

Image based indonesian fruit recognition using MPEG-7 color structure descriptor and k-nearest neighbor

J Siswantoro, H Arwoko and M Widiasri

Department of Informatics Engineering, Universitas Surabaya, Jl. Kalirungkut, Surabaya, 60293, Indonesia

joko siswantoro@staff.ubaya.ac.id

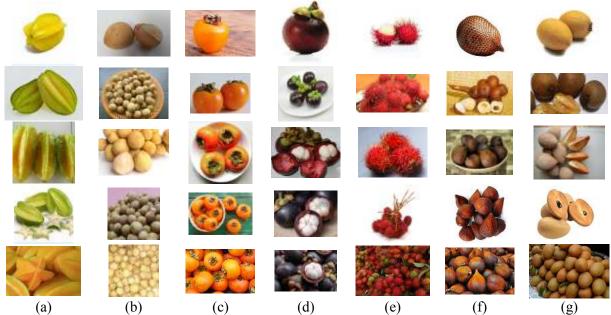
Abstract. Image based fruit recognition can be applied in several sectors including food industry, food retail, and medical. This paper proposes a method to recognize Indonesian fruit from image. The method uses MPEG-7 Color Structure Descriptor (CSD) as input features to k-nearest neighbor classifier. CSD describes the local color structure of image in HMMD (Hue, Max, Min, and Difference) color space. In this study, the numbers of features extracted from a fruit image were 32, 64, 128, and 256. A simple feature selection method based on variance has been applied to reduce the dimension of input features and to increase classification performance. A feature with variance less than predefined threshold was excluded from feature space. Three hundred and fifty images from seven types of Indonesian fruit have been used to validate the proposed method using 10-fold cross validation. The experimental result showed that the best classification accuracy of 90.86% was achieved using 256 features of CSD combined with feature selection.

1. Introduction

Fruit recognition from image is an alternative to traditional recognition method [1]. It can be found in various field, such as food industry, food retail, as well as medical [2]. Generally, the steps of fruit recognition from image consist of image acquisition, segmentation, feature extraction and classification. Although fruit image was captured with a same background, several study in fruit recognition from image still employed segmentation step to separate fruit object from its background such that the extracted feature only come from fruit object [2-5]. On the other hand, segmentation step can increase computational time.

Siswantoro, et al. [2], Garcia, et al. [3], Prabuwono, et al. [4], and Koslowski, et al. [6] have proposed a method to recognize natural produce, including fruit, from image. Although the proposed methods achieved a good accuracy, the methods only recognized fruit image containing single object. The other researchers have proposed natural produce recognition from image with multiple objects in one image using the combination of several features and complex classifiers fusion [5, 7, 8]. However, extracting several features and training complex classifiers fusion is a time-consuming process. Convolutional neural network (CNN) was also used in fruit recognition from image [1, 9]. However, the training process of CNN requires not only a computer with high specification but also time-consuming.

According to Uji [10], there are more than 200 edible fruits that grow in Indonesia. Furthermore, there are many types of Indonesian fruits currently sold at supermarket. Based on these facts, there is a chance to apply Indonesian fruits recognition from image for fruit pricing at supermarket cashier. In the previous studies, the fruit samples used in fruit recognition from image were not specific fruits



from Indonesia. In addition, there are several kinds of Indonesian fruits that have similar color, shape, and texture that were not found in fruit dataset used in previous studies. Therefore, there is a need to develop a method to recognize Indonesian fruits from image that can be applied for fruit sale. This paper proposes an image based Indonesian fruit recognition method using MPEG-7 Color Structure Descriptor (CSD) dan *k*-nearest neighbor classifier. CSD features represent the color structure and color distribution of image that can be directly extracted from image without segmentation process [11]. A variance based feature selection is used to reduce the dimension of CSD as well as to obtain higher recognition performance [12]. The rest of the paper is organized as follow. Section 2 describes the materials used in experiment and explains the steps in the proposed method. Experimental setup is explained in Section 3. Result and discussion are provided in Section 4 and conclusion is drawn in Section 5.

2. Materials and method

2.1. Materials

A fruit image dataset containing seven classes Indonesian fruits, including belimbing (start fruit, *Averrhoa carambola*), duku (*Lansium domesticum*), kesemek (persimmon, *Diospyros kaki*), manggis (mangosteen, *Garcinia mangostana*), rambutan (*Nephelium lappaceum*), salak (*Salacca zalacca*), and sawo (*Manilkara zapota*), was used to validate the proposed method. The dataset was collected from Google Images using keyword "belimbing", "duku", "kesemek", "manggis", "rambutan", "salak", and "sawo". Every fruit class contained 50 fruit images in RGB (Red, Green, Blue) and saved in PNG (Portable Graphics Format) file. Totally, there were totally 350 fruit images in the dataset. The images in the dataset varied in size, the number of fruits, background color, and brightness. The size of image varied from one fruit until all area in the image covered by fruits. In general, almost all fruit images were captured in white background. However, there were some images captured in different background color. Furthermore, some fruits ware placed on a plate during image acquisition. Figure 1 shows the examples of image fruit in the dataset.

Figure 1. The examples of image fruit in the dataset: (a) belimbing, (b) duku, (c) kesemek, (d) manggis, (e), rambutan, (f) salak, and (g) sawo.

The proposed method was implemented in an Intel® Core™ i7-8550U CPU @ 1.80GHz 2.00 GHz with Windows 10 Pro 64-bit Operating System, x64-based processor and 8 GB RAM. Python 3.7.3

programming language was used to implement the proposed method with an open source computer vision library OpenCV 2.3.1 [13] for image processing and a machine learning library scikit-learn 0.20.3 [12] for classification. In addition, the proposed method also employed MPEG-7 Low Level Feature Extraction Static/Dynamic Library [14] to extract MPEG-7 CSD features.

2.2. Proposed method

The proposed Indonesia fruit recognition method comprised a series of steps started with features extraction followed by feature selection, and classification. The detail of every step is explained in the following sub sections.

2.2.1. Features extraction. In this step MPEG-7 CSD features were extracted directly from a fruit image without pre-processing and segmentation steps. CSD features describe the local color structure and color distribution of an image extracted in HMMD (Hue, Max, Min, Diff) color space. The values of Max, Min, Diff, and Hue were obtained from R, G, B values in RGB color space using equations (Error! Bookmark not defined.), (Error! Bookmark not defined.),

(Error! Bookmark not defined.), and (Error! Bookmark not defined.) respectively [11].

$$Max = \max(R, G, B) \#(\text{Error! Bookmark not defined.})$$

$$Min = \min(R, G, B) \#(\text{Error! Bookmark not defined.})$$

$$Diff = Max - Min \#(\text{Error! Bookmark not defined.})$$

$$0, Max = Min$$

$$\frac{60(G - B)}{Diff}, Max = R \& G \ge B$$

$$360 + \frac{60(G - B)}{Diff}, Max = R \& G < B$$

$$\#(\text{Error! Bookmark not defined.})$$

$$\frac{60(2 + B - R)}{Diff}, Max = G$$

$$\frac{60(4 + R - G)}{Diff}, othewise$$

Suppose *M* is the number of nonuniformly quantization of HMMD color space. CSD features were constructed by sliding an 8×8 structuring element to every position in the image to obtain an *M*-bin histogram by calculating the number of colors c_i , i = 1, 2, ..., M covered by the structuring element. This procedure resulted CSD features of length *M*. The values of *M* used in the proposed method were 32, 64, 128, and 256.

2.2.2. Feature selection. Feature selection is a process to exclude unimportant feature(s) from feature space. The purposes of feature selection are to reduce the dimension of feature space as well as to increase classification performance [15, 16]. A simple statistical based feature selection method called low variance feature selection [12, 16] was used in the proposed method to find the most important features for fruit image classification. Features with variance less than a certain threshold value were omitted from feature space. The value of threshold was heuristically determined during experiment in the range of [50,1050] with increasing of 50, such that higher classification accuracy is achieved.

2.2.3. Classification. The proposed method employed k-nearest neighbour (k-NN) to recognize a fruit image based on CSD feature. k-NN is a simple classifier that work by classifying an unknown input data to a class which has highest number of objects among the k training data in the neighbor of input data [15]. Suppose **f** is CSD feature extracted from unknown input image, and $\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_n$ are CSD features extracted from n training data. The following steps were used to classify an unknown input image using k-NN.

• Calculate the distance between **f** and $\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_n$ namely $d(\mathbf{f}, \mathbf{f}_1), d(\mathbf{f}, \mathbf{f}_2), \dots, d(\mathbf{f}, \mathbf{f}_n)$, respectively. The proposed method used Euclidean distance to measure the distance between

two features. Euclidean distance between $\mathbf{f} = (f_1, f_2, ..., f_M)$ and $\mathbf{f}_i = (f_{i1}, f_{i2}, ..., f_{iM})$, for i = 1, 2, ..., n, is calculated using equation (5).

$$d(\mathbf{f}, \mathbf{f}_{i}) = \left(\sum_{j=1}^{M} (f_{j} - f_{ij})^{2}\right)^{\frac{1}{2}} \#(5)$$

- Choose k smallest distances and arrange the distances from smallest to larger to obtain $\{\mathbf{f}_{i_1}, \mathbf{f}_{i_2}, \dots, \mathbf{f}_{i_k}\} \text{ with } d(\mathbf{f}, \mathbf{f}_{i_1}) \leq d(\mathbf{f}, \mathbf{f}_{i_2}) \leq \dots \leq d(\mathbf{f}, \mathbf{f}_{i_k}) \leq d(\mathbf{f}, \mathbf{f}_{i_{k+1}}) \leq \dots \leq d(\mathbf{f}, \mathbf{f}_{i_n}).$
- Assign the input image to a class c such that $\{\mathbf{f}_{i_1}, \mathbf{f}_{i_2}, \dots, \mathbf{f}_{i_k}\}$ majority containing the features of training images from class c.

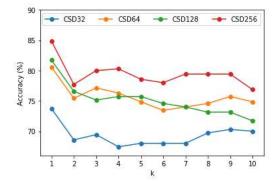
In this study, the value of k was also heuristically determined during experiment in the range of [1,10], such that higher classification accuracy is achieved.

3. Experimental setup

An experiment has been performed to validate the proposed fruit image recognition method with two experiment scenarios. In the first scenario, k-NN classifier was trained and tested using full length CSD features extracted from fruit image, while in the second scenario the feature selection was performed to CSD features before used to train and test k-NN classifier. In both scenarios, stratified 10-fold cross validation [15] was employed to measure the performance of k-NN classifier. The fruit image dataset was partitioned into 10 mutually exclusive subsets having same cardinality using stratified random sampling without replacement, such that every subset has the number of fruit images from every class with same proportion. In training and testing k-NN classifier, nine subsets (315 images) were used as training dataset and the remaining (35 images) as testing dataset. The training and testing processes were repeated 10 times such that every subset is used as testing dataset once.

On i^{th} testing process, the accuracy of k-NN classifier was measured using equation (Error! Bookmark not defined.),

determined to analyze the performance of k-NN classifier in every class.


 $Accuracy_{i} = \frac{\# \ correctly \ classified \ fruit \ image \ in \ i^{th} \ testing \ dataset}{\# \ fruit \ image \ in \ i^{th} \ testing \ dataset} \times 100\% \# (\text{Error! Bookmark not define})$ for i = 1, 2, ..., 10. The final accuracy of k-NN classifier was obtained by calculating the average of Accuracy_i, i = 1, 2, ..., 10. For further analysis, the confusion matrix [17] of k-NN classifier was also

4. Result and discussion

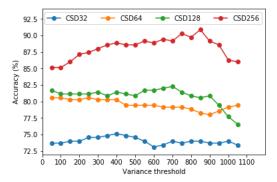
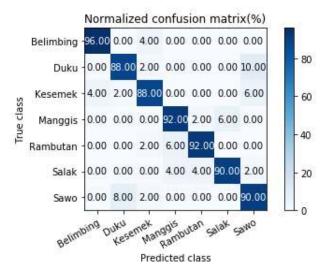

The classification accuracy of k-NN classifier in the various value of k with the first experiment scenario is depicted in Figure 2. As can be seen in Figure 2 the highest classification accuracy was obtained at k = 1 for all CSD features. For k = 1, k-NN classifier achieved highest classification of 84.86% when trained using CSD256 compared to CSD128 (81.71%), CSD64 (80.57%) and CSD32 (73.71%). For $2 \le k \le 10$, the classification accuracy of k-NN classifier fluctuated between 67% and 81%, with highest accuracy was still achieved when trained using CSD256. This can happen since the more CSD features are extracted, the more detail the color structure used in classification.

Figure 2. The classification accuracy result with the first experiment scenario.



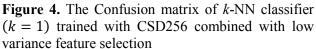

Figure 3. The classification accuracy result with the second experiment scenario

Figure 3 shows the classification accuracy with the second experiment scenario. In this scenario k-NN classifier used k = 1 and was trained using CSD combined with low variance feature selection. As can be seen in Figure 3, the highest classification accuracy of 90.86% was achieved when k-NN classifier trained using CSD256 and low variance feature selection with threshold value of 850. For CSD128, CSD64, and CSD 32, the highest classification accuracy of 82.29%, 80.57%, and 75.14% were obtained when combined with low variance feature selection with threshold value of 700, 50, and 400, respectively. This result shows that by employing low variance feature selection, the classification accuracy of k-NN classifier by 6% and could reduce the dimension of CSD256 up to 89.45% (from 256 to 27). Furthermore, low variance feature selection could reduce average training time from 77.45ms to 50.11ms.

The normalized confusion matrix of k-NN classifier (k = 1) trained with CSD256 combined with low variance feature selection for every class is depicted in Figure 4. The diagonal elements of confusion matrix in Figure 4 represent the percentage of fruit images that can be correctly recognized (recognition rate) for every class. The highest recognition rate of 96% was achieved in 1st class (belimbing), followed by 4th class (manggis) 92%, 5th class (rambutan) 92%, 6th class (salak) 90%, 7th class (sawo) 90%, 2nd class (duku) 88%, and 3rd class (kesemek) 88%. The element in *i*th row and *j*th column, for $i \neq j$, represents the percentage of fruit images in *i*th class recognized as *j*th class (misrecognition rate). For 1st class there were 4% of fruit images recognized as 3rd class. For 2nd class there were 2% fruit image recognized as 3rd class, and 6% as 7th class. For 3rd class there were 4% fruit images recognized as 1st class, 2% as 2nd class, and 6% as 7th class. For 4th class there were 2% fruit image recognized as 5th class. For 6th class there were 4% fruit images recognized as 4th class, 4% as 5th class, and 2% as 7th class. For 7th class there were 8% fruit image recognized as 2rd class. The misrecognition occurred since the color of some fruit from a class is similar to the color of fruit from other class. Therefore, the using of other MPEG-7 descriptors can be considered to reduce misrecognition rate in the next study.

For comparison, the proposed method was also employed to classify natural produce images dataset used by Siswantoro, et al. [2]. The dataset consists of 10 classes including red delicious apple, green apple, potato, orange, tomato, mango, egg, pear Ya, pear Peckham, and carrot. The proposed method achieved the classification accuracy of 95.20% in classifying natural produce images the dataset. In previous study, Siswantoro, et al. [2] extracted 16 features from each natural produce image. The features consisted of 12 statistical color features, including mean, standard deviation, skewness, and kurtosis in HSV color space; and four shape features from the derivative of radius function. The classification accuracy of 77.40% was obtained using k-NN classifier. This result indicates that the proposed method outperforms the classification result of previous study.

In term of computational time, the proposed method needed about 45ms to extract CSD features from a fruit image. For recognizing a fruit image based on extracted CSD features the proposed method needed 0.98ms. Therefore, the total time needed to recognize a fruit image was 45.98ms. This result shows that there is a possibility to apply the proposed method for identifying the type of fruit during pricing at supermarket cashier.

5. Conclusion

This study proposes a method to recognize Indonesian fruits from image. The proposed method employed MPEG-7 CSD features with the length of 32, 64, 128 and 256 as input for k-NN classifier to recognize the class of fruit image. Low variance feature selection was also applied to CSD features before used by k-NN classifier to reduce the dimension of features space and to increase the classification accuracy. The proposed method has been validated using 350 Indonesian fruit images from seven classes. The highest classification accuracy of 90.86% was obtained by using k-NN classifier with CSD256 combined with low variance feature selection. The using of feature selection could reduce the dimension of features space up to 89.45% and increase classification accuracy by 6%. Future study will be focused on the developing of Indonesian fruit images dataset and the investigation of other MPEG-7 descriptors and other simple classifiers to recognize fruit images in the developed dataset.

Acknowledgments

The authors would like to thank Ministry of Research, Technology, and Higher Education Republic of Indonesia and Universitas Surabaya for providing facilities and financial support under PDUPT Research Grant No. 025/SP-Lit/LPPM-01/DRPM/Multi/FT/III/2019.

References

- [1] Zhang Y D *et al.* 2019 *Multimedia Tools and Applications* **78** pp 3613–32
- [2] Siswantoro J, Prabuwono A S, Abdullah A and Bahari I 2017 Journal ICT Research and Applications 11 pp 184-98
- [3] Garcia F, Cervantes J, Lopez A and Alvarado M 2016 IEEE Lat. Am. Trans. 14 pp 3434-43
- [4] Prabuwono A S, Siswantoro J and Abdullah A 2015 Appl. Mech. Mater. 771 pp 242-7
- [5] Rocha A, Hauagge D C, Wainer J and Goldenstein S 2010 Comput. Electron. Agric. 70 pp 96-104
- [6] Koslowski M A, Santos F G, Borba G B and Gamba H R 2013 IX Workshop de Visão Computacional (WVC 2013) p
- [7] Faria F A, dos Santos J A, Rocha A and Torres R S 2012 Graphics, Patterns and Images (SIBGRAPI), 2012 25th SIBGRAPI Conf. on pp 252-9
- [8] Rocha A, Hauagge D C, Wainer J and Goldenstein S 2008 Computer Graphics and Image Processing, 2008. SIBGRAPI '08. XXI Brazilian Symp. on pp 3-10
- [9] Sa I, Ge Z, Dayoub F, Upcroft B, Perez T and McCool C 2016 Sensors 16 pp 1222
- [10] Uji T 2007 Biodiversitas 8 pp 157-67
- [11] Manjunath B S, Salembier P and Sikora T. 2002 Introduction to MPEG-7: multimedia content description interface (New Jersey: John Wiley & Sons)
- [12] Pedregosa F et al. 2011 J. Mach. Learn. Res. 12 pp 2825-30
- [13] Bradski G 2000 Dr Dobb's J. Software Tools 25 pp 120-5
- [14] Bastan M, Cam H, Gudukbay U and Ulusoy O 2010 IEEE Multimedia 17 pp 62-73
- [15] Alpaydin E 2010 Introduction to machine learning (Cambridge, Massachusetts: MIT Press)
- [16] Li J et al. 2017 ACM Comput. Surv. 50 pp 1-45
- [17] Fawcett T 2006 Pattern Recognit. Lett. 27 pp 861-74

A collaborative activity jointly organised by:

PROCEEDING BOOK OF INTERNATIONAL CONFERENCE ON INFORMATICS, TECHNOLOGY AND ENGINEERING 2019

> Enhancing Engineering Inn Towards A Greener Future

INTERNATIONAL CONFERENCE ON INFORMATICS, TECHNOLOGY, AND ENGINEERING 22-23 AUGUST 2019

ISSN 2686-5955

PROCEEDINGS BOOK

Enhancing Engineering Innovation Towards A Greener Future

EDITOR:

Asst. Prof. Nemuel Daniel Pah, Ph.D. Assoc. Prof. Markus Hartono, Ph.D. Assoc. Prof. Oki Muraza, Ph.D.

PUBLISHER: UNIVERSITAS SURABAYA

INTERNATIONAL CONFERENCE ON INFORMATICS, TECHNOLOGY, AND ENGINEERING InCITE Secretar

InCITE Secretariat Faculty of Engineering Universitas Surabaya JI. Raya Kalirungkut Surabaya 60293 INDONESIA

Phone +62 31 298 1150 Fax. +62 31 298 1151

UBAYA

PROCEEDINGS

incite@unit.ubaya.ac.id incite.ubaya.ac.id

EDITOR:

Asst. Prof. Nemuel Daniel Pah, Ph.D. Assoc. Prof. Markus Hartono, Ph.D. Assoc. Prof. Oki Muraza, Ph.D.

PENERBIT: UNIVERSITAS SURABAYA JI. Raya Kalirungkut Surabaya 60293 Phone. (62-31) 298-1344 E-mail: ppi@ubaya.ac.id

> ISSN 9'772686'595002

Preface

Welcome Remarks, Chair of the Steering Committee

It is a great pleasure to welcome all of you to Bali and to the International Conference on Informatics, Technology, and Engineering 2019 (InCITE 2019) held by the Faculty of Engineering, University of Surabaya (UBAYA) in collaboration with The University of Adelaide, Australia and Sirindhorn International Institute of Technology (Thammasat University), Thailand. The first InCITE has been successfully held in Bali, Indonesia in 2017. We are very delighted to host the second InCITE here in Bali, Indonesia again.

There are more than 75 presentations in this conference. We welcome leading experts not only from Indonesia, but also from different parts of the world. The experts will share the knowledge and experiences in the fields of informatics, technology, science, and engineering. The main theme of this conference is **Enhancing Engineering Innovation Towards A Greener Future** in response to several world challenges including sustainable development, global convergence of information and communications technologies, climate change and global warming as well as the depletion of unrenewable natural resources. We hope this conference will provide you a good opportunity to get to know each other better and consolidate bonds of friendship and mutual trust.

We would like to express our sincere gratitude to the Keynote and Plenary speakers, International Scientific Committee, Steering Committee, and Organising Committee for their huge efforts to make this conference successful.

Thank you all for your support and attendance at InCITE 2019. Please enjoy the conference and Bali !

Asst. Prof. Djuwari, Ph.D.

Preface

Welcome Remarks, Chair of The Organizing Committee

Welcome to Bali, Indonesia to all delegates and presenters. It is my pleasure and privilege to welcome all of you to the 2nd (second) International Conference on Informatics, Technology, and Engineering 2019 (InCITE 2019) held by the Faculty of Engineering, University of Surabaya (UBAYA) in collaboration with The University of Adelaide, Australia and Sirindhorn International Institute of Technology (Thammasat University), Thailand.

InCITE 2019 has received more than 75 papers to be presented in this conference. All papers represent four following parallel clusters: Green Design and Innovation, Green Manufacturing and Green Processes, Power System and Green Energy Management, and The Role of IT in Innovation Enhancement. Each cluster supports the main theme of the conference, which is **Enhancing Engineering Innovation Towards A Greener Future.** The engineering innovation is the key to increase our awareness in maintaining the sustainable growth and development in the world.

The Organising Committee of InCITE 2019 would like to express our sincere gratitude for the tremendous supports and contributions from many parties. The supports from The Faculty of Engineering of UBAYA, keynote and plenary speakers, our International Scientific Committee, the Steering and Organising Committees are really acknowledged.

The last but not the least, thank you for your supports, enjoy the conference and we hope through this meeting all of you can extend your networks and collaborations.

Asst. Prof. Putu Doddy Sutrisna, Ph.D.

SCIENTIFIC COMMITTEE

- Prof. Willy Susilo, Ph.D. (University of Wollongong, AUSTRALIA)
- Prof. Dr. Anton Satria Prabuwono (King Abdulaziz University, SAUDI ARABIA)
- Assoc. Prof. Oki Muraza, Ph.D. (King Fahd University of Petroleum & Minerals, KINGDOM OF SAUDI ARABIA)
- Prof. Ravindra S. Goonetilleke, Ph.D. (Hong Kong University of Science & Technology, PRC)
- Assoc. Prof. Tan Kay Chuan, Ph.D. (National University of Singapore, SINGAPORE)
- Asst. Prof. Aldy Gunawan, Ph.D. (Singapore Management University, SINGAPORE)
- Asst. Prof. Hendry Raharjo, Ph.D. (Chalmers University of Technology, SWEDEN)
- Assoc. Prof. Dr. A. F. M. Saifuddin Saif (American International University, BANGLADESH)
- Asst. Prof. Itthisek Nilkhamhang, Ph.D. (Sirindhorn International Institute of Technology, THAILAND)
- Assoc. Prof. Akawut Siriruk, Ph.D. (Suranaree University of Technology, THAILAND)
- Assoc. Prof. Avirut Chinkulkijniwat, Ph.D. (Suranaree University of Technology, THAILAND)
- Assoc. Prof. Peerapong Uthansakul, Ph.D. (Suranaree University of Technology, THAILAND)
- Assoc. Prof. Dr. Andi Cakravastia Arisaputra Raja (Institut Teknologi Bandung, INDONESIA)
- Assoc. Prof. Dr. Anas Maruf (Institut Teknologi Bandung, INDONESIA)
- Assoc. Prof. Yassierli, Ph.D. (Institut Teknologi Bandung, INDONESIA)
- Prof. Dr. Ali Altway (Institut Teknologi Sepuluh Nopember, INDONESIA)
- Prof. Dr-Ing. I Made Londen Batan (Institut Teknologi Sepuluh Nopember, INDONESIA)
- Assoc. Prof. Setiyo Gunawan, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
- Prof. Renanto Handogo, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
- Prof. Mauridhi Hery Purnomo, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
- Prof. Nur Iriawan, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
- Prof. I Nyoman Pujawan, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
- Asst. Prof. Budi Hartono, Ph.D. (Universitas Gadjah Mada, INDONESIA)
- Prof. Sarjiya, Ph.D. (Universitas Gadjah Mada, INDONESIA)
- Asst. Prof. Nemuel Daniel Pah, Ph.D. (Universitas Surabaya, INDONESIA)
- Assoc. Prof. Markus Hartono, Ph.D (Universitas Surabaya, INDONESIA)
- Prof. Joniarto Parung, Ph.D. (Universitas Surabaya, INDONESIA)
- Prof. Lieke Riadi, Ph.D. (Universitas Surabaya, INDONESIA)

STEERING COMMITTEE

Chair: Asst. Prof. Djuwari, Ph.D.

Honorary Members:

Prof. David Lewis, Ph.D. Prof. Joniarto Parung, Ph.D. Prof. Lieke Riadi, Ph.D. Asst. Prof. Dr. Steve Kardinal Jusuf Asst. Prof. Dr. Itthisek Nilkhamhang

Members:

Assoc. Prof. Amelia Santoso, Ph.D. Mr. Agung Prayitno Assoc. Prof. Emma Savitri, Ph.D. Assoc. Prof. Markus Hartono, Ph.D., CHFP. Assoc. Prof. Budi Hartanto, Ph.D. Mr. Sunardi Tjandra Assoc. Prof. Eric Wibisono, Ph.D. Asst. Prof. Nemuel Daniel Pah, Ph.D. Assoc. Prof. Elieser Tarigan, Ph.D. Assoc. Prof. Jaya Suteja, Ph.D. Prof. Joniarto Parung, Ph.D. Assoc. Prof. Hudiyo Firmanto, Ph.D. Assoc. Prof. Restu Kartiko Widi, Ph.D.

ORGANIZING COMMITTEE

Chair :Asst. Prof. Putu Doddy Sutrisna, Ph.D. Vice Chair :Dr. Delta Ardy Prima Secretary :Ms. Aprilia Karina Treasurers :Ms. Dhiani Tresna Absari Secretariat :Maria Agatha E.Gunawan, Ph.D. Asst. Prof. Lanny Sapei, Ph.D. Mr. Rahman Dwi Wahyudi Ms. Yenny Sari Ms. Yuana Elly Agustin Ms. Susana Limanto

Ms. Monica Widiasri

Program	:Mr. Yunus Fransiscus
	Ms. Melissa Angga
	Mr. I Made Ronyastra
	Mr. Henry Hermawan
	Mr. Felix Handani
	Ms. Indri Hapsari
	Mr. Mochammad Arbi Hidayat
Website	:Mr. Daniel Soesanto
	Mr. Marcellinus Ferdinand Suciadi
Design	:Ms. Tyrza Adelia
Sponsorship	:Assoc. Prof. Susila Candra, Ph.D.
Logistic:	Mr. Arief Rachman Hakim
	Mr. Muhamad Yulham Effendy

REVIEWER

- Prof. David Lewis, Ph.D. (University of Adelaide, AUSTRALIA)
- Prof. Willy Susilo, Ph.D. (University of Wollongong, AUSTRALIA)
- Dr. Jingwei Hou (University of Queensland, AUSTRALIA)
- Asst. Prof. Hendry Raharjo, Ph.D. (Chalmers University of Technology, SWEDEN)
- Prof. Dr. Anton Satria Prabuwono (King Abdulaziz University, SAUDI ARABIA)
- Assoc. Prof. Oki Muraza, Ph.D. (King Fahd University of Petroleum & Minerals, KINGDOM OF SAUDI ARABIA)
- Prof. Dr. Winarto Kurniawan (Tokyo Institute of Technology, JAPAN)
- Dr. Wahyudiono (Nagoya University, JAPAN)
- Prof. Ravindra S. Goonetilleke, Ph.D. (Hong Kong University of Science & Technology, PRC)
- Asst. Prof. Dr. Steve Kardinal Jusuf (Singapore Institute of Technology, SINGAPORE)
- Assoc. Prof. Tan Kay Chuan, Ph.D. (National University of Singapore, SINGAPORE)
- Asst. Prof. Aldy Gunawan, Ph.D. (Singapore Management University, SINGAPORE)
- Assoc. Prof. Dr. A. F. M. Saifuddin Saif (American International University, BANGLADESH)
- Asst. Prof. Itthisek Nilkhamhang, Ph.D. (Sirindhorn International Institute of Technology, THAILAND)
- Assoc. Prof. Akawut Siriruk, Ph.D. (Suranaree University of Technology, THAILAND)
- Assoc. Prof. Avirut Chinkulkijniwat, Ph.D. (Suranaree University of Technology, THAILAND)
- Assoc. Prof. Peerapong Uthansakul, Ph.D. (Suranaree University of Technology, THAILAND)
- Asst. Prof. Dr. Phuong Lan Tran Nguyen (Can Tho University, VIETNAM)
- Assoc. Prof. Dr. Anas Maruf (Institut Teknologi Bandung, INDONESIA)
- Dr. Khoiruddin (Institut Teknologi Bandung, INDONESIA)
- Assoc. Prof. Dr. Veinardi Suendo (Institut Teknologi Bandung, INDONESIA)

REVIEWER

- Assoc. Prof. Dr. Andi Cakravastia Arisaputra Raja (Institut Teknologi Bandung, INDONESIA)
- Assoc. Prof. Yassierli, Ph.D. (Institut Teknologi Bandung, INDONESIA)
- Assoc. Prof. Dr. Judy Retti B. Witono (Universitas Parahyangan, INDONESIA)
- Asst. Prof. Budi Hartono, Ph.D. (Universitas Gadjah Mada, INDONESIA)
- Prof. Sarjiya, Ph.D. (Universitas Gadjah Mada, INDONESIA)
- Asst. Prof. Dr. Hendri Himawan Triharminto (Akademi Angkatan Udara Yogyakarta, INDONESIA)
- Assoc. Prof. Dr. Djoko Budiyanto Setyohadi (Universitas Atmajaya Yogyakarta, INDONESIA)
- Prof. Dr. Ali Altway (Institut Teknologi Sepuluh Nopember, INDONESIA)
- Prof. Renanto Handogo, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
- Prof. Mauridhi Hery Purnomo, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
- Prof. Nur Iriawan, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
- Asst. Prof. Astria Nur Irfansyah, Ph.D.(Institut Teknologi Sepuluh Nopember, INDONESIA)
- Prof. Dr-Ing. I Made Londen Batan (Institut Teknologi Sepuluh Nopember, INDONESIA)
- Assoc. Prof. Setiyo Gunawan, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
- Prof. I Nyoman Pujawan, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
- Asst. Prof. Rr. Poppy Puspitasari, S, Ph.D (Universitas Negeri Malang, INDONESIA)
- Asst. Prof. Ratna Surya Alwi, S.T., M.Si., Ph.D (Universitas Fajar Makassar, INDONESIA)
- Prof. Joniarto Parung, Ph.D. (Universitas Surabaya, INDONESIA)
- Prof. Lieke Riadi, Ph.D. (Universitas Surabaya, INDONESIA)
- Asst. Prof. Nemuel Daniel Pah, Ph.D. (Universitas Surabaya, INDONESIA)
- Assoc. Prof. Markus Hartono, Ph.D (Universitas Surabaya, INDONESIA)
- Asst. Prof. Dr. Hazrul Iswadi (Universitas Surabaya, INDONESIA)
- Asst. Prof. Gunawan, Ph.D (Universitas Surabaya, INDONESIA)
- Assoc. Prof. Dr. Evy Herowati (Universitas Surabaya, INDONESIA)
- Assoc. Prof. Dr. Amelia Santoso (Universitas Surabaya, INDONESIA)
- Assoc. Prof. Eric Wibisono, Ph.D. (Universitas Surabaya, INDONESIA)
- Asst. Prof. Dr. Joko Siswantoro (Universitas Surabaya, INDONESIA)
- Assoc. Prof. Dr. Budi Hartanto (Universitas Surabaya, INDONESIA)
- Asst. Prof. Dr. Delta Ardy Prima (Universitas Surabaya, INDONESIA)
- Asst. Prof. Jimmy (Universitas Surabaya, INDONESIA)
- Assoc. Prof. Lisana (Universitas Surabaya, INDONESIA)
- Assoc. Prof. Dr. Emma Savitri (Universitas Surabaya, INDONESIA)
- Assoc. Prof. Restu Kartiko Widi, Ph.D. (Universitas Surabaya, INDONESIA)
- Assoc. Prof. Akbarningrum Fatmawati (Universitas Surabaya, INDONESIA)

REVIEWER

- Assoc. Prof. Akbarningrum Fatmawati (Universitas Surabaya, INDONESIA)
- Asst. Prof. Putu Doddy Sutrisna, Ph.D. (Universitas Surabaya, INDONESIA)
- Asst. Prof. Djuwari, Ph.D. (Universitas Surabaya, INDONESIA)
- Asst. Prof. Elieser Tarigan, Ph.D. (Universitas Surabaya, INDONESIA)
- Assoc. Prof. The Jaya Suteja, Ph.D (Universitas Surabaya, INDONESIA)
- Assoc. Prof. Dr. Susila Candra (Universitas Surabaya, INDONESIA)
- Asst. Prof. Sunardi Tjandra (Universitas Surabaya, INDONESIA)
- Asst. Prof. Yuwono Budi Pratiknyo (Universitas Surabaya, INDONESIA)

CONFERENCE ORGANIZING COMMITTEE: FACULTY OF ENGINEERING, UNIVERSITAS SURABAYA DEAN BUILDING TB 2, RAYA KALIRUNGKUT SURABAYA, 60293, INDONESIA PHONE: +62-31-2981150, FAX: +62-31-2981151 E-MAIL: incite@unit.ubaya.ac.id WEBSITE: <u>https://incite.ubaya.ac.id</u>; <u>http://teknik.ubaya.ac.id</u>

Table of Content

Preface Conference Organizers Table of content	i iii viii
Green Design and Innovation A Systematic Literature Review for Developing Sustainability Assessme Formulating the State of the Art and Future Direction Y Sari, A Hidayatno, A Suzianti, M Hartono	nt Tool: A-1
Perceived Kansei and Performance-Based Usability Impact on Satisfaction f Based Applications <i>M Hartono</i>	for Web- A-8
Passive Design Implementation as Sustainable Development Approach on Housing Case Study: Sentra Timur Residence <i>T Riotama and H Herdiansyah</i>	Vertical A-14
Development and Usability Evaluation of Virtual Guide Using Augmented Re Candi Gunung Gangsir in East Java I M Ronyastra, I Hapsari and F P Pani	eality for A-19
Combined Structural Equation Modelling – Artificial Neural Networks M Predicting Customer Loyalty <i>M A Hadiyat</i>	odel for A-25
How the Indonesian Ecologically Conscious Millennials Value Upcycled Clothing <i>C A P Parung</i>	;? A-31
Animated Video as Health Promotion Tool for Community Supplementary Feed S Limanto, Liliana, S Purba and M Oeitheurisa	ing A-37

Slow - Fashion: Case Study of Tenun Sesek as Local Wisd	lom from Pringgasela, East
Lombok, West Nusa Tenggara	
N Juniati	A-43

Expertise-based decision makers' importance weights for solving group decision making problems under fuzzy preference relations *E Herowati* A-49

Measurement of Student Satisfaction and Loyalty Using Service Quality Model for Higher Education (HedQual) at Industrial Engineering Department University of Pelita Harapan

N Hartono, Laurence and B F Tjahjadhi A-56

Development Initial Model of Intention to Use Halodoc Application Using PLS-SEM *N Hartono, Laurence and T O Tedja* A-63

The Role of Ergomomics in Suporting Supply Chain Performance in ManufacturingCompanies: a Literature ReviewSampouw N and Hartono MA-71

Green Dynamic Capability for Enhancing Green Innovations Performance in aManufacturing Company: a Conceptual FrameworkR Amaranti, D Irianto and R GovindarajuA-77

Kansei Engineering Application in Redesigning Carica Packaging to Support Local-Small Industry in Central Java *H Prastawa, M Mahachandra and D A Harman Donida* A-84

Organic-Inorganic Nanocomposite Membranes for Molecular Separation and Bioapplications J Hou, P D Sutrisna, L Li, V Chen A-90

Fluazinam Potential as a Fungicide in Liquid Culture System for the G Haematococcus pluvialis Microalgae	rowth of
J R Witono, V Novianty, H Santoso, A Miryanti and A J Kumalaputri	A-95
Tensile properties of kenaf fiber by alkalinization treatment: effect of vari	ations in
Ismojo, K A Zahidah, E Yuanita, E Kustiyah and M Chalid	A-103
Green Manufacturing and Green Processes	
Regulatory Performance of Two Different Tuning Method for Milk Cooling System	g Control
R Agustriyanto	B-1
A Review of a Machine Design of Chocolate Extrusion Based Co-Rotating Tw Extruder	vin Screw
P Pitayachaval and P Watcharamaisakul	B-7
An Empirical Study of How the Deployment of Lean Sigma Can Reduce Its Waste, Overburden and Defect	Enemies:
Y Sari, E Wibisono and I Pangkiey	B-14
Controlled Release Fertilizer Based on Starch Chitosan Encapsulation E Savitri, E Purwanto, A N Kodrat and E Yonathan	B-20
Assessing Materials from Hoarded Mobile Phones: Hidden E-Waste Subject fo	r Reverse
R Siring, H Herdiyansyah, R D Kusumastuti and A E Lucianto	B-26
Optimisation of Subtractive Rapid Prototyping Process Parameters Using Surface Methodology	Response
T J Suteja and M A Hadiyat	B-32

A Kinetic Study of Oil-in-Water Emulsion Formation Stabilized by Rice Husk Ash and Lecithin L Sapei, S W Kurniawan and A P Siantoro B-38 Improvement of Salt Raw Material Procurement and Inventory Planning at Bitung I Hapsari, D N Prayogo, C M G Liembath B-44 Price and Inventory Policy Strategy Model in a Price Sensitive Dual Channel Supply **Chain Structure Considering Product Substitution** R Y H Silitonga and N Christina B-50 Tofu Wastewater Treatment Through a Combined Process of Coagulation-Flocculation and Ultrafiltration P Prawati, A Oktariany, S S Putri, I Aditya and S Kartohardjono B-56 Risk-Based Sustainability Balanced Scorecard to Prioritize Integrated Improvement and to Consider High Level Structure R D Wahyudi, Y Sari, E Wibisono, F Rafael and A F Tanujaya B-63 Effect of NR-g-cellulose Coupling Agent into NR-Cellulose Composite Dispersibility and **Its Physical Properties** H Handayani, A Cifriadi, A S Handayani, M Chalid, S Savetlana, M Christwardana B-69 Carbon Emission Modelling in Container Terminal Operations Planning Using a System **Dynamics Approach** D N Prayogo B-75 The Effect of Soygurt Fortification with Black Rice Bran Extract Anthocyanin in Hyperlipidemia Wistar Rats (Rattus norvegicus)

E P Nurlaili, S Hartati and Nurhidajah

B-81

Container Storage Tariff Policy Analysis Using Combining Game Theory and Dynamics Approach	System
	B-87
Formulation and Characterization of Chitosan-Alginate Freeze Dried Matrices	Loaded
with Oleoresin Extract of Red Ginger	
E A Krisanti, A Safiya and K Mulia	B-93
Preparation and Characterization of Polyvinyl Alcohol-Chitosan-Tripolypho	osphate
Hydrogel for Extended Release of Anti-Tubercolosis Drugs	
K Mulia, S A Chadarwati, A J Rahyussalim and E A Krisanti	B-101
Effects of Initial Concentration, Adsorbent Mass, pH and Temperature to Persor	nal Care
Products Waste Removal with Activated Carbon as Adsorbent	
H R Priyantini, L Riadi, C Effendi, F Effendi and A Mitayani	B-111
Surface Roughness Analysis Using Sound Signal in Turning of Mild Steel	
Anayet U Patwari, Anas Azmayeen Zamee, Mehedi Hasan Bhuiyan and Sultan M	1ahmud
Sakib	B-117
Environmental Life Cycle Costing of Boiler System: a Case Study	
C A Sulistio, Laurence, N Hartono and J Hanafi	B-123
The Integration of Social Responsibility into Business Operation: Case St	tudy of
Indonesian Manufacturing Industry	
E D Rinawiyanti, C Huang and S As-Saber	B-128
Solubility Correlation of Azobenzene Derivatives in Supercritical Carbon Dic Short Review	oxide: a
Ratna Surya Alwi and Andi Sry Iryani	B-134

Tricodherma reesei: Effect of Pretreatment	
Y E Agustin, L Riadi and T P Utami	B-140
Power System and Green Energy Management	
Analysis of the Potential of Solar Panel Implementation Towards Green A	ffordable
Housing Development	
A E Lucianto and H Herdiansyah	C-1
Integration of Biogas Technology into Goat Farming to Achieve Zero Waste	e System:
Effect of Substrate Composition and Concentration	
K Cahyari	C-7
Single-Phase DC-AC Inverter with Low Power Dissipation with Transformer a for Photovoltaic-Based Home-Scale Electric Power System	and Filter
I Hidayat, F Samman and R Sadjad	C-11
The Influence of Water and Catalyst Leach Process toward Propane Oxic MoVTeNb Catalyst <i>R K Widi</i>	lation on C-21
Gas Sensitive Properties Of ZnO Nanorods Formed on Silicon and Glass Substra	tes
V Petrov, A Starnikova, Y Varzarev, K Abdullin and D Makarenko	C-27
The Study of The Properties of Lead Zirconate-Titanate Films on Silicon Subst Halogen Lamps Rapid Thermal Annealing	rate After
V Petrov, A Kamentsev, V Polyakov and Y Varzarev	C-33
Temperature Dependence of Electrical Properties of ZnO Nanorods Array V Petrov, Y Varzarev and K Abdullin	C-37

Xylanase Production from Combined Reutealis trisperma with Potato Dextrose Broth by

Utilization of Rice Straw and Used Paper for the Recycle Papermaking <i>N Suseno, T Adiarto, M S P Tentoea and V E Sugihartono</i>	C-41
Mass Transfer Kinetic Model and Removal Capacity of Acid Blue 29 Adsorpt Activated Carbon	ion onto
P Setyopratomo, H R Priyantini and R Agustriyanto	C-47
Effects of Electroculture on Shoot Proliferation of Garlic (Allium sativum L.)	
VL Manguiam, A M Margate, R D Hilahan, H G Lucin, K R Pamintuan, A Adornado	C-53
The Use of Pyrolusite to Remove Pb and Cd in Aqueous Solutions : Isotherm and Thermodynamic	
Y F Liem, M W B Kembie and N M Tanusaputra	C-57
Current Perspectives and Mini Review on Zeolitic Imidazolate Framework-8 (ZIF-8) Membranes on Organic Substrates	
P D Sutrisna, N F Himma, N Prasetya and I G Wenten	C-63
Power generation in a Plant-Microbial Fuel Cell Assembly with Graphite and Steel Electrodes Growing Vigna Radiata	Stainless
K R Pamintuan and K Sanchez	C-69
Drying of Celery Leaves (Apium graveolens L.) using a PV/T Solar Dryer	
L Sapei, E Tarigan, D N Sugiarto and D Gianluca	C-75
Kinetics Oxidative Degradation of Chitosan in Formic Acid with The Pre- Hydrogen Peroxide	sence of
E Purwanto, J Connor and Y Ngothai	C-81

The Role of IT in Innovation EnhancementSmart urban farming using arduino in residential areaD A Prima, W D Savitri, V R Prasetyo, E SuryadjajaD-1

Towards power supply efficiency in IoT for image-based transmission scheme
N Karna, M SafiraD-7E-commerce for Japanese pop-products in Indonesia: the sign of decline stage
Gunawan, Yu NodaD-14Enhancement of weighted centroid algorithm for indoor mobile non-co-perative
localization system
R D AinulD-20E-commerce development using object oriented analysis and design (OOAD), a case
study in Marenggo Natural Dyes Batik SME in IndonesiaD-26

Anchored instruction ITS: a novel approach to make learning programming interesting and effective *B Hartanto, J Reve* D-32

Requirements analysis for the disaster logistics inventory information system to improve the effectiveness and efficiency of handling emergency response periods *N U Handayani, D P Sari, Y Widharto, G Basyir* D-39

Software verification and validation using statistical test: a systematic mapping studyS Arifiani1, F Handani, S Rochimah1, D Herumurti, I KuswardatyanD-45

Usability of multimedia-based technology in situational judgment test: literature review and survey on millennial generation *F Handani, E Yuliandari, Elisabeth* D-52

Employing game technology as positive influence on conveying positive message andtrain positive behavior: case study racism and tolerance issueN M Angga, M F Suciadi, S Yuanita, M A WiradarmaD-59

FSM based virtual camera control for earthquake evacuation simulation <i>D A Prima</i>	D-64
Machine learning to predict rainfall at Deli Serdang Stasion in North Sumatra I Fitriyaningsih, L R Bernando, S N Kwatri	D-71
Rethinking third place in the digital era R F P Hadi, E Ellisa	D-78
Image based indonesian fruit recognition using MPEG-7 color structure descr	iptor and
k-nearest neighbor J Siswantoro, H Arwoko, M Widiasri	D-84
The design of android-based application for museum guide information syst beacon technology	em using
D Absari, D H Prasetyo, F Adinata	D-90
Virtual reality app on Milky Way solar system, case study: Kebraon II Public El School, Surabaya, East Java, Indonesia	ementary
M F Suciadi, Lisana, F Ramadhan	D-96
Computer vision system in measurement of the volume and mass of egg using method	g the disc
M Widiasri, L P Santoso, J Siswantoro	D-102
Fraud detection using process mining and analytical hierarchy process with verules on erp business process	erification
M F Naufal	D-108
Customer intention to use airbnb application: a case study	D 114
S Bellina, Laurence, N Hartono	D-114

Evaluation of academic website using eye tracker and ueq: a case study in a website of xyz D-119

A H Kusumo, M Hartono

A decision tree algorithm for predicting amount of batik tulis lasem production by decision support system to support financial feasibility

T Khotimah, R Nindyasari, N Ermawati D-125

Content of The Role of IT in Innovation Enhancement

1.	Smart urban farming using arduino in residential area D A Prima, W D Savitri, V R Prasetyo, E Suryadjaja D-1
2.	Towards power supply efficiency in IoT for image-based transmission scheme
	N Karna, M Safira D-7
3.	E-commerce for Japanese pop-products in Indonesia: the sign of decline stage <i>Gunawan, Yu Noda</i>
	Gunawan, Tu Noau D-14
4.	Enhancement of weighted centroid algorithm for indoor mobile non- cooperative localization system <i>R D Ainul</i>
5.	E-commerce development using object oriented analysis and design (OOAD), a case study in Marenggo Natural Dyes Batik SME in Indonesia
	D P Sari, N U Handayani, Y Widharto, M F M Raharjo D-26
6.	Anchored instruction ITS: a novel approach to make learning programming interesting and effective <i>B Hartanto, J Reye</i>
7.	Requirements analysis for the disaster logistics inventory information system to improve the effectiveness and efficiency of handling emergency response periods
	N U Handayani, D P Sari, Y Widharto, G Basyir D-39
8.	Software verification and validation using statistical test: a systematic mapping study <i>S Arifiani1, F Handani, S Rochimah1, D Herumurti, I Kuswardatyan</i> D-45
9.	Usability of multimedia-based technology in situational judgment test: literature review and survey on millennial generation

F Handani, *E* Yuliandari, *Elisabeth*..... D-52

10.	Employing game technology as positive influence on conveying positive message and train positive behavior: case study racism and tolerance issue
	N M Angga, M F Suciadi, S Yuanita, M A Wiradarma D-59
11.	FSM based virtual camera control for earthquake evacuation simulation <i>D A Prima</i> D-64
12.	Machine learning to predict rainfall at Deli Serdang Stasion in North Sumatra I Fitriyaningsih, L R Bernando, S N Kwatri
13.	Rethinking third place in the digital era <i>R F P Hadi, E Ellisa</i>
14.	Image based indonesian fruit recognition using MPEG-7 colorstructure descriptor and k-nearest neighborJ Siswantoro, H Arwoko, M WidiasriD-84
15.	The design of android-based application for museum guide information system using beacon technology <i>D Absari, D H Prasetyo, F Adinata</i> D-90
16.	Virtual reality app on Milky Way solar system, case study: Kebraon II Public Elementary School, Surabaya, East Java, Indonesia <i>M F Suciadi, Lisana, F Ramadhan</i> D-96
17.	Computer vision system in measurement of the volume and mass of egg using the disc method <i>M Widiasri, L P Santoso, J Siswantoro</i> D-102
18.	Fraud detection using process mining and analytical hierarchy process with verification rules on erp business process <i>M F Naufal</i> D-108
19.	Customer intention to use airbnb application: a case study <i>S Bellina, Laurence, N Hartono</i> D-114
20.	Evaluation of academic website using eye tracker and ueq: a case study in a website of xyz <i>A H Kusumo, M Hartono</i>

21. A decision tree algorithm for predicting amount of batik tulis lasem production by decision support system to support financial feasibility