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ABSTRACT: A catalyst repurposing strategy based on a 
sequential aldol addition and transfer hydrogenation giv-
ing access to enantiomerically enriched α-hydroxy-γ-bu-
tyrolactones is described. The combination of a stereose-
lective, organocatalytic step followed by an efficient cat-
alytic aldehyde reduction induces an ensuing lactoniza-
tion to provide enantioenriched butyrolactones from read-
ily available starting materials. By capitalizing from the 
capacity of prolineamides to act both as organocatalyst 
and transfer hydrogenation ligand, catalyst repurposing 
allowed the development of an operationally simple, eco-
nomic and efficient sequential catalysis approach. 
 
 
The combination of multiple distinct catalytic transformations 
in a one-pot reaction procedure enables cost- and time-efficient 
processes towards complex targets from readily available start-
ing materials. Especially the interplay between organo- and 
transition metal catalysis can provide unique possibilities for 
the formation of valuable organic frameworks.1 In relay, tan-
dem or cascade catalysis, a common intermediate is released 
from the first catalytic cycle that directly enters a second one. 
This requires high reagent compatibility, which can often be cir-
cumvented by a sequential catalysis approach where after com-
pletion of the first catalytic event, reagents or catalysts required 
for the second transformation are added. This permits an in-
creased scope and allows more variation of reaction conditions.2  
Since amines,3 NHCs4 and phosphines5 are frequently used both 
as organocatalysts and ligands, we became intrigued by the pro-
spects of a repurposing strategy where the first catalyst upon 
regeneration is converted into the second by the addition of a 
metal precatalyst (Scheme 1a). This in situ catalyst repurposing 
sequential catalysis strategy (CRSC) would thus constitute a 
particularly effective method for a wide range of transfor-
mations. We recognized prolineamides as an ideal compound 
class for CRSC as they have been successfully used as organo-
catalysts in stereoselective cross aldol reactions6 and as ligands 
in transfer hydrogenations.7 We hence envisioned to exploit the 
proline amide derivatives in CRSC for the stereoselective syn-
thesis of α-hydroxy-γ-butyrolactones 1, first as catalyst of a ste-
reoselective aldol addition to intermediate 2 and after repurpos-
ing, as ligand to promote the aldehyde reduction which induces 
a lactonization (Scheme 1b).  

Scheme 1. Schematic Overview of Catalyst Repurposing Se-
quential Catalysis (CRSC) 
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Enantioenriched α-hydroxy-γ-butyrolactones 1 are key indus-
trial intermediates,8 chiral auxiliaries9 and building blocks for 
the synthesis of biologically active compounds and natural 
products.10 Their previous preparation typically involved reso-
lution protocols8, 11 or a stepwise stereoselective catalysis strat-
egy.12 Interestingly, (R)-pantolactone 1a (R=Me), the key inter-
mediate for the synthesis of vitamin B5 (pantothenic acid) was 
prepared by a one-pot combination of organo- and biocatalysts 
by Gröger, Berkessel and coworkers.13 We thus initiated our 
catalyst repurposing study by preparing (R)-pantolactone 1a us-
ing the regenerated amine catalyst as ligand for a transfer hy-
drogenation. To identify catalysts, solvents, additives and con-
ditions suitable for both steps in the sequence, we first individ-
ually evaluated their effect on stereoselectivity and reactivity 
for the aldol addition and reduction (details of this prerequisite 
optimization are provided in the SI).  

Table 1. Catalyst Repurposing Sequential Catalysis Designa 

 

 
 
 

 

 

 

 

 

 

 

 
 

 

entry catalyst/ 
ligand,  

(RuCl2(p-
cymene))2  

t 
[h] 

conv. 
[%]b 

e.r.  

1 3, 10 mol% 2.5 mol% 18 99 82:18 
2 4, 10 mol% 2.5 mol% - - - 
3 5, 10 mol% 2.5 mol% - - - 
4 6, 10 mol% 2.5 mol% 18 99 79:21 
5 7, 10 mol% 2.5 mol% 18 99 85:15 
6 8, 20 mol% 2.5 mol% 18 99 84:16 
7 9, 10 mol% 1.0 mol% 18 99 85:15 
8 10, 10 mol% 1.0 mol% 2 99 19:81 
9 11, 5.0 mol% 1.0 mol% 4 99 86:14 

a Reaction conditions: isobutanal (0.40 mmol), ethyl glyoxalate (0.40 
mmol, 47 wt.% in toluene), organocatalyst (5.0 – 20 mol%), t-BuOH 
(0.4 mL), 25 °C, 24 – 48 h, TM precursor (1.0 – 2.5 mol%), sodium 
formate (2.00 mmol), water (1 mL), 25 °C, 2 – 18 h. b Conversion de-
termined by GC analysis. 

Intriguingly, initial results allowed to identify a hybrid between 
Noyori's TsDPEN ligand and D-proline (R)-3 as suitable cata-
lyst and ligand (Table 1)14 and t-BuOH as compatible solvent. 
More specifically, upon completion of the enantioselective al-
dol addition after 24 hours, water, (RuCl2(p-cymene))2 and so-
dium formate (NaO2CH) were added,15-17 providing (R)-panto-
lactone after 18 h with a 99% conversion for both steps and an 
e.r. of 82:18. We next confirmed the requirement of the amide 
moiety by using pyrrolidinyl tetrazole (R)-4, which provided 
the expected unreduced aldol addition product. We further ex-
amined ethylene diamine or ethanolamine derivatives (R)-5–7 
and observed that also the hydroxy terminated (R)-6 acts as suit-
able ligand for the transfer hydrogenation. With a 3-aminophe-
nol derived catalyst (R)-8, the effect of the different amide res-
idues on the rate of the aldol addition step was noticeable, re-
quiring 20 mol% catalyst loading and prolonged reaction times. 
Structural simplification revealed, that also (R)-9 is suitable for 
CRSC, even with a reduced (RuCl2(p-cymene))2 loading of 1.0 
mol% (entry 7). Interestingly, (S)-10 led to complete aldehyde 
reduction and lactonization within two hours at 25 °C and con-
firmed that a (S)-configured catalyst provides (S)-pantolactone. 
Intriguingly, the ethanolamine derived prolinamide (R)-11,14b 
which is readily available on large scale, provided (R)-panto-
lactone 1a with a reduced catalyst/ligand loading of 5.0 mol% 
and 1.0 mol% (RuCl2(p-cymene))2 within four hours for the 
transfer hydrogenation step. 

To further refine the CRSC, we next studied the effect of differ-
ent transition metal precursors, their loading and the optimal 
temperature for the transfer hydrogenation step (Table 2).  
 

Table 2. Effect of Transition-Metal Precursorsa 

 
entry precursor precursor 

loading  
T 
[°C] 

t 
[h] 

conv. 
[%]b 

1 (RuCl2(p-
cymene))2 

0.50 mol% rt 26 98 

2 (RuCl2(p-
cymene))2 

0.50 mol% 40 6 98c 

3 (RuCl2(p-
cymene))2 

0.50 mol% 60 1 94 

4 (RuCl2(ben-
zene))2 

0.50 mol% 40 5 92 

5 (RhCl2Cp*)2 0.50 mol% 40 2.5 97 
6 (IrCl2Cp*)2 0.50 mol% 40 1 99 
7 (IrCl2Cp*)2 0.50 mol% rt 4 99 
8 (IrCl2Cp*)2 0.25 mol% 40 2 93 
9 (IrCl2Cp*)2 0.10 mol% 40 5 99 

a Reaction conditions: isobutanal (0.40 mmol), ethyl glyoxalate (0.40 
mmol, 47 wt.% in toluene), organocatalyst (5.0 mol%), t-BuOH (0.4 
mL), 25 - 60 °C, 18 h, TM precursor (0.1 – 0.5 mol%), sodium formate 
(2.00 mmol), water (1 mL), 25 °C, 1 – 26 h. b Conversion determined 
by GC analysis. c scale-up to gram-scale (30 mmol) provides 1a with 
62% isolated yield and an e.r. of 86:14. 
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With a (RuCl2(p-cymene))2 precursor loading of 0.50 mol%, the 
aldehyde reduction required 26 hours to reach near completion, 
while increasing the temperature to 40°C allowed to reduce the 
reaction time to six hours. Satisfyingly, the catalyst-repurposing 
sequential catalytic reaction under these conditions was also 
readily applicable on gram-scale (30 mmol) providing (R)-pan-
tolactone (1a) in an overall 62% yield and an enantiomeric ex-
cess of 86:14 (see SI for details). The reaction time could be 
further decreased to 1 h at 60 °C and a slight increase in reac-
tivity was observed with (RuCl2(benzene))2, with almost full 
conversion after 5 h at 40 °C. An even more significant change 
in reactivity was observed when the transition metal was 
changed to rhodium, with almost full conversion after only 
2.5 h at 40 °C, and iridium with complete conversion in less 
than 1 h. Even when the precursor loading was decreased to 
only 0.1 mol%, full conversion could be achieved within 5 h at 
40 °C. With the optimal catalyst/ligand (R)-11 and reaction con-
ditions for the CRSC established, we evaluated the scope for a 
variety of α-disubstituted aldehydes (Table 3). For the synthesis 

of (R)-pantolactone 1a, the optimized conditions led to a stere-
oselective aldol addition, transfer hydrogenation, lactonization 
sequence with an overall yield of 62% and 86:14 enantiomeric 
enrichment. Other alkyl chains for products 1b and 1c gave en-
antioselectivities of 81:19 e.r. and 70:30 e.r., respectively. No-
tably, a change to cycloalkyl substituents significantly in-
creased product selectivity to enantiomeric ratios of up to 93:7 
for the cyclobutyl product 1d. Corresponding five- and six-
membered derivatives 1e (e.r. 92:8) and 1f were also effectively 
prepared from commercially available starting materials by the 
catalyst repurposing sequential catalysis. However, a further in-
crease in ring size (1g) or the introduction of an aromatic sub-
stituent (1h) impacted the yield or the selectivity. Over the 
course of our studies, a kinetic resolution during the transfer 
hydrogenation for a further enrichment of the enantiopurity was 
not observed and aldehyde substrates with different α-substitu-
ents, for which low diastereoselectivities were observed, repre-
sent a current limitation of the method (see SI for details).

 

  

Table 3. Substrate Scope of the Catalyst Repurposing Sequential Catalysis for α-Hydroxy-γ-butyrolactonesa 

 

entry product yield [%]d e.r. entry product yield [%]d e.r. 

1 
 

1a 

62  
[84] 

86:14 5 
 

1e 

73 
[85] 

92:8 

2 
 

1b 

45 
[92] 

81:19 6 
 

1f 

72 
[95] 

88:12 

3 
 

1c 

67 
[29]e 

70:30 7b 
 

1g 

18 
[22] 

72:28 

4 
 

1d 

71 
[92] 

93:7 8c 
 

1h 

64 
[85] 

62:38 

a Reaction conditions: isobutanal (1.00 mmol), ethyl glyoxalate (1.00 mmol, 47 wt.% in toluene), 11 (5.0 - 10 mol%), t-BuOH (1.0 mL), 25 °C, 18 
- 72 h, (IrCl2(Cp*))2 (0.1 mol%), sodium formate (2.00 mmol), water (1 mL), 40 °C, 15 h, isolated yield. b 500 µmol scale. c 100 µmol scale. d Yield 
in brackets corresponds to isolated aldehyde intermediate. e 5.0 mol% 11 were used.  f 10 mol% 11 were used. 
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The proposed mechanism of the sequential catalytic transfor-
mation involves a first enamine formation from catalyst (R)-
11 and isobutanal (Scheme 2) as confirmed by NMR when 
equimolar amounts of the catalyst in t-BuOD-d10 were added 
under similar conditions to the α-disubstituted aldehyde sub-
strate (see SI for details). Monitoring the enantioselectivity 
over the course of the subsequent aldol addition reaction re-
vealed only marginal variation, indicating the absence of a 
competitive uncatalyzed background reaction. Furthermore, a 
non-linear effect was not noticeable when catalyst 11 with dif-
ferent enantiomeric purities was employed. The catalytic cy-
cle A is then closed by hydrolysis, the secondary amine 

catalyst is regenerated and the aldol addition intermediate in 
place for the transfer hydrogenation cycle B. The addition 
(IrCl2Cp*)2 allows to repurpose the regenerated prolinamide 
(R)-11 as a ligand and upon addition of sodium formate, re-
duces intermediate 2 to induce a direct lactonization giving 
the enantioenriched α-hydroxy-γ-butyrolactones. Having ob-
served the remarkable activity of this transfer hydrogenation 
system, the Ir-complex 12 was prepared by a stoichiometric 
addition of ligand (R)-11 and Et3N to (IrCl2Cp*)2, which al-
lowed to confirm its structure by X-Ray crystallography (see 
SI for details).18 Further studies regarding the influence of the 
hydroxy arrangement are currently ongoing. 

 
Scheme 2. Mechanistic Proposal 

 
 

In conclusion, a catalyst repurposing sequential catalysis 
(CRSC) strategy was developed and employed in the prepara-
tion of enantioenriched α-hydroxy-γ-butyrolactones by an 
economic and operationally simple protocol. The prolinamide 
organocatalyst was thereby first used in a stereoselective cross 
aldol addition and subsequently repurposed as ligand for a 
transition-metal catalyzed transfer hydrogenation. The later 
addition of the transition-metal precursor upon aldol addition 
thus allowed to utilize otherwise incompatible aldehyde sub-
strates, which underscores in this scenario the assets of se-
quential catalysis in comparison with relay, tandem or cascade 
catalysis. Key industrial intermediates such as the vitamin B5 
precursor (R)-pantolactone were readily available in enanti-
oenriched form directly from commercially available starting 
materials. Considering the multitude of conceivable sequen-
tial reactions using amine, NHC and phosphine organocata-
lysts poised to be repurposed as ligands upon their regenera-
tion, CRSC represents a fascinating possibility for the design 
of efficient catalytic reaction sequences.  

Supporting Information 
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