 3.3	Buoy specifications	115
Table 4.1	Comparison of double-hull and single hull arrangement	129
Table 4.2	Five invariances results of processing time	139
Table 4.3	Comparison of feature detection method	139
Table 4.4	Matching performances with SIFT	140
Table 4.5	Data reliability of the received packet	145
Table 4.6	Samples of the features detection –Clear Water	147
Table 4.7	Detection and extraction of buoy from different angle with ocean surface background-Dark water	151
Table 4.8	Impact of forces and coefficient of each blimp based on flight formation configuration	155
Table 4.9	The results of the drag and lift components based on the speed variation	160
Table 4.10	Packet transmit	166
Table 4.11	Comparison of centralised and decentralised	170
Table 4.12	Weight distribution for hull configuration	188

LIST OF FIGURES

Figure 1.1	An example of SLAM	3
Figure 2.1	The overview of the literature review	12
Figure 2.2	The essential SLAM problem by Whyte and Bailey (2006)	14
Figure 2.3	The standard SLAM algorithm	15
Figure 2.4	Small flock formation	36
Figure 2.5	Large flock formation	36
Figure 2.6	Example of general human consensus progress scheme	40
Figure 2.7	Example of general animal consensus scheme	43
Figure 2.8	The overview of the aircraft classification	44
Figure 2.9	History of airship development	44
Figure 2.10	Airship configuration	46
Figure 3.1	The framework diagram of methodology	49
Figure 3.2	Non-Rigid Airship called blimp	53
Figure 3.3	Blimp dimension	54
Figure 3.4	The system overview of the blimp	55
Figure 3.5	The blimp reference frame	56
Figure 3.6	RF-VSLAM algorithm	61
Figure 3.7	Blimp heading angle	63
Figure 3.8	Key point of image region	65
Figure 3.9	Standard SIFT Algorithms by Lowe (2004)	66
Figure 3.10	Key point detection of sea surface	66
Figure 3.11	Key point detection of sea surface using standard SIFT	68
Figure 3.12	Standard SIFT algorithms: Keypoint descriptor	69
Figure 3.13	Standard SIFT Algorithms	70

Figure 3.14	Flow chart of the proposed enhancement of SIFT	71
Figure 3.15	Flow chart of RSSI collection	75
Figure 3.16	Blimp data association concept	76
Figure 3.17	Flow chart of enhancement of data association in	
	RF-VSLAM algorithm	78
Figure 3.18	Cooperative setup for multi blimp	82
Figure 3.19	Cooperative multi-agent framework concept	83
Figure 3.20	Multi-agent information states	86
Figure 3.21	Computational domain boundary condition.	87
Figure 3.22	Flow based on formations (side view)	90
Figure 3.23	RF communication range test	93
Figure 3.24	X-CTU Loop-back test	94
Figure 3.25	Digraph for the proposed cooperative multi-agent system	96
Figure 3.26	Flow chart of the enhancement communication	97
Figure 3.27	The proposed consensus algorithm for small flocks	101
Figure 3.28	Blimp	102
Figure 3.29	Multi blimp snapshots	103
Figure 3.30	Gondola prototypes	104
Figure 3.31	Frame holding the gondola	105
Figure 3.32	Fin position on gondola	105
Figure 3.33	Controller module	107
Figure 3.34	Camera module	108
Figure 3.35	Position and orientation module	108
Figure 3.36	GPS module	109
Figure 3.37	Propulsion module	110

Figure 3.38	Propeller	110
Figure 3.39	Network framework using Digi Mesh	111
Figure 3.40	XTend RF module	112
Figure 3.41	Data logger module	112
Figure 3.42	Helium gas	113
Figure 3.43	Images of the buoy prototype developed by URRG	114
Figure 3.44	Images of mini URRG buoy prototype developed for	
	pool setup	115
Figure 3.45	Mini URRG buoy circuit	116
Figure 3.46	Snapshots during the data collection	118
Figure 3.47	Sample of data log for IMU, Compas and GPS from blimp	119
Figure 3.48	Sample of image file extracted from video	119
Figure 3.49	Sample of beacon data	120
Figure 4.1	The computational domain and grid of the blimp	122
Figure 4.2	Contours of Static Pressure of the blimp	122
Figure 4.3	Contours of Dynamic Pressure of the blimp	123
Figure 4.4	Contours of Velocity Magnitude of the blimp (z-plane slice)	123
Figure 4.5	The open-loop control system of the blimp	124
Figure 4.6	The closed-loop control system of the blimp	124
Figure 4.7	Blimp model state responses	125
Figure 4.8	Blimp model state response	126
Figure 4.9	Double-hull blimp	127
Figure 4.10	Single hull blimp	128
Figure 4.11	Estimates agent trajectories and the estimates features	
	locations (in circle)	130
Figure 4.12	Visual image detection	131

Figure 4.13	Test Data	133
Figure 4.14	Test Data: (a) Boat and (b) Bark	134
Figure 4.15	Test Data: (a) Graffiti and (b) Wall	135
Figure 4.16	Test Data: (a) Parking	136
Figure 4.17	Test Data: Building	137
Figure 4.18	Test Data: (a) Parking and (b) Tree	138
Figure 4.19	Samples of key point detection in comparison between standard SIFT and the enhanced SIFT	141
Figure 4.20	The proposed enhanced SIFT algorithms schemes	142
Figure 4.21	Outdoor (LOS): Distance, m vs. RSSI dBm	143
Figure 4.22	Wireless testing setup	144
Figure 4.23	Sample of detection and extraction based on 150 features	148
Figure 4.25	image point	140
Figure 4.24	An analysis of buoy extraction	149
Figure 4.25	Ocean surface detection	150
Figure 4.26	Contours of velocity magnitude based on configurations	154
Figure 4.27	Impact of forces and coefficient of each blimp	156
Figure 4.28	Multi blimp forces	157
Figure 4.29	Total Drag, C_d based on configuration	158
Figure 4.30	Speed analysis: Contours of velocity magnitude in ms ⁻¹	159
Figure 4.31	Network framework using Zigbee	161
Figure 4.32	Outdoor (LOS) using XBee S2 module	162
Figure 4.33	Network framework using DigiMesh TM	163
Figure 4.34	Outdoor (LOS) using Xtend900 (1mW) module	163
Figure 4.35	Outdoor (LOS) using Xtend900 (1W) module	164
Figure 4.36	Successful packet received via distance	165

Figure 4.37	Cooperative consensus	171
Figure 4.38	Consensus for three mobile agents without beacon	173
Figure 4.39	Consensus for three mobile agents and a beacon	175
Figure 4.40	Consensus for three mobile agents and two beacons	176
Figure 4.41	Consensus for three mobile agents and three beacons	178
Figure 4.42	Interconnection graph	179
Figure 4.43	Directed network with link	179
Figure 4.44	Results for the consensus	180
Figure 4.45	Buoyancy test for single hull configuration	183
Figure 4.46	Buoyancy test for double-hull configuration without frame	184
Figure 4.47	Operational test (indoor)	185
Figure 4.48	Outdoor operational test	186
Figure 4.49	Buoyancy test for the final design for double-hull configuration	187
Figure 4.50	Operational test (indoor): open-loop and closed-loop	
6	control	189
Figure 4.51	Operational test data (indoor): open-loop for	
	straight path	190
Figure 4.52	Operational test data (indoor): Closed-loop for	
	straight path	191
Figure 4.53	Operational test data (indoor): square path	193
Figure 4.54	Operational test (outdoor) for straight path	194
Figure 4.55	Operational test data (outdoor): Closed- loop for straight path	194
Figure 4.56	Operational test data (outdoor): square path	196
Figure 4.57	Operational GPS data (outdoor): square path	196

LIST OF ABBREVIATIONS

ACK	Acknowledgement
AI	Artificial Intelligence
ANSYS	Analysis System
AoA	Angle of Arrival
AP	Access Point
API	Application Programming Interface
ASC	Autonomous Surface Craft
ATDB	AT command for Baud rate
ATNI	AT command for Node Identifier
BEC	Battery Eliminator Circuit
CAD	Computer-Aided Design
CAS	Centre of Excellence for Autonomous Systems
CCD	Charge Couple Device
CCW	Counter-Clockwise
CFD	Computational Fluid Dynamics
CMOS	Complementary Metal Oxide Silicon
CTD	Conductivity, Temperature, and Depth
DoG	Difference-of-Gaussian
DoH	Determinant-of-Hessian
EIF	Extended Information Filter
EKF	Extended Kalman Filter
EOM	Equation of Motion
ESC	Electronis speed controllers
FOV	Field of View

FS	Features selection
GDM	Group decision making
GPS	Global Positioning System
ICSP	In-Circuit Serial Programming
IDE	An Integrated Development Environment
IMU	Inertial Measurement Unit
IRRC	Intelligent Robotics Research Centre
ISM	Industrial, Scientific and Medical
KE	Klemm–eguílez
KF	Kalman Filters
LE	Local Estimates
Li-Po	Lithium polymer
LoG	Laplacian-of-Gaussian
LOS	Line-Of-Sight
LQG	Linear-Quadratic-Gaussian
LQR	Linear-Quadratic Regulator
LS	Least Square
LTA	Lighter-than-air vehicle
MAVs	Micro Aerial Vehicles
MIT	Massachusetts Institure of Technology
MRG	Marine Robotic Group
MSER	Maximally Stable Extremal Regions
NLOS	Non-Light-Of-Sight
NTSC	National television system committee
PAL	Phase Alternating Line
PC	Personal computer

PER	Packet error rate
PF	Particle Filters
RANS	Reynolds-Averaged Navier-Stokes
RF	Radio Frequency
RF-VSLAM	Radio Frequency Visual SLAM
ROV	Remotely Operated Vehicle
RSSI	Received Signal Strength Indicator
SCL	Serial Clock
SD	Secure Digital
SDA	Serial Data Signal
SDHC	Secure Digital High Capacity
SIFT	Scale Invariant Feature Transform
SLAM	Simultaneous Localization and Mapping
SMC	Sequential Monte-Carlo
SPI	Serial Peripharel Interface
SURF	Speeded Up Robust Features
SUSAN	Smallest Univalue Segment Assimilating Nucleus
SW	Small-World
TDoA	Time-Difference-of-Arrival
ТоА	Time-of-Arrival
T_X	Transmit pin
UART	Universal asynchronous receiver/transmitter
UAV	Unmanned Aerial Vehicle
UBEC	Ultimate Battery Eliminator Circuit
USB	Universal Serial Bus
WSN	Wireless sensor network

LIST OF SYMBOLS

$ ho_a$	Air density
\mathcal{E}_{ij}	An arc of D
υ	Axial velocity perturbation
σ_0	Base scale
x_i	Blimp State Vector
Pi	Blimp State Vector Covariance Matrix
\hat{x}_i^-	Blimp state vector Mean estimated
P _{im}	Blimp <i>i</i> and map correlation
Fb	Body Fixed Reference Frame
S _{ix}	Center of the frame
u_0	Centre coordinates given in image
v_0	Centre coordinates given in image
<i>p</i> , <i>q</i> , <i>r</i>	Components of angular velocity
$m_{x,}m_{y,}m_{z}$	Components of apparent mass
X, Y, Z	Components of forces
L,M,N	Components of moment
U, V, W	Components of velocity
Cg	Centre of Gravity
C_{v}	Centre of Volume
u_k	Control input
S _{ia}	Coordinate matrix of camera
μ	Covariance of a Gaussian distribution
P_m	Covariance matrix of landmark states

$\mathbb{S}_{k,ij}^{T}$	Covariance matrix for the innovations
χ^2	Chi square value
\mathcal{H}_k	Data association
$d_k^{j,i}$	Distance between robot i and j
ε	Dissipation rate
D(x)	DoG scale space
C _b	Drag force on a body
Y _m	Dilatation fluctuation to the overall dissipation rate
Fe	Earth Fixed Reference Frame
E _k	Environment noise
P_{k+1}^-	Estimated error covariance
â	Extremum
P_b	Effect of buoyancy
$K_{\mathcal{H}_k}$	Filter gain
f	Focal length
α_v	Focal lights expressed in pixel units
u'_j	Fluctuation of velocity component
0 _{min}	First octave index
U	Free-stream velocity
α_{u}	Focal lights expressed in pixel units
g_{σ}	Gaussian kernel
I_{σ}	Gaussian scale space
q_k	Gaussian white noise process
g_{σ}	Gaussian kernel
I_{σ}	Gaussian scale space

J	Gradient vector
L _n	Helium unit lift
В	Identification of landmarks
<i>O_X</i>	Image centre
<i>0</i> _{<i>y</i>}	Image centre
S _{is}	Image scale
ξ	Information matrix
$v_{k,ij}^T$	Innovation vector
$k - \varepsilon$	Kappa-epsilon
δ_{ij}	Kronecker delta
<i>x</i> _m	Landmark State Vector
P _m	Landmark States Covariance Matrix
\hat{x}_m	Landmark States Mean Estimate
у	Lateral
ν	Lateral velocity perturbation
1	Length
x	Longitudinal
x_m	Landmark state vector
C_l	Lift coefficient
L(t)	Laplacian of the communication graph
x	Location of extremum
d	Maximum body diameter
Z_{k+1}	Measurement model
r_k	Measurement noise
r _v	Measurement range limit

Σ	Means of a Gaussian distribution
$\mathcal{Y}_{i,k}^{j,i}$	Measurement data of agent j with respect to agent i
$\mathcal{Y}_{i,k}^{b,i}$	Measurement data of landmarks b with respect to agent i
\hat{x}_i^-	Mean estimated state vector
\hat{x}_m	Mean estimate of landmark states
$D_{k,ij}^2$	Mahalanobis distance
S _{ij}	Mean rate of strain tensor
C_D	Non dimensional drag coefficient of the body
W	Normal velocity perturbation
t_n	Number of maximum threshold interest key point value
t_m	Number of minimum threshold interest key point value
0	Number of octaves
S	Number of scales per octave
${\cal N}_{_i}$	Neighbour set of agent each at each instant time
$S_{i\theta}$	Orientation
F _b	Origin of Body Frame
Z _{ik}	Observation taken from the vehicle of the location of the i -th landmark at time k
h _i	Observation function
t _p	Peak threshold
θ	Pitch attitude
q	Pitch rate
Μ	Pitching moment
t_p	Peak threshold
$I_{\sigma n}$	Pre-smoothed at nominal level I_{σ}

x_k	Process state vector at sampling k
A	Reference area
ф	Roll attitude
ρ	Roll rate
R	Rotation matrix
σ	Scales
$D(\hat{x})$	Scale space of the extrimum \hat{x}
x _i	State vector of the agent
$x_{b,k}$	States position of landmarks
γ	Skew coefficient
k	Time step
C_d	Total drag estimate coefficient
Р	Total error covariance matrix
Т	Translational matrix
Р	Total error covariance matrix
Tz	Time stamp
Ν	Unique identification of agents
Z	Vertical
Vol	Volume
m _i	Vector describing the location of the <i>i</i> th landmark
\overline{u}_i	Velocity component
V	Vertices of D
ψ	Yaw attitude
Г	Yaw rate

KONSENSUS KERJASAMA PERSETEMPATAN DAN PEMETAAN SERENTAK UNTUK SISTEM BERBILANG KAPAL UDARA

ABSTRAK

Navigasi dalam persekitaran lautan dengan sedikit ciri-ciri statik dan menggunakan dinamik air sebagai latar belakang adalah bidang yang mencabar untuk diterokai oleh sistem berbilang ejen. Ini adalah kerana wujud pengukuran yang tidak seragam di permukaan lautan kerana pengagihan ciri spatial yang kerap berubah-ubah. Oleh itu, adalah wajar untuk mereka bentuk satu rangka kerja kerjasama persetempatan dan pemetaan yang mampu untuk mengendalikan pengukuran palsu, mengurangkan ketidaktentuan persetempatan ejen dan mampu mencapai keputusan yang cepat dan baik. Objektif utama kajian ini adalah untuk mereka bentuk satu keedah kerjasama persetempatan dan pemetaan serentak untuk berbilang kapal udara yang melibatkan permukaan air yang dinamik sebagai latar belakang dan konsensus kawanan kecil sebagai kaedah keputusan kumpulan. Rangka kerja koperasi yang baru bagi sistem berbilang kapal udara yang terdiri daripada tiga kapal udara dan pelampung isyarat telah dibangunkan dan direka bagi tujuan ini. Algoritma persetempatan dan pemetaan serentak telah direka dengan menyatupadukan tiga kaedah iaitu Penapis Kalman Lanjutan, Pengubah Ciri Peningkatan Skala dan Petunjuk Kekuatan Isyarat Penerima bagi meningkatkan proses pengurusan data. Persepsi arah dalam kumpulan berdasarkan konsensus kawanan haiwan kecil telah digunakan dalam proses pengurusan data. Konsensus kerjasama persetempatan dan pemetaan serentak ini, didapati telah berjaya mengurangkan bilangan dan mengesan ciri-ciri yang dikehendaki dalam persekitaran air jernih dan keruh. Di samping itu, berdasarkan penandaarasan konsensus kerjasama, kaedah ini telah berjaya mencapai persetujuan yang lebih cepat sehingga 8.3% dan 42% berbanding model skala bebas dan model klemm-eguilez. Selain itu, ketepatan arah telah ditemui bertambah baik sehingga 30% dan 76% daripada model skala bebas dan model klemm-eguilez. Secara keseluruhan, pendekatan yang dicadangkan telah mencapai keputusan yang baik dan terbukti boleh dipercayai dengan ketara dan boleh dilaksanakan di dalam sistem pemantauan pemerhatian lautan.

COOPERATIVE CONSENSUS SIMULTANEOUS LOCALIZATION AND MAPPING USING MULTI BLIMP SYSTEM

ABSTRACT

Navigation in an ocean environment with few static features and dynamic water background is an adventurous field to be explored by multi-agent system. This is because of its non-uniform availability of measurement on the ocean surface since the spatial feature distribution is greatly varied. Thus, it is desirable to design a cooperative localisation and mapping framework that is capable to handle spurious detection, reduce the localisation uncertainty of an agent and achieve fast and good decision. The main objective of this research is to design a cooperative simultaneous localisation and mapping method for multi blimp system involving the dynamic water surface as the background and small flock consensus as the group decision method. A new cooperative framework for the multi blimp system consisting of three blimps and buoys was developed and designed for this purpose. The simultaneous localisation and mapping were designed by integrating three methods which are the Extended Kalman Filter, the enhanced Scale Invariant Feature Transform and Received Signal Strength Indicator to improve the data association process. The group perception of direction based on small flock of animal consensus was taken into the data association process. It was discovered that this cooperative consensus simultaneous localisation and mapping was able to reduce the number of feature points and detect the desired features in clear and dark water environments. In addition, based on cooperative consensus benchmarking, this method was able to achieve faster consensus to up to 8.3 % and 42 % than the scale free model and klemm-eguilez model respectively. On top of these, its heading accuracy was found to be more accurate to up to 30 % and 76 % than the