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Abstract

Potential heuristics are weighted functions over state features
of a planning task. A recent study defines the complexity of a
task as the minimum required feature complexity for a poten-
tial heuristic that makes a search backtrack-free. This gives an
indication of how complex potential heuristics need to be to
achieve good results in satisficing planning. However, these
results do not directly transfer to optimal planning.
In this paper, we empirically study how complex potential
heuristics must be to represent the perfect heuristic and how
close to perfect heuristics can get with a limited number of
features. We aim to identify the practical trade-offs between
size, complexity and time for the quality of potential heuris-
tics. Our results show that, even for simple planning tasks,
finding perfect potential heuristics might be harder than ex-
pected.

Introduction
A simple potential heuristic (Pommerening et al. 2015) as-
signs a weight to every possible fact of the task. Its heuristic
value for a state is simply the sum of all weights assigned
to facts that are true in this state. More complex potential
heuristics assign values to state features and sum the weights
of all features that the state has. With sufficiently complex
features, any finite function can be represented as a poten-
tial heuristic. It is thus interesting to investigate how much
complexity is actually required for a specific function. For
example, Seipp et al. (2016a) define the correlation com-
plexity metric. It measures how large the features of a po-
tential heuristic should be to guide a hill-climbing search to
the goal without backtracking. They show that some popu-
lar domains in the planning literature only have correlation
complexity two. However, the heuristics they describe are
inadmissible, and the plans found with them can be subop-
timal. Optimal planning requires admissible heuristics and
little is known about their required complexity. Other re-
lated metrics like the width of a planning task (Geffner and
Lipovetzky 2012) also consider only the difficulty in finding
a plan without regarding its cost. If we are interested in the
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complexity necessary for optimal planning, these metrics do
not help us.

Pommerening, Helmert, and Bonet (2017) show that
computing admissible and consistent potential heuristics is
tractable if their features consider at most two variables; but
it becomes intractable if they consider three or more vari-
ables unless P equals NP. They also show that weights can be
efficiently computed for larger features as long as the depen-
dencies between features are limited. However, they did not
study how much more informed the search would be when
using larger features or how many features are required to
achieve a good heuristic. Since considering only two vari-
ables excludes many more accurate potential functions, us-
ing a small number of larger features might pay off. But how
many features are actually needed to achieve good heuristic
values and how complex do they need to be?

In this paper, we empirically investigate perfect poten-
tial heuristics—potential heuristics that match the perfect
heuristic. By studying how complex they need to be, we
gain insight into the complexity of the task and also get an
upper limit for the necessary complexity of any admissible
potential heuristic. The results tell us whether tractable po-
tential functions based on two-variable features are already
informed enough or if it is worth to use more complex ones.
We analyze the following trade-offs between quality and
tractability: How complex do features need to be in order
to represent the perfect heuristic? How many complex fea-
tures are necessary? Are the potential heuristics to solve a
given planning task more complex than the ones to find out
whether the task is solvable?

We investigate those questions on planning tasks from
the International Planning Competition (IPC) that are small
enough to completely explore their full state space, compute
their perfect heuristic values, and find perfect potential func-
tions.

Planning Formalism
We consider planning tasks as factored transition systems
representing the state space of the task. Any classical plan-
ning task can be represented as such a state space, indepen-
dent of the language in which it is defined.

A state space is a transition system represented as a 6-
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tuple T = 〈S, L, T, c, sI , S∗〉, where S is a finite set of
states, L is a set of transition labels, T ⊆ S × L × S is
a transition relation, c : L → R+ is a cost function, sI ∈ S
is the initial state and S∗ ⊆ S is a set of goal states. The
states S are the complete assignments of a set of state vari-
ables V that map each variable v ∈ V to a value in its domain
dom(v). A fact is a pair 〈v, d〉 with v ∈ V and d ∈ dom(v)
and we can interpret a state s as a sets of facts 〈v, s(v)〉.

An s-plan from state s to sn is a sequence of states
〈s0, . . . , sn〉 where s = s0, sn ∈ S∗ and (si−1, l, si) ∈ T
for all 1 ≤ i ≤ n and some l ∈ L. The cost of an s-plan
is the sum of c(l) over all labels l used in the plan. If an sI -
plan exists in a state space, the planning task represented by
it is called solvable and unsolvable otherwise.

A heuristic h(s) maps a state s ∈ S to a number n ∈
R ∪ {∞}, indicating the estimated cost of the cheapest s-
plan. A heuristic value of ∞ indicates a state without any
s-plan, also called an unsolvable state. The perfect heuristic
h∗ maps each state s to the cost of a cheapest s-plan.

A feature is a set of facts with pairwise different variables.
We say a feature f is true in a state s if f ⊆ s. We also use
the Iverson brackets (Knuth 1992) [f ⊆ s], which have value
1 if f ⊆ s and 0 otherwise. The size of the feature f is |f |
and we call features of size 1 and 2 atomic and binary.

Potential Heuristics
A weight function w : F → R associates a set of features F
with weights. It induces a potential heuristic that maps each
state s to the sum of weights for features of s:

hpot
w (s) =

∑
f∈F

w(f)[f ⊆ s]

Since potential functions are necessarily finite, we repre-
sent heuristic functions with two potential functions where
one captures all finite values and the other represents states
with infinite values.

hpot
w1,w2

(s) =

{
∞ if hpot

w2(s) > 0

hpot
w1(s) otherwise.

We say a potential heuristic hpot
w captures all unsolvable

states if hpot
w (s) > 0 iff h∗(s) = ∞ and that it is perfect on

finite values if hpot
w (s) = h∗(s) whenever h∗(s) < ∞. We

say that hpot
w1,w2 is a perfect potential heuristic if hpot

w1 is per-
fect on finite values and hpot

w2 captures all unsolvable states,
i.e., if hpot

w1,w2 = h∗. In the rest of the paper, we look for fea-
ture sets and weight functions for such potential heuristics.
Note that these are not unique as different weight functions
and feature sets can lead to the same heuristic.

The dimension of a potential heuristic is the size of its
largest feature. Intuitively, larger features are more flexible
and allow us to express more fine-grained heuristics. With
features of size |V| every finite heuristic can be expressed.

Analogously to Seipp et al. (2016a), we define the optimal
correlation complexity of a planning task Π as the minimum
dimension of a perfect heuristic for Π. Similarly, the optimal
correlation complexity of a planning domain D is the maxi-
mal optimal correlation complexity of all tasks Π ∈ D or∞
if such a maximum value does not exist.

Computing Perfect Potential Heuristics
To analyze the properties of perfect potential heuristics, we
introduce methods that, given the perfect heuristic h∗, com-
pute perfect potential heuristics with lowest dimension and
number of features. Since these methods take h∗ as an input,
they cannot be used in practice to find good weights and we
can only evaluate them on small tasks. We introduce them
as tools to analyze the properties of such heuristics. We first
focus on the solvable part of the state space and investigate
potential heuristics that are perfect on finite values.

Minimal Dimension for Finite Values
Our main question is what feature size is required to repre-
sent a heuristic that is perfect on finite values. Given h∗, it is
easy to find this out by iteratively testing if all finite values
of h∗ can be reproduced with features of size n, increasing
n from 1 to |V|. For each value of n, we generate the set Fn

of all features of size ≤ n, and check if there is a weight
function wn : Fn → R that satisfies hpot

wn(s) = h∗(s) for all
solvable states s.

Since hpot
wn(s) is a linear expression over the weights, we

can express the condition as a linear constraint:∑
f∈Fn

w(f)[f ⊆ s] = h∗(s) for all solvable s ∈ S

We can use a linear program (LP) solver to find a solution
to this system of equations where the weights w(f) are the
variables to optimize. If there is a feasible solution (indepen-
dent of the objective function) we found a potential heuristic
of dimension n that is perfect on finite values. Otherwise, we
increase n and repeat the process. The method terminates at
the latest with n = |V| since S ⊆ F|V|.

The first value n where we find a solution is the optimal
correlation complexity of the task: if it would be possible to
represent the finite values with smaller features we would
have found a solution earlier.

As mentioned before, different potential functions with
the same dimension can represent the finite values perfectly.
Ideally, we would like to minimize the number of non-
zero weights but this is hard to express in a linear pro-
gram. Instead, we minimize the sum of the absolute weights∑

f∈Fn
|w(f)|. We can do so by introducing a new variable

βf for each feature f and the two constraints

w(f) ≤ βf
−w(f) ≤ βf .

Minimizing
∑

f∈Fn
βf now minimizes the sum of absolute

weights.

Minimal Error for Finite Values
It is possible that high-dimensional features are required to
represent finite heuristic values perfectly but much smaller
features are already sufficient to get reasonably close to per-
fect values. To explore this, we use another method to find
weights: We start with an empty set of features and itera-
tively pick a single feature and a weight for it that mini-
mizes the remaining error compared to h∗. In contrast to the



LP method, this greedy selection does not guarantee that the
result has optimal dimension but empirically it terminates in
more instances than the LP method (as shown later in the
experimental results).

The error of a heuristic h in a state s is E(h, s) =
h∗(s) − h(s) and the total absolute error of h is E(h) =∑

s∈S |E(h, s)|. We want to add a feature f and a weight
w(f) to our heuristic that minimizes the total absolute error.
Let Sf ⊆ S be the set of states that have feature f and hf be
the potential heuristic h after adding feature f with weight
w(f). The total error of hf is

E(hf ) =
∑
s∈S
|E(hf , s)| =

∑
s∈S
|h∗(s)− hf (s)|

=
∑
s∈Sf

|E(h, s)− w(f)|+
∑

s∈S\Sf

|E(h, s)|.

The second part of this sum is the same for all values of
w(f) and the first part is minimal if w(f) is a median of
{E(h, s) | s ∈ Sf} (e.g., Schwertman, Gilks, and Cameron
1990). For a given feature, we can thus use the median error
of all states with this feature as a weight.

We can find the best feature from a candidate set by com-
puting the resulting error for each one and picking the one
that minimizes the error. We initialize the set of candidate
features to F0 = {∅} and continue to select the best feature
from this set of candidates until no feature decreases the er-
ror anymore. We then expand the set of candidates with all
features of the next higher size and repeat the process. As
before, the process eventually terminates because the num-
ber of features to pick is limited by |F|V||.

Minimal Dimension for Infinite Values
The previous methods compute potential functions that are
perfect on finite values. We now look at the remaining (un-
solvable) part of the state space. The problem that we want
to solve here is slightly different: Given the state space and a
subset of states marked as unsolvable, find a compact func-
tion identifying this subset.

Similar to our first algorithm, we can specify the condi-
tions a potential heuristic has to satisfy to detect all unsolv-
able states:

h(s) ≤ 0 for all s ∈ S with h∗(s) <∞
h(s) ≥ 1 for all s ∈ S with h∗(s) =∞

Technically, we should require h(s) > 0 instead of h(s) ≥ 1
but any weight function satisfying the first condition can be
scaled by a sufficiently large constant to satisfy the second
condition.

As before, h(s) is a linear expression in the feature
weights and we can thus check for a solution of these con-
straints with an LP solver. We again use an iterative proce-
dure using all features of size n and increasing n when the
equations have no solution.

Experiments
We implemented all the three methods described in the last
section in the Fast Downward planning system (Helmert

Domain Lower Bound

gripper 7
hiking-opt14 6
miconic 7
movie 2
nomystery-opt11 5
organic-synthesis-opt18 6
psr-small 8
rovers 8
satellite 6
scanalyzer-08 5
scanalyzer-opt11 5
storage 5
tpp 5
transport-opt08 6
vistall-opt11 8
zenotravel 4

Avg. over all domains 5.62

Table 1: Lower bounds for the optimal correlation complex-
ity. Showing only domains where the LP method finished for
at least one instance.

2006). Since the methods assume that h∗ is known, we se-
lected only tasks where we could compute it using a time
limit of 30 minutes and a memory limit of 3.5 GB. We first
explore heuristics that are perfect on finite values. In total,
there were 301 tasks over 38 different domains from the
IPC optimal tracks from 1998 to 2018 where it is possible
to compute h∗ for the complete state space. We can consider
a larger set of instances if we focus on the reachable part of
the state space where we can compute h∗ in 376 tasks over
47 domains. In those cases, we can find a potential heuristic
that is perfect on the finite values in the reachable part of the
state space but might be imperfect on unreachable states.

Methods to synthesize potential heuristics in the literature
(e.g. Seipp, Pommerening, and Helmert 2015) so far have
to consider global properties such as consistency and goal
awareness in the complete state space and thus cannot focus
only on reachable states. Yet, in practice a heuristic that is
perfect on all reachable states would be sufficient and could
be much easier to represent. It is thus interesting to analyze
the properties of such heuristics as well. In most of the do-
mains, our methods can only find perfect potential heuristics
for the smallest instances available.

Finite Values of the Complete State Space
For finite values, the LP-based method finds a heuristic with
lower dimension than the greedy method for six instances.
As mentioned earlier, both methods find potential heuristics
that are perfect on finite values but only the former guar-
antees that the result has the optimal dimension. However,
the LP-based method only terminated in 79 instances over
16 domains; while the greedy method terminated in 112 in-
stances over 17 domains. (The only different domain was
logistics00.) Most of the instances were solved within
the first minutes. For instance, the greedy method terminated
for 101 instances using 15 minutes or less.

Using the greedy method, the most complex feature found
was in the domain psr-small and had a size of 11. Some
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Figure 1: Distribution of optimal correlation complexity in
instances where a perfect heuristic on finite values was com-
puted.

other domains also required very high-dimensional features:
rovers and visitall-opt11 had instances where the
discovered heuristic has dimension 9, while instances in
the domains tpp, satellite, organic-synthesis,
miconic, and storage required functions with dimen-
sion 8.

The LP-based method establishes a lower bound for the
optimal correlation complexity of the tested domains. Ta-
ble 1 shows the lower bounds for each domain where at
least one instance was completed. Almost all domains re-
quire complex features even for small instances. Interest-
ingly, even domains considered easy, such as gripper and
visitall-opt11 have high optimal correlation com-
plexity. Figure 1 shows the distribution of optimal corre-
lation complexity lower bounds over all instances solved
by the LP-based method. We also examined the correlation
between the size of the state space and the optimal corre-
lation complexity of the tasks. However, such correlation
seems weak in our benchmark. For example, instance 03 of
psr-small has a small state space (512 states) but needs
features up to size 7; while scanalyzer and storage
have instances with state spaces almost 10 times larger but
only need features of size 5.

Our next experiment investigates how the dimension of
a potential heuristic influences its overall quality. Figure 2
shows the error E(h) computed by the greedy method after
each iteration of the feature selection. They have a smooth
decrease with sudden drops at the iterations where the set of
candidate features increases. The first iterations for each fea-
ture size cause the largest reduction while the later iterations
for a feature size seem to be mostly correcting noise. The
most dramatic decrease in error often comes from a small
number of large features. This is promising as it means that
while we need large features to achieve high heuristic accu-
racy, a small number of large features often suffices.

We finally analyzed the number of required features
in functions with minimal dimension using the LP-based
method. Since this method focuses on minimizing the size of
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Figure 2: Decrease of total error rate E at each feature se-
lection for the greedy method. (Plot in logarithmic scale.)

the features and not the number of features, the results serve
only as upper bounds to the required number of features. Of
the 79 instances, 56 need less than 100 features; in particular
in domains such as movie, organic-synthesis and in
both versions of scanalyzer. It is interesting to note that
some instances use only a few but very complex features.
For example, an instance in psr-small used less than 60
features but the largest one has size 7. The potential heuristic
with the largest number of features was in nomystery and
had 9802 features with non-zero weight.

An interesting case is the easiest instance of gripper:
it is normally considered one of the easiest instances in the
IPC but used 1856 features and dimension 7 to reproduce
h∗. The reason for this is that the task contains many states
which have a finite heuristic value but are not reachable.
These states violate mutexes of the task and represent “non-
sensical” information such as an agent being in two places at
once. A heuristic that has to match h∗ on such states as well
is more restricted then one that does not and in the case of
gripper many large features are necessary just to handle
such states. We will now see if simpler functions can repre-
sent the finite values on only the reachable states.

Finite Values of the Reachable State Space
Perfect potential functions considering only the reachable
state space of a task are indeed simpler than functions that
are perfect on all finite values. As mentioned above, the first
instance of gripper required a function with dimension
7 to be perfect on all finite values. When considering only
reachable states, a dimension of 5 is sufficient, and the num-
ber of features used decreases from 1856 to 192. Almost
all domains present such behavior. In particular, the largest
difference occurs in the second instance of rovers: the di-
mension of the function encountered decreases from 8 to 5
and the number of features used from 900 to 26.

This decrease in complexity also means that we can find
more potential functions that are perfect on all reachable



solvable states: the LP-based method finishes on 186 and the
greedy method on 189 instances in this setting. The number
of domains where we can generate results also increases in
both cases: 16 to 23 with the LP-based method; and from
17 to 22 domains using the greedy method. The LP-based
method still finds simpler functions than the greedy method,
including in domains which were they previously ran out of
resources. For example, considering only reachable states,
our methods can find potential functions for the initial in-
stances from blocks. While the greedy method finds a
function with dimension 4 for the first three instances, the
LP-based method has a solution with dimension 3.

Due to the way we compute h∗ for the full search space,
we have not considered domains with conditional effects
and axioms so far, even though this is purely a limitation of
the implementation. With the limitation to reachable states,
we can compute h∗ with an exhaustive forward search and
can consider any ADL domain. We considered 19 ADL do-
mains that were mostly designed for satisficing planning. As
their instances are harder, we could only compute h∗ for the
reachable states in instances of four domains. Nonetheless,
it is still possible to discuss some interesting results. For ex-
ample, the ADL variant of miconic seems easier than its
equivalent STRIPS variant. The maximum complexity is 4
for the 38 instances of the ADL variant that we could solve.
In the STRIPS version, we could find h∗ in only 20 instances
but needed a complexity of 6. We speculate that the more
compact representation in the ADL variant allows less com-
plex potential heuristics.

Infinite Values
There are 29 domains with instances containing unsolvable
states. In 57 instances over 14 domains, we can compute po-
tential functions that capture all such states. These functions
are generally simpler than those that are perfect on finite val-
ues. For example, psr-small has instances where we can
capture all unsolvable states using atomic features; while
we could not reproduce h∗ for this domain using features
with size smaller than 5. The instances with highest dimen-
sion for capturing unsolvable states occurred in blocks,
openstacks and tpp, with dimension 3. One reason why
this number is not lower is because h∗ captures all unsolv-
able states in the state space, including ones that are unreach-
able and cannot be represented with smaller features. The
low dimension required to detect unsolvable states could be
an effect of considering only small instances but it is pos-
sible that most IPC domains have unsolvable states easily
identified by small features. Further evidence for this is the
good performance of Aidos (Seipp et al. 2016b) in the un-
solvability planning competition. Among other components,
Aidos computes many small pattern databases, extracts un-
solvable states identified by them and declares a state un-
solvable if it abstracts to one of the stored states. This can
be viewed as defining a potential function that uses the ex-
tracted abstract states as features.

Conclusions
We analyzed the characteristics of perfect potential heuris-
tics using instances of the International Planning Compe-

tition (IPC). In particular, we investigated the dimension
needed for potential heuristics to match h∗. Our results show
that even easy domains need potential functions with high
dimension. While this sounds like bad news, we also showed
that a small number of large features are often responsible
for the largest reduction in heuristic error; while adding mul-
tiple features of same size does not cause the same increase
of information.

In the future, it would be interesting to investigate which
features add the most information. If we could automati-
cally identify an interesting subset of high-dimensional fea-
tures, finding good weights for them would be possible with
the fixed-parameter tractable algorithm by Pommerening,
Helmert, and Bonet (2017).
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