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Abstract

Background: Analysing large and high-dimensional biological data sets poses significant computational difficulties
for bioinformaticians due to lack of accessible tools that scale to hundreds of millions of data points.

Results: We developed a novel machine learning command line tool called PyBDA for automated, distributed analysis
of big biological data sets. By using Apache Spark in the backend, PyBDA scales to data sets beyond the size of current
applications. It uses Snakemake in order to automatically schedule jobs to a high-performance computing cluster. We
demonstrate the utility of the software by analyzing image-based RNA interference data of 150 million single cells.

Conclusion: PyBDA allows automated, easy-to-use data analysis using common statistical methods and machine
learning algorithms. It can be used with simple command line calls entirely making it accessible to a broad user base.
PyBDA is available at https://pybda.rtfd.io.
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Background
The advent of technologies that produce very large
amounts of high-dimensional biological data is posing not
only statistical, but primarily computational difficulties
for researchers in bioinformatics, including in single-cell
sequencing, genome-wide association studies, or imag-
ing [1–3]. For statistical analysis and machine learning
of gene expression data, tools such as Scanpy [4] exist.
However, they scale only up to a (few) million obser-
vations rendering them unsuitable for the analysis of,
e.g., microscopy imaging data often comprising billions
of cells. Approaches that scale to big data sets by using
high-performance computing, such as reviewed in [5],
have been developed mainly for sequence analysis, but
not statistical analysis for data derived from, for instance,
imaging or mass spectrometry.
Here, we introduce PyBDA, a Python command line tool

for automated analysis of big biological data sets. PyBDA
offers easily customizable machine learning pipelines
that require only minimal programming knowledge. The
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main goal of PyBDA is to simplify the repetitive, time-
consuming task of creating customized machine learning
pipelines and combine it with distributed computation
on high-performance clusters. The main contributions of
PyBDA are (i) a command line tool for the analysis of
big data sets with automated pipelines and generation of
relevant plots after each analysis, (ii) various statistical
and machine learning methods either using novel, custom
implementations or interfacing to MLLib [6] fromApache
Spark [7], and (iii) a modularized framework that can
be easily extended to introduce new methods and algo-
rithms. We built PyBDA with a special emphasis on ease
of usability and automation of multiple machine learning
tasks, such that minimal programming and implementa-
tion effort is required and tasks can be executed quickly.

Overview
PyBDA provides various statistical methods and machine
learning algorithms that scale to very large, high-
dimensional data sets. Since most machine learning
algorithms are computationally expensive and big high-
dimensional data does not fit into the memory of stan-
dard desktop computers, PyBDA uses Apache Spark’s
DataFrame API for computation which automatically par-
titions data across nodes of a computing cluster, or, if
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no cluster environment is available, uses the resources
available.
In comparison to other data analysis libraries, for

instance [8, 9], where the user needs to use the provided
API, PyBDA is a command line tool that does not require
extensive programming knowledge. Instead the user only
needs to define a config file in which they specify the
algorithms to be used. PyBDA then automatically builds
a workflow and executes the specified methods one after
another. PyBDA uses Snakemake [10] to automatically
execute these workflows of methods.
Specifically, PyBDA implements the following workflow

to enable pipelining of multiple data analysis tasks (Fig. 1):
PyBDA builds an abstract Petri net from a config file

containing a list of statistical methods or machine learn-
ing algorithms to be executed. A Petri net is a bipartite,
directed graph in which one set of nodes represents con-
ditions (in our case data sets) and the other set represents
transitions (in our case operations like machine learning
methods and statistical models). A transition in a Petri
net model can only be enabled if a condition is met, i.e.,
in our case when a data set that is used as input for a
method exists on the file system. Firing a transition leads
to the creation of a new condition, i.e., a new data set.
Every operation in the Petri net, i.e., every triple of input
file, method and output file, is then executed by Snake-
make. The method of every triple is a Pythonmodule with
the main functionality being implemented with Spark’s

Fig. 1 Using PyBDA. (1) To use PyBDA, the user only requires to create a short config file that lists the different methods to be executed. (2) From the
config file, PyBDA creates an abstract Petri net, i.e., a bipartite directed graph with data nodes (gray squares) and operation nodes (analysis methods,
green rectangles). (3) PyBDA traverses the net and creates triples, i.e., subgraphs consisting of an input file, an associated analysis method, and an
output file. It then uses Snakemake for execution of each triple. The associated method of every triple is implemented as a Python module, each
developed against the DataFrame API from Apache Spark. Spark uses a master to chunk a method into several tasks and distributes these on worker
nodes on a distributed HPC cluster
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DataFrame and RDD API or MLLib. By using Spark, data
sets are automatically chunked into smaller pieces, and
executed on a distributed high performance computing
(HPC) cluster in parallel on multiple cores. Through dis-
tributed, parallel computing it is possible to fit models and
apply methods even to big, high-dimensional data sets.

Comparison to other big data tools
In the last decade several big data analysis and machine
learning frameworks have been proposed, yet none of
them allow for easy, automated pipelining of multiple
data analysis or machine learning tasks. Here, we briefly
compare the pros and cons of PyBDA with some of the
most popular frameworks, including TensorFlow [11],
scikit-learn [8], mlr [9], MLLib [6] and h20 [12].
Furthermore, many other machine learning tools, such as
PyTorch [13], Keras [14] or Edward [15] that are com-
parable in functionality to the previous frameworks exist.
For the sake of completeness, we also mention tools for
probabilistic modelling, such as PyMC3 [16], GPFlow [17]
or greta [18] which, of course, are primarily designed for
statistical modelling and probabilistic programming and
not for big data analysis.
We compare the different tools using the following

criteria (Table 1): (1) how easily can the tool be used, espe-
cially w.r.t. programming knowledge (usability), (2) how
much time does it take to implement a method/model
once the API has been learned (time to implement), (3)
how much knowledge of machine learning (ML), opti-
mization, modelling and statistics is needed to use the tool
(ML knowledge), (4) is it possible to use big data with the
tool, i.e., does it scale well to big and high-dimensional
data sets (big data), (5) how many methods are supported
from scratch without the need to implement them (sup-
ported methods), and (6) is the tool easily extended with
new methods, e.g., using the provided API (extensibility).
In comparison to PyBDA, the other methods we con-

sidered here are either complex to learn, take some time
to get used to, or are not able to cope with big data
sets. For instance, TensorFlow scales well to big, high-
dimensional data sets and allows for the implementation
of basically any numerical method. However, while being

the most advanced of the compared tools, it has a huge,
complex API and needs extensive knowledge of machine
learning to be usable, for instance to implement the evi-
dence lower bound of a variational autoencoder or to
choose an optimizer for minimizing a custom loss func-
tion. On the other hand, tools such as scikit-learn
and mlr are easy to use and have a large range of sup-
ported methods, but do not scale well, because some
of their functionality is not distributable on HPC clus-
ters and consequently not suitable for big data. The two
tools that are specifically designed for big data, namely
MLLib and h20, are very similar to each other. A draw-
back of both is the fact that the range of models and
algorithms is rather limited in comparison to tools such
as scikit-learn and mlr. In comparison to h20’s
H20Frame API, we think Spark not only provides a supe-
rior DataFrame/RDD API that has more capabilities and
is easier for extending a code base with new methods, but
also has better integration for linear algebra. For instance,
computation of basic descriptive statistics using map-
reduce or matrix multiplication are easier implemented
using Spark.
PyBDA is the only specifically built to not require much

knowledge of programming or machine learning. It can be
used right away without much time to get used to an API.
Furthermore, due to using Spark it scales well and can be
extended easily.

Implementation
Supported algorithms
PyBDA comes with a variety of algorithms for analysing
big data from which the user can choose (Table 2). Unless
already provided by MLLib, we implemented the algo-
rithms against Spark’s DataFrame API. Especially efficient
implementations of common scalable dimension reduc-
tion methods included in PyBDA, such as kernel princi-
pal component analysis (kPCA), independent component
analysis (ICA), linear discriminant analysis (LDA) and
factor analysis (FA), have been missing in current open
source software entirely. PyBDA primarily supports sim-
ple models that do not trade biological interpretability for
mathematical complexity and performance.

Table 1 Common statistical analysis and machine learning tools

PyBDA TensorFlow scikit-learn mlr MLLib h20

Usability � ×× × × ×× ××
Time to implement � ×× × × × ×
ML knowledge � ×× × × × ×
Big data � � ×× ×× � �
Supported methods × ×× � � × ×
Extensibility � � × × � ×
Reference this paper [11] [8] [9] [6] [12]

We compare every tool by trichotomized criteria to evaluate if it places above average (green mark), on average (orange mark), or below average (red marks)
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Table 2 Methods provided by PyBDA

Category Method Implementation

Dimension reduction PCA MLLib

Factor analysis custom implementation

k-PCA custom implementation

Linear
discriminant
analysis

custom implementation

Independent
component
analysis

custom implementation

Clustering k-means MLLib

Gaussian
mixture models

MLLib

Supervised learning Random forests MLLib

Gradient boost-
ing

MLLib

Generalized
linear models

MLLib

Running pyBDA
In order to run PyBDA on a Spark cluster, the user
needs to provide an IP address to which Spark sends
its jobs. Consequently, users need to either setup a clus-
ter (standalone, Kubernetes, etc.) or submit jobs to the
local host, where the strength of PyBDA is computa-
tion on a distributed HPC environment. Given the IP
of the Spark cluster, the user needs to provide a config
file with methods, data files, and parameterization. For
instance, the config file provided in Fig. 2a will first trigger
dimension reductions using principal component analy-
sis (PCA) and ICA to 5 dimensions on a data set called

single_cell_samples.tsv and feature names pro-
vided in feature_columns.tsv. PyBDA then uses the
outputs of both methods and fits Gaussian mixture mod-
els (GMM) and runs k-means to each output with 50, or
100, cluster centers, respectively (resulting in four differ-
ent results). In addition, a generalized linear model (GLM)
and a random forest (RF) with binomial response variable
(named is_infected) will be fitted on the same fea-
tures. Thus, PyBDA automatically parses all combinations
of methods and automatically executes each combination
(Fig. 2b shows the corresponding Petri net of files and
operations). The results of all methods are written to a
folder called results. For each job, PyBDA allows Spark
to use 15Gb of driver memory (for the master) and 50Gb
memory for each executor (the main process run by a
worker node).

Results
In order to demonstrate PyBDA’s capability to deal with
big biological data, we preprocessed the features extracted
from microscopy imaging data of a large-scale RNA inter-
ference screen of the pathogen B. henselae and used them
for big data analysis. In summary, HeLa cells have first
been seeded on 384-well plates. In every well, a single
gene has been knocked down and subsequently infected
with B. henselae. After infection, images of cells have been
taken for every plate and well, and for each cell, 43 image
features have been extracted (Fig. 3). Features consist
either of spatial/geometrical cell and nucleus properties
(cells stained yellow, nuclei stained blue) or information
about local cell neighborhood (Additional file 1 – fea-
tures). Assuming that image features impact the cell’s

Fig. 2 A PyBDA config file and the corresponding Petri net. Executing a config file (a) generates a corresponding Petri net (b). Here, PyBDA uses a file
of single cells as input and then executes dimension reductions (PCA, ICA) and regression models (GLM, RF). The outputs from the dimension
reductions are further used for clustering (GMM, k-means) resulting in a total of six sets of files
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Fig. 3 An example of a single-cell image used for segmentation and extraction of image features. We extracted image features of 150 million
individual cells, their nuclei and their perinuclei. Cell bodies are stained in yellow, nuclei in blue, pathogens in green (left image). Features consist of
cell, nucleus and perinuclei properties and information about local cell neighborhood, and if a cell is infected with a pathogen or not (right image)

infection we regressed the binary response of infection
status on these features. Specifically, we hypothesized that
cells in densely populated regions, or with comparatively
little cell area, should on average be less vulnerable to
infection in comparison to larger cells in sparsely popu-
lated regions (B. henselae stained green). Inference of the
parameters for the infection status is of particular inter-
est, because it could make using dedicated flourescence
markers for pathogens obsolete. Since the data set con-
sists of roughly 150 million single cells, a conventional
analysis on desktop computers is not possible. However, it
becomes feasible on a distributed environment using our
command line tool PyBDA. Using a config file similar to
the one in Fig. 2, we fit a generalized linear model with a
binomial response, a random forest, and gradient boost-
ing machines (GBM) to the data set. In order to avoid
bias, PyBDA automatically balances the data set to contain
equal fractions of each class by downsampling. We found
that all three methods are capable of predicting the infec-
tion state of a cell from the image features well. Overall,
the GLM performed slightly poorer (precision 0.70, recall
0.68) than the GBM (precision 0.73, recall 0.74; trained
with 20 decision trees; subsampling rate of data 0.25) or
the RF (precision 0.71, recall 0.71; same parameters). Since
we are in an almost asymptotic regime of sample size n,

splitting the data into train and test sets yields the same
errors on both sets. Thus we are reporting the perfor-
mance measures and parameters on the full data set here.
While the RF and GBM improve performance, their bio-
logical interpretation is more challenging, because they
do not establish simple, parametric dependencies as the
GLM. For the GLM we found that features such as the
cell area (β = 0.21) or cell perimeter (β = 0.18) con-
tribute to enhanced infection, while features such as the
number of cell neighbors (β = −0.11) decrease infectivity.
Fitting the GLM required 2:30h runtime on an HPC plat-
form, using a rather small cluster with two nodes and five
cores each and 15 Gb of memory per core. Fitting the RF
and the GBM took roughly 8h each, and required increas-
ing the resources to five worker nodes with 10 cores and
20Gb each. The amount of parallelization and available
computing resources is pivotal for runtime and insofar
independent of PyBDA, as all computations are run by
Spark. Runtime benchmarks of big data tools including
Spark have, for instance, already been conducted by others
[19, 20].

Conclusion
PyBDA is a command line tool for machine learning of
big biological data sets scaling up to hundreds of millions
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of data points. PyBDA automatically parses a user defined
pipeline of multiple machine learning and data analysis
tasks from a config file and distributes jobs to compute
nodes using Snakemake and Apache Spark. We believe
PyBDA will be a valuable and user-friendly tool support-
ing big data analytics and continued community-driven
development of new algorithms.

Availability and requirements
Project name: PyBDA
Project home page: https://github.com/cbg-ethz/pybda
Operating system(s): Linux and MacOS X
Programming language: Python
Other requirements: Python 3.6, Java JDK 8, Apache
Spark 2.4.0
License: GNU GPLv3
Any restrictions to use by non-academics: License
needed

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-019-3087-8.

Additional file 1: Features used for the regression tasks.
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