
ar
X

iv
:1

71
0.

04
54

7v
2 

 [
m

at
h.

A
P]

  1
3 

M
ar

 2
01

9

ON THE SINGULAR LOCAL LIMIT FOR CONSERVATION LAWS

WITH NONLOCAL FLUXES

MARIA COLOMBO, GIANLUCA CRIPPA, AND LAURA V. SPINOLO

Abstract. We give an answer to a question posed in [2], which can be loosely speaking formulated as follows.
Consider a family of continuity equations where the velocity depends on the solution via the convolution by
a regular kernel. In the singular limit where the convolution kernel is replaced by a Dirac delta, one formally
recovers a conservation law: can we rigorously justify this formal limit? We exhibit counterexamples showing
that, despite numerical evidence suggesting a positive answer, one in general does not have convergence of
the solutions. We also show that the answer is positive if we consider viscous perturbations of the nonlocal
equations. In this case, in the singular local limit the solutions converge to the solution of the viscous
conservation law.
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1. Introduction and main results

We are concerned with the so-called nonlocal continuity equation (or nonlocal conservation law)

(1.1) ∂tw + div [w b(w ∗ η)] = 0.

In the previous expression, b : R → Rd is a Lipschitz continuous vector-valued function, the scalar
function w : R+ × Rd → R is the unknown and div denotes the divergence computed with respect to
the space variable only. The symbol ∗ denotes the convolution computed with respect to the space
variable only and η is a convolution kernel satisfying

(1.2) η : Rd → R, η ∈ C∞
c (Rd), η(x) = 0 if |x| ≥ 1, η ≥ 0,

ˆ

Rd

η(x)dx = 1.

In recent years, conservation laws involving nonlocal terms have been extensively studied owing to
their applications to models for sedimentation [3], pedestrian [9] and vehicular [5] traffic, and others.
We refer to the recent paper [5] for a more extended discussion and a more complete list of references.
Here we only mention that the basic idea underpinning the use of equations like (1.1) in traffic models
is, very loosely speaking, the following. The unknown w represents the density of pedestrians or cars
and b their velocity. The nonlocal term w ∗ η appears since one postulates that pedestrians or drivers
tune their velocity depending on the density of pedestrians or cars surrounding them.

In the present work we investigate a question posed by Amorim, R. Colombo and Teixeira in [2].
To precisely state the question, we consider the family of Cauchy problems

(1.3)

{

∂tuε + div
[

uεb(uε ∗ ηε)
]

= 0
uε(0, x) = ū(x),

where b is as before a Lipschitz continuous vector-valued function, ε is a positive parameter and ū is
a summable and bounded initial datum. Assume that the family of convolution kernels ηε is obtained
from η by setting

(1.4) ηε(x) :=
1

εd
η
(x

ε

)

, 0 < ε ≤ 1,

in such a way that when ε → 0+ the family ηε converges weakly-∗ in the sense of measures to the
Dirac delta. This implies that, when ε → 0+, the Cauchy problem (1.3) formally reduces to a scalar
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conservation law

(1.5)

{

∂tu+ div
[

ub(u)
]

= 0
u(0, x) = ū(x).

The by now classical theory by Kružkov [18] provides global existence and uniqueness results for so-
called entropy admissible solutions. We refer to [13] for the definition and an extended discussion
concerning entropy solution of conservation laws. The question posed in [2] can be formulated as
follows.

Question 1. Can we rigorously justify the singular limit from (1.3) to (1.5)? In other words, does uε
converge to the entropy admissible u, in a suitable topology?

Some remarks are here in order. First, Question 1 is motivated by numerical experiments. Indeed,
in [2, § 3.3] the authors exhibit numerical evidence suggesting that there should be convergence.
Second, to the best of our knowledge, the only previous analytical result concerning Question 1 is due
to Zumbrun [20] and states that the answer to Question 1 is positive provided that the limit entropy
solution u is smooth and the convolution kernel is even, i.e. η(x) = η(−x) (see [20, Proposition 4.1] for
a more precise statement). Third, even in the case d = 1, b(uε) = uε, establishing weak compactness of
the family {uε} is not a priori sufficient to establish convergence. Indeed, one needs strong convergence
(or some more refined argument) to pass to the limit in the nonlinear term uε uε ∗ ηε. Fourth, similar
questions show up when considering equations in transport form instead of in continuity form as in (1.3)
and (1.5) (see for instance [4]); the analysis in such a case shares some similarities with that in the
present paper and we plan to address it in future work.

In this paper we exhibit explicit counterexamples showing that the answer to Question 1 is, in
general, negative. Also, we show that the answer is positive if we add to the right hand side of the
first line of both (1.3) and (1.5) a viscous term. As we explain below, this is relevant in connection
with the numerical analysis of the singular limit from (1.3) to (1.5).

We now describe our results more precisely. Our counterexamples can be summarized as follows:

• In § 5.1 we exhibit a counterexample showing that, in general, uε does not converge to the
entropy admissible solution u weakly in Lp or weakly∗ in L∞. The example uses a family of
even convolution kernels and is described in Counterexample 5.1. A drawback is that the initial
datum ū changes sign. This is not completely satisfactory in view of the applications, where
the unknown typically represents a density.

• In § 5.2 we exhibit a counterexample with a nonnegative initial datum where we show that
uε does not converge to u weakly in Lp or weakly∗ in L∞. See Counterexample 5.2 for the
precise statement. A drawback of this example is that we have to use “completely asymmetric”
convolution kernels, namely we assume that η(x) = 0 for every x > 0. Note that this is
consistent with numerical experiments provided in [2, § 3.2] and [5, § 5], where “completely
asymmetric” kernels are connected with highly oscillatory behaviors of the solution.

• In § 5.3 we exhibit a counterexample involving a nonnegative initial datum and a family of
even convolution kernels. In this counterexample we show that for every δ > 0 the family uε
does not converge to u strongly in L1+δ. See Counterexample 5.5 for the precise statement.

To find a contradiction to the convergence, in the three examples we construct a family of solutions
uε with some qualitative property which is stable under convergence, but not satisfied by the entropic
solution in the limit. These qualitative properties differ in each case and are, roughly speaking, related
to the total mass of the solution in a suitable region (see Counterexample 5.1), the support (see
Counterexample 5.2), and the quantity

´

u log u dx (which, under suitable assumptions, is conserved
by the nonlocal approximation and strictly dissipated in the limit, see Counterexample 5.5). A more
precise description of the idea behind each counterexample can be found after each statement in
Section 5.
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As mentioned before, we manage to establish positive results by adding to the first line of (1.3)
and (1.5) a second order perturbation. More precisely, we consider the family of Cauchy problems

(1.6)

{

∂tuεν + div
[

uενb(uεν ∗ ηε)
]

= ν∆uεν
uεν(0, x) = ū(x),

which depends on two parameters ε > 0 and ν > 0. When ε → 0+ and ν is fixed, the family of Cauchy
problems (1.6) formally reduces to

(1.7)

{

∂tuν + div
[

uνb(uν)
]

= ν∆uν
uν(0, x) = ū(x).

On the other hand, when ν → 0+ and ε is fixed, the family of Cauchy problems formally reduces
to (1.3), while (1.7) reduces to (1.5) (see (1.9) below for a scheme). The reason why we consider the
viscous approximations (1.6), (1.7) is the following. As mentioned before, Question 1 is motivated
by the numerical evidence exhibited in [2]. The numerical tests showing convergence are obtained by
using a Lax-Friedrichs type scheme involving some so-called numerical viscosity, as it typical of many
numerical schemes for conservation laws (see the book by LeVeque [19] for an extended introduction).
Very loosely speaking, the numerical viscosity consists of finite differences terms that mimic a second
order operator like the Laplacian. For this reason, the analysis of the viscous approximation (1.6), (1.7)
may provide some insight in the understanding of the numerical tests. See also [7] for further numerical
investigations.

Our main result involving the singular limit from (1.6) to (1.7) is the following.

Theorem 1.1. Let b be a Lipschitz continuous function, ū ∈ L1(Rd)∩L∞(Rd), ν > 0 and p such that

(1.8) 2 ≤ p < ∞, p > d.

Let uεν and uν be the solutions of (1.6) and (1.7) starting from ū, respectively. Then

uεν → uν strongly in L∞
loc([0,+∞[;Lp(Rd)).

Some remarks are here in order. First, the Cauchy problem (1.6) has a unique weak solution, see
Theorem 2.1 in § 2 for the precise statement. Second, in the case d = 1, b(u) = u, p = 2, ū ∈ W 1,∞(R),
Theorem 1.1 was established by Calderoni and Pulvirenti [6]. The main novelties of Theorem 1.1 with
respect to the analysis in [6] can be summarized as follows:

• We provide a completely different proof. Indeed, in [6] the authors explicitly compute the
equations satisfied by the Fourier transforms ûεν and ûν and use them to control the L2 norm
of the difference. The proof explicitly uses the fact that b(u) = u and the regularity of the
initial datum.

• On the other hand, our argument is based on a-priori estimates obtained by extensively using
energy estimates and the Duhamel representation formula. We first establish Theorem 3.1
in the case when the initial datum ū is regular. Next, we introduce a careful perturbation
argument and we establish the proof in the general case. Our argument is fairly robust, it
applies to general functions b, to equations in several space dimensions, and to rough initial
data, and provides more quantitative estimates, see Remark 1.3 below.

As a further remark, we explicitly point out that Theorem 1.1 requires neither symmetry conditions
on the convolution kernels ηε nor sign conditions on the initial datum ū.

Finally, we discuss the vanishing viscosity limit from (1.6) to (1.3). Our result is the following.

Proposition 1.2. Under the assumptions of Theorem 1.1, let uεν and uε satisfy (1.6) and (1.3),

respectively. For every ε > 0, we have that uεν
∗
⇀ uε weakly∗ in L∞

loc([0,+∞[×Rd) as ν → 0+.

Note that in the statement of Proposition 1.2 the parameter ε > 0 is fixed and hence the weak∗

convergence suffices to pass to the limit in the equation, owing to the regularizing effect of the convo-
lution. Also, note that at the local level the vanishing viscosity limit from (1.7) to (1.5) is established
in the work by Kružkov [18].
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The take-home message obtained by combining the counterexamples, Theorem 1.1, Kružkov’s The-
orem and Proposition 1.2 can be therefore represented as follows:

(1.9)

∂tuεν + div
[

uενb(uεν ∗ ηε)
]

= ν∆uεν
ε→0+

−−−−−−−−−−→
Theorem 1.1

∂tuν + div
[

uνb(uν)
]

= ν∆uν

ν→0+





y

Proposition 1.2 ν→0+





y
Kružkov’s Theorem

∂tuε + div
[

uεb(uε ∗ ηε)
]

= 0
ε→0+

−−−−−−−−−−→
False in general

∂tu+ div
[

ub(u)
]

= 0

To conclude, we make two remarks concerning i) the “diagonal” convergence, which can be tracked
explicitly in the case of regular initial data, and ii) some open questions.

Remark 1.3. Under the assumptions of Theorem 1.1, let uεν satisfy (1.6), let u be the Kružkov
entropy admissible solution of (1.5), and fix p satisfying (1.8). Combining Kružkov’s Theorem with
Theorem 1.1 and by a diagonal argument we infer that there is a sequence (εn, νn) such that εn → 0+,
νn → 0+ and uεnνn → u strongly in L∞

loc([0,+∞[;Lp(Rd)), as n → +∞. In the case when the initial

datum is sufficiently regular, namely u ∈ W 1,p(Rd), we explicitly determine a coupling ε ≤ e−Cν−β

(for constants C > 0 and β > 0 specified later) under which the above diagonal convergence holds true
(see Theorem 3.1 below).

Remark 1.4. In the last few years, several authors have studied nonlocal traffic models like (1.1) in the
case when d = 1 and the convolution term w∗η only takes into account the downstream traffic density,
see for instance [5]. The convolution term in these models does not satisfy the regularity requirement
in (1.2) because it is piecewise smooth with one or two discontinuity points. We are confident that
the regularity requirement in (1.2) can be weakened and that Theorem 1.1 can be extended to the
viscous version of the model described in [5]. Note, however, that the counterexamples discussed in § 5
do not apply to the model discussed in [5]: whether or not the singular limit from (1.3) to (1.5) can
be rigorously justified in this case is presently an open problem. Partial results have been recently
obtained in [8].

Paper outline. The paper is organized as follows. In § 2 we establish well-posedness of the Cauchy
problem (1.6), we slightly extend known well-posedness results for (1.3) and we establish Proposi-
tion 1.2. In § 3 we establish Theorem 1.1 under the additional assumption that the initial datum ū is
regular. In § 4 we complete the proof of Theorem 1.1 and in § 5 we discuss the counterexamples to the
nonlocal to local limit from (1.3) to (1.5).

Notation. For the readers’ convenience, we recall here the main notation used in the present paper.
We denote by C(a1, . . . , aN ) a constant only depending on the quantities a1, . . . , aN . Its precise

value can vary from occurrence to occurrence.

General mathematical symbols.

• f ∗ g: the convolution of the functions f and g, computed with respect to the variable x only.
• div f : the divergence of the vector field f , computed with respect to the x variable only.
• 1E : the characteristic function of the measurable set E.
• |E|: the Lebesgue measure of the measurable set E.
• Lp: the Lebesgue space Lp(Rd), p ∈ [1,+∞].
• ‖ · ‖Lp : the standard norm in Lp(Rd).

Symbols introduced in the present paper.

• b: the vector-valued function satisfying (1.10).
• L: the Lipschitz constant in (1.10).
• η, ηε: the convolution kernel in (1.2) and (1.4).
• u: the entropy solution of the conservation law (1.5).
• uε: the solution of the nonlocal nonviscous problem (1.3).
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• uν : the solution of the local viscous problem (1.7).
• uεν : the solution of the nonlocal nonviscous problem (1.6).
• G,Gν : the heat kernel in (3.3) and (3.5).
• Sεν

t , Sν
t : the semigroups defined in (4.1).

Remark 1.5. Consider the Lipschitz continuous function b : R → Rd in (1.3), (1.5), (1.6) and (1.7).
We can assume, with no loss of generality, that b(0) = 0. Indeed, assume that this is not the case and
that b(0) = ξ 6= 0. Assume furthermore that the function uεν satisfies (1.6), then we can set

ũεν(t, x) := uεν(t, x− ξt),

and obtain that ũεν satisfies

∂tũεν + div
[

ũεν b̃(ũεν ∗ ηε)
]

= ν∆ũεν where b̃(ũεν ∗ ηε) := b(ũεν ∗ ηε)− ξ.

For this reason in the following we assume that b satisfies

(1.10) b(0) = 0, |b(x)− b(y)| ≤ L|x− y| for every x, y ∈ R.

Remark 1.6. Theorem 1.1 states that uεν → uν strongly in L∞
loc([0,+∞[;Lp), hence to establish the

thesis it suffices to prove that, for every T > 0, uεν → uν strongly in L∞([0, T ];Lp). A similar remark
applies to Proposition 1.2 and to the other positive results, which are all local in time. To simplify the
notation, in the following we take T = 1.

2. Preliminary results: well-posedness of the viscous and nonviscous Cauchy
problem with nonlocal fluxes

This section is organized as follows: in § 2.1 for the sake of completeness we establish well-posedness
of the nonlocal viscous Cauchy problem (1.6). We rely on fairly standard energy estimates and we
apply a fixed point argument. In § 2.2 we establish a uniqueness result for the nonlocal conservation
law (1.3) that slightly extends previous results in [2, 10, 12, 17]. Finally, in § 2.3 we establish the proof
of the nonlocal vanishing viscosity result stated in Proposition 1.2. Since in this case the nonlocal
parameter ε > 0 is kept constant, weak convergence suffices to pass to the limit.

2.1. Well-posedness of the viscous Cauchy problem with a nonlocal flux. We establish the
following well-posedness result.

Theorem 2.1. Let ū ∈ L1 ∩ L∞(Rd) and let b satisfy (1.10). Then the nonlocal viscous Cauchy
problem (1.6) has a distributional solution uεν, unique in the class (2.1)-(2.2), that satisfies
(2.1)

‖uεν(t, ·)‖L1 ≤ ‖ū‖L1 , ‖uεν(t, ·)‖L∞ ≤ C(‖ū‖L∞ , ‖ū‖L1 , ‖∇η‖L∞ , L, d, ε), for every t ∈ [0, 1],

(2.2) ∂tuεν ∈ L2([0, 1];H−1(Rd)), uεν ∈ L2([0, 1];H1(Rd)).

Remark 2.2. The function uεν is in principle only defined for a.e. (t, x). However, the regularity (2.2)
implies that, up to changing uεν in a set of measure 0 in [0, 1] × Rd, we can assume that uεν ∈
C0([0, 1];L2(Rd)). In the following, we always consider this L2-continuous representative; in this way
the function uεν is well-defined for every t and the estimates (2.1) hold for every t.

Proof of Theorem 2.1. To simplify the notation, let ε = 1, ν = 1 and consider the Cauchy problem

(2.3)

{

∂tv + div
[

vb(v ∗ η)
]

= ∆v
v(0, x) = ū(x).

The proof straightforwardly extends to the general case and relies on a classical fixed point argument
that we sketch below.
Step 1: we introduce the functional setting. We fix a constant 0 < τ < 1, to be determined in the
following, and we define the set X by setting

(2.4) X :=
{

z ∈ C0([0, τ ];L2(Rd)) : ‖z(t, ·)‖L1 ≤ ‖ū‖L1 ∀ t ∈ [0, τ ]
}

.
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We fix a function ζ ∈ X and we consider the Cauchy problem

(2.5)

{

∂tz + div
[

zb(ζ ∗ η)
]

= ∆z
z(0, x) = ū(x).

Since ζ is now fixed, the equation at the first line of the above system is a standard linear para-
bolic equation with smooth coefficients. By using classical methods for evolution equations (see for
instance [16, § 7]) one can show that (2.5) has a unique solution satisfying

∂tz ∈ L2([0, τ ];H−1(Rd)), z ∈ L2([0, τ ];H1(Rd)),

which implies that (up to re-defining z on a negligible set of times) z ∈ C0([0, τ ];L2(Rd)). In the
following, we always identify z and its L2-continuous representative, in such a way that z(t, ·) is well-
defined for every t > 0. We define the map T by setting T (ζ) = z, where z is the solution of (2.5).
Step 2: we show that the map T defined as in Step 1 attains values in X. We fix a regular function
β : R → R and by multiplying the equation at the first line of (2.5) times β′(z) we get

(2.6) ∂t
[

β(z)
]

+ div
[

b(ζ ∗ η)β(z)
]

+ div
[

b(ζ ∗ η)
](

zβ′(z) − β(z)
)

= div
[

∇zβ′(z)
]

− β′′(z)|∇z|2.

We point out that by (1.10) and (2.4)

|div
[

b(ζ ∗ η)
]

|≤C(L, d)‖∇η‖L∞‖ū‖L1 .

By space-time integrating (2.6) we get
ˆ

Rd

β(z)(t, ·)dx −

ˆ

Rd

β(ū)dx+

ˆ t

0

ˆ

Rd

β′′(z)|∇z|2dxds

≤ C(L, d)‖ū‖L1‖∇η‖L∞

ˆ t

0

ˆ

Rd

|zβ′(z) − β(z)|dxds, for every t ∈ [0, τ ].

(2.7)

By applying (2.7) with β(z) = z2 and using the Grönwall Lemma we get that for every t ∈ [0, τ ]

(2.8) ‖z(t, ·)‖L2 ≤ C(L, d, ‖ū‖L1 , ‖∇η‖L∞)‖ū‖L2 .

Also, by using (2.7) and choosing a suitable approximation of β(z) = |z|, we get

(2.9)

ˆ

Rd

|z|(t, ·)dx −

ˆ

Rd

|ū|dx ≤ 0.

This implies that the solution of (2.5), i.e. T (ζ), belongs to the set X defined as in (2.4).
Step 3: we show that the map T defined as in Step 1 is a contraction provided that τ is sufficiently
small. We fix ζ1, ζ2 ∈ X and we term z1 = T (ζ1) and z2 = T (z2). First, we point out that owing to
the Young Inequality

(2.10) ‖b(ζ1 ∗ η)− b(ζ2 ∗ η)‖L∞ ≤ L‖(ζ1 − ζ2) ∗ η‖L∞ ≤ L‖(ζ1 − ζ2)‖C0([0,τ ];L2)‖η‖L2 ,

for every t ∈ [0, τ ]. By subtracting the equation for z2 from the equation for z1 we get

∂t
[

z1 − z2
]

+ div
[

[z1 − z2]b(ζ1 ∗ η) + z2
[

b(ζ1 ∗ η)− b(ζ2 ∗ η)
]

]

= ∆[z1 − z2].

By arguing as in Step 2 and recalling that z2 ≡ z1 at t = 0, we arrive at
ˆ

Rd

|z1 − z2|
2(t, ·)dx ≤ C(L, d, ‖ū‖L1 , ‖∇η‖L∞)

ˆ t

0

ˆ

Rd

|z1 − z2|
2(s, ·)dxds

+ 2

∣

∣

∣

∣

ˆ t

0

ˆ

Rd

div
[

z2
[

b(ζ1 ∗ η)− b(ζ2 ∗ η)
]

]

(z1 − z2)dxds

∣

∣

∣

∣

− 2

ˆ t

0

ˆ

Rd

|∇[z1 − z2]|
2dxds.

(2.11)

Next, we point out that
∣

∣

∣

∣

ˆ t

0

ˆ

Rd

div
[

z2
[

b(ζ1 ∗ η)− b(ζ2 ∗ η)
]

]

(z1 − z2)dxds

∣

∣

∣

∣

=

∣

∣

∣

∣

ˆ t

0

ˆ

Rd

z2
[

b(ζ1 ∗ η)− b(ζ2 ∗ η)
]

· ∇[z1 − z2]dxds

∣

∣

∣

∣

≤
1

2

ˆ t

0

ˆ

Rd

z22
∣

∣b(ζ1 ∗ η)− b(ζ2 ∗ η)
∣

∣

2
dxds+

1

2

ˆ t

0

ˆ

Rd

|∇[z1 − z2]|
2dxds.
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To control the first term in the right hand side of the above expression we combine (2.8) and (2.10).
By plugging the above inequality into (2.11) we then arrive at
ˆ

Rd

|z1 − z2|
2(t, ·)dx ≤ C(L, d, ‖ū‖L1 , η)

[
ˆ t

0

ˆ

Rd

|z1 − z2|
2(s, ·)dxds + τ‖ū‖2L2‖(ζ1 − ζ2)‖

2
C0([0,τ ];L2)

]

and owing to the Grönwall Lemma and recalling that z1 = T (ζ1), z2 = T (ζ2) this implies that T is a
contraction provided that τ is sufficiently small. To establish existence and uniqueness on the interval
[0, 1] we iterate the above argument a finite number of times.
Step 4: we establish the L∞ estimate. We recall (2.5), we set

Ξ := ‖div[b(ζ ∗ η)]‖L∞

and we point out that the solution z of the Cauchy problem (2.5) satisfies

(2.12) ‖z(t, ·)‖L∞ ≤ ‖ū‖L∞ exp(Ξt), for every t.

The proof of the above estimate is standard, and can be found for instance in [11, Lemma 3.4]. By
construction, the solution of (2.3) satisfies (2.5) provided that ζ = z. If this is the case, by (2.9)

Ξ = ‖div[b(z ∗ η)]‖L∞ ≤ C(L, d)‖z‖L1‖∇η‖L∞ ≤ C(L, d)‖ū‖L1‖∇η‖L∞

and owing to (2.12) this establishes the L∞ estimate in (2.1). �

2.2. Well-posedness of the Cauchy problem for a continuity equation with nonlocal flux.

In this section we establish an existence and uniqueness result that slightly extends the well-posedness
result in [2] (see also [10, 17]).

Proposition 2.3. Assume that b and η satisfy (1.10) and (1.2), respectively, and that ū ∈ L1 ∩ L∞.
Then the Cauchy problem (1.3) has a distributional solution that satisfies

uε ∈ L∞
loc([0,+∞[;L∞) ∩ C0([0,+∞[;L1).

Also, the solution is unique in the class of locally bounded, distributional solutions.

In the following we identify uε and its L1 strongly continuous representative. The existence part of
Propostion 2.3 is a consequence of the analysis in [2, § 2] (see also [10, 12]). The relatively new part
is the uniqueness: indeed, in [2, 17] uniqueness is established in a slightly more restrictive class, while
in [12] it is established only for nonnegative data. More precisely, in [10] it is shown that there is a
unique solution u, in the sense of Kružkov [18], of the conservation law

(2.13)

{

∂tuε + div
[

uεgε
]

= 0
uε(0, x) = ū(x)

provided that the function gε is given by gε := b(uε ∗ ηε) (see [2, Definition 2.1]) and that the initial
datum is quite regular, namely ū has bounded total variation. On the other hand, Proposition 2.3
states the uniqueness of locally bounded distributional solutions.

Proof of Proposition 2.3, uniqueness. Let uε be a distributional solution of (1.3). Then uε is a distri-
butional solution of (2.13). Next, we observe that the first line of (2.13) is a continuity equation with
a regular in space coefficient gε. Every locally bounded distributional solution of (2.13) is therefore
renormalized, meaning that for every β ∈ C1(R) we have that β(u) is a distributional solution of

(2.14) ∂t
[

β(u)
]

+ div
[

β(u)gε
]

+ div gε
[

β′(u)u− β(u)
]

= 0.

This is for instance an application (in a very easy case) of the DiPerna-Lions-Ambrosio theory, and we
refer to [1, 15] for that. Equation (2.14) implies that, up to redefining uε in a negligible set, uε belongs
to C0([0,+∞[;L1) and it is a Kružkov solution of the conservation law (2.13): this can be proved by
arguing as in the proof of Corollary 3.14 in [14]. Since by [17, Theorem 3.2] distributional solutions
of (1.3) in C0([0,+∞[;L1) are unique, this concludes the proof of Proposition 2.3. �
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2.3. Proof of Proposition 1.2. Let ε > 0. We consider uεν satisfying (1.6) and we recall the L∞

estimate in (2.1). We fix a sequence νn and a function uε ∈ L∞([0, 1] × Rd) such that

(2.15) uενn
∗
⇀ uε weakly

∗ in L∞([0, 1] × Rd) as νn → 0+.

We claim that uε is a distributional solution of (1.3). To take the limit in the distributional formu-
lation of (1.6) and prove this claim, it is enough to show that

(2.16) uενn ∗ ηε → uε ∗ ηε strongly in L1
loc([0, 1] × Rd).

If the claim is true, since bounded, distributional solutions of (1.3) are unique by Proposition 2.3, the
whole family uενn converges to uε weakly∗ in L∞([0, 1] ×Rd), proving Proposition 1.2.

To show (2.16) we point out first that by (2.1) for every t ∈ [0, 1]

(2.17) ‖[uεν ∗ ηε](t, ·)‖L∞ + ‖∇[uεν ∗ ηε](t, ·)‖L∞ ≤ ‖uεν(t, ·)‖L∞‖ηε‖W 1,1≤C(‖ū‖L∞ , ‖ū‖L1 , η, L, d, ε).

The time derivative of uεν ∗ ηε is obtained by convolving every term in (1.6) with ηε, that is

∂t[uεν ∗ ηε](t, x) = −div
[

ηε ∗ (uενb(uεν))
]

+ νuεν ∗∆ηε.

By using (1.10), (1.4) and (2.1) we conclude that
(2.18)

‖∂t[uεν ∗ ηε](t, ·)‖L∞ ≤ ‖∇ηε‖L∞‖uενb(uεν)‖L1 + ν‖uεν‖L1‖∆ηε‖L∞ ≤ C(‖ū‖L∞ , ‖ū‖L1 , η, L, d, ε).

Finally, we combine (2.17) and (2.18) and we apply the Ascoli-Arzelà Theorem: there is a continuous
function w such that, up to subsequences (that we do not re-label) uενn ∗ηε → w uniformly on compact
sets of [0, 1] × Rd. For any φ ∈ C∞

c ([0, 1] × Rd), terming η̌ε(z) := ηε(−z) and by (2.15), we have
ˆ 1

0

ˆ

Rd

φ(t, x)w(t, x)dxdt = lim
n→∞

ˆ 1

0

ˆ

Rd

φ[uενn ∗ ηε]dxdt = lim
n→∞

ˆ 1

0

ˆ

Rd

uενn [φ ∗ η̌ε]dydt

=

ˆ 1

0

ˆ

Rd

uε[φ ∗ η̌ε]dydt =

ˆ 1

0

ˆ

Rd

φ[uε ∗ ηε]dxdt.

By the arbitrariness of φ we deduce that w = uε ∗ ηε a.e. in [0, 1]×Rd and hence we prove (2.16). �

3. Convergence of the nonlocal viscous approximation for regular data

In this section we establish the nonlocal to local limit asserted in Theorem 1.1 assuming more
restrictive conditions on the initial data. This intermediate result is pivotal to the proof of Theorem 1.1.

Theorem 3.1. Fix 0 < ν < 1/4. Assume that b satisfies (1.10) and ηε satisfies (1.2) and (1.4).
Let p satisfy (1.8), let β = (p + d)/(p − d) and assume that ū ∈ L1 ∩ L∞ ∩ W 1,p(Rd). Let uεν
and uν be the solutions of the Cauchy problems (1.6) and (1.7), respectively. Then there exists C :=

C(d, p, L, ‖ū‖L∞ , ‖ū‖W 1,p) such that, if ε ≤ e−Cν−β
, we have

(3.1) ‖uεν(t, ·)− uν(t, ·)‖Lp ≤ εeCν−β
, for every t ∈ [0, 1].

This, in particular, implies that uεν → uν strongly in L∞
loc([0,+∞[;Lp(Rd)) as ε → 0+.

To establish Theorem 3.1 we introduce the function

(3.2) zε := uεν − uν .

Note that, to simplify the notation, we do not explicitly indicate the dependence of zε on ν. Next, we
compute the equation satisfied by zε and we perform careful a-priori estimates by extensively using
the Duhamel representation formula.

The proof of Theorem 3.1 is organized as follows: in § 3.1 we review some basic results concerning
viscous conservation laws. In § 3.2 we provide the proof of Theorem 3.1 by establishing precise a-priori
estimates on the growth rate of the function zε in (3.2).

3.1. Preliminary results. In § 3.1.1 we recall some basic results about heat kernels, in § 3.1.2 we go
over some a-priori estimates on solutions of viscous conservation laws that we need in the following.
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3.1.1. Heat kernels. We recall some basic properties of the heat kernel G :]0,+∞[×Rd → R

(3.3) G(t, x) := C(d)
1

td/2
exp

(

−
|x|2

4t

)

.

The normalization constant C(d) is chosen in such a way that ‖G(t, ·)‖L1(Rd) = 1, for every t > 0.
Since

|∇G(t, x)| = C(d)
|x|

td/2+1
exp

(

−
|x|2

4t

)

,

by using spherical coordinates and by making the change of variables ρ′ = ρ/2t1/2 we get

‖∇G(t, ·)‖Lq (Rd) = C(d, q)

(
ˆ ∞

0
ρd−1 ρq

tq(d/2+1)
e−

qρ2

4t dρ

)1/q

= C(d, q)t
d−q(d+1)

2q = C(d, q)tα.

For later use we have set

(3.4) α :=
d− q(d+ 1)

2q

in the formula above. Given ν > 0, we introduce the kernel

(3.5) Gν(t, x) := G (νt, x) =
1

νd
G

(

t

ν
,
x

ν

)

,

which is the fundamental solution of the equation ∂tu = ν∆u and satisfies

(3.6) ‖Gν(t, ·)‖L1 = 1, ‖∇Gν(t, ·)‖Lq = ‖∇G(νt, ·)‖Lq = C(d, q)(νt)α.

3.1.2. A priori estimates on solutions of a viscous conservation law. The following lemma collects some
classical a-priori estimates we need in the following.

Lemma 3.2. Let ν ∈ (0, 1). Assume b satisfies (1.10), ū ∈ L1(Rd) ∩ L∞(Rd). The solution of the
Cauchy problem (1.7) satisfies:

(3.7) ‖uν(t, ·)‖Lp ≤ ‖ū‖Lp , for every t ∈ [0, 1] and every p ∈ [1,+∞].

Let uν and wν be the two solutions corresponding to the data ū and w̄, respectively.
Then we have the following stability estimate: for every p ∈ [1,+∞],

(3.8) ‖uν(t, ·) − wν(t, ·)‖Lp ≤ eC(d,p,L,‖ū‖L∞ ,‖w̄‖L∞)ν−1
‖ū− w̄‖Lp , for every t ∈ [0, 1].

If we also require ū ∈ W 1,p(Rd), then we have

(3.9) ‖∇uν(t, ·)‖Lp ≤ eC(d,p,L,‖ū‖L∞ )ν−1
‖∇ū‖Lp , for every t ∈ [0, 1].

Remark 3.3. Note that [13, Lemma 6.3.3] implies that the function uν (which a priori is only defined
for a.e. (t, x)) has a representative such that the function t 7→ u(t, ·) is continuous from [0, 1] to L1

endowed with the strong topology. Here and in the following, we always identify uν and its L1-
continuous representative.

Proof of Lemma 3.2. When p = ∞, the estimate (3.7) is a maximum principle, which is a classical
result [13, § VI]. The result for p ∈ [1,+∞[ is also classical, but for the sake of completeness we
provide a sketch of the proof. We rewrite the equation at the first line of (1.7) in the quasi-linear form

∂tuν + f ′(uν)div uν = ν∆uν, where f(u) := ub(u).

We set β(u) := |u|p and we multiply the above equation by β′(uν). We arrive at

∂t
[

β(uν)
]

+ f ′(uν)β
′(uν)div uν = ν∆

[

β(uν)
]

− νβ′′(uν)|∇uν |
2.

We fix a function h : R → Rd satisfying h′ = f ′β′ and we rewrite the above equation as

∂t
[

β(uν)
]

+ div
[

h(uν)
]

= ν∆
[

β(uν)
]

− νβ′′(uν)|∇uν |
2.
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Next, we integrate with respect to x and use the convexity of the function β: we get

d

dt

ˆ

Rd

β(uν)dx ≤ 0,

which implies (3.7). To prove (3.8), we take the difference between the equation (1.7) for uν and wν

∂t(uν − wν) + div
(

(uν − wν)b(uν) + wν(b(uν)− b(wν))
)

= ν∆(uν − wν).

Multiplying by p(uν − wν)|uν − wν |
p−2 the previous equation and integrating in space we have

∂t‖uν−wν‖
p
Lp =

ˆ

Rd

p(uν−wν)|uν−wν |
p−2

[

−div
(

(uν−wν)b(uν)+wν(b(uν)−b(wν))
)

+ν∆(uν−wν)
]

.

Integrating by parts, using assumptions (1.10) on b and (3.7) with p = ∞ we get

∂t‖uν − wν‖
p
Lp ≤ C(p)

ˆ

Rd

|∇(uν − wν)||uν − wν |
p−1|b(uν)|+ |uν − wν |

p−2|∇(uν − wν)||wν ||b(uν)− b(wν)|

− ν

ˆ

Rd

|∇(uν − wν)|
2|uν − wν |

p−2

≤ C0

ˆ

Rd

|∇(uν − wν)||uν − wν |
p−1 − ν

ˆ

Rd

|∇(uν − wν)|
2|uν − wν |

p−2,

for a suitable constant C0. By Young inequality we have
ˆ

Rd

|∇(uν − wν)||uν − wν |
p−1 ≤

ν

2C0

ˆ

Rd

|∇(uν − wν)|
2|uν − wν |

p−2 +
C0

2ν

ˆ

Rd

|uν − wν |
p,

which implies

∂t‖uν − wν‖
p
Lp ≤ Cν−1‖uν − wν‖

p
Lp .

The Grönwall lemma allows to conclude the validity of (3.8).
By the characterization of Sobolev functions in terms of finite differences (notice that for p = 1 it

would involve functions of bounded variation, but we know a priori that ∇uν ∈ L2 for every t ∈ [0, 1]),
we have

‖∇uν(t, ·)‖Lp ≤ C sup
h∈Rd\{0}

1

|h|
‖uν(t, ·)− uν(t, ·+ h)‖Lp , for every t ∈ [0, 1].

Applying the stability (3.8) to ū and ū(·+ h) we estimate the right-hand side

‖∇uν(t, ·)‖Lp ≤ eC(d,L,‖ū‖L∞ )ν−1
sup

h∈Rd\{0}

1

|h|
‖ū(·)− ū(·+ h)‖Lp ≤ eC(d,L,‖ū‖L∞)ν−1

‖∇ū‖Lp

for every t ∈ [0, 1]. This proves (3.9). �

Lemma 3.4. Assume that b satisfies (1.10) and that uν satisfies (3.9). Assume furthermore that the
convolution kernel ηε satisfies (1.2) and (1.4). Then for every p ∈ [1,+∞[ we have

(3.10) ‖uν(t, ·) − ηε ∗ uν(t, ·)‖Lp ≤ εeC(d,p,L,‖ū‖L∞)ν−1
‖∇ū‖Lp , for every t ∈ [0, 1].

Proof. By Jensen’s inequality applied with respect to the probability measure ηε dx and by the finite
differences characterization of Sobolev functions, we get

‖uν(t, ·)− ηε ∗ uν(t, ·)‖
p
Lp

(1.2),(1.4)
=

ˆ

Rd

∣

∣

∣

∣

ˆ

Rd

[

uν(t, x− y)− uν(t, x)
]

ηε(y)dy

∣

∣

∣

∣

p

dx

≤

ˆ

Rd

ˆ

Rd

∣

∣uν(t, x− y)− uν(t, x)
∣

∣

p
ηε(y)dy dx

≤ ‖∇uν(t, ·)‖
p
Lp(Rd)

ˆ

Rd

ηε(y)|y|
pdy

(3.9)

≤ εpeC(d,p,L,‖ū‖L∞ )ν−1
‖∇ū‖p

Lp(Rd)

ˆ

Rd

ηε(y)
( |y|

ε

)p
dy.
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Since ηε is supported where |y| ≤ ε, the last integrand in the right-hand side is estimated by ‖ηε‖L1 = 1,
which concludes the proof of (3.10). �

3.2. Proof of Theorem 3.1. First, we recall that uεν is the solution of (1.6) and uν is the solution
of (1.7) and we define zε as in (3.2). Note that zε satisfies the equation

∂tzε + div Tε = ν∆zε

where, thanks to (3.2), the term Tε is given by

Tε := uενb(uεν ∗ ηε)− uνb(uν) = uεν
[

b(uεν ∗ ηε)− b(uν)
]

+ [uεν − uν ]b(uν)

= [zε + uν ]
[

b
(

[zε + uν ] ∗ ηε
)

− b(uν)
]

+ zεb(uν).
(3.11)

We now proceed as follows: in § 3.2.1 we establish some a-priori estimates on zε, which are the key
point in the proof, and in § 3.2.2 we conclude the proof of Theorem 3.1.

3.2.1. A-priori estimates on zε. We establish a-priori estimates on the solution of the Cauchy problem

(3.12)

{

∂tzε + div Tε = ν∆zε
zε(0, x) = z0(x).

Lemma 3.5. Let b satisfy (1.10), 0 < ε, ν ≤ 1/4, ηε as in (1.2) and (1.4), z0 ∈ Lp(Rd) with p as
in (1.8), and β = (p+ d)/(p − d). Assume furthermore that the function uν satisfies (3.7) and (3.10).
Then there exist c0 := c0(d, p, L, ‖ū‖L∞) > 0 and τ0 := τ0(d, p, L, ‖ū‖L∞ , ‖ū‖W 1,p) > 0, such that if

(3.13) ‖z0‖Lp ≤ 1/4, ε ≤ e−c0ν−1
/4

the solution of the Cauchy problem (3.12) starting from z0 satisfies

(3.14) ‖zε(t, ·)‖Lp ≤ 2[‖z0‖Lp + ec0ν
−1
ε], for every t ∈ [0, τ0ν

β].

Proof. Let c0 be the maximum between the constant in Lemma 3.4 and 1. Set

(3.15) τ := sup
{

t ∈ [0, 1] : ‖zε(s, ·)‖Lp ≤ 2[‖z0‖Lp + ec0ν
−1
ε], for every s ∈ [0, t]

}

.

Owing to Remarks 2.2 and 3.3 and to (2.1) and (3.7), the functions uεν and uν are continuous from
[0,+∞[ to Lp. Hence, the function ‖zε(t, ·)‖Lp is continuous and τ > 0. Moreover, (3.15) implies

(3.16) ‖zε(τ, ·)‖Lp = 2[‖z0‖Lp + ec0ν
−1
ε].

We represent the solution of the Cauchy problem (3.12) by the Duhamel Principle as

zε(τ, ·) = Gν(τ, ·) ∗ z0 −

ˆ τ

0

ˆ

Rd

∇Gν(τ − s, · − y) · Tε(s, y)dyds

where Gν denotes the heat kernel (3.5). We apply (3.6) and the Bochner and Young Theorems to get

‖zε(τ, ·)‖Lp≤‖Gν(τ, ·)‖L1‖z0‖Lp +

ˆ τ

0

∥

∥

∥

∥

ˆ

Rd

∇Gν(τ − s, ·) · Tε(s, ·)

∥

∥

∥

∥

Lp

ds

≤‖z0‖Lp +

ˆ τ

0
‖∇Gν(τ − s, ·)‖Lq ‖Tε(s, ·)‖Lp/2 ds,

(3.17)

noting that p/2 ≥ 1 owing to (1.8), and setting q := p/(p− 1). Only in the rest of this proof we denote
by C any constant that only depends on d, p, L, ‖ū‖L∞ , ‖ū‖W 1,p . For every s ∈ [0, τ ], by (3.11), the
Hölder inequality and (1.10) we have

∥

∥Tε(s, ·)
∥

∥

Lp/2 ≤
(

‖zε‖Lp + ‖uν‖Lp

)
∥

∥b
(

[zε + uν ] ∗ ηε
)

− b(uν)
∥

∥

Lp + ‖zε‖Lp‖b(uν)‖Lp

≤ C
(

‖zε‖Lp + ‖uν‖Lp

)

‖([zε + uν ] ∗ ηε)− uν‖Lp + C‖zε‖Lp‖uν‖Lp

(all functions at the right hand side are evaluated at time s). By the Young inequality we have
‖zε ∗ ηε‖Lp ≤ ‖zε‖Lp , and applying also (3.10) we get

∥

∥Tε(s, ·)
∥

∥

Lp/2≤C
(

‖zε(s, ·)‖Lp + ‖uν(s, ·)‖Lp

)[

‖zε(s, ·)‖Lp + ec0ν
−1
ε
]

.(3.18)
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We recall that s ≤ τ and so (3.14) holds. Also, we recall (3.4) and (3.6) and we point out that
α = −(d+ p)/(2p) ∈ (−1, 0) by (1.8). Using this and (3.18), we go back to (3.17) to get

‖zε(τ, ·)‖Lp ≤ ‖z0‖Lp + Cνα
[

2[‖z0‖Lp + ec0ν
−1
ε] + 1

][

2[‖z0‖Lp + ec0ν
−1
ε] + ec0ν

−1
ε
]

τα+1

≤ ‖z0‖Lp + 6Cνα[‖z0‖Lp + ec0ν
−1
ε]τα+1,

(3.19)

where in the last inequality we used (3.13) to show that 2[‖z0‖Lp+ec0ν
−1
ε]+1 ≤ 2. By comparing (3.19)

with (3.16) we arrive at

2[‖z0‖Lp + ec0ν
−1
ε] ≤ ‖z0‖Lp + 6Cνα[‖z0‖Lp + ec0ν

−1
ε]τα+1,

which implies

[‖z0‖Lp + ec0ν
−1
ε] ≤ 6Cνα[‖z0‖Lp + ec0ν

−1
ε]τα+1 =⇒ (6C)−1ν−α ≤ τα+1.

This gives a lower bound on τ and concludes the proof of the Lemma by choosing τ0 = (6C)−
1

α+1 . �

3.2.2. Conclusion of the proof of Theorem 3.1. Let 0 < ν < 1/4, and let τ0 and c0 be as in the
statement of Lemma 3.5. Let m := int

(

(τ0ν
β)−1

)

+ 1, where int(·) denotes the integer part, and let

ε ≤ e−2c0ν−1
4−m−1. This is implied for instance by

ε ≤ e−cν−β
for c := c(d, p, L, ‖ū‖L∞ , ‖ū‖W 1,p) > 0.

We show by induction that for every i = 1, ...,m

(3.20) ‖zε(t, ·)‖Lp ≤ ec0ν
−1
ε4i for every t ∈ [(i− 1)τ0ν

β, iτ0ν
β].

Indeed, by (1.6), (1.7) and (3.2) we have zε(0, x) ≡ 0; we apply estimate (3.14) on [0, τ0ν
β] to get (3.20)

with i = 1. If the statement holds true for i, we have that ‖zε(iτ0ν
β, ·)‖Lp ≤ ec0ν

−1
ε4i ≤ e−c0ν−1

/4; to
get the statement for i+ 1, we apply estimate (3.14) with z0 := zε(iτ0ν

β, ·), obtaining

‖zε(t, ·)‖Lp ≤ 2ec0ν
−1[

ε4i + ε
]

≤ 4i+1ec0ν
−1
ε for every t ∈ [iτ0ν

β, (i+ 1)τ0ν
β].

This establishes (3.1) and concludes the proof of Theorem 3.1. �

4. Proof of Theorem 1.1

We first explain the basic ideas of the proof. We need some notation: we term

(4.1) Sεν
t : L1 ∩ L∞ × [0,+∞[→ L1 ∩ L∞, Sν

t : L1 ∩ L∞ × [0,+∞[→ L1 ∩ L∞

the semigroup of solutions of the equations at the first line of (1.6) and (1.7), respectively. In other
words, uεν(t, ·) = Sεν

t ū and uν(t, ·) = Sν
t ū. Next, we fix d ∈ L1 ∩ L∞ and a regularity parameter

0 < λ < 1 and we decompose d as

(4.2) d := dr + ds, where dr := d ∗ ρλ, ds = d− d ∗ ρλ.

In the previous expression ρλ is a given standard family of convolution kernels, obtained by setting
ρλ(x) := λ−dρ (x/λ) for a standard (i.e., smooth, positive, radial, compactly supported, and with unit
integral) convolution kernel ρ, with ‖ρ‖C1(Rd) ≤ C(d).

Note that dr is regular, and hence we can apply Theorem 3.1 to show that Sεν
t dr converges to

Sν
t dr, with a convergence rate that deteriorates when λ → 0+. Also, we can choose the regularizing

parameter λ in such a way that ds = d − dr is small. The basic point in the proof of Theorem 1.1 is
then establishing a uniform control on the growth of ‖Sεν

t d − Sεν
t dr‖Lp . This is done in § 4.1 below.

Next, in § 4.2 we establish some stability estimates and in § 4.3 we conclude the proof by using an
iteration argument.
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4.1. Perturbations estimates. We begin by establishing some perturbation estimates.

Lemma 4.1. Fix p satisfying (1.8), d ∈ L1 ∩ L∞, and let dr and ds be as in (4.2). Assume that

(4.3) ‖ds‖Lp ≤ δ ≤ 1,

(4.4) ‖d‖Lp ≤ D, ‖d‖L∞ ≤ B

for some positive constants D > 0, B > 0. Then there are constants ε̄(d, p, L,B,D, ν, λ) and σ =
σ(d, p, L,D, ν) such that, if ε ≤ ε̄, then

‖Sεν
t d− Sεν

t dr‖Lp ≤ 2δ, for every t ∈ [0, σ].

Proof. We set

(4.5) vε := Sεν
t d− Sεν

t dr

and we point out that vε is a solution of the Cauchy problem
{

∂tvε + div
[

vεb(S
εν
t d ∗ ηε) + Sεν

t dr

(

b(Sεν
t d ∗ ηε)− b(Sεν

t dr ∗ ηε)
)]

= ν∆vε
vε(0, x) = ds(x).

We introduce σ by setting

σ := sup
{

t ∈ [0, 1] : ‖vε(s, ·)‖Lp ≤ 2δ for every s ∈ [0, t]
}

.

Note that, if σ < 1, we have

(4.6) ‖vε(σ, ·)‖Lp = 2δ.

We now provide a lower bound on σ. By using the Duhamel representation formula we get

vε(t, ·) = Gν(t, ·)∗ds−

ˆ t

0

ˆ

Rd

∇Gν(t−s, ·−y)·
[

vεb(S
εν
t d∗ηε)+Sεν

t dr

[

b(Sεν
t d∗ηε)−b(Sεν

t dr∗ηε)
]

]

(s, y)dyds.

We fix q := p/(p − 1) and α > −1 given by (3.4). Applying the Bochner and Young Theorems we get

‖vε(t, ·)‖Lp ≤ ‖Gν(t, ·)‖L1‖ds‖Lp

+

ˆ t

0
‖∇Gν(t− s, ·)‖Lq

[

‖vεb(S
ε
t d ∗ ηε)(s, ·) + Sε

t dr

[

b(Sε
t d ∗ ηε)− b(Sε

t dr ∗ ηε)
]

(s, ·)‖Lp/2

]

ds

(3.6),(4.3)

≤ δ + C(d, p, ν)

ˆ t

0
(t− s)α

[

‖vεb(S
εν
t d ∗ ηε)(s, ·)‖Lp/2

+ ‖Sεν
t dr

[

b(Sεν
t d ∗ ηε)− b(Sεν

t dr ∗ ηε)
]

(s, ·)‖Lp/2

]

ds.

(4.7)

Next, by the Hölder inequality, (1.10), (4.5) and the Young inequality to get

‖vεb(S
εν
t d ∗ ηε)‖Lp/2 + ‖Sεν

t dr

[

b(Sεν
t d ∗ ηε)− b(Sεν

t dr ∗ ηε)
]

‖Lp/2

≤ ‖vε‖Lp‖b(Sεν
t d ∗ ηε)‖Lp + ‖Sεν

t dr‖Lp‖b(Sεν
t d ∗ ηε)− b(Sεν

t dr ∗ ηε)‖Lp

≤ L‖vε‖Lp‖Sεν
t d ∗ ηε‖Lp + L‖Sεν

t dr‖Lp‖vε ∗ ηε‖Lp

≤ L‖vε‖Lp‖Sεν
t d‖Lp + L‖Sεν

t dr‖Lp‖vε‖Lp

≤ L‖vε‖Lp

[

‖Sεν
t dr‖Lp + ‖vε‖Lp

]

+ L‖Sεν
t dr‖Lp‖vε‖Lp

≤ 2L‖vε‖Lp

[

‖Sεν
t dr‖Lp + ‖vε‖Lp

]

.

(4.8)

We recall the definition (4.2) of dr and we point out that dr is smooth and henceforth satisfies the
hypotheses of Theorem 3.1. By applying (3.1) and (3.7), we get

‖Sεν
t dr‖Lp ≤ ‖Sεν

t dr − Sν
t dr‖Lp + ‖Sν

t dr‖Lp≤C(d, p, L, ‖dr‖L∞ , ‖dr‖W 1,p , ν)ε+ ‖dr‖Lp .(4.9)
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Since dr = d ∗ ρλ, by (4.4) we have

‖dr‖L∞ ≤ ‖d‖L∞≤B, ‖dr‖Lp ≤ ‖d‖Lp≤D, ‖∇dr‖Lp ≤ ‖d‖Lp‖∇ρλ‖L1≤C(d,D, λ)

and hence (4.9) implies

‖Sεν
t dr‖Lp ≤ C(d, p, L,B,D, ν, λ)ε +D,

so if ε ≤ ε̄(d, p, L,B,D, ν, λ) is sufficiently small, then

(4.10) ‖Sεν
t dr‖Lp ≤ 3D/2.

We combine (4.6), (4.7), (4.8) and (4.10) and we get that

‖vε(σ, ·)‖Lp = 2δ ≤ δ + C(d, L, p, ν)

ˆ σ

0
(σ − s)α

[

‖vε‖Lp

[

D + ‖vε‖Lp

]

]

(s, ·)ds

s≤σ
≤ δ + C(d, L, p, ν)

ˆ σ

0
(σ − s)α

[

2δ
[

D + 2δ
]

]

(s, ·)ds =
[

1 + C(d, L, p, ν)σα+1
[

D + 2δ
]

]

δ

δ≤1
≤

[

1 + C(d, L, p, ν)σα+1
[

D + 2
]

]

δ.

The above chain of inequalities implies that 1 ≤ C(d, L, p, ν)σα+1
[

D + 2
]

and this provides a lower
bound on σ that only depends on d, p, L, ν and D. �

4.2. Stability estimates. We now establish a conditional stability estimate.

Lemma 4.2. Fix d1, d2 ∈ L1 ∩ L∞ and p satisfying (1.8) and assume there are constants F > 0 and
T > 0 such that

(4.11) ‖Sεν
t d1‖Lp , ‖Sεν

t d2‖Lp ≤ F, for every t ∈ [0, T ].

Then there is a threshold ̟ = ̟(L,F, d, p, ν) ∈ ]0, T ] such that

‖Sεν
t d1 − Sεν

t d2‖Lp ≤ 2‖d1 − d2‖Lp , for every t ∈ [0,̟].

Proof. We use the Duhamel Representation Formula and get

Sεν
t d1 − Sεν

t d2 = [d1 − d2] ∗Gν(t, ·)

−

ˆ t

0

ˆ

Rd

∇Gν(t− s, · − y)
[

Sεν
s d1 b(S

εν
s d1 ∗ ηε)− Sεν

s d2 b(S
εν
s d2 ∗ ηε)

]

(y)dyds,

which owing to the Bochner and Young Theorems implies

‖Sεν
t d1 − Sεν

t d2‖Lp ≤ ‖d1 − d2‖Lp‖Gν(t, ·)‖L1

+

ˆ t

0
‖∇Gν(t− s, ·)‖Lq‖Sεν

s d1 b(S
εν
s d1 ∗ ηε)− Sεν

s d2 b(S
εν
s d2 ∗ ηε)‖Lp/2ds

(4.12)

provided q := p/(p− 1). By the Hölder inequality we get

‖Sεν
s d1 b(S

εν
s d1 ∗ ηε)− Sεν

s d2 b(S
εν
s d2 ∗ ηε)‖Lp/2

≤ ‖Sεν
s d1 b(S

εν
s d1 ∗ ηε)− Sεν

s d2 b(S
εν
s d1 ∗ ηε)‖Lp/2 + ‖Sεν

s d2 b(S
εν
s d1 ∗ ηε)− Sεν

s d2 b(S
εν
s d2 ∗ ηε)‖Lp/2

Hölder,(1.10)

≤ L
∥

∥Sεν
s d1 − Sεν

s d2

∥

∥

Lp

∥

∥Sεν
s d1 ∗ ηε

∥

∥

Lp + L
∥

∥Sεν
s d2

∥

∥

Lp

∥

∥

[

Sεν
s d1 − Sεν

s d2

]

∗ ηε
∥

∥

Lp

Young,(1.2)

≤ L
∥

∥Sεν
s d1 − Sεν

s d2

∥

∥

Lp

∥

∥Sεν
s d1

∥

∥

Lp + L
∥

∥Sεν
s d2

∥

∥

Lp

∥

∥Sεν
s d1 − Sε

sd2

∥

∥

Lp

(4.11)

≤ C(L,F )
∥

∥Sεν
s d1 − Sεν

s d2

∥

∥

Lp .

(4.13)
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We now introduce the value ̟ by setting

̟ := sup
{

t ∈ [0, 1] :
∥

∥Sεν
s d1 − Sεν

s d2

∥

∥

Lp ≤ 2
∥

∥d1 − d2

∥

∥

Lp for every s ∈ [0, t]
}

.

Note that

(4.14)
∥

∥Sεν
̟ d1 − Sεν

̟ d2

∥

∥

Lp = 2
∥

∥d1 − d2

∥

∥

Lp .

Also, by combining (4.12), (3.6) and (4.13) we get that

∥

∥Sεν
̟ d1 − Sεν

̟ d2

∥

∥

Lp ≤
∥

∥d1 − d2

∥

∥

Lp + C(L,F )
∥

∥d1 − d2

∥

∥

Lp

ˆ ̟

0
‖∇Gν(̟ − s, ·)‖Lqds

(3.6),(3.4)

≤
∥

∥d1 − d2

∥

∥

Lp + C(L,F, p, d, ν)
∥

∥d1 − d2

∥

∥

Lp

ˆ ̟

0
(̟ − s)αds

≤
∥

∥d1 − d2

∥

∥

Lp [1 + C(L,F, p, d, ν)̟α+1].

(4.15)

By comparing (4.15) with (4.14) we get

2
∥

∥d1 − d2

∥

∥

Lp ≤
[

1 + C(L,F, d, p, ν)̟α+1
]∥

∥d1 − d2

∥

∥

Lp

and this provides a lower bound on ̟. �

We conclude this paragraph by establishing a uniform a-priori estimate on the growth of d.

Lemma 4.3. Assume that d ∈ L∞ ∩ L1 and that

‖d‖Lp ≤ Q.

Then there is a constant θ = θ(d, p, L,Q) > 0 such that

‖Sεν
t d‖Lp ≤ 2Q, for every t ∈ [0, θ].

Proof. We set

θ := sup
{

t ∈ [0, 1] : ‖Sεν
s d‖Lp ≤ 2Q, for every s ∈ [0, t]

}

and we point out that

(4.16) ‖Sεν
θ d‖Lp = 2Q.

To establish a lower bound on θ we use the Duhamel representation formula. We have

Sεν
θ d = d ∗Gν(θ, ·)−

ˆ θ

0

ˆ

Rd

∇Gν(θ − s, · − y) ·
[

Sεν
s d b(Sεν

s d ∗ ηε)
]

(y)dyds.

We use the Bochner and Young Theorems and we get

‖Sεν
θ d‖Lp ≤ ‖d‖Lp +

ˆ θ

0
‖∇Gν(θ − s, ·)‖Lq‖Sεν

s d b(Sεν
s d ∗ ηε)‖Lp/2ds,

provided q := p/(p− 1). Next, by Hölder inequality, (1.10), and since s ≤ θ we infer that

‖Sεν
s d b(Sεν

s d ∗ ηε)‖Lp/2 ≤ ‖Sεν
s d‖Lp‖b(Sεν

s d ∗ ηε)‖Lp≤L‖Sεν
s d‖Lp‖Sεν

s d ∗ ηε‖Lp ≤ L‖Sεν
s d‖

2
Lp≤4LQ2.

We let α > −1 be as in (3.4). By (3.6) and the above inequalities we infer that

‖Sεν
θ d‖Lp ≤ Q+ C(d, p, L)θα+1Q2

and by comparing the above inequality with (4.16) we establish a lower bound on θ. �
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4.3. Conclusion of the proof of Theorem 1.1. We first introduce some notation. First, we fix a
parameter 0 < h < 1. We set

D := ‖ū‖Lp , B := ‖ū‖L∞ , F := 4D, Q := 2D

and choose a threshold ξ = ξ(d, p, L,D, ν,Q) in such a way that

ξ := min{σ,̟, θ},

where σ, ̟ and θ are as in the statement of Lemma 4.1, Lemma 4.2 and Lemma 4.3, respectively.
Step 1: we choose d := ū and the regularity parameter λ in (4.2) (depending only on on p, ū and h)
in such a way that

‖ds‖Lp = ‖d− d ∗ ρλ‖Lp ≤ h < 1.

We establish convergence on the interval [0, ξ]. First we decompose ū as in (4.2). Note that

‖dr‖Lp ≤ ‖d‖Lp ≤ D, ‖dr‖L∞ ≤ ‖d‖L∞ ≤ B.

Next, we fix t ∈ [0, ξ] and we introduce the following decomposition:

‖Sεν
t d− Sν

t d‖Lp ≤ ‖Sεν
t d− Sεν

t dr‖Lp + ‖Sεν
t dr − Sν

t dr‖Lp + ‖Sν
t dr − Sν

t d‖Lp =: T1 + T2 + T3.(4.17)

To control the term T1, we apply Lemma 4.1 and we infer that, if ε ≤ ε̄(d, p, L,B,D, ν, λ), then

(4.18) ‖Sεν
t d− Sεν

t dr‖Lp ≤ 2h.

To control the term T2, we apply Theorem 3.1. First, we point out that

∇dr = d ∗ ∇ρλ =⇒ ‖∇dr‖Lp ≤ ‖ū‖Lp‖∇ρλ‖L1 = C(d,D, λ).

By applying Theorem 3.1 we arrive at

(4.19) ‖Sεν
t dr − Sν

t dr‖Lp ≤ C(d, p, L,B,D, ν, λ)ε ≤ h

provided that ε ≤ ε̄(d, p, L,B,D, λ, ν, h). Finally, to control the term T3 we apply (3.8) and we get

(4.20) ‖Sν
t dr − Sν

t d‖Lp ≤ C(d, p, L,B, ν)‖dr − d‖Lp ≤ C(d, p, L,B, ν)h.

By combining (4.18), (4.19) and (4.20) with (4.17) we eventually get that

(4.21) ‖Sεν
t d− Sν

t d‖Lp ≤ C(d, p, L,B, ν)h

provided that ε ≤ ε̄(d, p, L,B,D, λ, ν, h).
Step 2: we establish convergence on the interval [ξ, 2ξ]. First, we fix t ∈ [0, ξ] and we introduce the
following decomposition:

‖Sεν
t+ξū− Sν

t+ξū‖Lp = ‖Sεν
t Sεν

ξ ū− Sν
t S

ν
ξ ū‖Lp

≤ ‖Sεν
t Sεν

ξ ū− Sεν
t Sν

ξ ū‖Lp + ‖Sεν
t Sν

ξ ū− Sν
t S

ν
ξ ū‖Lp =: S1 + S2.

(4.22)

To control the term S1 we apply Lemma 4.2. First, we set

d1 := Sεν
ξ ū, d2 := Sν

ξ ū

and we recall that F = 4‖ū‖Lp . Now we want to show that (4.11) holds true: we do this by applying
Lemma 4.3. First, we check that

(4.23) ‖Sεν
t d2‖Lp ≤ F.

We recall that Q = 2‖ū‖Lp and we point out that, owing to (3.7), we have

‖d2‖Lp ≤ ‖ū‖Lp ≤ Q.

By applying Lemma 4.3, we get (4.23). Next, by (4.21) and (3.7) we point out that

‖d1‖Lp ≤ ‖Sεν
ξ ū− Sν

ξ ū‖Lp + ‖Sν
ξ ū‖Lp≤C(d, p, L,B, ν)h + ‖ū‖Lp ≤ 2‖ū‖Lp = Q
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provided that h is sufficiently small. By applying Lemma 4.3, we get ‖Sεν
t d1‖Lp ≤ F and by recall-

ing (4.23) we conclude that (4.11) is satisfied. By applying Lemma 4.2 we conclude that

S1
(4.22)
= ‖Sεν

t Sεν
ξ ū− Sεν

t Sν
ξ ū‖Lp ≤ 2‖Sεν

ξ ū− Sν
ξ ū‖Lp

(4.21)

≤ C(d, p, L,B, ν)h,

provided that ε ≤ ε̄(d, p, L,B,D, λ, ν, h).
We now control S2, the second term in (4.22). We set d := Sν

ξ ū and we point out that

‖Sν
ξ ū‖Lp ≤ D, ‖Sν

ξ ū‖L∞ ≤ B

owing to (3.7). By applying the same argument as in Step 1 we conclude that

S2=‖Sεν
t Sν

ξ ū− Sν
t S

ν
ξ ū‖Lp ≤ C(d, p, L,B, ν)h

provided that ε ≤ ε̄(d, p, L,B,D, λ, ν, h). By recalling (4.22), this establishes the convergence on the
interval [ξ, 2ξ].
Step 3: by iterating the argument at Step 2 a finite number of times we can prove that

‖Sεν
t ū− Sν

t ū‖Lp ≤ C(d, p, L,B, ν)h, for every t ∈ [0, 1]

provided that ε ≤ ε̄(d, p, L,B,D, λ, ν, h). This establishes the strong Lp convergence and concludes
the proof of Theorem 1.1. �

5. Counterexamples

In this section we focus on the family of Cauchy problems in one space dimension

(5.1)

{

∂tuε + ∂x
[

uε uε ∗ ηε
]

= 0
uε(0, ·) = ū,

which is exactly (1.3) in the case when d = 1 and b(u) = u. When ε → 0+, the Cauchy problem
in (5.1) formally reduces to the Cauchy problem for the Burgers’ equation

(5.2)

{

∂tu+ ∂x
[

u2
]

= 0
u(0, ·) = ū.

In this section we provide three explicit counterexamples showing that, in general, uε does not converge
to the entropy admissible solution u.

5.1. A counterexample with sign-changing data and symmetric kernels. We begin by stating
and proving our first counterexample.

Counterexample 5.1. Assume that ηε satisfies (1.2) and (1.4) and that η is an even function, namely
η(x) = η(−x) for every x. Assume furthermore that the initial datum ū ∈ BV (R) is an odd function,
namely ū(x) = −ū(−x) for a.e. x, and such that

(5.3) ū(x) :=







1 −1 < x < 0
−1 0 < x < 1
0 |x| > 2.

Let uε be the solution of (5.1) and u be the entropy admissible solution of (5.2). Then

(5.4)

ˆ 0

−∞
u(t, x)dx <

ˆ 0

−∞
ū(x)dx =

ˆ 0

−∞
uε(t, x)dx, for every t ∈ [0, 1/4[.

In particular, the family {uε}ε>0 does not converge to u, not even in the weak topology of Lp, p ≥ 1,
in the weak∗ topology of L∞, or up to subsequences.
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The precise meaning of the last statement is the following: for every p ≥ 1 and T > 0 the statement
“there is a sequence εk such that εk → 0+ and uεk ⇀ u in Lp([0, T ] × R)” is false; the statement

“there is a sequence εk such that εk → 0+ and uεk
∗
⇀ u in L∞([0, T ] × R)” is also false. The basic

idea underpinning Counterexample 5.1 is, very loosely speaking, the following: one can show that for
t small enough, the entropy admissible solution of the Cauchy problem (5.2), (5.3) has a steady shock
at x = 0 between the values 1 (on the left) and −1 (on the right). By using the formal computation

d

dt

ˆ 0

−∞
u(t, x)dx

(5.2)
= −

ˆ 0

−∞
∂x[u

2](t, x)dx = −u2(0−) = −1 < 0

we infer the first inequality in (5.4). On the other hand, we can show that the solution uε of (5.1), (5.3)
is odd. Since the function ηε is even, this implies that uε ∗ ηε = 0 at x = 0 and hence that

d

dt

ˆ 0

−∞
uε(t, x)dx

(5.1)
= −

ˆ 0

−∞
∂x[uε uε ∗ ηε](t, x)dx = 0,

which in turn implies the equality in (5.4). By (5.4) and doing some more work one can eventually
rule out weak convergence. We now give the rigorous proof of Counterexample 5.1.

Proof of Counterexample 5.1. We proceed according to the following steps.
Step 1: we investigate the structure of the entropy solution u. First, we collect some properties of u:

a) u ∈ C0([0,+∞[;L1(R)).
b) Since ‖ū‖L∞ ≤ 1, then by the maximum principle ‖u(t, ·)‖L∞ ≤ 1 for every t ≥ 0.
c) Since ū ∈ BV (R), then u(t, ·) ∈ BV (R) for every t ≥ 0.
d) A 0-speed shock is created at t = 0 at the origin x = 0. Owing to the finite propagation speed,

this shock will survive for some time. More precisely, we have

(5.5) u(t, x) =

{

1 for a.e x ∈]− 1/2, 0[
−1 for a.e x ∈]0, 1/2[ ,

for every t ∈ [0, 1/4].

e) Owing to the finite propagation speed and to the fact that ū = 0 if |x| > 2, we have u(t, x) = 0
for a.e. |x| ≥ 3 and for every t ∈ [0, 1/4].

We now want to show that

(5.6)

ˆ 0

−4
u(1/4, x)dx =

ˆ 0

−4
ū(x)dx−

1

4
.

We can formally obtain (5.6) by pointing out that

d

dt

ˆ 0

−4
u(t, x)dx

(5.2)
= −

ˆ 0

−4
∂x[u

2](t, x)dx = −u2(t, 0−) + u2(t,−4)
d), e)
= −1

and by integrating with respect to time. We now sketch a rigorous argument to justify (5.6). First,
we point out that u is a distributional solution of (5.2), which amounts to say that

(5.7)

ˆ +∞

0

ˆ

R
u∂tϕdxdt+

ˆ +∞

0

ˆ

R
u2∂xϕdxdt+

ˆ

R
ϕ(0, ·)ū dx = 0

for every ϕ ∈ C∞
c (R2). We now introduce the sequence of functions {χn} ⊆ C∞

c (R) such that

(5.8) χn(x) =

{

1 −4 + 1/n ≤ x ≤ −1/n
0 x ≤ −4 or x ≥ 0.
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As a matter of fact, χn is an approximation of the characteristic function of [−4, 0]. We fix an arbitrary
θ ∈ C∞

c (]0, 1/4[), we plug ϕn(t, x) := χn(x)θ(t) as a test function in (5.7) and we point out that

ˆ +∞

0

ˆ

R
u2∂xϕn dxdt =

ˆ 1/4

0
θ(t)

ˆ

R
u2(t, x)χ′

n(x)dxdt

(5.8)
=

ˆ 1/4

0
θ(t)

ˆ −4+1/n

−4
u2(t, x)χ′

n(x)dxdt+

ˆ 1/4

0
θ(t)

ˆ 0

−1/n
u2(t, x)χ′

n(x)dxdt

(5.5), e)
=

ˆ 1/4

0
θ(t)

ˆ −4+1/n

−4
0 · χ′

n(x)dxdt+

ˆ 1/4

0
θ(t)

ˆ 0

−1/n
1 · χ′

n(x)dxdt

(5.8)
=

ˆ 1/4

0
θ(t)(−1)dt.

Next, we let n → +∞ in the other term in (5.7) and we eventually arrive at

ˆ 1/4

0
θ′(t)

ˆ 0

−4
u(t, x)dx dt +

ˆ 1/4

0
θ(t)(−1)dt = 0.

Owing to the arbitrariness of θ, this implies that the continuous function

(5.9) t 7→

ˆ 0

−4
u(t, x)dx

has distributional derivative equal to −1. This implies that the above function is actually absolutely
continuous and, owing to the Fundamental Theorem of Calculus, we get (5.6).

Since we will need it in the following, we also point that, since the map in (5.9) is continuous,
then (5.6) implies that there is h > 0 such that

ˆ 1/4+h

1/4−h

ˆ 0

−4
u(t, x)dxdt ≤

ˆ 1/4+h

1/4−h

(
ˆ 0

−4
ū dx−

1

8

)

dt = 2h

ˆ 0

−4
ū dx−

h

4
.

In other words, if we define E by setting

(5.10) E :=
{

(t, x) : t ∈ [1/4 − h, 1/4 + h], x ∈ [−4, 0]
}

and we denote by 1E the characteristic function of E, then

(5.11)

ˆ ∞

0

ˆ

R
1E u dxdt ≤ 2h

ˆ 0

−4
ū dx−

h

4
.

Step 2: we show that the distributional solution uε of (5.1) is odd, namely that, for a.e. (t, x) ∈ R+×R,
u(t, x) = −u(t,−x). We set vε(t, x) := −uε(t,−x). If we can prove that vε is also a distributional
solution of the Cauchy problem (5.1), then by the uniqueness part of Proposition 2.3 we get that for
every t ≥ 0 it holds vε(t, x) = uε(t, x) for a.e. x, namely that uε is an odd function.

To show that vε is a distributional solution of (5.1), we first observe that by using the fact that ηε
is even and making the change of variables z = −y we get

(5.12)
(

vε ∗ ηε
)

(t, x) = −

ˆ

R
uε(t,−x+ y)ηε(y)dy = −

ˆ

R
uε(t,−x− z)ηε(z)dz = −

(

uε ∗ ηε
)

(t,−x).

Next, we fix ϕ ∈ C∞
c (R2), we set φ(t, x) := −ϕ(t,−x) and we obtain

ˆ +∞

0

ˆ

R
vε∂tϕdxdt+

ˆ +∞

0

ˆ

R
vε(vε ∗ ηε)∂xϕdxdt +

ˆ

R
ϕ(0, ·)ū dx = [z = −x]

=

ˆ +∞

0

ˆ

R
(−uε)(−∂tφ)dzdt +

ˆ +∞

0

ˆ

R
(−uε)(−uε ∗ ηε)(∂xφ) dzdt +

ˆ

R
(−φ(0, ·))(−ū)dz = 0.
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To establish the last equality we have used the fact that uε is a distributional solution of (5.1). The
above chain of equalities states that vε is a distributional solution of (5.1) and hence concludes Step 2.
Step 3: we show that

(5.13) uε(t, x) = 0, for a.e. |x| ≥ 2 and every t ≥ 0 and ε > 0.

We note that uε is a distributional solution of the Cauchy problem

(5.14)

{

∂tuε + ∂x
[

uεgε
]

= 0
uε(0, ·) = ū

provided that the vector field gε is defined as gε(t, x) := uε ∗ ηε. Since the vector field gε is smooth,
then we can apply the method of characteristics. We term X(t, x) the characteristic curve solving the
Cauchy problem

(5.15)











dX

dt
= gε(t,X)

X(0, x) = x.

Recall that uε is an odd function by Step 2. Since ηε is an even function by assumption, by arguing
as in the chain of equalities (5.12) we obtain that uε ∗ ηε is an odd function. Since it is also smooth,
we eventually conclude that

(5.16) gε(t, 0) = uε ∗ ηε(t, 0) = 0, for every t ≥ 0.

This means that X(t, 0) ≡ 0 and, since (5.15) has a unique solution, implies that the characteristic
curves cannot cross the t axis. Since ū(x) ≥ 0 if x ≤ 0 and ū(x) ≤ 0 if x ≥ 0, this in turn implies that

(5.17) for every t ≥ 0, uε(t, x) ≥ 0 for a.e. x < 0 and uε(t, x) ≤ 0 for a.e. x > 0.

This implies that, if x ≤ −2, then x+ ε ≤ 0 and hence

(5.18) gε(t, x) = uε ∗ ηε(t, x) =

ˆ x+ε

x−ε
uε(y)ηε(x− y)dy

(1.10),(5.17)

≥ 0.

If x1 < x2, then X(t, x1) < X(t, x2) for every t ≥ 0 (to see this, we use again the fact that the solution
of (5.15) is unique). By recalling (5.18), this implies that

x ≥ −2 =⇒ X(t, x) ≥ −2 for every t ≥ 0

and hence that

for every t ≥ 0, X(t, x) < −2 =⇒ x < −2.

Since ū(x) = 0 for a.e. x ≤ 2, this eventually implies that uε(t, x) = 0 for every x ≤ −2. Since the
function uε is odd, this establishes (5.13).
Step 4: we conclude the proof. Recall that the set E is defined as in (5.10) for a suitable h and
assume that we have shown that

(5.19)

ˆ +∞

0

ˆ

R
1Euεdxdt = 2h

ˆ 0

−4
ū dx.

Since the function 1E ∈ Lp(R+×R), for every p ∈ [1,+∞], then by comparing (5.19) and (5.11) we rule
out the possibility that uε converges weakly or weakly∗ to u. We are thus left with establishing (5.19).
To this end, we first use the formal computation
(5.20)
d

dt

ˆ 0

−4
uε(t, x)dx

(5.1)
= −

ˆ 0

−4
∂x

[

uε(uε ∗ ηε)
]

(t, x)dx = uε(uε ∗ ηε)(t,−4) − uε(uε ∗ ηε)(t, 0)
(5.13),(5.16)

= 0.

This implies that
ˆ +∞

0

ˆ

R
1Euεdxdt =

ˆ 1/4+h

1/4−h

ˆ 0

−4
uεdxdt =

ˆ 1/4+h

1/4−h

ˆ 0

−4
ū(x)dxdt = 2h

ˆ 0

−4
ū(x)dx,
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namely (5.19). To provide a rigorous justification of (5.20) one can argue as in Step 1. This concludes
the proof of the lemma. �

5.2. A counterexample with positive data and asymmetric kernels. This paragraph aims at
establishing the following lemma, which rules out also the possibility that uεk weakly converges to a
distributional, not necessarily entropy admissible, solution of (5.2).

Counterexample 5.2. Assume that ηε satisfies (1.2) and (1.4) and moreover that

(5.21) η(x) = 0, for every x ≥ 0.

Let ū be given by

(5.22) ū(x) =

{

1 −1 < x < 0
0 otherwise.

Let uε be the solution of the Cauchy problem (5.1), (5.22) and u be the entropy admissible solution
of (5.2), (5.22). Then

(1) the family of distributional solutions {uε}ε>0 does not converge to u, not even in the weak
topology of Lp, p ≥ 1, in the weak∗ topology of L∞, or up to subsequences;

(2) more in general, any weak limit w of a subsequence of {uε}ε>0 (in the weak topology of Lp,
p ≥ 1, in the weak∗ topology of L∞) cannot be a L2

loc distributional (not necessarily entropy
admissible) solution of (5.2).

The basic idea underpinning Counterexample 5.2 is, very loosely speaking, the following. Owing
to (5.21), the convolution uε ∗ηε evaluated at the point x only depends on the values of uε on the right
hand side of x. Owing to the particular structure of the initial datum ū this implies that uε∗ηε(0, 0) = 0
and hence that the characteristic line of the velocity field uε∗ηε starting at x = 0 has zero initial speed.
Then, one can show that the speed is identically zero: this implies that the characteristic lines coming
from the half line x < 0 cannot cross the axis x = 0, and hence that no mass can enter the half line
x > 0. In conclusion, uε(t, x) = 0 for a.e. x > 0. Notice that this last equality could be shown also
by noticing that the approximating sequence in the construction of uε in [12, § 5] enjoys the same
property.

On the other hand, the entropy admissible solution of (5.2), (5.22) is explicit and not identically 0
for x > 0. With some more work, one can show that any distributional solution of (5.2), (5.22) is not
identically 0 for x > 0. This allows to rule out weak convergence to a distributional solution. We now
make the previous argument rigorous.

Lemma 5.3. Assume that η and ηε satisfy (1.2), (1.4) and (5.21) and let ū be as in (5.22). Then

(5.23) for every t ≥ 0, uε(t, x) = 0 for a.e. x < −1 and a.e. x > 0.

Proof. We argue according to the following steps.
Step 1: we show that uε(t, x) = 0 for a.e. x < −1. We use the method of characteristics: note that
uε is a distributional solution of the continuity equation (5.14) provided the vector field gε is given by
gε := uε ∗ ηε. Since ū ≥ 0, then gε(t, x) ≥ 0 for every (t, x). This implies that, for every t ≥ 0 and
every x < −1, the characteristic line Yt(s, x) solving the (backward) Cauchy problem











dYt

ds
= gε(s, Yt)

Yt(t, x) = x

satisfies Yt(0, x) < −1 and hence ū(Yt(0, x)) = 0. Since the value 0 is propagated along the character-
istic lines of the continuity equation, then uε(t, x) = 0.
Step 2: we regard again uε as the solution of the continuity equation (5.14) and we term X the
characteristic line solving the (forward) Cauchy problem (5.15). We claim that

(5.24) X(t, x) = x for every t ≥ 0, x ≥ 0.
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Indeed, by the spatial smoothness of the vector field uε ∗ ηε, the characteristic lines “cannot cross” the
curve X(t, 0); in particular for any t > 0 and x > X(t, 0) we have Yt(0, x) > 0. Hence

(5.25) uε(t, x) = 0 for any t > 0, x ≥ X(t, 0).

Since ηε satisfies (1.2) and (1.4), for any x ∈ R the quantity uε ∗ ηε(x) is an average, weighted with ηε,
of the values of uε(t, ·) on the right of x. From (5.25), we deduce that

(5.26) uε ∗ ηε(t, x) = 0 for any t > 0, x ≥ X(t, 0).

From (5.26) applied to x = X(t, 0) and (5.15) with x = 0, we deduce that X(t, 0) = 0 for any t > 0;
applying again (5.26) with this further information, we deduce (5.24).

Since the value 0 is propagated along the characteristic lines of the continuity equation, which in
turn are constant for any x ≥ 0 thanks to (5.24), we have shown that uε(t, x) = 0 for any x ≥ 0,
concluding the proof of (5.23). �

Proof of Counterexample 5.2(1). First, we point out that, if ū is given by (5.22), then the entropy
admissible solution of the Cauchy problem (5.2) is

(5.27) u(t, x) =











0 x ≤ −1 or x ≥ t
x+ 1

2t
−1 ≤ x ≤ 2t− 1

1 2t− 1 ≤ x ≤ t,

for a.e. (t, x) ∈ [0, 1] × R.

Assume by contradiction there is a sequence {εk} such that uεk weakly converges to u. We use as a
test function the characteristic function of the set E := [0, 1/2] × [0, 1]. Since

ˆ

R+×R
uεk1E dxdt

Lemma 5.3
= 0,

ˆ

R+×R
u 1E dxdt

(5.27)
=

ˆ 1/2

0

ˆ t

0
1 dxdt =

1

8
,

then we find a contradiction. �

The proof of Counterexample 5.2(2) is based on the following result, which could be generalized to
Young measure solutions of the Cauchy problem (5.2) (we refer to [13] for an extended discussion on
Young measures and their applications to nonlinear conservation laws).

Lemma 5.4. Let a, b ∈ R, a < b, and let u ∈ L2
loc([0, 1] × R) be a nonnegative, distributional solution

of the Cauchy problem (5.2) compactly supported in [0, 1] × (a, b). Then the baricenter of u is a
nondecreasing function and

(5.28)

ˆ b

a
xu(t, x)dx ≥

(

ˆ b

a
ū
)2

t+

ˆ b

a
xū(x)dx.

The proof of Counterexample 5.2(2) straightforwardly follows from Lemma 5.4. Indeed, any non-
negative distributional solution u of the Cauchy problem (5.2) starting from ū in (5.22) cannot satisfy

u(t, x) = 0 for a.e. t ∈ [0, 1], x ∈ (−∞,−1) ∪ (0,∞),

because otherwise it would contradict (5.28) for a = −1−σ, b = σ (σ arbitrarily small) and any t > 1/2.
Hence we find a contradiction with (5.23) as in the proof of Counterexample 5.2(1).

Proof of Lemma 5.4. The conservation law (5.2) implies

ˆ b

a
u(t, x)dx =

ˆ

R
u(t, x)dx =

ˆ b

a
ū(x)dx for a.e. t > 0.
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We perform some formal computations, which can be made rigorous by arguing as in the proof of
Counterexample 5.1: by (5.2), the Jensen inequality, and the previous equality, we have

d

dt

ˆ b

a
xu(t, x)dx =

ˆ b

a
x ∂tu(t, x)dx = −

ˆ b

a
x ∂x

[

u2
]

(t, x)dx

=
[

− xu2(t, x)
]x=a

x=b
+

ˆ b

a
u2(t, x)dx ≥

1

b− a

(
ˆ b

a
u(t, x)dx

)2

.

Integrating in time, we get (5.28). �

5.3. A counterexample with positive data and symmetric kernels. We now establish the
following result.

Counterexample 5.5. Assume that η and ηε are as in (1.10) and (1.4), respectively, and that η is
an even function. Let u denote the entropy admissible solution of (5.2), (5.22) and uε the solution
of (5.1), (5.22). Then for every δ > 0, the family uε does not converge to u strongly in L1+δ, not even
up to subsequences. More precisely,

(5.29) ∀ t > 0, ∄ {εk}, εk → 0+ such that uεk(t, ·) → u(t, ·) strongly in L1+δ.

Note that (5.29) rules out the possibility that uε converges to u in L1+δ([0, 1] × R): indeed, if this
were true then, up to subsequences, uε(t, ·) → u(t, ·) in L1+δ for a.e. t, and this is ruled out by (5.29).

The basic idea underpinning Counterexample 5.5 is the following. We introduce the entropy function

E (u) :=

ˆ

R
u lnu dx,

where by a slight abuse of notation we have continuously extended the function u lnu with value 0 for
u = 0. By using the formal computation (5.35), one gets that

d

dt
E (uε) = 0

if uε is a nonnegative solution of (5.1). On the other hand, the function u ln u is convex and hence
E (u) is non increasing for nonnegative entropy admissible solutions of (5.2). In particular, if the initial
datum is as in (5.22), then E (u) is strictly decreasing. After some more work this allows us to rule out
the strong convergence of uε to u.

The precise argument requires some preliminary results.

Lemma 5.6. Fix δ > 0 and assume that {vk} ⊆ L1+δ satisfies vk → v in L1+δ, for some compactly
supported v ∈ L1+δ. Then

(5.30)

ˆ

R
v ln v dx ≥ lim sup

k→+∞

ˆ

R
vk ln vk dx.

Proof. Let Ω ⊂ R be a compact set s.t. v = 0 a.e. in R \ Ω. Up to a (not relabelled) subsequence, we
can assume that the lim sup in the right-hand side in (5.30) is a limit. Since vk → v in L1+δ, up to a
further subsequence, we can assume that vk converges pointwise to v a.e. in R and that there exists a
function h ∈ L1+δ(R) such that h ≥ |vk| a.e. for any k ∈ N. We observe that

(5.31) |w lnw| ≤ C(δ)
(

1{w<1} + 1{w≥1}|w|
1+δ), for every w ≥ 0.

Since the function s → s ln s is negative for s < 1, by (5.31), and since vk → v in L1+δ(R \Ω) we have

lim sup
k→∞

ˆ

R\Ω
vk ln vk dx ≤ lim sup

k→∞

ˆ

R\Ω
vk ln vk1vk≥1 dx ≤ C(δ) lim

k→∞

ˆ

R\Ω
|vk|

1+δ dx = 0.

Since the functions vk ln vk converge pointwise to v ln v as k → ∞ and the convergence is dominated
by C(δ)(1 + |h|1+δ) ∈ L1(Ω), we have
ˆ

Ω
v ln v dx = lim

k→∞

ˆ

Ω
vk ln vk dx ≥ lim

k→∞

ˆ

Ω
vk ln vk dx+lim sup

k→∞

ˆ

R\Ω
vk ln vk dx = lim sup

k→∞

ˆ

R
vk ln vk dx,
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which proves (5.30). �

Lemma 5.7. Let uε be the solution of (5.2) and assume that ηε satisfies (1.10) and (1.4) and that η
is an even function. Let ū ∈ L∞ be a compactly supported function satisfying ū ≥ 0 and

ˆ

R
ū ln ū dx < +∞.

Then for every t ≥ 0 the distributional solution satisfies the following properties: uε(t, ·) ≥ 0 and

(5.32)

ˆ

R
uε lnuε(t, ·) dx =

ˆ

R
ū ln ū dx.

Proof. First, we point out that one can check by direct computation that, for every a, b ∈ L2(R),
c ∈ C∞

c (R), we have

(5.33)

ˆ

R
a(b ∗ c)dx =

ˆ

R
(a ∗ č)b dx,

where č(x) = c(−x). We apply the above formula with a = b = uε(t, ·) and c = η′ε. Since ηε is an even
function, then the derivative η′ε is an odd function and hence η̌′ε = −η′ε. We then obtain
ˆ

R
uε∂x

[

uε ∗ ηε
]

(t, ·)dx =

ˆ

R
uε(uε ∗ η

′
ε)(t, ·)dx

(5.33)
= −

ˆ

R
(uε ∗ η

′
ε)uε(t, ·)dx = −

ˆ

R
uε∂x

[

uε ∗ ηε
]

(t, ·)dx,

which implies that

(5.34)

ˆ

R
uε∂x

[

uε ∗ ηε
]

(t, ·)dx = 0.

We can then establish (5.32) by using the following (formal) computation:

d

dt

ˆ

R
uε lnuε(t, ·)dx =

ˆ

R
(1 + lnuε)∂tuε(t, ·)dx

(5.2)
= −

ˆ

R
(1 + lnuε)∂x

[

uε(uε ∗ ηε)
]

(t, ·)dx

=

ˆ

R
∂xuε

1

uε
uε(uε ∗ ηε)(t, ·)dx =

ˆ

R
∂xuε(uε ∗ ηε)(t, ·)dx = −

ˆ

R
uε∂x

[

uε ∗ ηε
]

(t, ·)dx
(5.34)
= 0.

(5.35)

To make the above argument rigorous, we recall that uε is the solution of the Cauchy problem (5.14),
where the velocity field gε = uε ∗ ηε is smooth. By the renormalization property, for every β ∈ C1 we
have (2.14). This implies that

(5.36)

ˆ

R
β(uε(t, ·))dx =

ˆ

R
β(ū)dx−

ˆ t

0

ˆ

R
∂x

[

uε ∗ ηε
]

[

uεβ
′(uε)− β(uε)

]

dxds.

We construct a sequence of functions βn : R+ → R by setting

βn(v) :=

ˆ v

0

[

1 + ln

(

ξ +
1

n

)]

dξ.

Note that

βn(v) →

ˆ v

0
[1 + ln ξ] dξ = v ln v, for every v ≥ 0, as n → +∞,

vβ′
n(v) − βn(v) → v, for every v ≥ 0, as n → +∞.

By testing the inequality (5.36) with βn and passing to the limit for n → +∞ we obtain

ˆ

R
uε lnuε dx =

ˆ

R
ū ln ū dx−

ˆ t

0

ˆ

R
∂x

[

uε ∗ ηε
]

uε dsdx
(5.34)
=

ˆ

R
ū ln ū dx.

This concludes the proof of the lemma. �
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Proof of Counterexample 5.5. If ū is given by (5.22), then the entropy admissible solution u can be
explicitly computed and is given by (5.27). Note that ū only attains the values 0 and 1, whereas if
t ∈ (0, 1] then u attains values between 0 and 1. Therefore

(5.37)

ˆ

R
u(t, x) ln u(t, x) dx < 0 =

ˆ

R
ū ln ū dx for any t ∈ (0, 1].

Owing to Lemma 5.7, for every ε > 0 and t ≥ 0 we have

(5.38)

ˆ

R
uε(t, x) ln uε(t, x) dx = 0.

Assume by contradiction that there is a sequence εk → 0+ and a time t > 0 such that uεk(t, ·) → u(t, ·)
strongly in L1+δ(R). We apply Lemma 5.6 with vk := uεk(t, ·), v := u(t, ·). By combining (5.38)
and (5.30) we get

ˆ

R
u(t, x) ln u(t, x) dx ≥ 0,

which contradicts the second inequality in (5.37). This concludes the proof of the lemma. �
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