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The cyclisation of poly-β-carbonyl-substrates controlled by polyketide synthases intricately governs the 
biosynthesis of a wide range of aromatic polyketides. Analogous small-molecule catalysed processes 
would conceivably induce selective cyclisations of noncanonical polycarbonyl substrates to provide prod-
ucts distinct from natural polyketides. Herein, we report a secondary amine-catalysed twofold cyclisation 
of noncanonical hexacarbonyl substrates furnishing enantioenriched tetra-ortho-substituted binaphtha-
lenes. The substrates were prepared by a fourfold ozonolysis of dicinnamyl biindenes and converted under 
catalyst-control with high atroposelectivity. Privileged catalysts and ligands were readily accessible from 
the binaphthalene products stemming from the noncanonical polyketide cyclisations. 

  

Poly-β-carbonyl chains, assembled by nonreducing 1 

polyketide synthases from acetate units, are bio-2 

synthetically diverged into a myriad of aromatic nat-3 

ural products. In particular their selective folding, al-4 

dol cyclisation and ensuing dehydration result in a 5 

broad range of skeletal variation, while tailoring 6 

steps further extend the diversity of the polyketide 7 

architecture (Fig. 1a).1–3 Moreover, subsequent en-8 

zymatic dimerisations provide structurally markedly 9 

unique atropisomeric scaffolds, typically with control 10 

over the configuration of stereogenic axes.4–6 11 

Whereas the radical intermediates of dimerisation 12 

processes set the basis of biomimetic strategies, 13 

they also dictate the regioselectivity for ortho- and 14 

para-phenol couplings.7,8 Taking into account that 15 

natural polyketides are restricted to a β-oxygenation 16 

pattern,9–11 we anticipated that noncanonical12  17 

polyketide cyclisations governed by small-molecule 18 

catalysts would furnish valuable tetra-ortho-substi-19 

tuted atropisomeric biaryls distinct from dimerisation 20 

products. Considering the findings of stoichiometric 21 

biomimetic polyketide cyclisations,13–18 we hence 22 

conceived a stereoselective polyketide cyclisation 23 

by means of catalytic substrate activation. More spe-24 

cifically, the controlled polyketide folding of substrate 25 

2, characterised by a noncanonical oxygenation pat-26 

tern (≠ β) obtained by an oxidative olefin cleavage of 27 

biindene 1, would directly give rise to atropisomeric 28 

binaphthalenes 4 by virtue of a twofold arene-form-29 

ing aldol condensation (Fig. 1b, 2→4).19–21 30 
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Fig. 1 | Biosynthesis of aromatic polyketides and cata-44 

lytic noncanonical polyketide cyclisation. a Aldol cyclisa-45 

tion of poly-β-carbonyl-substrates controlled by polyketide 46 

synthases followed by an atroposelective oxidative dimerisa-47 

tion via stabilised radicals. b Ozonolysis and noncanonical 48 

polyketide cyclisation by means of double 5-enolexo- and 49 

twofold 6-enolendo-aldolisations providing hydropentalenes 50 

3 or tetra-ortho-substituted biaryls 4 by a twofold atroposelec-51 

tive arene-forming aldol condensation. 52 
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Notably, the respective tetra-ortho-carbon substi-1 

tuted biaryls 4 represent an ideal scaffold for catalyst 2 

design,22 only scarcely obtained by stereoselective 3 

central-to-axial chirality conversion,23 C-H activa-4 

tion,24 [2+2+2]-cycloaddition,25 or cross-coupling26 5 

strategies. The prospects of catalyst-controlled bio-6 

mimetic polyketide cyclisation and the direct entry 7 

into privileged biaryl scaffolds27 thus encouraged us 8 

to evaluate the aldolisation modes of tetraketone 2. 9 

While considering the different folding modes of 2, 10 

the striking versatility of polyketide cyclisations be-11 

came evident by the double 5-(enolexo)-exo-trig al-12 

dolisation leading to hydropentalene product 3, and 13 

the divergent twofold 6-(enol-endo)-exo-trig cyclisa-14 

tion, which efficiently provides atropisomeric binaph-15 

thyl 4 after succeeding dehydrations.28,29 A selective 16 

aldolisation with a small-molecule catalyst that gov-17 

erns the configuration of the stereogenic axis would 18 

therefore enable a remarkably effective synthesis of 19 

enantioenriched biaryls 4; another incentive for the 20 

biomimetic catalytic polyketide cyclisation.  21 

Results 22 

Substrate evaluation, synthesis and characteri-23 

sation. We initiated our study with aryl- and alkyl-24 

terminated substrates 2 (R = Ph, Me)30 and interest-25 

ingly, all of the tested aldolisation conditions exclu-26 

sively furnished hydropentalene products 3 by 5-27 

(enol-exo)-exo-trig cyclizations.30,31 In contrast, ini-28 

tial observations suggested that particularly valuable 29 

tetra-ortho-substituted biaryls were formed by 6-30 

(enolendo)-exo-trig cyclisations, when formyl-termi-31 

nated substrates were employed. We consequently 32 

devised an expedient synthesis of 2a by a notable 33 

four-fold ozonolysis (Fig. 2). Dicinnamyl biindene 1a 34 

was suitably prepared by an oxidative dimerisation 35 

of the corresponding indene 5a with ensuing olefin 36 

isomerisation.32,33 The subsequent treatment with 37 

ozone and PPh3 efficiently provided the noncanoni-38 

cal hexacarbonyl substrate 2a by the cleavage of the 39 

four olefinic bonds.34,35 Unexpectedly, the substrate 40 

2a was found to be stable for over 24 h in chloroform  41 

Fig. 2 | Preparation of substrates Conditions: a n -BuLi, 42 

Et2O, –78 °C, CuCl2, –78 °C to RT, then pyrrolidine, CH2Cl2, 43 

RT. 56% yield over two steps. b O3, CDCl3, –50 °C, then 44 

PPh3, –50 °C to RT. 49% yield for 4 DBs.  45 

at room temperature, existing as a tautomeric mix-46 

ture poised for catalyst activation, as observed by 47 

NMR.30  48 

Method development. With the hexacarbonyl sub-49 

strate 2a in hand, we explored the twofold 6-eno-50 

lendo cyclisation36 governed by small-molecule cat-51 

alysts, selectively affording the atropisomeric biaryl 52 

4a upon formation of two new aromatic rings.30 Grat-53 

ifyingly, the desired tetra-ortho-substituted biaryl 4a 54 

was obtained without detectable amounts of hydro-55 

pentalenes by the use of L-proline or it’s tetrazole-56 

derivative 6a, however in moderate yield and level of 57 

enantiocontrol (Table 1, entry 1 and 2). Systematic 58 

examination of amine and ion-pairing catalysts30,37,38 59 

conclusively revealed that catalyst 6b39 with a 60 

Table 1 |  Optimisation of the catalyst-controlled, double 61 

6-(enolendo)-exo-trig cyclisation.  62 
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Entry Catalyst Time Yield e.r. 
1 L-Pro 66 50 85:15 
2 
3 
4 
5 
6 
7a 
8a 
9a 
10a 

11a 

6a 
6b 
6c 
6d 
6e 
6f 
6eb 
6fb 
6eb,d 
6ee 

48 
63 
63 
63 
48 
48 
66 
157 
24 
44 

65 
62 
74 
74 
65 
67 
82c 
70c 
76c 
63c 

67:33 
95:5 
95:5 
94:6 
96:4 
96:4 
95:5 
94:6 
92:8 
87:13 

Reactions performed with 10.0 µmol substrate 2a, in CDCl3 72 

(2.00 mmolL–1) at RT with 8.00 µmol catalyst. The e.r. are 73 

determined by HPLC on a chiral stationary phase. a 100 µmol 74 

reaction scale. b 80.0 µmol of catalyst. c Isolated yields. d 75 

With 80.0 µmol trifluoroacetic acid. e 40.0 µmol of catalyst 76 

and 40.0 µmol of trifluoroacetic acid. 77 
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hydrogen bond donating side chain results in a sig-1 

nificant increase in enantioselectivity (entry 3; 62% 2 

yield, 95:5 e.r.). We thus evaluated catalysts span-3 

ning a slightly larger hydrogen bond network for 4 

more stringent control of the nonenzymatic double 5 

cyclisation cascade. The bisprolineamide 6c40 al-6 

lowed an increase in yield with similarly high atro-7 

poselectivity (entry 4; 74% yield, 95:5 e.r.) and cata-8 

lyst 6d indicated that the outcome of the reaction is 9 

marginally affected by the aminoethanol substituent 10 

(entry 5; Me in 6d, vs. Ph groups in 6b, 94:6 e.r.). 11 

The readily available parent aminoethanol catalyst 12 

6e41 and the aminophenol-based congener 6f42 were 13 

consequently tested for their capacity to control the 14 

noncanonical polyketide cyclisation. Remarkably, an 15 

excellent selectivity and high yields were achieved 16 

with both catalysts, which effectively provided prod-17 

uct 4a on a 100 μmol reaction scale (entries 8 and 18 

9; 82% yield, 95:5 e.r. vs. 70% yield, 94:6 e.r.). With 19 

trifluoroacetic acid (TFA) to accelerate dehydration, 20 

the reaction time could be reduced to 24 h (entry 10; 21 

76% yield, 92:8 e.r.), while lowering the loading of 22 

the studied catalysts30 by half affected the rate of 23 

elimination, yield and atroposelectivity (with 6e: 24 

63%, 87:13 e.r., 20 mol% per cyclisation). Notably, 25 

the aminoethanol catalyst 6e is effortlessly prepared 26 

in large quantities and was therefore selected for our 27 

optimised reaction protocol. 28 

Scope of the late-stage catalytic, noncanonical 29 

polyketide cyclisation. To establish the utility of the 30 

noncanonical polyketide cyclisation, the reaction 31 

scale was increased to 1.00 mmol, confirming that 32 

tetra-ortho-substituted biaryls are accessible in high 33 

yield and with excellent atroposelectivity (Table 2, 34 

76% yield, 96:4 e.r.). We next investigated the scope 35 

and limitations of the method and evaluated the 36 

preparation of fluorinated binaphthalenes, owing to 37 

their particular value for catalyst design.43 With a 38 

more electron deficient hexacarbonyl substrate, tet-39 

rafluoro-binaphthyl dialdehyde 4b was obtained with 40 

an atroposelectivity of 92:8, which underlines the 41 

versatility of the developed cyclisation method. To 42 

probe the boundaries of steric interactions, we ex-43 

amined an extraordinarily encumbered substrate 2c. 44 

The formation of 4c with 98:2 atroposelectivity rep-45 

resents a unique synthesis of notorious tetra-ortho-46 

di-peri- atropisomers, while the compromised yield 47 

indicates the limits for non-bonding interactions. To 48 

further demonstrate the complementarity to dimeri-49 

sation approaches, we subsequently explored the 50 

cyclisation of unsymmetrically substituted substrates 51 

2d–f from 1,1’-biindenes synthesised by an efficient 52 

Suzuki cross-coupling of indenyl trifluoroborate and 53 

cinnamyl indanone-derived enol triflates.30 An aryl 54 

group was readily introduced at the 5-position, 55 

providing access to the terphenyl system 4d with an 56 

e.r. of 91:9.  57 

 58 

Table 2 |  Scope of the noncanonical polyketide cyclisa-59 

tion. 60 
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Reactions were performed with 50.0 µmol substrate 2b–g in 92 

CDCl3 (2.00 mmolL–1) at RT with 40.0 µmol catalyst 6e. Iso-93 

lated yields. The e.r. are determined by HPLC on a chiral sta-94 

tionary phase. Thermal ellipsoids of the crystal structures are 95 

drawn at the 50% probability level.44 a With 40.0 µmol TFA. 96 
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We next examined the effect of an electron donating 1 

group with the methoxy-substituted substrate 2e and 2 

observed that the addition of TFA effectively accel-3 

erates the dehydration step of the cascade reaction, 4 

resulting in an excellent yield of 93% (4e). The in-5 

verse electronic bias of a 6-fluoro-substituent in 2f 6 

only moderately affected the reactivity of the hexa-7 

carbonyl substrate, efficiently affording 4f with an e.r. 8 

of 94:6 in 85% yield. Gratifyingly, the compatibility 9 

with a versatile functional group could be estab-10 

lished by a selectively double-cyclization of an ester 11 

substrate providing (Sa )-4g, while basic amines rep-12 

resent a limitation of the four-fold double-bond cleav-13 

age to hexacarbonyl substrates (see SI for details).30 14 

The absolute configuration of the products was sub-15 

sequently determined by X-ray crystallographic 16 

analysis of 4a, 4c and 4e, consistently establishing 17 

that catalyst (S )-6e provides (Sa)-configured prod-18 

ucts.44 The biaryl torsion angles are found between 19 

92°–100° and the aldehyde groups are situated syn-20 

periplanar to form a close hydrogen bond with the 3-21 

hydroxy substituent. The characteristically high rota-22 

tional barriers of tetra-ortho-substituted biaryls were 23 

consequently confirmed by atropisomerisation stud-24 

ies of (Sa)-4a, which revealed an exceptional config-25 

urational stability of DG‡433 K > 150 kJmol–1 even at el-26 

evated temperature (160 °C).30 As the significant 27 

steric interactions of configurationally stable tetra-or-28 

tho-substituted biaryls inherently hamper their stere-29 

oselective synthesis, we explored the mechanistic 30 

features of the noncanonical polyketide cyclisation. 31 

Interestingly, in situ NMR reaction control indicates a 32 

putative sequential twofold aldol addition followed by 33 

a double dehydration, presumably avoiding severe 34 

nonbonding interaction during the formation of the 35 

carbon-carbon bonds and thus enabling the catalyst-36 

controlled polyketide cyclisation of encumbered sub-37 

strates.30  38 

 39 

Expedient syntheses of an atropisomeric ligand, 40 

catalyst and [5]helicene. To validate the utility of 41 

the method and the obtained atropisomeric linchpin 42 

products, their suitability to synthesise valuable cat-43 

alysts, ligands and [5]helicene was explored with 44 

tetra-ortho-substituted 3,3'-dihydroxy binaphthalene 45 

(Sa)-4a. Triflation of recrystallised (Sa)-4a (e.r. > 46 

99:1) followed by Suzuki cross-coupling yielded 47 

binaphthalene dicarbaldehyde (Sa)-7 in 84% over 48 

two steps. The dicarbaldehyde (Sa)-7 was efficiently 49 

converted into the chiral diene ligand (Sa)-8 suitable 50 

for borane and rhodium(I) catalysis.41,42 Further-51 

more, (Sa)-7 was transformed into the versatile 52 

Maruoka ion-pairing catalyst (Sa)-947,48 through 53 

NaBH4-reduction, bromination and substitution with 54 

n-Bu2NH to give the quaternary ammonium salt in 55 

82% yield over three steps. Conclusively, a viable al-56 

ternative to the typically cumbersome C-H function-57 

alisation strategies for privileged 3,3'-disubstituted 58 

atropisomers was identified. Moreover, a stereose-59 

lective route to a [5]helicene with remarkable config-60 

urational stability (DG‡333 K = 109 kJmol–1)49 was elab-61 

orated by the cyclization of dibromide with LiHMDS, 62 

providing (P)-10 with an e.r. of 98:2.50 The short 63 

routes to chiral diene ligand (Sa)-8, the ion-pairing 64 

catalyst (Sa)-9 and [5]helicene thus underline the vir-65 

tues of retrosynthetic polyketide disconnections of 66 

aromatic systems. 67 

 68 
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Fig. 3 | Synthesis of a chiral diene ligand, the Maruoka 77 

ion-pairing catalyst and a [5]helicene. Conditions: a with 78 

recrystallised (Sa)-4a (e.r. > 99:1). 1) Tf2O, Et3N, CH2Cl2, –78 79 

°C to RT. 2) ArB(OH)2, Pd(PPh3)4, NaHCO3, THF, H2O, RT. 80 

84% yield over two steps. e.r. > 99:1. b Ph3PCH2I, t-BuOK, 81 

THF, 0 °C to RT. 71% yield, e.r. > 99:1. c 1) NaBH4, MeOH, 82 

0 °C, then PBr3, THF, 0 °C. 2) n-Bu2NH, MeCN, 80 °C. 82% 83 

yield over three steps, e.r. > 99:1. d 1) NaBH4, MeOH, 0 °C, 84 

then PBr3, THF, 0 °C. 2) LiHMDS, HMPA, 0 °C. 66% yield 85 

over three steps, e.r. = 98:2; DG‡333 K =109 kJmol–1. 86 

Conclusion 87 

In summary, we developed a small-molecule cata-88 

lysed noncanonical polyketide cyclisation, affording 89 

atropisomeric tetra-ortho-substituted binaphtha-90 

lenes distinct from natural dimerisation products. 91 

The hexacarbonyl substrates, prepared by an effec-92 

tive fourfold ozonolysis, were activated with an 93 

abundant secondary amine catalyst, enabling a 94 

highly atroposelective cascade reaction with up to 95 

93% yield. The biomimetic late-stage cyclisation of 96 

noncanonical polyketides provides access to a chiral 97 

diene ligand and the Maruoka ion-pairing catalyst. 98 

Recognising the polyketide structure in the retrosyn-99 

thesis of polyaromatic compounds thus allows an ef-100 

fective synthetic strategy and furthermore 101 
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underscores the virtues of selective nonenzymatic 1 

polyketide cyclisations. Ongoing investigations fo-2 

cus on the catalyst-controlled cyclisation of canoni-3 

cal and noncanonical polyketide substrates of differ-4 

ent oxidation states and the rational design of small-5 

molecule catalysts for polyketide cyclisations.  6 
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