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1. Introduction

In this thesis I investigate the network structure of sign epistatic interactions for

some typical stochastic fitness landscape models and its impact on dynamical

properties of the evolutionary process under strong selection.

While proper definitions of the term evolution may be lacking, a common and

important feature is “descent with modification”[20], i.e. a process of almost, but

not fully, accurate replication. Abstracting away the biological details of this

process one arrives at a large class of stochastic processes, which may vary in many

details, but typically share the properties of reproduction with heritable traits,

random mutations on these traits and (natural) selection favoring the reproductive

success of individuals with certain sets of heritable traits. Other effects possible

are recombination of heritable traits, either via sexual reproduction or horizontal

DNA transfer, migration between populations and others.

In this thesis I consider only single populations reproducing asexually under

higher selection pressure with mutation but without recombination, migration or

any other such effect.

A population is generally made up of a finite number of individuals, which are

distinguished from each other by a number of heritable traits, the union of which

is called genotype of the individual. The genotype must be differentiated from the

phenotype, which is the union of all expressed traits. Individuals in the population

reproduce in such a way, that descendants inherit most of the ancestors genotype.

In the biological context, inheritance of traits is assured via their encoding in

the genome, which is chemically a massive polymer, the (desoxy-)ribonucleic acid

(DNA/RNA), whose monomers, the nucleobases, come in four variants: cytosine,

guanine, adenine and thymine (in case of RNA thymine is usually replaced by

uracil). The string of these four bases encodes most of the heritable traits of

an organism. The process of cell division with a complex chemical process of

RNA/DNA synthesis and copy apparatus guarantees that daughter cells contain

a copy of the parents genome. The genome is however generally not an exact

copy and errors may occur due to stochasticity involved in the synthesis process as

well as due to environmental degradation, e.g. through ionizing radiation. These

mutations allow the population to change and to explore new traits over time.[1,34]
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The third effect besides reproduction and mutation is selection. The number of

viable and (fertile) offspring of an individual generally depends on its genotype.

This is measured in the fitness value, meaning that an individual with a higher

fitness will generally have more fertile offspring and its genotype will therefore

prevail in the population over smaller fitness ones. There exists several different

definitions of what exactly fitness is, however in this thesis most definitions will be

considered equivalent and only the fact that higher fitness genotypes fixate in the

population is of importance.[36]

The map assigning fitness values to genotypes, introduced by Sewall Wright[58],

is called the fitness landscape and is the point of interest of this thesis.[16] This

is not the most general and neither a biologically sufficient description of fitness

in all settings, but will suffice for certain cases. Assignment of fitness values

directly to genotypes cuts short genotypes-phenotype maps, which are considered

intermediate functional layers instead.[46,51] Also inter-population interactions like

non-linear dependence of the fitness on genotype frequencies, studied extensively in

evolutionary game theory[23,52], and environmental effects changing the landscape

are not incorporated directly, see e.g. phenotypic plasticity[9,48,57].

A “well-mixed” population (i.e. without significant spatial properties) is described

as a map from genotypes to natural numbers counting the number of individuals

with that genotype. If fitness differences are very large between any two genotypes,

i.e. in the strong selection regime, then the smaller-fitness genotype has no chance

of dominating the population ever.[19,38] Outside of the strong selection regime

this is generally not true, because the fixation probability is related to the fitness

differences, and for almost-neutral selection a lower-fitness genotype has a significant

chance of fixating. The latter effect is also known as genetic drift and becomes

stronger with smaller population sizes due to the inverse relation between population

size and stochastic fluctuation magnitude.[5,18] How significant genetic drift is in

evolutionary biology relative to natural selection has been a disputed issue for a

long time.[37]

In the strong selection regime however the highest fitness genotype will always

dominate in the long term and therefore it makes sense to declare it the population

genotype. If also mutation is weak, then the fixation time of the dominant genotype

is also shorter than the time between mutations and therefore the dominant
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genotype will also be the only one existing in the population (except for the one

previously dominant genotype). The dynamics arising in this limit case is that of

an adaptive walk on the genotype space according to the fitness values assigned by

the fitness landscape.[17,35,39]

In adaptive walk dynamics the population is a single dot on the fitness landscape

moving step-wise on it towards higher fitness. This implies that an adaptive walk

can only take a small subset of paths through the genotype space as determined

by the fitness landscape. As soon as there is no genotype with higher fitness and

reachable by mutation left, the dynamics stop and a terminal state is reached.

Genotypes with this properties are local optima of the fitness landscape.

Since the adaptive walk dynamics are substantially more restricted in possible

routes than in the general case, we are interested to know which parts of the

landscape remain reachable for the population from given origin, which optima it

will attain and which paths it will take to reach them. Restrictions on possible

paths come about by sign-epistasis, the dependence of the sign of mutational fitness

effects on the current background genotype, especially through reciprocal sign

epistasis, that is mutations on two loci which are beneficial if applied together, but

deleterious if applied one by one.[43,55,56] Sign epistasis is a extreme case of general

epistasis, the dependence of mutational effect on background genotypes, which is

considered to be of high importance of evolutionary dynamics.[49]

While experimental fitness landscapes become increasingly more available, they

are often unsuitable to study (global) reciprocal sign epistasis due to selection bias

of the chosen mutations and their small sizes.[11,47,50] Therefore I focus on theoretical

models of landscapes, in particular a generalized version of the NK model. These

models are defined on the hypercube, that is it is assumed that the genotype consist

of a finite number of loci L, each of which can be found in two states/alleles. The

only mutations allowed in one generation are those changing the alleles of one

locus. The resulting mutation graph determining the adaptive walk transition

graph (short of the monotone fitness requirement) is the L-dimensional binary

hypercube, also known as Hamming graph H(L, 2). In the NK model introduced

by Kauffman and Weinberger[25,26] a number of small (partial) fitness landscapes

over k loci each are added up to a total fitness value. The partial landscapes, they

themselves considered high-dimensional random variables, are chosen i.i.d. and
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may correspond to independent phenotypes or functional units. Several building

blocks may share some of the same loci, thus constructing an explicit interaction

network between loci, which is immediately related to the network of epistatic

interactions between loci. The overlap in building blocks may represent functional

inter-dependency or simultaneous (and potentially competing) effects of mutations

on otherwise independent phenotypes, i.e. pleiotropy.[12,40,51] The parameter k

determines the ruggedness of the model, which, scaling between 1 and L, indicates

the amount of epistasis and the smoothness of the fitness landscape. In particular

for k = 1, there is no epistasis and a simple linear fitness model is recovered, while

higher k generally result in more complex landscape structures.

Kauffman and Weinberger suggested two choices of interaction schemes for

the NK model and concluded that they behave very similar.[25,54] An additional

interaction structure falling into the NK class has been considered by Perelson and

Macken. In the block model (BN) loci are divided into disjoint sets of k loci and

interactions are only present between loci of same sets.[41] However all three choices

are similar in that, at large L and small k, they represent short-range interactions

between loci. I will additionally consider an example of a diameter-2 interaction

scheme, which will be seen to have qualitatively different properties in the L→∞
limit at constant k.

In this thesis I represent sign epistatic interactions as a directed graph over loci,

with arrows determining whether a mutations on the source locus affect signs of

mutations on the destination. I also add weights to the arrows determining the

fraction of genotype backgrounds having this dependence.

This sign epistasis graph encodes a lot of information on limitations of adaptive

walks. I will consider the expected weights of arrows on this graph, i.e. the strength

of sign epistasis, as well as the global structure of the sign epistasis graph. Both

may present limitations on adaptive paths on the fitness graph.

I will make use of some basics of (hyper-)graph theory and probability theory in

this thesis. A short glossary with the precise definitions used can be found in the

appendix.
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Figure 1: Left: The hypercube representing mutations on the genotype space H for L = 4.
Right: A fitness graph on the genotype space with L = 3. Arrows point towards
higher fitness. This example has only one local maximum and minimum at
(+−−) and (−−+) respectively. Nodes are labeled in both cases with the
genotype sequence they represent. The hypercube projections onto the plane
are also chosen such that edges/arrows on same loci are parallel.

2. Mathematical framework

In this section I will introduce the fundamental mathematical formalism of evolution

used in this thesis.

2.1. Genotype and mutation

The genotype consists of a finite number of loci, each of which may be in one

of two states. The set of loci is denoted L and the genome length L = |L|.
I will always assume that the set of loci is totally ordered, i.e. L = {l1, ·, lL},
where the assignment of indices to loci is fixed. Then a genotype g is any map a

sequence of binary values g = (gl1 , . . . , glL) ∈ {−1, 1}L. The space of all genotypes

is HL = {−1, 1}L or HL = {−1, 1}L if the labeling of loci should be relevant. I

will write genotypes in the sequence representation as e.g. (+ +−), meaning that

l1 = +1, l2 = +1 and l3 = −1.

Evolution proceeds by consecutive small mutations of the genome. Here I

consider only basic point mutations at one locus. Point mutations are operators

∆m for m ∈ L which switch the binary allele value of locus m, i.e. ∆mg =

(gl1 , . . . ,−gm, . . . , glL). Note that ∆m are their own inverses and with composition

they generate a commutative group. The remaining elements of this group are

multilocus mutation operators ∆M for M⊆ L, such that ∆M =
∏

m∈M∆m.
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A natural metric describing the distance between genotypes in terms of minimum

mutations needed to connect them is the Hamming metric dH(g, h) :=
∑

l∈L(1−
δglhl). This metric also induces a natural norm on the mutation group ‖∆M‖ :=

|M|, such that dH(g,∆Mg) = ‖∆M‖. The simple undirected graph over the

genotype space with the Hamming metric as distance function is the L-dimensional

hypercube H(2, L).

The L-dimensional hypercube is the cartesian product of L copies of the complete

graph on two vertices. Cartesian products of complete graphs are also known as

Hamming graphs due to their relation to the Hamming metric. The notation

of genotypes as sequences corresponds to the tuple representation of vertices in

this cartesian product and loci are distinguishing labels of the cartesian factors.

Elements of these sequences can be interpreted as coordinates and loci as the

dimensions / labels of the coordinate axes.

2.2. Fitness landscape and fitness graph

A fitness landscape[16,58] is a mapping of fitness values to each genotype F : HL →
R. The space of all fitness landscapes over L will be denoted FL, which can also be

identified by the Euclidean space R2L . For this choose any bijection φ : HL → N≤2L

and the derived bijection φ̃ : FL → R2L with φ̃(F ) =
(
F (φ−1(1)), . . . , F (φ−1(2L))

)
,

i.e. each coordinate of the euclidean space corresponds to one fitness value of one

genotype on the fitness landscape. I assume that the space of fitness landscapes

inherits all geometrical and topological properties of the euclidean space via this

bijection.

Thus the fitness values will also be written as Fg := F (g), where the left-hand

notation resembles the coordinate notation for vectors, only that the bases here

are labeled by genotypes rather than natural numbers.

The effect of a mutation on the fitness value will be shortened by the notation

∆lF (g) := F (∆lg)− F (g). Here ∆l can be interpreted as an operator on the space

of fitness landscapes, i.e. ∆lF is itself a fitness landscape in FL and can be thought

of as the discrete analog to a partial derivative along locus/coordinate axis l.

For a given fitness landscape the fitness graph[6] is defined as the orientation

of the hypercube graph constructed from genotype space, such that arrows point
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towards increasing fitness. This is only well-defined as long as there are no neutral

mutations, which will almost surely be true for all models I consider here by

construction because I consider the strong selection limit and thus I will ignore

any issues of defining the arrow direction for neutral mutations. The fitness graph

encodes the difference signs of all possible mutations and so it bounds all adaptive

walks.

In contrast to the number of possible fitness landscapes there are only finitely

many fitness graphs on a given genotype space. Valid fitness graphs are exactly

all acyclic orientations of the hypercube. Cycles may not appear, because that

would imply that fitness increases after traversing it once. If there is however no

cycle, matching fitness values can simply be assigned by traversing the graph in

topological order. The asymptotic number of acyclic orientations of the hypercube

is known to be LΘ(2L) with more accurate lower and upper bounds available.[24,30]

This number scales superexponentially and the number of nodes in the graph is

still exponential in L, so that the fitness graph is unsuitable as a visualization for

anything but very small system sizes.

The fitness rank landscape of a fitness landscape is the map R : HL → N≤2L ,

which maps to each genotype its fitness value rank. Since I explicitly disallow

neutral mutations, this map is well-defined and always bijective. The properties

under consideration in this thesis are mostly independent of fitness effect magnitudes

and therefore the rank landscape contains all the information necessary. In fact

the properties of the fitness graph were already sufficient for my purposes, but the

rank landscape contains a superset of its information, though there are still only

finitely many rank landscapes over any genotype space. Using that there are 2L

ranks to distribute onto 2L genotypes in any possible permutation, there are (2L)!

possible rank landscapes. The number of rank landscapes is significantly larger

than the number of fitness graphs as can be seen by taking the logarithm of both

values: ln(LΘ(2L)) ∼ ln(L)Θ(2L) vs ln(2L!) ∼ 2LL ln 2. Here the ln(L) factor is

outweighted by the L factor.
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2.3. Fourier transform

Being functions over a finite commutative group, fitness landscapes have Fourier

transforms[33,53], here defined by:

F (g) = 2−
L
2

∑
g̃∈P(L)

F̃g̃
∏
l∈g̃

gl

where F̃g̃ are the real-valued Fourier components, which are indexed by the Fourier

space elements, i.e. subsets of the locus set. The Fourier space is isomorphic to the

genotype space and a subset of loci g̃ can be interpreted as a (Fourier) genotype

by setting all alleles to ±1 if l ∈ g̃ and ∓1 otherwise. The prefactor is chosen such

that the inverse Fourier transformation is identical.

2.4. Projection and slicing

−−− −−+

−+− −+ +

+−− +−+

+ +− + + +

−−

−+

+−

++

Figure 2: Projection of the genotype hypercube for L = 3 onto M = {l1, l2}.

Given a subset of loci M ⊆ L, I denote the projection of a genotype g into

the subspace HM by ↓M g. It is defined such that (↓M g)l = gl for all l ∈ M.

For example let L = {l1, l2, l3, l4, l5}, then the projection onto M = {l2, l3, l5} in

sequence representation is given by:

g = (gl1 , gl2 , gl3 , gl4 , gl5) 7→ ↓M g = (gl2 , gl3 , gl5) (1)

Here it is not obvious how loci in the projection are ordered. I will assume, that

they retain their order from the original sequence.
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Figure 3: The two (l1, l2)-slices with backgrounds (l3) = (±) of the genotype hypercube
for L = 3.

Given a subset M⊆ L and a genotype h ∈ HL\M the M-slice along h is the

subgraph of the genotype space HL induced by all g ∈ HL with ↓L\M g = h. h is

called background.

For everyM⊆ L, there are 2|L\M| = 2L−|M| possibleM-slices. AllM-slices are

disjoint and are themselves hypercubes of order |M|. Consider HL with all edges

in the M-slices removed. The remaining graph has then 2M components, each

one a hypercube of order L− |M|. These are the (L \M)-slices of the genotype

space. In some sense M-slices and (L \M)-slices are therefore complementary

and orthogonal. Choosing a background for the M-slice and a background for the

(L \M)-slice bijectively determines the genotype in HL. All these properties are a

consequence of the genotype space being a cartesian product of isomorphic graphs

and not special for the hypercube in particular.

The special case of the two dimensional hypercube slices generated by subsets

with |M| = 2 are called squares.

Slices were defined for the genotype space, but they naturally transfer to the

fitness graph, which simply has directed edges instead. Taking the fitness values to

be assignments to the genotype nodes in the graph, the slice of the fitness landscape

is also defined as simple restriction of the function.

The fitness landscape restricted to a M-slice along background h can also be

Fourier transformed. Its order will be at most |M| instead of L for the full landscape.

It is also easy to determine, because the M-slice is a simple restriction, with the

restriction being, that all alleles for loci in L \M are fixed by h. Simply fixing

these alleles in the full Fourier transform one arrives at the Fourier coefficients of
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the slice, here denoted by a tick:

F̃ ′A =
∑

A⊆B⊆L

F̃B
∏
l∈B\A

hl (2)

for all A ⊆M.

3. Adaptive walk and landscape properties

3.1. Adaptive walks

In the population, at any given time, there is only a subset of genotypes actually

present. One of them has the highest fitness value and thus, in the strong selection

limit, it is the only one that can successfully spread through the population. Thus

it is sensible to consider this genotype the population genotype, assuming it does

not go extinct immediately.

This reduces the state space of the stochastic process from all populations to

just the genotype space. Because selection is strong it is also, except for very small

populations and certain definitions of birth/death rate, impossible for a genotype

with fitness lower than the majority genotype to fixate. Thus the resulting dynamic

is that of an adaptive walk, i.e. a time-discrete Markovian stochastic process on

genotype space with possible transitions determined by the fitness graph.[6,7,15,26]

Because the fitness graph has no cycles this implies that an adaptive walk will

eventually halt at a genotype without outgoing arrows in the fitness graph, i.e. at

a local optimum of the fitness landscape.

3.2. Local optima

A local optimum of a fitness landscape is a genotype g, such that for all point

mutations ∆l with l ∈ L: ∆lF (g) < 0. An adaptive walker will always be stuck at

a local optimum. These are the absorbing states of the process. Because there is

typically more than one local optimum, the process is therefore non-ergodic.

Landscapes have at least one local optimum, the global optimum, which is the

genotype with the the largest fitness value. I will write Ω for the global optimum.
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3.3. Transition schemes

An adaptive walker has to move towards increasing fitness, however there may

still be many such choices. The precise transition policy can be defined in several

ways. A simple choice is the random walk, in which any of the available fitness-

increasing steps at a given time point is chosen with equal uniform probability.

Such an adaptive walk does not care for fitness magnitudes or global fitness ranks

at all, but is fully determined by the fitness graph. The random walk arises in the

strong selection limit combined with very low mutation rate, so that every new

genotype arising by mutation is either fully fixed or completely lost before any new

mutant can arise. This parameter region is also known as strong selection weak

mutation (SSWM) regime.

Often however mutation rate is large enough for many mutants to spawn in

one generation. Then there are potentially several mutants with higher fitness

than the majority genotype present in transition phases and, due to the strong

selection limit, only the one with the highest fitness will fixate. This is also known

as clonal interference. Whether a mutation fixates is not solely determined

by its individual fitness effect anymore. In the most extreme case every possible

mutant arises immediately, so that the walker can choose the highest fitness value

from all the possible fitness-increasing steps on the genotype space. This transition

scheme is known as greedy walk. Here one has to be careful what mutants are

considered allowed in one generation. Generally I consider here only one single

point mutations as defined earlier per offspring, but realistically if the mutation

rate is high enough to generate all mutants fast enough, there will also be a high

chance of double-mutants or mutants with higher number of point mutations in

one generation.

For the greedy walk one needs to retain global rank information of the fitness

landscape. The fitness graph does not contain the necessary information to choose

between two fitness-increasing mutations. But at least the fitness ranks are sufficient

information and actual fitness values need not be considered. The greedy walk

differs from the random walk in that it is fully deterministic. Given a fitness

landscape and a starting point, the terminal state and the path to it are uniquely

determined.
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Figure 4: Fitness graph with L = 3 and two local optima, at (+ + +) and (+−−). The
local optimum (+ + +) can not be reached by any accessible path from its
antipodal (−−−). (+−−) can however be reached by its antipodal (−+ +)
by two accessible paths, marked red and blue. Both paths are short, i.e. of
length 3 and without back mutation.

The greedy walk increases fitness as fast as possible, often times getting stuck in

local optima quickly. Conceptually it might be interesting to consider the opposing

behavior, an adaptive walker which considers all fitness-increasing mutations, but

chooses the one increasing fitness by the smallest positive amount possible. Such a

walk is known as reluctant walk and one might expect it to have slow short-term

fitness increase, but potentially by having longer walk lengths it might be able to

increase fitness by a higher amount. Like the greedy walk, the reluctant walk is

fully deterministic.

Between the random and greedy/reluctant walk interpolations have been used,

e.g. by considering only a uniformly chosen fraction of fitness-increasing neighbors

in every step or by choosing uniformly between the n top or bottom fitness ranks

of fitness-increasing mutations.

My results will not depend on the scheme chosen. They will be general limiting

statements on any adaptive walk, based on whether an adaptive walker can possibly

take a path, independently of the probability it assigns to it.

3.4. Evolutionary accessible paths

Given a transition scheme and a starting point an adaptive walker will in finite

time reach a local optimum and terminate. In addition to the question of which

optimum it will reach, it is also interesting to consider the path it took to get

there. A (evolutionary/mutational) path is a path in the graph theoretical
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sense on the genotype hypercube, i.e. it is a finite non-empty sequence of genotypes

p = (g(1), . . . , g(m)) without repeated genotypes such that two adjacent elements in

the sequence can be reached via a single point mutation. The first element g(1) is

called the initial genotype and the last one g(m) is called final genotype. The

(path) length is the number of steps made, that is m− 1.

A path is called accessible if the fitness values along the sequence of genotypes

is increasing monotonically. Because adaptive walkers may never make a transition

decreasing fitness, accessible paths are the only possible trajectories they may take

and testing accessibility can therefore indicate limitations on all kinds of adaptive

walkers without having to consider dynamical properties.

One recent question of interest is the number of available paths to the global or

local optima of the landscape. Here one usually considers path of maximal length.

For every final genotype g(fi) there is exactly one in maximal distance L to it, the

antipodal genotype ∆Lg
(fi) having all loci in the opposite allele. Here mostly one

considers the global optimum Ω as final genotype and its antipodal ∆LΩ as initial

genotype. Alternatively one may consider paths starting at a random genotype,

although due to the topology of the hypercube, for large L, almost all genotype

have about distance L
2

from any other genotype.

A helpful differentiation is that of short and long paths. A path is short if it is

exactly as long as the Hamming distance between initial and final genotype. This

is the minimal distance a path between to genotypes can have, by definition of

the distance. A path is long if it is not short. Short paths on the hypercube are

distinguishable in that they do not apply mutations to the same locus twice, i.e.

only forward mutations happen, reversion of a mutation in a later step of the path

does not happen.

Short paths are somewhat easier to handle mathematically, e.g. the number of

short paths between two genotypes with Hamming distance d is exactly d!, because

there are d loci in need to be mutated, while they may also only be mutated once

and then only there order is left as choice. In particular the number of short paths

between a genotype and its antipodal is L!.

A genotype is said to be accessible, if there is at least one accessible path to it

from its antipodal.
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3.5. Basin of attraction

Another value used to describe the structure of fitness landscapes is the basing of

attraction.

The (greedy) basin of attraction of a local optimum g are all genotypes

h, such that a greedy walk starting from h ends in g. The reluctant basin of

attraction is similarly the set of genotypes h such that reluctant walks end in g.

More generally the weak basin of attraction is the set of all genotypes h such

that at least one adaptive walk can reach g, and the strong basin of attraction

is the set of all genotypes h such that all adaptive walks will reach g.

Note that greedy and reluctant basin of attraction define an equivalence relation

on genotypes, while weak basins of attraction for random adaptive walks can be

overlapping for different local optima and strong ones will generally not cover the

genotype space.

The relative sizes of basins of attraction suggest the distribution of adaptive

walk outcomes. If sizes have low variance between local optima it is expected that

all local optima are reached with similar probabilities, while for large variances

some optima are preferred outcomes over others. The strong basin of attraction in

particular determines the genotypes from which an adaptive walk has committed

to one optimum. As far as an element of a strong basin of attraction is reached by

any adaptive walk there is no outcome uncertainty left.

4. Specific models

The models for fitness landscapes used here are stochastic in nature, i.e. a fitness

landscape model is a probability distribution over FL identified as Euclidean space

R2L . One hopes to recover general properties of real fitness landscapes from typical

or average properties of these models. Due to the lack of sufficient empirical data

and precise theory this seems to be one of the few approaches possible. Deduction of

valid fitness landscape models from microscopic interactions is practically impossible

due to the enormous complexity of even the simplest evolving biological systems

(e.g. self-replicating RNA). For the same reason the models used are mostly based

on theoretical guesstimates taking roughly into account known underlying principles
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of theoretical biology and genetics.

4.1. House-of-Cards model

Probably the simplest stochastic models one may think of is that of completely

random uncorrelated fitness. In relation to physics these kind of models are known

as random energy models. For fitness landscapes specifically the name House-

of-Cards (HoC) model has been established.[27] Given a base distribution of

individual fitness values, the full landscapes is constructed by assigning each

genotype an identically and independently distributed value from this distribution.

The joint probability density of fitness values on the HoC landscape F is therefore

just:

pHoC(F ) =
∏
g∈HL

pf (Fg)

where pf is the base fitness value distribution’s density, which I will here assume

exists, i.e. the base distribution is supposed to be absolutely continuous on its

support. This assures that for a finite number of genotypes almost surely no

mutation has zero fitness effect and that no two fitness differences are exactly equal.

For simplicity of the following calculations I also assume that the base fitness

distribution has mean zero and that its variance exists.

In the HoC model all fitness values are by definition uncorrelated and even

independent. This model is mathematically easy to handle, but might be considered

very unlikely to describe actual empirical landscapes because given a somewhat

well adapted genotype, a random mutation will result in complete loss of any

adapted fitness, implying that the progress falls apart. Typically one would suspect

however that single mutations are unlikely to drastically change the progress made

so far. Nonetheless the House-of-Cards model is a good starting point to construct

further models which incorporate some random contribution in addition to a more

conservative fitness contribution.

The properties studied here in the strong selection regime do only depend on

fitness ranks and the HoC model has the nice property that the actual base fitness

distribution (as long as it is absolutely continuous on its support) does not matter

for the distribution of the fitness ranks. Absolute continuity guarantees that ties
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do not need to be handled and so the distribution of fitness ranks is simply uniform

over all possible fitness rankings of the genotypes.

The HoC Fourier components are given by:

F̃g̃ = 2−
L
2

∑
g∈P(L)

F (g)
∏
l∈g

g̃l

Every fitness value appears exactly once in the sum, but with g̃-dependent sign.

Because all F (g) are i.i.d. and have mean zero, F̃g̃ also has zero mean. If the

variance of F (g) is σ2
f , then the variance of F̃g̃ is also simply 2

L
2 σ2

f . The Fourier

transformation can be understood as an orthogonal operator on FL and therefore

the off-diagonal elements of the covariance matrix of Fourier components are zero.

This can be explicitly seen through the alternating signs of the product
∏

l∈g g̃l.

If the base fitness distribution is normal, then the joint distribution of Fourier

coefficients is consequently also normal and they not only uncorrelated, but also

independent. For other distribution, at least the marginal distributions of Fourier

coefficients converge (up to the factor 2
L
2 ) to a normal distribution with mean zero

and variance σ2
f due to the central limit theorem.

Any slice of a HoC landscape is itself again a HoC landscape of smaller size,

because the slicing is simply function restriction.

Many properties of the HoC landscape are known. By simple combinatorial

arguments the mean number of optima is exactly 2L

L+1
and the mean number of

accessible paths from the antipodal to the global optimum without backsteps is

exactly 1.

The probability that at least one such path exists was shown to be asymptotically
lnL
L

, decreasing slowly to zero, while the mean number of paths still stays 1.[22]

Naively it would seem that it is difficult to find paths in the HoC model because

mutational effects are so unpredictable and often destructive. This is shown by the

small mean number of accessible paths in comparison to the number of possible

paths (L!). However the rather slow decrease of the probability of zero accessible

paths suggests that the high dimensionality of the problem still is high enough

to not suppress the likelihood of long monotone fitness increases. As it will turn

out there are much less rugged models with much smaller probability of accessible

paths, showing that the high number of degrees of freedoms actually helps a lot in
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finding an accessible path. If backsteps are allowed the probability even converges

to a constant.[2] More detailed results on the number of accessible paths from the

antipodal to the global optimum with or without backsteps were calculated by

Hegarty and Martinsson[22,29] as well as Berestycki and Brunet[2,3].

Adaptive walks on HoC landscapes have asymptotically on average only a length

of e− 1 steps in the greedy case and ln(L) steps in the random case.[31,35]

4.2. Linear model

On the opposite side of the spectrum of possible fitness landscape models one can

find the linear (additive/non-epistatic) model, which is defined by a fitness

contribution of every locus depending only on the state of said locus, i.e. the fitness

can be written as

F (g) =
∑
l∈L

flgl

where fl are independently and identically distributed random variables. Again

I will assume that the distribution of fl is absolutely continuous with mean zero

and finite variance. In this class of models long range correlations exist, as the

correlation drops of linearly with distance.

The effect of every point mutation is always the same and they can effectively

be handled as independently. The adaptive walk on such a landscape is actually

decomposable into L short adaptive walks over single loci, which will generally only

take zero or one step to the optimum, depending on whether they were already in

the higher fitness state of the two alleles. It follows that the adaptive walk on such

a landscape is equal in length to the initial distance from the one and only optimum

and that every permutation of mutations is equally accessible. The number of

accessible paths without backsteps from the antipodal to the global optimum is

therefore the maximal value of L!.

The Fourier transform of this model is directly given by its definition, i.e. F̃{l} = f̃l

and F̃g̃ = 0 for |g| 6= 1, meaning that the highest order of interactions is 1, thus

the naming of the model.

The linear model may be considered smooth in the sense that the effect of

most mutations does not vary much (at all) for neighboring genotypes, which

20



l1 l2

l3

l4

l5

l1 l2

l3

l4

l5

Figure 5: Example of a classical NK structure as hypergraph on the left and in the
simplified directed graph form for classical NK structures on the right. The
parameters of this structure are L = 5 and k = 3, as well as #N = L = 5 as
in all classical structures. Note that |N| = 4, because one block has multiplicity
2 (blue and orange).

is absolutely not the case for the HoC model, in which mutational effects on

neighboring genotypes are almost always uncorrelated.

This model incorporates the property of consistent mutations which the HoC

model lacks. One expects usually that a mutation which is beneficial in one indi-

vidual is also beneficial in a individual with a slightly different genotype. Contrary

to this toy model mutations in biological system are not always independent of the

background genotype. The real world system is much more complex and would be

too primitive to result in interesting behavior if it was purely linear. Rather one

expects slight changes in mutation effects on slightly varying background genotypes.

This effect moving away from the idealized linear model is known as epistasis and

will be introduced in more detail later. Especially one expects certain combinations

of mutations to be correlated stronger than others because they may e.g. be part

of the same gene, functional unit or metabolic process.

4.3. Generalized NK model

Because both the House-of-Cards and the linear model are mostly toy models

modeling two different aspects each only, it seems to be a good idea to find a model

which can interpolate between the two. One choice for such a landscape model is
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the NK model, introduced by Kauffman and Weinberger[25,26]. It is specified by a

parameter k in addition to the number of loci L. The new parameter interpolates

between 1 and L corresponding to the linear and HoC model respectively by

summing L i.i.d. HoC landscapes over k-subsets of the overall locus set. Loci

sharing one of the partial landscapes are then strongly correlated, while most pairs

of loci are still uncorrelated on their own. Here I use a slightly generalized variant

of the model than that of the original Kauffman and Weinberger papers. I also

consider only the case of a fixed ruggedness parameter k while L goes to infinity.

Other limits are also interesting and have been studied, in particular the limit of

constant k
L

as L→∞.

A generalized NK fitness landscape model over a set of loci L is defined by an

interaction network between loci, here called the NK structure, and a building

block fitness landscape model. The NK structure is a k-uniform hypergraph N

over the set of loci. Each edge D ∈ N, here also called (NK) block, contains k loci,

and corresponds to one partial landscape’s fitness contribution, such that the total

fitness of a genotype is:

FL(g) =
∑
D∈N

IN(D)∑
i=1

fD,i(↓D g)

where fD,i are i.i.d. (partial) fitness landscapes over k loci. Here I am referring

to independence of the whole partial landscapes interpreted as elements of R2k .

I assume in this thesis that the partial landscapes are always HoC landscapes,

although it is possible to generalize the main results to other cases as well. The

HoC model fulfills certain properties simplifying things here. In particular it is

invariant under permutation of loci and therefore it is not necessary to specify an

order of loci in blocks. Also, with the HoC partial landscapes not only partial

landscapes are as a whole independent, but so are their individual fitness values.

Due to linearity of the Fourier transform, the Fourier components of the NK

model are simply the Fourier components of the individual partial landscapes

summed. Because the Fourier components of the partial landscape behave like in

the HoC model, this means that all Fourier components F̃g̃ with g̃ ⊆ L are unequal

zero if and only if there is a NK block D, such that g̃ ⊆ D. If they are unequal to
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zero, they are, like in the HoC model marginally identically distributed, however

their variance is multiplied by the number of NK blocks with g̃ ∈ D.

I will discuss mainly properties in the limit L→∞. Therefore I consider not NK

models for single parameter sets of N and k, but rather a sequence of such models

with increasing L. A valid specification of the generalized NK model therefore needs

to define a NK structure for every L. All variables are assumed to be implicitly

functions of L, except when stated otherwise. Also I will allow the NK structure for

each given L in the sequence to be a random variable, i.e. there does not need to

be a fixed structure but a probability distribution over structures of the same size

is sufficient. Specific choices for the NK structure will follow in later subsections.

The limits under consideration are usually under the assumption that k is fixed

as L→∞. Other limits are also of interest, for example L→∞ with L
k

= const.,

but such cases will be mentioned explicitly. I also assume that the multiplicity

of every element of N as L → ∞ is bounded by a constant, such that over each

finite subset of loci there are only finitely many possible NK structures. In order

to avoid neutral mutations I will assume that for each L each locus appears in at

least one block of N. A side effect of these conditions is that the number of partial

landscapes is at least linear in L but also at most O(Lk).

The NK model as introduced so far is more general than in the original. In

order to recover the classical NK structures I require additionally that there is

a bijection between loci and NK blocks, such that the NK block belonging to a

locus contains the locus itself, i.e. the NK blocks can be indexed by loci, such that

l ∈ Dl. This automatically fixes the number of NK blocks to exactly #N = L.

Structures of this kind can be alternatively represented as simple directed graphs

instead of hypergraphs. The simplified NK structure graph is the simple

directed graph over loci with arrows from l to m if l ∈ Dm. Usually I will

represent NK structures in this way if possible. Note that, while the hypergraph

representation is up to edge labels unique, the simplified representation is generally

non-unique because there may be multiple bijections between loci and NK blocks.
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4.3.1. Local boundedness

My results will be influenced by the topology of the NK structure hypergraph. In

particular I need a property I call local boundedness. It roughly states that the

number of close neighbors to nodes is not diverging to infinity with the number of

loci.

Consider the ball or radius r around a locus l in the NK structure hypergraph

and let its size, i.e. the number of loci it contains, be Br(l). Now suppose we

choose a locus uniformly from all L possible choices. I then let Br be the random

variable giving the size of the r-ball around this random locus. I will denote the

mean with respect to such a uniform locus choice Eloc [·] and the mean with respect

to a realization of the NK structure for given L by ENK [·]. These have to be

distinguished by the mean with respect to fitness value realizations Ef [·]. Similarly

I distinguish probabilities with respect to each of these random choices by Ploc [·],
PNK [·] and Pf [·]. The mean/probability with respect to both structure and fitness

choices will be simply denoted E [·] and P [·].
I say that a NK structure is (almost surely) r-bounded everywhere if there

is a n ∈ N, such that

lim
L→∞

PNK

[
max
l∈L

Br(l) ≤ n

]
= 1

, i.e. if there are for sufficiently large L no loci with r-balls larger than n almost

surely.

Conversely I say that the structure is (almost surely) r-bounded nowhere

or (almost surely) r-unbounded everywhere if for all n ∈ N:

lim
L→∞

PNK

[
min
l∈L

Br(l) > n

]
= 1

As a slightly weaker condition than the r-boundedness everywhere I say that a

NK structure is (almost surely) r-bounded in moments if for all s ∈ N, there

are cr,s ∈ R, such that:

lim
L→∞

PNK [Eloc [Bs
r ] < cr,s] = 1

for all s ∈ N, i.e. if asymptotically all moments of the size distribution of r-balls
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are bounded for almost all structure realizations.

Even weaker I say that the NK structure is (almost surely) r-bounded in

mean if the condition above holds for s = 1 specifically.

If one of these properties holds for every r ∈ N I replace r-bounded by ∞-

bounded.

I will typically omit the phrase “almost surely”. It is assumed implicitly.

Trivially every structure is surely 0-bounded everywhere. B1 − 1 is simply the

degree distribution in the primal graph of the NK structure hypergraph. Therefore

the structure is 1-bounded in moments if the degree distribution is bounded in

all moments and 1-bounded in mean if the mean degree is bounded. The latter

is especially the case for classical NK structures at constant k, because each of

the L NK block can induce at most
(
k
2

)
edges in the primal graph, so that the

mean degree must be bounded by
(
k
2

)
, too. 2-boundedness in mean does however

not follow automatically and neither does 1-boundedness in moments. It is even

possible to construct a fixed-k classical NK structure which is 1-bounded in mean

but 2-bounded nowhere, as I will show later.

Nonetheless 1-boundedness everywhere implies ∞-boundedness everywhere, be-

cause if n is the largest 1-ball around any locus for large enough L the size or

r-balls can be at most nr and thus bounded in L.

Similarly it can be seen that 1-boundedness in moments implies ∞-boundedness

in moments. I show this by induction over r. Consider the size of an r + 1-ball

around a uniformly chosen locus l. Its size is at most the total size of all r-balls of

l’s nearest neighbors, therefore:

(Br+1(l))s ≤

 ∑
d(l,m)=1

Br(m)

s

≤ (B1(l))s−1
∑

d(l,m)=1

(Br(m))s

≤ (B1(l))2s−2 +
∑

d(l,m)=1

(Br(m))2s

and taking the mean with respect to loci over both sides

Eloc

[
Bs
r+1

]
≤ Eloc

[
B2s−2

1

]
+

1

L

∑
l∈L

∑
d(l,m)=1

(Br(m))2s
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In the right-hand sum every Br(m) for any m appears exactly as often as the

degree of m. Therefore:

Eloc

[
Bs
r+1

]
≤ Eloc

[
B2s−2

1

]
+ Eloc

[
B1B

2s
r

]
. By the Cauchy-Schwarz inequality for the mean:

Eloc

[
Bs
r+1

]
≤ Eloc

[
B2s−2

1

]
+
√
Eloc [B2

1 ]Eloc [B4s
r ] < c1,2s−2 +

√
c1,scr,4s =: cr+1,s

where the last inequality holds almost surely by induction assumption because all

the means are bounded by the constants with probability 1. Thus almost surely

Eloc

[
Bs
r+1

]
is bounded by cr+1,s completing the proof.

The degree distribution is therefore a good descriptor for local boundedness.

Typical choices for the interaction scheme will all be ∞-bounded in moments at

constant k. As contrast to these structures I will consider the star neighborhood,

introduced later, which is 2-bounded nowhere.

Between these two extreme cases there are still some possible interpolations,

however in order to make calculations simpler to follow I will restrict statements to

these two cases.

4.3.2. Adjacent neighborhood (AN)

The adjacent neighborhood structure is defined by

Dli = {li+j mod L | j = 0 . . . k − 1} (3)

Loci are organized in a circular structure with k-nearest neighbor interactions. The

corresponding structure graph looks like a circle with radius proportional to L and

a “thickness” proportional to k. In the AN structure at constant k the number of

degrees is identical for all loci and non-increasing in L. Therefore the AN structure

is ∞-bounded in moments.
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4.3.3. Block neighborhood (BN)

In the block neighborhood structure the set off loci is partitioned into L
k

disjoint

subsets of size k and each of these subsets is used as an NK block with multiplicity

k. The corresponding simplified structure graph consists of complete components

over the blocks. By construction this model consists of several independent partial

landscapes making it easier to study than the other interaction structures and

many properties are already known.

The adaptive walk dynamics effectively decompose into independent walks on

the blocks. The number of optima is just a multiple of the number of optima

on each block and the number of accessible paths between any two genotypes is

also a multiple of the number of (sub-)paths on each of the components times a

combinatorial factor related to the independent order in which these subpaths are

mutated. In particular it follows that, at fixed k, the mean number of accessible

paths from the antipodal to the global optimum (with or without backsteps) is

growing faster than exponential while the probability to find at least one such path

is still decreasing exponentially.[41,45]

As for the AN model, the BN model at fixed k has fixed degree of k − 1 for all

loci for all L and therefore it is ∞-bounded in moments.

4.3.4. Random neighborhood (RN)

The random neighbor structure is chosen uniformly from all classical structures

or equivalently for each Dl the chosen loci are l and k − 1 uniformly chosen other

ones.

The NK structure has a distinctly different look for k = 2 and k ≥ 3. For k = 2

every node has to have exactly one in-coming neighbor and it is chosen uniformly

from all other loci. This implies that starting from a random locus l1 one can move

along its in-degrees to obtain a reversed direction chain l1, l2, l3, . . ., which can only

end by forming a cycle, i.e. by finding at some point a locus as in-degree that was

already visited before. The cycle found in this way is certainly larger than constant

size in L and has to be the only cycle in the component, because the remaining loci

must be attached to the cycle via their only in-degree. Thus the remaining loci are

attached to cycle nodes as trees directed towards their roots on the unique cycle.
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Figure 6: Typical realizations of the RN simplified structure graph for L = 40,k = 2
(left) and k = 3 (right). For k = 2 multiple components are found, each
containing one cycle at its center (5-cycle in the left one and 3-cycle in the
right one). All other loci are attached as trees. For k = 2 the graph has no
nice structure and is much stronger connected.
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Figure 7: Simulated mean number of components in the NK structure graph for the RN
structure at k = 2 (105 realizations per data point) with standard deviation
(dashed lines). k = 2 (and trivially k = 1) are the only values of k, for which
the number of components is increasing. In fact there is asymptotically exactly
one component for every larger k and I was unable to find counterexamples by
random sampling, except for L close to 2k, the minimal at which 2 components
can exist.
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For k ≥ 3 however there may be multiple cycles per component because branching

along the in-degrees is possible. Consequently the NK structure is much stronger

connected and it can be seen that simulation results indicate that there is actually

only one giant component spanning the whole graph.

For any k, the limit distribution of the in- and out-degrees for a locus l ∈ L in

the simplified structure graph can be calculated. The in-degree is by definition

k − 1. The out-degree depends on the choices of members for all NK blocks Dm

with m 6= l. Each of these L− 1 blocks contains l with a probability k−1
L−1

Therefore

the out-degree is binomial distributed with L−1 trials with trial probability k−1
L−1

or

in the limit of large L Poisson distributed with mean k− 1. The total degree in the

simplified structure graph is therefore k plus a Poisson distributed random variable

with mean k− 1, i.e. a shifted Poisson distribution. The degree in the primal graph

of the full structure hypergraph is larger, because every out-degree, belonging to

a m ∈ L with l ∈ Dm implies additional k − 2 degrees. Note that the probability

that there is a m′ ∈ Dm, such that also l ∈ Dm′ or m′ ∈ Dl, i.e. that m′ is also

a neighbor of l is tending to zero as O(L−1) and therefore the additional degrees

relative to the simplified structure graph are all asymptotically unique, implying

that the degree distribution in the primal graph of the structure hypergraph is

asymptotically (k − 1)(ξk−1 + 1), where ξk−1 is a Poisson random variable with

mean k − 1. Consequently B1(l) is distributed like k + (k − 1)ξk−1 for every locus

l ∈ L individually.

The degree distributions of any (randomly chosen) constant-size set of loci are

asymptotically independent, because given the degree distribution of a finite set of

loci, only a finite set of NK blocks are restricted in any way, which can not affect

an additional locus degree choice in the L→∞ limit.

This is also true if the set of loci is constraint to be neighbors in some way, as

long as the degrees induced in this way are taken into account. This implies that

the local topology of the structure graph is that of a tree with branching number

(along in- and out-degrees) k− 2 + ξk−1. Note that the branching number has mean

2k − 3. For k = 2 this is 1, i.e. seeing this as a branching process the extinction

probability is 1 and therefore the size of trees converges in distribution as L→∞.

For k ≥ 3 the branching number is larger than 1 and every locus has at least 1

branch. Therefore the extinction probability is zero and the tree, and therefore the
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component, will span an asymptotically non-zero fraction of the structure graph,

i.e. there will be a giant component.

The RN structure is ∞-bounded in moments: If it was not ∞-bounded in

moments, then there would be a s ∈ N and a function t(L) = ω(1), such that

lim sup
L→∞

PNK [Eloc [Bs
1] > t(L)] = α > 0

Then also, because B1 is non-negative:

lim sup
L→∞

ENK [Eloc [Bs
1]] ≥ αt(L) = ω(L)

i.e. ENK [Eloc [Bs
1]] would need to diverge at least in limit superior. However this is

not the case, because:

ENK [Eloc [Bs
1]] = Eloc [ENK [Bs

1]]

As shown ENK [Bs
1] converges to the s-th moment of the shifted Poisson distribution

and is therefore asymptotically bounded for every locus individually and so is then

ENK [Eloc [Bs
1]]. Therefore the structure is ∞-bounded in moments.

Also note that strictly speaking the RN structure does not satisfy the condition

of bounded multiplicity of NK blocks. However the probability for any pair of loci

to appear together in more than two partial landscapes decreases to zero in L, so

that the condition is still satisfied almost surely.

4.3.5. Star neighborhood (SN)

All previous NK structures shared the property of ∞-boundedness in moments,

while the following by construction does not. I construct the star neighborhood

as a neighborhood structure which is explicitly r-unbounded everywhere for every

r ≥ 2, in drastic contrast to the other three structures introduced so far. Mark

k − 1 loci as center loci c1, . . . , ck−1 and all other loci as ray loci. Then define

the NK blocks by Dl = {l, c1, . . . , ck−1}. Note that for the center loci this set is too

small and therefore, only for center loci, another uniformly chosen locus is added

(or the same locus is used for all center-associated building blocks, it doesn’t really
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Figure 8: Simplified structure graph for the AN (left) and SN (right) structures at
L = 20 and k = 3. Loci in the AN structure are far away from each other,
while it is always possible to reach all loci via two steps over the center in the
SN model.

matter).

All loci in the star neighborhood are reachable from each other by one step

through the center (assuming k ≥ 2) and so every locus is contained in 2-balls.

Consequently the SN structure is 2-bounded nowhere. It is still 1-bounded in mean

though, as all classical NK structures with finite k have to be. Only the constant

number of center loci does not have bounded 1-balls.

One could interpret the star neighborhood as the extreme case of a regulatory

site (center) affecting the expression of a large group of other proteins (rays).

4.3.6. Previous results on the NK model

Local optima have been studied rigorously for the AN structure. Asymptotically at

constant k the mean number of optima will be exponential in the number of loci

with the exponential constant of proportionality depending on k and the fitness

distribution.[13] The same holds for the block model, where a genotype is a local

optimum if and only if it is a local optimum on all projections onto NK blocks, and

therefore the mean number of local optima is exactly an exponential in L with the

base given by the number of optima in the HoC model with k loci.

31



2 4 6 8 10 12 14 16 18

0.2

0.4

0.6

0.8

L

A
cc

es
si

b
il
it

y
of

∆
L
Ω
→

Ω
w

it
h
ou

t
b
ac

k
m

u
ta

ti
on

s

AN k = 2
AN k = 3
AN k = 4
RN k = 2
RN k = 3
RN k = 4
SN k = 2
SN k = 3
SN k = 4

Figure 9: Simulated accessibility of the global optimum from its antipodal without back-
mutations in the RN, AN and SN structure NK models. (Gaussian fitness and
105 realizations per data point.) For k = 2 accessibility drops with L for all
three structures, for k = 3 however the RN and SN accessibility accessibility
seem to be rather constant. For k = 4 both even seem to be increasing in L,
while for the AN structure there is still a (albeit slower) decrease. I will show
later that actually for L→∞, all curves for AN and RN will exponentially
decrease to zero, while for the SN structure the probability will converge to a
non-zero value for all k ≥ 2.

Accessible paths from the antipodal to the global optimum, mainly without

backsteps, have been analyzed via simulation for constant k and constant k
L

.[15,45]

These simulation results suggest that, while the mean number of paths without

backsteps increases faster than exponential at constant k ≥ 2 for AN, RN and BN,

the probability to find at least one path behaves distinctively different. For the

AN and RN case with k = 2 it seems to be decreasing in L, while for k = 3 in the

RN case it is almost constant in the simulated range of L. For k ≥ 4 in both the

RN and AN case it seems to be increasing in L. For the BN model in contrast the

decrease is always exponential to zero, because the probability to find any path is

the product of the probabilities to find any path on each independent NK block.[45]
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4.3.7. Lower bound on accessibility in the NK model

An exponentially decreasing lower bound on the accessibility of genotypes in

maximal distance in the NK model can be derived for all fitness distributions

and NK structures. Suppose there are dim N different NK blocks and a random

genotype is chosen as starting point with a random permutation of loci defining a

path without backsteps from the starting genotype to its antipodal. Each partial

landscape has then a probability of 1
(k+1)!

to have monotone fitness increase along

this path because they are of HoC-type and only k of the steps in the path

modify it. If all partial landscapes share this property, then surely the path is also

accessible on the whole landscape. Therefore a lower bound on the probability

that a random path without backsteps of length L and starting from a random

genotype is accessible is e−dimN ln((k+1)!) or for classical NK structures e−L ln((k+1)!).

It seems reasonable to assume that this is also a bound if the destination of the

path is conditioned to be the global optimum, because the only change on the level

of partial landscapes would be a slight bias for the path’s projection on the partial

landscape to also end in a higher fitness state. In fact this result also implies that

the mean number of paths without backsteps for a classical NK structure will be

at least L!e−L ln((k+1)! and therefore growing superexponentially like eL ln(L)+O(L) at

constant k. The leading order of the exponent is unchanged, even if k grows slowly,

not faster than (ln(L))1−ε for some ε > 0.

4.4. Rough-Mount-Fuji (RMF) model

Another possible way to interpolate between the linear and the HoC model is given

by the Rough-Mount-Fuji (RMF) model.[32] It is conceptually a bit simpler than

the NK model and does have a smaller parameter space, only depending on the

ruggedness interpolating parameter c ∈ R+. The RMF landscape is the sum of a

HoC landscape with fitness variance of 1 and a linear model with all its fitness

effects set to f̃l = c. The model is by construction an interpolation between the

HoC and linear model. For c = 0 the linear model does not contribute and the

resulting landscape is pure HoC. For c→∞, the mutational effects of the linear

part will surely eventually outscore the HoC contributions of fixed distribution.

In the Fourier space this model is, due to linearity of the Fourier transform, also
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simply a sum of the HoC and linear contributions. This implies that all properties

of the HoC Fourier components apply, only that the order one (linear) terms will

be increased by the constant c.

Note that often the model is defined slightly differently. Usually it is assumed

that of the additive component is rotated such that its global optimum coincides

with the global optimum of the HoC contribution. The sign epistasis properties

considered later will not dependent on this distinction.

5. (Sign) epistasis

−− −+

+− ++

−− −+

+− ++

−− −+

+− ++

l1 l2 l1 l2 l1 l2

Figure 10: Top: Example {l1, l2}-squares with, from left to right, no sign epistasis,
sign epistasis dependence only of l2 on l1, but not the other way around,
and reciprocal sign epistasis. Bottom: Corresponding subgraph of the sign
epistasis graph induced by {l1, l2}.

In the linear model each locus has a well-defined contribution to the overall

fitness. If the effect of a mutation at one genotype is known, then it is also known

on all other background genotypes, corresponding to the L degrees of freedom of

a realization of the model. The HoC model however has many more degrees of

freedom to realize, namely the maximum possible, 2L. Therefore the effect of a

single mutation cannot be fully described by just the effect on one background, but

rather the effect on most backgrounds must be taken into account explicitly.

Epistasis is the effect of a locus’ fitness contribution depending not only on the

state of the locus itself, but on the rest of the background genotype as well. A

particular simple form of this epistatic effect is described by pairwise epistasis.

Here we use the following definition for the epistatic effect of a locus l’s mutation
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on the fitness change due to a point mutation on l:

Ẽlm(g) = ∆lF (∆mg)−∆lF (g)

If the value of Ẽlm(g) is 0, a mutation on m will not change the fitness effect of an

immediately following mutation on l. If it is larger than 0, then the effect of ∆l

will be larger if m is mutated immediately beforehand, while a value smaller than

0 indicates the opposite. The following symmetry for the object Ẽ holds

Ẽlm(g) = Ẽml(g)

Also note that

Ẽlm = ∆m∆lF

, i.e. it is the discrete analog to the Hessian.

If a locus l affects a locus m on some genotype we may expect it to also affect

the locus on other genotypes. Especially in the models we consider here this is

almost surely true and thus we consider the reduction of Ẽlm(g) to a value Elm

independent of the background genotype, which is 1 if there is at least one g with

Ẽlm(g) 6= 0 and 0 otherwise.

Elm can be viewed as a binary-valued symmetric matrix and as such it can also

be treated as the adjacency matrix of an undirected graph, which will be referred

to as the epistasis graph. Since we assume that there are no neutral mutations,

Ell = 1 for all loci l. These trivial loops will be ignored in the plots of the graph,

making it simple.

In terms of the Fourier transform Elm = 1 if there is at least one g̃ ⊆ L with

l ∈ g̃ and m ∈ g̃, such that F̃g̃ 6= 0.

In the HoC and RMF models, almost surely, the epistasis graph is complete,

because the probability of two independent fitness differences to be equal is zero

for absolutely continuously distributed fitness values.

In the generalized NK model, the epistasis graph is limited by the NK structure.

Two loci l and m can only be epistatic if there is a NK block with {l,m} ⊆ D,

because otherwise all Fourier coefficients resulting in epistasis are zero. The epistasis

graph is then the primal graph of the NK structure hypergraph.
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Every undirected simple graph is a valid epistasis graph as can be seen easily by

defining a NK model with k = 2 and NK blocks corresponding to the edges of the

epistasis graph.

While there are many interesting effects due to epistasis[8,42], a certain subset

of epistatic interactions is particularly interesting here. These are so-called sign

epistatic interactions.[14,55] Interactions which do not only let the magnitude of a

mutations fitness effect be dependent on other loci, but also the sign of fitness. Sign

epistasis is important, because given strong enough selection pressure populations

are very unlikely to fixate mutations resulting in a fitness decrease, while positive

mutations have a high chance of fixation. In the limit case of very large selection

pressure movement towards deleterious mutations becomes impossible. As in the

previous subsection, we will use a simple notion of pairwise sign epistasis defined

as1:

S̃lm(g) = sgn∆lF (∆mg)− sgn∆lF (g)

If S̃lm(g) is zero, although the magnitude of a mutation on l might be changed

by one on m, a beneficial mutation will stay beneficial and a deleterious will stay

deleterious. A value of S̃lm(g) = 2 indicates that the mutation ∆l is deleterious at

g, but beneficial at ∆mg, while a value of −2 indicates the opposite. Analogues to

the process in the previous subsection we introduce a reduced version of S̃lm(g),

i.e. Slm, independent of g, such that Slm = 1 if S̃lm(g) 6= 0 for at least one g and 0

otherwise. The property Slm is again a binary matrix, however not a symmetric

one as can be seen from the definition. Thus a locus l might depend on the state of

locus m sign epistatically, while m does not depend sign epistatically on l. Anyway

if Slm = 1 then also Elm = 1, i.e. sign epistasis is a subset of general epistasis. This

implies by symmetry of Elm, that even if Slm = 1 but Sml = 0, then still Eml = 1.

The appropriate representation for the asymmetric binary matrix is a directed

graph, again if the trivial loops are ignored a simple one. This sign epistasis

graph reduces the information content of the complex fitness graph to a small-scale

representation which, given that there is a clear underlying genetic structure on the

genome, conveys the interaction between loci much more clearly. It is also more

1We leave the zero case of the sign function undefined as the models used almost never have
neutral mutations.
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Figure 11: Example of epistasis graph (left) and (weighted) sign epistasis graph for
the NK model with RN structure at L = 20 and k = 3. Every edge in the
epistasis graph is a triangle, because this is a k = 3 NK model. The sign
epistasis graph is almost the same as the epistasis graph with bidirectional
arrows, however once in a while arrows are missing. By chance of the
chosen fitness values, certain loci’s mutation signs are independent of loci
which are otherwise sharing fitness values partially. For example there is
no sign epistasis between loci 7 and 5 although they are epistatic. The sign
epistasis weight is indicated by the grayscale of arrows. Most sign epistasis
is present on less than half the backgrounds, but some are even present on
all backgrounds, e.g. 11→ 5 and 17→ 6 and 3→ 7, but not 7→ 3.

relevant than the epistasis graph, because low amplitude noise does not usually

contribute to it as much.

The simple undirected graph underlying the sign epistasis graph is a subgraph

of the epistasis graph, because sign epistasis is a special kind of epistasis as seen.

Defining the sign epistasis graph to have arrows even if there is sign epistasis

only on one background genotype removes a lot of information one might consider

important. Also empirical landscapes will generally not be perfectly measured and

spurious sign epistasis may be the result of measurement errors. Therefore a more

general definition for the sign epistasis network would be that of a weighted sign

epistasis graph, in which each arrow is additionally assigned a rational number

between 0 and 1, determining the ratio of background genotypes at which the sign

epistasis is present. I call this the weighted sign epistasis graph. Arrows with

weight 0 are assumed to not exist.
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Figure 12: Two examples of the weighted sign epistasis graphs for empirical landscapes.
Left: Based on data set of five point mutations in β-lactamase jointly
increasing resistance to antibiotics drastically by Weinreich et al.[56] Right:
Based on data of six individually deleterious mutations in different pathways
of Saccharomyces cerevisiae by Hall et al.[21] Arrow thickness and opacity
is determined by the arrow weights. The weights are also given rounded
to one decimal as arrow label. No loci are sign epistatic everywhere, but
some combinations are never sign epistatic. The graphs do neither look like
House-of-Cards models, which are almost completely uniformly weighted 0.5,
nor RMF models, which are almost completely uniformly weighted < 0.5,
nor NK models with k = 1 or k = 2, which would have much less arrows
and larger variance in arrow weights. A better model for these empirical
graphs seem to be mixtures of HoC or RMF models with NK models.
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5.1. Reciprocal sign epistasis

Sign epistasis is generally not symmetric. If however at a background genotype g

mutations on l are sign epistatically dependent on m and the other way around,

then one speaks of reciprocal sign epistasis. Reciprocal sign epistasis is known

to be a necessary condition for emergence of multiple local optima and thus seems

to be important for the ruggedness of landscapes.[28,44] It also imposes a limitation

on accessible paths, because it is never possible to mutate both loci immediately one

after another with monotone fitness increase on the background they are reciprocal

on. This can be seen by looking at the orientation of the fitness graph {m, l}-slice

along g. In this square both pairs of parallel arrows need to be oriented opposite to

one another, leaving no way to cross from any corner to the antipodal one. However

(local) reciprocal sign epistasis still leaves accessible paths switching both loci with

intermediate mutations on other loci.

5.2. Global sign epistasis

If a locus l is sign epistatically dependent on m everywhere, i.e. for every background

genotype, I speak of global sign epistasis. This is equal to the a weight of 1 in

the weighted sign epistasis graph. A special kind of global sign epistasis is sole

(global) sign epistasis, which I define as global sign epistasis such that mutation

signs on l depend on all backgrounds on m, but only on m, i.e. there is no other

locus affecting the mutation signs on l. These two variants are different in that

there are two possible orientations of sign epistasis on a square (either ∆lF (g) is

positive or it is negative). For simple global sign epistasis the orientation may

dependent on the background, but sole global sign epistasis explicitly excludes this

by assuming that no other locus except m affects sgn∆lF at all.

Global sign epistasis implies that mutations on l and m immediately one after

another are always only accessible in one order at most. Sole global sign epistasis

takes this limitation further, such that this order is the same at all backgrounds

and independent of additional mutations in between. It implies a strict order in

accessible paths and can be recognized by sign epistasis arrows with weight 1 and

no incoming arrows to l except that from m.

Global reciprocal sign epistasis (GRSE) is reciprocal sign epistasis present
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Figure 13: Example of epistasis graph (left) and (unweighted) sign epistasis graph (right)
for the NK model with RN structure at L = 30, k = 2 and gaussian fitness.
Pairs of loci with global reciprocal sign epistasis are marked in red. They can
be identified by bidirectional arrows between them, but no other incoming
arrows. Further outgoing arrows are allowed, as can be seen here in the 15/28
pair. In the case of the 0/21 pair we have separable global sign epistasis, i.e.
the global reciprocal sign epistasis interaction also forms a weak component.
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Figure 14: Upper row: From left to right the fitness graphs associated with a non-
epistatic, a globally reciprocal and a separable reciprocal landscape of three
loci. The orientation of fitness increases in the non-epistatic model does
not depend on the position in the other dimensions for any locus. In the
middle mutations ∆1 and ∆2 are reciprocal in the foreground, as well as the
background (i.e. for both σ3 = 0 and σ3 = 1). The orientation of mutations
∆3 is not constrained by locus l1 and l2 being globally reciprocal, as indicated
by the missing arrow heads. In the case of separable reciprocal epistasis
(right) however the orientation of ∆3 arrows needs to be the same for all
positions on the hypercube, as it is completely separated from ∆1 and ∆3.
Lower row: Sign epistasis graphs associated with the fitness graphs. Dashed
arrows may or may not be present.
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at all backgrounds. Here again two orientations of reciprocal sign epistasis on a

square are possible (again fixed by choosing the orientation of any one edge). But

I directly assume GRSE is sole reciprocal sign epistasis, i.e. that there are no other

loci affecting mutation signs on ∆l and ∆m. In the sign epistasis graph GRSE can

be recognized as bidirectional arrows with weight 1 and no further incoming arrows

to the two loci. GRSE poses much stronger restrictions than the other variants

mentioned. It implies that loci l and m may not be mutated both without the

path becoming inaccessible. In contrast to local reciprocal sign epistasis this holds

strictly. Even with other intermediate mutations it is impossible to cross both l

and m. This is not only true for short, but also long paths with back-mutations.

Therefore there are no accessible paths of maximal length on landscapes with

at least one locus pair with GRSE, neither to the global optimum, nor any other

genotype. The maximal distance crossed by accessible paths becomes L− 2ZGRSE,

where ZGRSE is the number of GRSE interactions. Note that each locus can only

be present in one GRSE interaction, because it is by definition of GRSE only sign

epistatic with its unique interaction partner. Furthermore, under those distance

restrictions, any walker starting at any landscape point can only explore at most a

fraction 3
4

ZGRSE of the genotype space. This is in particular a restriction on the size

of the basins of attraction of any kind for local optima.

A further special variant of global reciprocal sign epistasis I call separable

global sign epistasis (SGRSE). It is global reciprocal sign epistasis, such that

not only l and m are not sign epistatically dependent on any other third locus, but

that no third locus is sign epistatically dependent on l or m. In the sign epistasis

graph this corresponds to two loci with bidirectional arrows but no further arrows

in- or out-going. The two loci then form a weak component of the sign epistasis

graph.

Separable global sign epistasis has further effects on the landscape structure.

Suppose g is a local optimum of the landscape. Then by mutating both l and m,

one arrives at a new local optimum, because each one of the mutations switches

the sign of mutations on l and m. Switching the sign twice again gives a state in

which all mutations would have negative effect, i.e. a local optimum. Other loci’s

mutation signs are unaffected. Distance 2 is also the smallest distance that two

local optima can be separated. Therefore local optima come in clusters of at least
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2ZSGRSE local optima connected by distance-2 jumps.

5.3. Probability of sign epistasis

Suppose l and m are different loci and h is a genotype with l,m 6∈ h and consider the

{l,m}-square along some background h in the fitness graph. These squares are the

elementary setting to consider sign epistasis. On the square arrows, corresponding

to the direction of fitness increase, may be set in three distinct ways. Either both

pairs of parallel arrows are each oriented in the same direction, or only one is,

or both are. The first case is the one without sign epistasis between l and m at

this background, while the second one corresponds to sign epistatic dependence of

either l on m or reversed, but not both. The last option is known as reciprocal

sign epistasis, because l depends sign epistatically on m as well as the reverse.

In real fitness space the choice between these forms is determined by the sign of

fitness differences. It is however also possible to look at the Fourier space situation

of the square.

The square’s Fourier expansion consists of only four terms:

F̃{} + F̃{l}gl + F̃{m}gm + F̃{l,m}glgm

The individual Fourier components are retrieved from the full landscape’s one by

setting the background h and summing all terms of equal l and m alleles remaining.

A mutation on l has then an effect proportional to:

F̃{l}gl + F̃{l,m}glgm

The first term does not depend on gm and the second term switches signs depending

on gm. Therefore l depends sign epistatically on m at this locus if and only if

|F̃{l}| < |F̃{l,m}|.
Using this property and some combinatorial arguments one can calculate the

probability of sign epistasis at a random genotype between two random mutations.

This probability is also the mean weight of the sign epistasis arrow between the

two loci.
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5.3.1. HoC model

In the HoC model mutations at different genotypes are (except for backmutations)

independent and therefore the probability for the sign of a mutation to change by

application of a different mutation is just 1
2
. This implies that the mean weight of

any arrow in the weighted sign epistasis graph is also 1
2
.

Furthermore, there are 2L−2 {m, l}-squares of the hypercube and all of their

fitness values are independent. Consequently the weight of an sign epistasis arrow

is the scaled sum of 2L−2 i.i.d. symmetric Bernoulli random variables and therefore

the marginal distribution of any arrow weight is a scaled symmetric Binomial

distribution over 2L−2 trials and in the limit of L→∞, the marginal distribution

of sign epistasis edges converges to the deterministic distribution with value 1
2
.

Covariances between arrow weights are also negligible in the large L limit

because they have to also converge to zero if the weights’ variances converge to

zero. Correlation coefficients however are scaled to the variance and therefore

they might not vanish. Correlation coefficients between disjoint pairs of mutations

must be uncorrelated because slices of the first pair and slices of the second pair

share at most one genotype, the fitness of which can be chosen arbitrarily without

affecting the likelihood of sign epistasis. The remaining non-disjoint pairs of

arrows may generally have finite correlation coefficients and can be calculated from

combinatorial arguments by averaging over all rank orders of fitness values on two

squares joined in one edge, although the results will not be presented here.

Under these considerations the HoC sign epistasis graph will almost surely be

the complete graph for L→∞ and the weighted sign epistasis graph will in the

same limit have weights of exclusively 1
2

with vanishing variation. Simulation shows

that this limit is reached quite fast (as expected due to the exponential increase in

terms relevant for the central limit theorem) and already for small system sizes

empty edges cannot be found.

In fact the probability of global sign epistasis, i.e. sign epistasis between

two loci l and m at all backgrounds follows to be 2−2L−2
. The same holds for the

probability that a sign epistasis arrow does not exist at all.

The probability of global reciprocal sign epistasis is of course even smaller than

that, but can be exactly calculated. For a given square of the fitness graph it can
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Figure 15: Weighted sign epistasis in the RMF model with L = 8 and standard normal
fitness and (from left to right) c = 0, 2, 4. For c = 0 this is the HoC model,
while for large c it approaches the linear model. The arrow weight is very
uniform with mean weight 1

2 for the HoC case and decreasing for larger c.
For c = 4 already arrows vanish and ultimately for large enough c no sign
epistasis is left.

be seen easily by counting rank orders, that there is a 1
3

probability of reciprocal

sign epistasis if all fitness values are i.i.d. and there are two possible, equally likely,

orientations of arrows corresponding to reciprocal sign epistasis. The probability,

that the one initially chosen remains on all other 2L−2− 1 backgrounds, which have

completely i.i.d. fitness values, is then 1
6

1
3

2L−2−1
. Multiplying by the number of locus

pairs L(L−1)
2

one gets the mean number of sign epistasis interactions L(L− 1)6−2L−2

and by Markov’s inequality this is also an upper bound on the probability that

there is at least one GRSE interaction.

Thus I can conclude that global sign epistasis or even GRSE is practically

impossible in the HoC model for about L ≥ 6.

5.3.2. RMF model

Consider a {l,m}-square at background g. In the RMF model we are starting out

with the pure HoC model at c = 0. As c is increased only the linear terms in the

Fourier expansion of the square increase deterministically. However sign epistasis

is present if the magnitude of the quadratic term is larger than the magnitude of

the linear terms. Consequently, as the linear contribution increases with c, the

probability of sign epistasis y decreases, initially from 1
2

to 0. If the support of

the HoC fitness distribution is bounded, eventually the linear term will become
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large enough so that it can never be overcome by the randomized contribution

and the sign epistasis graph will surely be empty. For unbounded support this

cannot happen for any finite c, but the probability of sign epistasis becomes smaller

and smaller. The sign epistasis graph, initially starting from the HoC case being

uniformly weighted with 1
2

first decreases uniformly in mean weight as c increases

until edges vanish completely and ultimately only the empty graph is left.

The remaining results from the HoC analysis carry over, because independence

between squares on different backgrounds still holds and thus the probability of

global sign epistasis will be y2L−2
and the probability of reciprocal sign epista-

sis between any pair of loci will be at most (L − 1)Ly′2
L−2−1 for some y′ < 1

2

monotonically decreasing in c.

Global reciprocal sign epistasis is even considerately less likely than in the HoC

model, even for moderate values of c and L.

5.3.3. Generalized NK model

For the generalized NK model I again consider a random {m, l}-square and its

Fourier expansion.

Sign epistasis dependence of l on m is present if |F̃{l,m}| > |F̃{l}|. Only partial

landscapes on blocks D with l ∈ D contribute to either (because otherwise they

have no non-zero f̃{l,m} or f̃{l}) and only D with {l,m} ⊆ D contribute to F̃{l,m},

let the number of NK blocks only l be α and the number of NK blocks with both l

and m be β.

The two relevant Fourier components are obtained from the four fitness values

on the square. In particular:

F̃{l,m} =
1

2
(F (++)− F (−+)− F (+−) + F (−−))

and

F̃{l} =
1

2
(F (++)− F (−+) + F (+−)− F (−−))

Contributions to each of these four real space fitness values of different partial

landscapes are independent. For the β partial landscapes with l ∈ D and m ∈ D,

the contributions to the four values are i.i.d., but for the α ones with only l, the
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contributions to F (++) are equal to F (+−) and the contributions to F (−+) equal

to those of F (−−). However all contributions are identically distributed with the

base fitness distribution with mean 0 and variance σ2
f .

Therefore, with Qi,j being i.i.d. fitness contributions, the Fourier components

can be written:

F̃{l,m} =
1

2

β∑
i=1

(Q1,i −Q2,i −Q3,i +Q4,i)

and

F̃{l} =
1

2

β∑
i=1

(Q1,i −Q2,i +Q3,i −Q4,i) +
1

2

α∑
i=1

(2Q5,i − 2Q6,i)

If α = 0, then the probability that |F̃{l,m}| > |F̃{l}| is 1
2

as expected because the

square is then essentially following the HoC model. For α ≥ 1 there are additional

contributions to F̃{l} which do have mean zero, but increase in the variance of

F̃{l} relative to F̃{l,m}. In fact one can see that the probability for |F̃{l,m}| > |F̃{l}|
decreases monotonically in α. Suppose for α = 0 the Fourier components are given

and suppose we add the r.v.
α∑
i=1

(Q5,i −Q6,i) to F̃{l}, then:

P

[∣∣∣F̃{l,m}∣∣∣ >
∣∣∣∣∣F̃{l} +

α∑
i=1

(Q5,i −Q6,i)

∣∣∣∣∣
]

=P

[∣∣∣F̃{l,m}∣∣∣−
∣∣∣∣∣F̃{l} +

α∑
i=1

(Q5,i −Q6,i)

∣∣∣∣∣ > 0

]

≤P

[∣∣∣F̃{l,m}∣∣∣− ∣∣∣F̃{l}∣∣∣−
∣∣∣∣∣
α∑
i=1

(Q5,i −Q6,i)

∣∣∣∣∣ > 0

]
≤P
[∣∣∣F̃{l,m}∣∣∣− ∣∣∣F̃{l}∣∣∣ > 0

]
Therefore the probability of sign epistasis is at most 1

2
at α = 0, but it is monoton-

ically decreasing in α. For β = 0, or α→∞ at constant β, the probability is even

0. If the fitness distribution has finite variance then the asymptotic as α → ∞
at constant β is p(α, β) ∝ 1√

α
, as can be seen by expression of the probability in

the characteristic function of the fitness distribution, i.e. in Fourier transformed

space. There addition of i.i.d. random variables, i.e. convolution of probability
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distributions, become simple products, in particular a α-power of the characteristic

function appears. For large α the inverse Fourier transform may then be calculated

by saddle-point approximation giving the factor 1√
α

. This works out naively only if

the second moment exists, because otherwise the characteristic function may not

be twice differentiable at zero, where its value is maximal and equal to one.

For stable distributions, in particular the normal distribution, as fitness distribu-

tion, the values of p(α, β) are only dependent on the fraction α
β
, while generally,

especially for small β, there might be explicit dependence on both parameters.

For epistatic loci always β ≥ 1 and the interpolation between α
β

= 0 with mean

sign epistasis weight 1
2

and α
β
→ ∞ with mean sign epistasis weight 0 should be

visible in the AN, RN and SN structures.

In the AN structure the number of partial landscapes sharing two loci depends

negatively on their index distance, i.e. two loci l and l + 1 share k − 1 partial

landscapes, but only one landscape contains l, but not l + 1, i.e. β = 1 while

α = k − 1. Loci in maximum correlated distance on the other hand share only one

partial landscape and k− 1 contain only each of the loci individually. Of course for

more distant loci, there is no shared block and therefore β = 0 and the probability

of sign epistasis is zero.

In the RN structure the probability of sign epistasis simplifies, because it is very

unlikely for two loci to be contained together in the more than partial landscape.

Therefore mostly β = 1, while α is Poisson distributed with mean k − 1. Therefore

the mean sign epistasis weight is generally larger on low degree loci and lower on

high degree loci.

The SN model takes this to the extreme. Two ray loci are not epistatic at all.

The mean sign epistasis weight from the ray to the center converges to zero, because

there is only one partial landscape sharing both, but L− 1 other ones containing

only the center locus. On the other hand the weight from the center to the ray

is 1
2

because there is exactly one shared partial landscape and no other partial

landscape containing only the ray locus. Finally two center loci share all L partial

landscapes and therefore also have probability 1
2
.

The probability of global sign epistasis in the NK model can also be bounded.

Let α and β be defined as before and the probability of sign epistasis at a random

genotype given by p(α, β). Note that we have been considering only two of the k loci
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Figure 16: Left: Probability of sign epistasis between two loci at random backgrounds
depending on the fraction of shared partial landscapes α

β with Gaussian,
uniform and Cauchy distributed base fitness values. For the latter two the
probability may be dependent on β, for them here β = 1. (105 realizations
per data point) For increasing α

β , i.e. increase fraction of unshared partial
landscapes, sign epistasis becomes uncommon. The fitness distribution has
a minor impact, but at least the tail behavior seems to make a significant
difference. Note that even though the Gaussian and uniform case seem to be
identical, e.g. for α

β = 2 they differ by approximately 0.05% with a p-value

of 10−4.
Right: Example of weighted sign epistasis graph for the star neighborhood
with L = 20 and k = 4. Ray nodes share β = 1 NK block with center loci and
are contained in α = 0 other NK blocks. Therefore arrows from center to
ray loci have on average 1

2 weight. Loci in the center however are contained
in additional α = 19 other NK blocks, therefore arrows from ray to center
loci are of low mean weight. Note that most of these arrows actually have
the smallest possible gray-scale value. Loci in the center share all partial
landscapes and therefore also have mean arrow weight 1

2 between each other.
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in each partial landscape so far. If we modify any of the remaining k − 2 ones, the

partial landscape’s contributions to the square are swapped with i.i.d. ones. If we

do this for every partial landscape contributing to the square, then all contributing

Qi,j will have been replaced by i.i.d. ones. Because every partial landscape has

2k−2 to choose these backgrounds, there are therefore at least 2k−2 independent

backgrounds for the property of sign epistasis and therefore the probability of

global sign epistasis is at most p(α, β)2k−2 ≤ 2−2k−2
. Therefore the sign epistasis

becomes quickly improbable with increasing k. Note in particular that p(α, β) may

additionally be decreasing k, especially in the RN structure typically α increases

linearly with k, possibly sending p(α, β) to zero quickly, too. Additionally there

are for non-zero α additional non-independent backgrounds on which sign epistasis

needs to hold. This number becomes quickly large, too, especially if the α NK

blocks do not overlap except for l.

The limit on sole global sign epistasis can with the same methods be bounded

above by 2
(
p(α,β)

2

)2k−2

≤ 2 · 4−2k−2
. The additional factors 2 and 1

2
are due to the

necessity to retain one of the two possible sign epistasis orientations, which are

both equally likely to occur on any independent background.

For (global) reciprocal sign epistasis of course the limits above also apply, but

they may be sharpened. Local reciprocal sign epistasis on a square dependents

additionally on F̃{m} and so the α contributions need to be split into α1 and α2.

α1 is then the number of NK blocks containing only l and α2 the number of NK

blocks containing only m. The probability of reciprocal sign epistasis between l and

m at a random background is then p̄(α1, α2, β) dependent on all three numbers.

With the same inequalities used for sign epistasis one can see, that at constant β,

p̄ is decreasing monotonically in both α1 and α2. Also at α = 0, the probability of

reciprocal sign epistasis on a square is, like in the HoC model, 1
3
. Therefore the

probability of (local) reciprocal sign epistasis is always smaller or equal to 1
3
. For

large α1 and α2 and fitness distributions with finite variance, the probability will

also decrease for the same reasons as previously with 1√
α1α2

.

The probability of global reciprocal sign epistasis between l and m is then,

again by the argument of 2k−2 independent backgrounds and two equally likely

orientations, at most 2
(
p̄(α1,α2,β)

2

)2k−2

≤ 2 · 6−2k−2
.
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The probability to find GRSE between any pair of loci at all is therefore at

most L(L − 1)6−2k−2
, because there are only L(L−1)

2
pairs of loci, or for classical

NK structures at most k(k − 1)L6−2k−2
. These values are at the same time upper

bounds on the mean number of GRSE interactions.

This gives a limit on the probability to find GRSE as a function of k in the

L → ∞ limit. Even if k is only growing faster than log2 log6(L), the probability

to find GRSE between any pair of loci has to decrease to zero for every structure.

Practically I find that it is already difficult to find GRSE in simulated landscapes for

k = 4, but basically impossible for k = 5. An estimation of the orders of magnitude

can be made from the bounds derived. For k = 5 the upper bound on the probability

of global reciprocal sign epistasis between two loci is already about 10−6, for k = 7

it is already around 10−24, smaller than one over Avogrado’s constant. In my

simulations however I see GRSE for k = 4 only appear at about L ≈ 106, it seems

as if k is of by one in the estimate. This can be heuristically explained because

for GRSE there are not only 2k−2 backgrounds but also two typically independent

Fourier components F̃{l} and F̃{m} each of which has independent 2k−2 backgrounds,

at least if α1 and α2 blocks are usually non-overlapping, as is the case for the AN

and RN case, but not the BN case. Then each of the 2 · 2k−2 backgrounds may

destroy reciprocal epistasis, effectively shifting k by one.

Nonetheless in the following sections I will show that for structures ∞-bounded

in moments the probability to find GRSE increases to 1 exponentially as L→∞
for every constant k and that the mean indeed increases linearly in L as the bound

above suggests.

This is not true for the star neighborhood. GRSE edges can not be adjacent in

the NK structure primal graph because a locus may only be part of one GRSE

interaction. In the SN structure however it is only possible to find k non-adjacent

edges (because each edge contains a center locus). Therefore the number of GRSE

interactions is limited to k in the SN structure. Simulation also shows that the

probability to find GRSE quickly decreases for every k in L. This can be partially

be understood because all locus pairs in the SN structure have at least one of α1

or α2 increasing linearly in L and therefore p̄(α1, α2, β) decreasing to zero in L.
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6. Local NK properties

I define a local NK property as a set of uniformly bounded random variables Xl

defined for every locus l, such that Xl is a deterministic function of only the fitness

value realizations up to distance some constant distance d. Constant distance here

means, that d is not asymptotically bounded in L and uniformly bounded means

that all Xl share an upper and lower bound.

Many properties, such as GRSE are local NK properties. Typically these

properties will be binary, however here they can be arbitrary.

Let Z =
∑
l∈L

Xl or with the mean over loci Z = LEloc [Xl]. If the property is

binary Z counts the number of appearances of a local attribute (like GRSE).

For the mean of Z over structure and fitness realizations we then have

E [Z] = LE [Eloc [Xl]] = LEloc [E [Xl]]

Because the Xl are uniformly bounded, Eloc [E [Xl]] is also bounded and therefore

E [Z] = O(L).

Also:

E
[
Z2
]

= LE
[
Eloc

[
X2
l

]]
= LEloc

[
E
[
X2
l

]]
is O(L) for the same reason. This already indicates that the increase of the variance

in slow enough, such that a law of large numbers should hold.

Let furthermore Z̃ = Z−E[Z]√
L

.

6.1. Central limit theorem

I claim the following variant of the central limit theorem: If E [Eloc [Xl]] and

E [Eloc [X2
l ]] converge as L→∞ and the NK structure is ∞-bounded in moments,

then Z̃ converges in distribution to either a centered normal distribution or the

constant 0 as L→∞.

I show this by calculating all cumulants of Z. The first cumulant of Z is

LE [Eloc [Xl]]. Higher order cumulants can be calculated using linearity of the joint

cumulant:

κn(Z) =
∑

(l1,...,ln)∈Ln
κ (Xl1 , . . . , Xln)
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The joint cumulant vanishes, if {Xl1 . . . Xln} can be separated in two disjoint

sets, such that every element in the first subset is independent of every element

of the second set. Xl is independent of Xm if they are in distance larger than 2d

in the NK structure, because each one is a deterministic function of its neighbors

up to distance d in the NK structure. Therefore the primal graph of the NK

structure with additional edges between loci up to distance 2d acts as a dependency

graph of the random variables Xl. Thus, if {l1, . . . , ln} is not connected in this

contraction, then κ (Xl1 , . . . , Xln) = 0. The remaining joint cumulants can be

expressed as a polynomials in mixed moments and because the random variables

are uniformly bounded, all remaining joint cumulants are also absolutely bounded

by some constants cn.

Suppose one wants to count the non-separable sets of (l1, . . . , ln) ∈ Ln in the

dependency graph. If the set is non-separable, then the maximal span of the set in

the dependency graph is n, because otherwise there is no chance to connect the

maximal distant loci with n− 1 steps. In the primal structure graph this translates

to a maximum span of 2dn. Consequently all elements of the non-separable set

need to be included in a 2dn-ball around l1 and therefore the total number of

non-separable sets is at most
∑

l∈L(B2dn(l))n−1.

With this the cumulant can be bounded.

|κn(Z)| ≤ cn
∑
l∈L

(B2dn(l))n−1 = cnLEloc

[
Bn−1

2dn

]
Due to ∞-boundedness in moments Eloc

[
Bn−1

2dn

]
is almost surely asymptotically

bounded and thus:

|κn(Z)| = O(L)

.

The cumulant generating function of Z is thus at most growing linearly in L 2

and for Z̃ all cumulants except the second vanish for L→∞. The first cumulant

of Z̃ vanishes by construction, the second converges and the higher ones are of

order O(L−1), because κn

(
Z√
L

)
= L−nκn(Z). Then by Lévy’s continuity theorem

2 Note that this is was shown only for each cumulant separately almost surely, however the
countable intersection of almost sure events is also almost sure.

53



Z̃ converges in distribution to a centered normal distribution or the constant 0 if

the second cumulant is converges to 0.

6.2. Binomial bound

Suppose now that additionally Xl are binary, like for example the GRSE property.

I am then interested in the likelihood that there Z = 0, however the central limit

theorem cannot provide good bounds on this probability.

Using a similar approach as before it is however possible to find an exponential

upper bound on this probability.

Suppose again that the NK structure is ∞-bounded in moments and let there

be a asymptotically not vanishing fraction α > 0 of loci with E [Xl] ≥ µ0 > 0.

For some n ∈ N there exists then out of this α-fraction of loci a non-vanishing

fraction 0 < β ≤ α of loci which additionally have B2d < n asymptotically. This

must be the case because otherwise there would be a fraction of loci with B2d

diverging, implying that E [B2d] also diverges contradicting the assumption of

∞-boundedness in moments. Out of this β-fraction I can surely choose βL
n

loci

which are pairwise separated by a distance larger than 2d. The set of corresponding

Xl is then mutually independent and, having E [Xl] ≥ µ0. It follows that Z is at

least as large as a binomial distributed random variable over Lγ = Lβ
n

trials with

success probability µ0. In particular therefore:

P [Z = 0] ≤ µγL0

with γ > 0.

This implies that the probability for none of the binary random variables to be 1

decreases at least exponentially in L.

7. Local NK properties of the sign epistasis graph

7.1. Weak sign epistasis components

The limits shown above for local NK properties on locally bounded NK structures

can be used to give some interesting qualitative results on these NK landscapes.
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Figure 17: Simulated mean distribution of component sizes at L = 105 with Gaussian
fitness and varying number of realizations. For the AN structure at all k and
the RN structure at k = 2, the distribution seems to have an exponential tail
in accordance with quasi-one-dimensionality. Also the largest components
found via simulation are much smaller than L, showing that there is no
giant component. This is different for the RN model at k ≥ 3. It has only
few very small components and one giant component left.
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In particular in terms of the sign epistasis graph, properties related to the local

structure around loci is of interest. The definition of local NK property assumes

that the radius of influence for the property in the structure graph is limited by a

constant, therefore the global structure can not be studied this way, but the local

structure may very well.

Here I will consider small components. Weak components in the sign epistasis

graph are interesting because they practically decouple the strong selection dy-

namics, i.e. two weak sign epistasis components behave in this limit as if the two

components were not dependent at all. An adaptive walk over such a landscape

decouples in two independent adaptive walks over each component, in the same way

as it happens in the BN structure by construction. This allows one to calculated

several properties of the landscape easier, like the number of global optima or the

number of accessible paths.

So how many components are there? Of course the number of components is at

least as large as the number of components in the NK structure. As shown in the

introduction to the typical structure choices, the BN model has by definition only

small components, while the AN and SN model has by definition only one giant

component. The RN model however has potentially many components, although

this doesn’t seem to be the case for k ≥ 3.

But as one can see even for the AN and RN model the sign epistasis graph will

have many (i.e. linearly growing) number of small weak sign epistasis components.

To see this I consider the following local NK property: Let s be the size of the

component in question and Xl the binary property of locus l being part of a weak

sign epistasis component of size s. The weak component may have at most diameter

s− 1 and therefore whether or not l is part of a component of size s is then at most

dependent on mutational effects in loci up to constant distance s and consequently

this is a local NK property.

The number of weak sign epistasis components is Z
s

where Z =
∑

l∈LXl is the

sum of the NK property defined.

The probability that a locus is part of a weak sign epistasis component of size

s is certainly non-zero if the size of the structure component is at least s and 0

otherwise, because there is always a non-zero chance of epistasis edges not realizing

any sign epistasis thereby reducing the structure component size to s in the sign
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epistasis graph. The probability, if it is non-zero, is also bounded from below

for structures ∞-bounded in moments because there are only finitely many NK

structures of bounded size with a diameter of s.

Due to the previous central limit theorem we therefore know that asymptotically

as L→∞ the number of components of size s will be distributed normally with

linearly increasing mean and variance if the NK structure is∞-bounded in moments

and at least a non-vanishing fraction of loci are part of NK structure components

of size at least s.

This is a rather powerful statement, because it implies that in the L→∞ limit

sign epistasis components of every size (assuming the size is not already limited

by the NK structure) will appear in linearly growing number, i.e. a non-vanishing

fraction of loci will belong to components of size 1, 2, 3, etc.

All of the introduced NK structures except the SN structure are ∞-bounded

almost everywhere and so the result applies. Their sign epistasis graphs will have

a linearly increasing number of components, however it is not obvious from the

previous statements whether the whole graph will fall into small components or

whether there may still be a giant component left (assuming one existed previously).

7.2. Quasi one dimensional structure

In general my results cannot prove whether a giant component is left in the sign

epistasis graph, but for the AN model a more detailed result can be given.

I say that a NK structure is quasi one dimensional, if, in the limit L→∞,

the size of d-shells around all loci are bounded by a constant in d, i.e. when the

number of loci in increasing radii are not increasing. In a usual geometrical sense

this would correspond to the surface not growing with the volume, which is only

true for the one-dimensional geometry.

The AN structure at constant k satisfies this property, because the size of d-shells

is always 2(k − 1).

With this property, there cannot be any giant component in the sign epistasis

graph. This can be seen by considering any locus potentially belonging to the giant

component. For every r ∈ N consider the union of 3r- and 4r-shell around a locus.

These shell unions are mutually independent for different r because their loci do not
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share NK edges between shells in distance ≥ 2. For each r there is also a non-zero

probability for the edges between 3r- and 4r-shell to result in no sign epistasis,

because as shown every NK structure generates every directed graph compatible

with epistasis with finite probability. But this happening is independent for every r

and there are only finitely many such probability values (because the size of shells

is bound due to quasi one dimensionality), it follows that the probability of this

event not happening for any r smaller than r′ decreases exponentially in r′. But

this event marks the separation of the shells interior, i.e. the 3r-ball from the outer

structure in the sign epistasis, i.e. it forms a component with bounded size.

Thus there cannot be any giant component, because it would require r to

grow to infinity while the separation probability does not decrease faster than

linear. Furthermore it implies that the tail of the size distribution of sign epistasis

components is at least exponential.

This behavior of the AN structure has been used before to derive properties

in the L → ∞ limit, for example by Durrett and Limic to show that the scaled

height of optima is asymptotically normal distributed and that the number of local

optima is asymptotically log-normal distributed.[13]

7.3. Independent and isolated loci

The smallest component size to consider is s = 1. I call such components isolated

loci.

A slightly weaker case are independent loci. They are not weak components

but simply loci without incoming sign epistasis arrows, i.e. mutation signs on them

are independent of the states of all other loci.

Independent loci are special in that they are present in linearly growing number

in all NK structures at constant k, not only the ∞-bounded ones. This is because

whether a locus is independent or not is solely a function of the fitness values for

partial landscapes it is part of. Each partial landscape contains however only a

constant number of loci and therefore it must be possible to choose a linear subset

of loci not sharing any partial landscapes. These loci are then mutually independent

in their probability to become independent loci and thus there is asymptotically a

normal distributed number of independent loci with increasing mean for all NK
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landscapes.

The same is not true for isolated loci, however because AN, BN and RN are

∞-bounded in moments the number of isolated loci will also be asymptotically

normal distributed with linearly increasing mean.

Given the linearly growing number of independent loci on classical NK structures,

it follows that adaptive walks from random starting points take at least linearly

many steps, because there will be a linear number of independent loci in sub-optimal

state initially and their mutation effects can only change by stepping along it.

It also implies that a non-vanishing fraction of loci are in identical state over

all optima of the landscape, i.e. this fraction of a locally optimal genotype is

deterministic. This is not generally the case. The probability for all optima to

share one locus in the same state would decrease exponentially in the number of

optima if they were distributed uniformly.

The probability that a certain locus is independent has a similar behavior as the

probability of global sign epistasis. For a locus to be independent mutation on it

must always have the same sign. There are at least 2k−1 independent background

choices for every locus, due to them being part of partial landscapes of size k and

therefore the probability for a locus to be independent is at most 21−2k−1
, giving

an upper limit of L21−2k−1
for the mean number of loci. This is a fast decreasing

in k and the bound seems to be rather bad concerning walk lengths.

7.4. Global reciprocal sign epistasis

Global reciprocal sign epistasis is also a NK local property, because whether there

is (S)GRSE or not is only dependent on the partial landscapes in immediate

surrounding of the focal loci. It is also in principle possible for every epistatic

locus pair to turn into GRSE with non-zero probability. Therefore the central limit

theorem applies and there will for structures ∞-bounded in moments be a normal

distributed number of (S)GRSE interactions with linearly increasing mean. By the

binomial bound additionally the probability that there is no (S)GRSE at all will

decrease to zero exponentially.

This implies that the maximal distance accessible by an adaptive walker on

these NK landscapes is asymptotically only a fraction of the full distance, i.e. the
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Figure 18: Simulated probability not to find any GRSE in some NK variants. (Gaussian
fitness and varying number of realizations per data point.) Error bars indicate
95% confidence intervals. Note the different scales of both x- and y-axes. In
the SN structure the probability quickly goes to 1. For the AN and RN it does
however decrease exponentially towards zero, but with vastly different speeds
depending primarily on k, but also varying between AN and RN. These
probabilities are also upper bounds on the accessibility of maximal distant
genotypes.
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difference L − ZGRSE, implying that the fraction of the landscape reachable is

exponentially decreasing. The probability that there is at least one accessible path

of full length L is then also decreasing exponentially, implying exponential decrease

in the accessibility of the global optimum from its antipodal.

SGRSE implies that local optima cluster in these landscapes in clusters of

exponentially increasing size in L.

8. Star neighborhood

Most of the results so far do not apply to the SN structure. It is specially chosen

to contrast the properties of ∞-bounded NK structures. Here I will show some of

the qualitative differences.

First consider the number of local optima. Given any fixed state of the center

loci, there can only be one local optimum in this subspace, because each ray locus

can be optimized independently of the other ray loci. Therefore the SN model

has at most 2k local optima, in contrast to the ∞-bounded structures which had

clusters of local optima increasing exponentially in size and so especially have

exponentially many local optima in L.

The low number of local optima implies that there are not many ways for an

adaptive walker to be trapped and accessibility of local optima will therefore be

generally high.

Consider a reversed adaptive walker starting at the global optimum. Initially all

mutations are deleterious and mutations of ray loci do not affect other ray loci’s

mutation signs. Therefore it is surely possible to mutate all ray loci in an accessible

way in any order. After doing so all partial landscapes will have been modified

and the only steps left are the center loci. The center loci taken for themselves

form a HoC landscape on any fixed background. Therefore there is a non-zero

probability depending on k that they may also be traversed by the reverse walker.

The fitness values on this HoC slice of the center loci may be slightly biased because

the background was not chosen randomly, however this bias does not extend to

the rank landscape. Thus the probability that the there is an accessible path to

the global optimum as constructed above is non-zero and independent of L. The

accessibility of the global optimum at constant k is therefore not converging to
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zero, in contrast to ∞-bounded structures, which will eventually for large enough

L be inaccessible.

The low number of optima also implies that basins of attraction must be large

on average, i.e. spanning a non-vanishing fraction of the landscape, which is not

true for ∞-bounded structures.

9. Generalizations

Most results of this thesis can be further generalized in principle straight forward,

although sometimes more complex in technicalities. In this section I will shortly

mention some of these possibilities.

9.1. More alleles per locus

First of all the restriction to two-locus alleles is actually unnecessary, in general

the notion can be extended to arbitrary, but bounded in L, number of alleles per

locus and even arbitrary mutational structures on each locus. The notion can be

formalized from the observation that the hypercube genotype space is actually

the cartesian product of L copies of the complete graph on two vertices. Loci are

simply these factors in the cartesian product. The generalization would then be to

allow arbitrary graphs as factors in this product as long as their size is bounded for

L→∞. The cartesian product naturally defines the projections onto locus subsets

and each genotype can still be written as a sequence of locus states. Mutations

on different loci are then still associative and even commutative (on the genotype

space, not with regards to fitness). The HoC model’s definition would still be valid,

assigning each genotype an i.i.d. random fitness value and the definition of NK

structures is unaffected. The definition of epistasis and sign epistasis graph would

have to be amended to handle multiple mutations on the same locus, but the actual

probabilities of sign epistasis are not radically different. Local NK properties still

would satisfy the central limit theorem under the same conditions and consequently

for the arguments on components, GRSE, etc. would not be affected except for the

unspecified constants. However GRSE would need to be defined as GRSE between

any pair of mutational transitions on the two loci.
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One limitation on locus graphs should however be, that they are connected and

at least of size 2.

9.2. Non-HoC partial landscapes

Partial landscapes are not really required to be of HoC type. This is however

what was used in the original definition of the NK model. In principle any fitness

landscapes on k loci is sufficient as long as it is invariant under permutation of loci.

This requirement is necessary to avoid having to decide the mapping of loci in NK

blocks to inputs of the partial landscape. The definition of NK structures is not

affected by this and the central limit theorem on local NK properties would still

hold. Only the actual probabilities of sign epistasis, the realizable sign epistasis

graphs etc. might become limited, if the chosen fitness landscape model is not a

continuous probability distribution in the space of possible distributions or it is

not supported on the whole landscape. If however the probability for the property

does not become zero by this change, then the previous results will still hold, i.e.

either GRSE vanishes completely in the AN, RN and BN structures or it still

grows linearly, but nothing in between. A trivial example without GRSE would be

choosing the partial landscapes to be linear fitness landscapes. Then the resulting

NK model will be also a linear model independently of the structure chosen, also

implying that the number of size-1 components in the sign epistasis graph will grow

linearly, while all other are impossible. If there is however even a slight non-zero

probability of GRSE in the partial landscape model, then the GRSE count for

∞-bounded NK structures will still grow linearly.

9.3. Non-uniform NK structure

The NK edges do not generally need to be chosen of equal size. Arbitrary hyper-

graphs may be allowed, however to conserve the properties for the case of constant

k in L, the size of edges should at least be bounded by a constant k̃ in the limit

L → ∞. Given such a bound, the NK structure will essentially behave like a

constant k structure, because all arguments actually only required k to be bounded.

Some calculated properties originally depending on k might end up depending

either on the largest NK block size or the smallest one or anything in-between,
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so care has to be taken there. However the result on the central limit theorem is

unaffected and so is the probability of GRSE, the number of components, etc.

9.4. Correlation of partial landscapes

Generally the independence of partial landscapes is one of the main important

properties of the NK model, which allows to treat it as I did with the central limit

theorem, however some correlations can be tolerated. In particular if one assumes

some arbitrary correlation of partial landscapes, as long as this correlation is only

dependent on the distance between them, while still leaving partial landscapes in

larger distances mutually independent, then effectively nothing changes, except that

all d-boundedness properties need to be scaled to the incorporate the additional

correlated distance, i.e. if the correlation distance is r, then all boundedness

conditions in theorems would need to be replaced from d-boundedness to d + r-

boundedness. With this adjustment all theorems on the central limit theorem

would still apply, but the probabilities of sign epistasis might change significantly.

Potentially there is also some additional limitation if there are strong correlation

(e.g. correlation coefficients of 1).

I also suspect that correlations of unbounded distance may be introduced without

invalidating the central limit theorem, as long as the correlation strength falls of

quick enough with distance, however I have not considered such a case in detail.

9.5. Including spin glass models

Given the generalizations mentioned above (which also can be in principle combined),

several other common stochastic models are included in the class of generalized NK

models. For example the Edwards-Anderson model on a d-dimensional lattice with

usual spins may be viewed as an NK model with k = 2, NK blocks corresponding

to edges of the d-dimensional lattice and a partial landscape distribution with first

order Fourier component corresponding to the external magnetic field and second

order component corresponding to the spin interactions, both distributed in some

given way. At least if the interaction distribution is continuous, the created NK

model can still generate arbitrarily sized sign epistasis components and GRSE.

The NK structure of the d-dimensional lattice is ∞-finite everywhere for every
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fixed d and the therefore the limit results on the number of small components,

GRSE, the structure of optima, etc. apply like in the AN case. One-dimensional

lattices are also quasi one-dimensional and so the sign epistasis graph would fall

into components of constant sizes.

Constant size sign epistasis components in this case should be interpreted as the

spin glass (or a fraction thereof) behaving as if it were many small spin glasses in

the low-temperature limit (corresponding to the strong selection limit).

The Sherrington-Kirkpatrick model would correspond to a k = 2 NK structure

edges between every pair of loci. Obviously this structure is 1-bounded nowhere

and therefore none of my results would apply to it. The same would be true for

higher-order variants of the SK model.

Potts spins would correspond to loci with higher number of alleles.

10. Summary

After defining a generalized NK type model and introducing the (weighted) sign

epistasis graph as representation of mutation interactions in the strong selection

regime, I have demonstrated how these graphs look in the L → ∞ limit for the

House-of-Cards, the Rough-Mount-Fuji and the generalized NK model at constant

ruggedness parameter with locally bounded interaction structure.

In particular HoC and RMF sign epistasis graphs do not contain any structural

information on the landscape, because these models do not differ between loci in

their definition anyway. Their sign epistasis graphs are essentially complete graphs

with uniform arrow weights.

The NK model however defines a structure on loci explicitly, the NK structure.

I have shown that the probability of sign epistatic dependence usually decreases

with the number of NK blocks specific to one considered locus, while increasing

with the number of NK blocks shared by both loci.

For sufficiently local bounded NK structures, in particular the AN, RN and

BN structures, I have proven the validity of a central limit theorem for random

variables on loci depending only on local neighborhoods. As examples of such

properties I showed that in these models the sign epistasis graph will have linearly

growing numbers of components of constant sizes and linearly growing number of
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GRSE pairs. The latter results in an exponential decrease in the probability to find

accessible paths, contrasting previous simulation results, exponential size clustering

of local optima and exponential decrease in the reachable fraction of the landscape.

With the star neighborhood, which is not locally bounded, I showed that not all

(classical) NK structures fulfill these asymptotic properties at all. It has instead a

converging mean number of optima and a non-zero converging probability to find

accessible paths spanning the landscape to the global optimum. This shows that

although it is often assumed to be insignificant, the choice of underlying structure

for the NK model can in fact influence global properties qualitatively. Nonetheless

to see this difference rather special NK structures with highly variable locus

degrees have to be used. All the common choices are asymptotically bounded in

arbitrary distance. Highly variable degrees may however be adequate descriptions

of genetic interactions, because there are often genes/proteins controlling the

expression of large number of other genes, thereby acting as a high-degree node

versus genes/proteins which do not affect expression at all.

For all classical NK structures, including SN, I showed the linearly growing

number of independent loci resulting in linearly growing minimal length of adaptive

walks, linearly growing number of frozen loci across local optima, and factorial

increasing mean number of accessible paths.
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A. Mathematical prerequisites

A.1. Landau notation

For real-valued functions f(x) and g(x) I use the usual definition for the Landau

notation:

f ∈ o(g) :⇔ lim
x→∞

∣∣∣∣f(x)

g(x)

∣∣∣∣ = 0

f ∈ O(g) :⇔ lim sup
x→∞

∣∣∣∣f(x)

g(x)

∣∣∣∣ <∞
f ∈ Ω(g) :⇔ g ∈ O(f)

f ∈ ω(g) :⇔ g ∈ o(f)

f ∈ Θ(g) :⇔ f ∈ O(g) ∧ g ∈ O(f)

f ∼ g :⇔ lim
x→∞

∣∣∣∣f(x)

g(x)

∣∣∣∣ = 1

As is commonly done, I also use this class notation in place of a representative, e.g.

f(x) = 3+o(x) means there exists a function g(x) ∈ o(x), such that f(x) = 3+g(x).

I say that f grows sub-linearly if f = o(x), linearly if f = Θ(x), super-linearly

if f = ω(x), sub-exponentially if f = eo(x), exponentially if f = eΘ(x) and

super-exponentially if f = eω(x). I say that f grows sub-polynomially if

∀ε>0 : f = o(xε), polynomial if there are ε1 > 0 and ε2 > 0, such that f = O(xε1)

and f = Ω(xε2) and super-polynomially if ∀ε>0 : f = ω(xε). I use the same

terminology for functions falling to zero with respect to their reciprocals, e.g. a

function f(x) is falling exponentially if 1
f(x)

is growing exponentially.

A.2. Probability theory

The r-th moment of a real valued random variable X is defined as the expectation

of the r-th power of X, i.e. mr = E [Xr].

The moment generating function of a real valued random variable X is defined

as M(t) = E
[
etX
]
.

The characteristic function of a real valued random variable X is defined as

χ(t) = E
[
eitX

]
.
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The characteristic function does always exist, while the moment generating function

does not necessarily. If however both exist, then χ(t) = M(it).

If all moments of X exist, then χ(t) is analytic and χ(t) =
∑∞

r=1
mr(it)r

r!
.

The cumulant generating function of X is defined as K(t) = logχ(t) =

logE
[
eitX

]
.

The r-th cumulant of X is defined as κr = (−i)rK(r)(0).

If all moments exist, then also all cumulants exist and the cumulant generating

function is analytic with K(t) =
∑∞

r=1
κr(it)r

r!
.

Given a vector of real-valued random variables ~Y = (Y1, . . . , Yn) their joint mo-

ment generating function is defined as M(~t) = E
[
e~t
~Y
]
, their joint charac-

teristic function as χ(~t) = E
[
ei~t

~Y
]

and their joint cumulant generating

function as K(~t) = logχ(~t).

Again the joint characteristic function always exists while the joint moment gener-

ating function might not, but if they do then χ(~t) = M(i~t).

Every list of indices i1 . . . im defines a mixed/joint moment by E [Yi1 . . . Yim ] =
∂m

∂ti1 ...tim
M(~t)

∣∣∣
~t=~0

.

Similarly the mixed/joint cumulant or connected correlation function is

defined by κ(Yi1 , . . . , Yim) = (−i)m ∂m

∂ti1 ...tim
K(~t)

∣∣∣
~t=~0

.

Both the mixed moments and cumulants are linear in their arguments, i.e. E [(Y1 + Y2)Y3] =

E [Y1Y3] + E [Y2Y3] and κ(Y1 + Y2, Y3) = κ(Y1, Y3) + κ(Y2, Y3).

If the random variables Yi1 . . . Yim are separable into two disjoint non-empty sets

such that elements of the first set are mutually independent of elements of the

second set, then the joint cumulant is zero. This is also known as linked-cluster

theorem.

A.3. Multisets

The power set of a simple set S is the simple set P(S) containing all subsets of S.

A (finite) multiset M over a finite base set A is defined by the multiplicity

function IM : A→ N0.

Multisets will be written in bold font, while simple sets will be written using normal

font weight.

The base set will usually be implied by context and not explicitly mentioned.
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For x ∈ A I write x ∈M iff IM(x) ≥ 1.

The support of M is the simple set S = supp (M) ⊆ A, such that x ∈ S ⇔ x ∈
M.

The size of M is #M :=
∑

x∈A IM(x).

The dimension of M is the size of its support and denoted |M| = |supp (M)|.
A multiset N is a (multi-)subset of M, written N ⊆M, iff IN(x) ≤ IM(x) for

all x ∈ A.

If in any of the binary set operations base sets are not equal, they are implied to

be extended to their union.

A.4. Graph theory

The definitions and statements in this section are partially based on the introductory

books Hypergraph Theory by Alain Bretto[4] and Graph Theory by Reinhard

Diestel[10].

A (simple undirected finite) graph is a tuple (V,E [)] of a finite vertex set

V and an edge set E [⊆] {e ∈ P(V ) | |e| = 2}.
A (non-simple finite) directed graph is a tuple (V,E [)] of a finite vertex set

V and an edge (arrow) set E [⊆]V 2.

A (multi-)hypergraph is a tuple (V,E) of a finite vertex set V and an (hyper-

)edge multiset E with support P(V ).

A hypergraph is k-uniform iff ∀e ∈ E : |e| = k.

Note that simple undirected graphs are a special case of hypergraphs and all

following definitions for hypergraphs apply in that sense also to them.

An isomorphism between two hypergraphs (directed graphs) G = (V,E) and

G′ = (V ′,E′) is a bijection φ : V → V ′, such that IE(A) = IE′(φ(A)) for all

A ∈ P(V ) (A ∈ V 2).

G and G′ are said to be isomorphic iff there is an isomorphism between them.

Isomorphism is an equivalence relation and its quotient space elements are called

isomorphism classes.

A subgraph of a hypergraph (directed graph) G = (V,E) is a hypergraph (directed

graph) G′ = (V ′,E′), such that V ′ ⊆ V and E′ ⊆ E.

The subgraph induced by a vertex set V ′ ⊆ V is the unique subgraph G′ =
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(V ′,E′) with maximal sized E′.

The primal graph of a hypergraph G = (V,E) is the simple undirected graph

G′ = (V,E ′), such that e′ ∈ E ′ ⇔ ∃e ∈ E : e′ ⊆ e.

The underlying graph of a directed graph G = (V,E) is the undirected graph

G′ = (V,E ′), such that (u, v) ∈ E ⇔ {u, v} ∈ E ′ ∨ u = v.

An orientation of an undirected graph (V,E) is a directed graph (V,E ′), such

that {u, v} ∈ E ⇔ (u, v) ∈ E ′ ∨ (v, u) ∈ E ′ and (v, u) ∈ E ′ ⇒ (u, v) 6∈ E ′.
Two different vertices v and u are adjacent iff there is an edge e, such that v ∈ e
and u ∈ e.
A vertex v is incident on an edge e, iff v ∈ e.
Two edges e and f are incident iff e ∩ f 6= ∅.
An edge (v, v) in a non-simple (directed) graph is called a loop.

A path of length m in a hypergraph with boundary is a sequence (v1, . . . , vm) ∈ V m,

such that vi and vi+1 are adjacent for i = 1, . . . ,m− 1.

A (undirected) path of length m in a directed graph with boundary is a path of

length m in its underlying graph.

A directed path of length m in a directed graph with boundary is a sequence

(v1, . . . , vm) ∈ V m, such that (vi, vi+1) ∈ E for i = 1, . . . ,m− 1.

The distance between two vertices v and u is the length of the shortest (undirected)

path between u and v.

The directed distance from vertex v to vertex u is the length of the shortest

directed path from u to v.

The distance between a vertex v and an edge e is the minimal distance between v

and any vertex in e.

The r-ball Br(v) of radius r around a vertex v ∈ V is the subgraph induced by all

vertices in distance at most r to v.

The r-ball Br(A) of radius r around a vertex set A ⊆ V is the subgraph induced

by all vertices in distance at most r to any element of A.

The r-shell Sr(v) of radius r around a vertex v ∈ V is the subgraph induced by

all vertices in distance exactly r to v.

The r-shell Sr(A) of radius r around a vertex set A ⊆ V is the subgraph induced

by all vertices in distance exactly r to one element of A, but not in smaller distance

to any other element of A.
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The (r, s)-shell S(r,s)(v) of radius r around a vertex v ∈ V is the subgraph induced

by all vertices in distance between r and s to v.

The (r, s)-shell S(r,s)(A) of a vertex set A ⊆ V is the subgraph induced by all

vertices in distance between r and s to one element of A, but not in distance smaller

than s to any other element.

Two vertices are (directed-)connected iff there is a (directed) path between

them.

The equivalence classes of connected loci are called connected components

in undirected graphs, weakly connected components for undirected paths in

directed graphs and strongly connected components for directed paths in

directed graphs.

Given a series of graphs of increasing size, if the size of largest component grows

asymptotically linearly with the graph size, this component is called a giant

component.

Given two (un-)directed graphs (V,E) and (V ′, E ′) their cartesian product is the

graph (V ′′, E ′′) with V ′′ = V ×V ′ and {(v, v′), (u, u′)} ∈ E ′′ iff u = v∧{u′, v′} ∈ E ′

or u′ = v′ ∧ {u, v} ∈ E.
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[30] Jǐrı Matoušek. “The number of Unique-Sink Orientations of the hypercube*.”

In: Combinatorica 26.1 (2006), pp. 91–99.

[31] Johannes Neidhart and Joachim Krug. “Adaptive walks and extreme value

theory.” In: Physical review letters 107.17 (2011), p. 178102.

[32] Johannes Neidhart, Ivan G. Szendro, and Joachim Krug. “Adaptation in

Tunably Rugged Fitness Landscapes: The Rough Mount Fuji Model.” In:

Genetics 198.2 (Oct. 1, 2014), pp. 699–721.

[33] Johannes Neidhart, Ivan G. Szendro, and Joachim Krug. “Exact results for

amplitude spectra of fitness landscapes.” In: Journal of Theoretical Biology

332 (Sept. 7, 2013), pp. 218–227.

[34] Martin A. Nowak. Evolutionary dynamics. Harvard University Press, 2006.

[35] H. Allen Orr. “A minimum on the mean number of steps taken in adaptive

walks.” In: Journal of Theoretical Biology 220.2 (2003), pp. 241–247.

[36] H. Allen Orr. “Fitness and its role in evolutionary genetics.” In: Nature

Reviews Genetics 10.8 (Aug. 2009), pp. 531–539.

74



[37] H Allen Orr. “The genetic theory of adaptation: a brief history.” In: Nature

Reviews Genetics 6.2 (2005), pp. 119–127.

[38] H. Allen Orr. “The Population Genetics of Adaptation: The Adaptation of

Dna Sequences.” In: Evolution 56.7 (July 1, 2002), pp. 1317–1330.

[39] H. Allen Orr. “The population genetics of adaptation: the distribution of

factors fixed during adaptive evolution.” In: Evolution (1998), pp. 935–949.

[40] Sarah P. Otto. “Two steps forward, one step back: the pleiotropic effects of

favoured alleles.” In: Proceedings of the Royal Society of London B: Biological

Sciences 271.1540 (Apr. 7, 2004), pp. 705–714.

[41] A. S. Perelson and C. A. Macken. “Protein evolution on partially correlated

landscapes.” In: Proceedings of the National Academy of Sciences 92.21

(Oct. 10, 1995), pp. 9657–9661.

[42] Patrick C. Phillips. “Epistasis—the essential role of gene interactions in the

structure and evolution of genetic systems.” In: Nature Reviews Genetics

9.11 (2008), pp. 855–867.

[43] Frank J. Poelwijk et al. “Empirical fitness landscapes reveal accessible evolu-

tionary paths.” In: Nature 445.7126 (Jan. 25, 2007), pp. 383–386.

[44] Frank J. Poelwijk et al. “Reciprocal sign epistasis is a necessary condition

for multi-peaked fitness landscapes.” In: Journal of theoretical biology 272.1

(2011), pp. 141–144.

[45] B. Schmiegelt and J. Krug. “Evolutionary Accessibility of Modular Fit-

ness Landscapes.” In: Journal of Statistical Physics 154.1-2 (Oct. 29, 2013),

pp. 334–355.

[46] Peter F. Stadler and Bärbel MR Stadler. “Genotype-phenotype maps.” In:

Biological Theory 1.3 (2006), pp. 268–279.

[47] Ivan G Szendro et al. “Quantitative analyses of empirical fitness landscapes.”

In: Journal of Statistical Mechanics: Theory and Experiment 2013.01 (2013),

P01005.

[48] Sara Via et al. “Adaptive phenotypic plasticity: consensus and controversy.”

In: Trends in Ecology & Evolution 10.5 (1995), pp. 212–217.

75



[49] J. Arjan G. M. de Visser, Tim F. Cooper, and Santiago F. Elena. “The causes

of epistasis.” In: Proceedings of the Royal Society of London B: Biological

Sciences 278.1725 (Dec. 22, 2011), pp. 3617–3624.

[50] J Arjan GM de Visser and Joachim Krug. “Empirical fitness landscapes and

the predictability of evolution.” In: Nature Reviews Genetics 15.7 (2014),

pp. 480–490.

[51] Günter P. Wagner and Jianzhi Zhang. “The pleiotropic structure of the

genotype–phenotype map: the evolvability of complex organisms.” In: Nature

Reviews Genetics 12.3 (2011), pp. 204–213.

[52] Jörgen W. Weibull. Evolutionary game theory. MIT press, 1997.

[53] E. D. Weinberger. “Fourier and Taylor series on fitness landscapes.” In:

Biological Cybernetics 65.5 (Sept. 1991), pp. 321–330.

[54] Edward D. Weinberger. “Local properties of Kauffman’s \textit{N} - \textit{k}
model: A tunably rugged energy landscape.” In: Physical Review A 44.10

(Nov. 1, 1991), pp. 6399–6413.

[55] Daniel M. Weinreich, Richard A. Watson, and Lin Chao. “Perspective: sign

epistasis and genetic costraint on evolutionary trajectories.” In: Evolution

59.6 (2005), pp. 1165–1174.

[56] Daniel M. Weinreich et al. “Darwinian Evolution Can Follow Only Very Few

Mutational Paths to Fitter Proteins.” In: Science 312.5770 (Apr. 7, 2006),

pp. 111–114.

[57] Mary Jane West-Eberhard. “Phenotypic plasticity and the origins of diver-

sity.” In: Annual review of Ecology and Systematics (1989), pp. 249–278.

[58] Sewall Wright. The roles of mutation, inbreeding, crossbreeding, and selection

in evolution. Vol. 1. na, 1932.

76



Eidesstattliche Erklärung gemäß Prüfungsordnung
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