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1. INTRODUCTION 

Considering the current requirements and guidelines concerning pharmaceutical research and 

manufacturing, the attention of pharmaceutical industry focused on processes which have 

been successfully utilized in other fields of the industry. 

Microwave drying has been applied in food processing for decades. Several studies have been 

published evaluating the microwave drying process but sufficient data about the effects of 

electromagnetic irradiation on the structure and physico-chemical properties of frequently 

used pharmaceutical substances are not available. Since Process Analytical Technology 

(PAT) involves the design, analysis and control of manufacturing through timely 

measurements of critical quality of raw and in-process materials with the goal of ensuring 

final product quality, investigations of the possible changes in structure and physico-chemical 

properties resulted by microwave drying are of great practical importance. 

Ultrahigh pressure treatment is known as a potential preservation technique in the food 

industry for almost over a century. This physical method offers a potential alternative for the 

sterilization and pasteurization of heat-sensitive substances and - considering the effect of 

high pressure on living cells and organisms - for the production of vaccines. Therefore, 

studies focusing on the effect of ultrahigh pressure on materials' properties and on its possible 

applications in pharmaceutical technology are essential for scientists and manufacturers alike. 

In the practise of drug formulation, processing of heat- and pressure-sensitive materials is a 

great challenge for pharmaceutical technologists because pressure and friction accompanying 

the tableting process may result in modified physico-chemical properties of active 

pharmaceutical ingredients and excipients, which can lead to insufficient therapeutic 

efficiency and bioavailability. 

Freeze-casting is a complex shape forming technique, which has been used for the production 

of porous ceramic bodies since the 1960s. This method is a specially designed freezing 

process based on the fluid-solid phase transition of water upon freezing and offers a 

promising new method for drug formulation from non-compressible pharmaceutical 

substances. 

2. AIMS 

This thesis is dealing with the utilization of the above-mentioned three non-conventional 

methods as possible alternatives for pharmaceutical processing and for drug design. 

Starch is one of the most commonly used excipients in the formulation of solid dosage forms 

because it is a white, tasteless, odourless and relatively inert biopolymer. Starches, however, 



possess poor flow properties and undergo elastic deformation during the tableting process. 

Therefore, starches are difficult to compress and compacts containing high amounts of this 

biopolymer indicate elastic recovery and capping. 

Considering these properties, potato and maize starches were chosen as model substances in 

the experiments presented in this thesis. 

> The morphological parameters and the structural changes of potato and maize starches 

subjected to microwave irradiation were investigated. The effects of volumetric 

heating and following storage on moisture content, sorption behaviour and swelling 

properties of the model substances were examined. The influence of the 

electromagnetic irradiation on the tensile strengths and surface free energies of 

compacts compressed from the processed polymers was also studied. 

> The objective of the experiments connected to the freeze-casting technique was to 

develop a fast-dissolving solid dosage form containing theophylline as active 

ingredient possessing low flow properties and potato starch as a non-compressible 

diluent using the freeze-casting technique. The structure, the physical properties and 

mechanism of drug release from the freeze-casted units were investigated. 

> The applicability of ultrahigh pressure for the aim of drug formulation was tested. 

Several studies reported that high pressure could evoke gelatinization of starch 

granules in excess water already at room temperature. In our experiments, aqueous 

suspensions of potato and maize starches containing theophylline as an active 

pharmaceutical ingredient were subjected to isostatic ultrahigh pressure. The changes 

in the structure and morphology of potato and maize starches were investigated. The 

release profile of theophylline from the pressurized samples was also studied. 

3. THEORETICAL BACKGROUND 

3.1. Starch: structure and functionality 

Starch is a naturally-occurring biopolymer in which glucose is polymerized into amylose and 

amylopectin, forming a densely-packed, semicrystalline structure of particles with varying 

polymorphic types and degrees of crystallinity [1]. A widely accepted model of a starch 

granule involves alternating amorphous and crystalline lamellae, in which the two main 

components, amylose and amylopectin, are embedded (Fig. 1) [2], 

X-ray powder diffraction studies have revealed that starches can be classified into A, 

B and C forms. The A pattern is mainly observed with cereal starches (e.g. maize starch), the 

B form is usually obtained from tuber starches (e.g. potato starch), while the C type 
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diffraction diagram, which has been demonstrated to be a mixture of the A- and B-type 

diagrams, is characteristic of most legume starches (Fig. 2) [3], 

Figure 1 Schematic representation of the granule architecture of starches [4]. 

Figure 2 X-ray diffraction diagrams of A- and B-type starches [III]. 
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The recent models for A- and B-type structures are based on parallel double-stranded 

helices, right-handed or left-handed and packed antiparallel or parallel in the unit cell. The 

left-handed form is energetically preferred to the right-handed form. In the A-structure, these 

double helices are packed in a ntonoclinic unit cell (a = 2.124 nm, b = 1.172 nm, c = 1.069 

nm, y = 123.5 °) with eight water molecules per unit cell. In the B-type structure, double 

helices are packed in a hexagonal unit cell (a = b = 1.85 nm, c = 1.04 nm) with 36 water 

molecules per unit cell (Fig.3). 

Figure 3 Crystalline packing of double helices in A-type (A) and B-type (B) amylose. 

Projection of the structure onto the (a, b) plane [3]. 

Starch is a fine white powder, which is an odourless, tasteless, non-toxic and non-irritant 

material. It is insoluble in alcohol, most solvents and cold water [5]. Various starch sources, 

starch modifications and starch derivatives provide a wide range of solids, which can be used 

in pharmaceutical applications. Starches and starch derivatives are primarily utilized in oral 

solid dosage formulations as binders, diluents and disintegrants [6], 

The use of natural starch in technological processes causes a number of difficulties. In order 

to change the physico-chemical properties of starches so as to obtain the required features, 

different modifications are used. The simplest means of modification of starches is physical 

treatment, such as heating, the application of high pressure, mechanical methods and different 

forms of irradiations [7]. 

B 
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3.2. Microwaves 

Microwaves belong to the portion of the electromagnetic spectrum with wavelengths from 1 

mm to 1 m with corresponding frequencies between 300 MHz and 300 GHz (Fig. 4). 

Frequency, Hz 

1.0 102 104 106 10® 1010 1012 1014 1016 1013 102° 1022 1024 1026 

..J I I | I 1 | , I I I , I , I , I I I , I , I , 1 I I 
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Figure 4 The electromagnetic spectrum [8], 

The peculiarity of microwave heating is the energy transfer. In conventional heating 

processes, energy is transferred to the materials by convection, conduction and radiation 

phenomena through the external materials surface, in presence of thermal gradients. In 

contrast, microwave energy is delivered directly to materials through molecular interactions 

with electromagnetic field via conversations of electromagnetic energy into thermal energy 

[9], Microwave energy is a non-ionizing radiation that causes molecular motion by migration 

of ions and rotation of dipoles, but does not cause changes in molecular structure. Typically, 

microwave energy is lost to the sample by two fundamental mechanisms: ionic conduction 

and dipole rotation. Ionic conduction is the conductive (i.e. electrophoretic) migration of 

dissolved ions in the electromagnetic field. Dipole rotation refers to the alignment, due to the 

electric field, of molecules in the sample that have permanent or induced dipole moments 

[10]. Dipole rotation is illustrated in Figure 5. As the electric field of the microwave energy 

increases, it aligns the polarized molecules (Fig. 5a). As the field decreases, thermally 

induced disorder is restored (Fig. 5b). When the field is removed, thermal agitation returns the 

molecules to disorder and thermal energy is released. 
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a. b. 

Figure 5 Schematic of the molecular response to an electromagnetic field [10]. 

a., polarized molecules aligned with the poles of the electromagnetic field 

b., thermally induced disorder as electromagnetic field is removed 

Since microwaves can penetrate materials and deposit energy, heat can be generated 

throughout the volume of the material. The process is not dependent upon the thermal 

conductivity of the materials, and it is possible to achieve rapid and uniform heating of thick 

materials [10, 11] (Fig. 6). 

Figure 6 Schematic of sample heating by microwave energy [12], 

In addition to volumetric heating, microwaves can be utilized for selective heating of 

materials. The ability of a material to interact with electromagnetic energy is related to its 

complex permittivity and the dissipation factor (tan 5). The dissipation factor is a ratio of the 

sample's loss factor (e ' ) to its dielectric constant ( e ' ) (Eq. 1) [10], The dielectric constant is 

a measure of how much energy from an external electric field is stored in the material. The 

Reactants-solvent 
mixture 
absorbs microwave 
energy 
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loss factor accounts for the loss energy dissipative mechanisms in the material. Therefore, a 

material with a high loss factor is easily heated by microwave. 

tan 5= e'/ e (1) 

Generally, there are three qualitative ways in which a material may be categorized with 

respect to its interaction with the microwave field: transparent (low dielectric loss 

materials/insulators) - microwaves pass through with little, if any, attenuation; opaque 

(conductors) - microwave are reflected and do not penetrate; and absorbing (high dielectric 

loss materials) - absorb microwave energy to a certain degree based on the value of the 

dielectric loss factor (Fig. 7). It should be noted that water exhibits high losses in microwaves. 

Consequently, the absorption of matter is highly conditioned by its water content. Sample 

holders should be constructed from low-loss materials so that the microwaves will not be 

absorbed by the vessel but will pass through the vessel to the sample inside [10, 13]. Since 

metals reflect microwave irradiation, metals are forbidden to use for the construction of 

sample holders. 

Opaque: metals 

Transparent, ceramics, quartz, 

glass, Teflon, polystyrene 

Absorbing: water, methanol, 

acetone 

Figure 7 Interaction of materials with microwaves [10]. 
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The primary benefits of microwave applications are reduction in manufacturing costs due to 

energy savings and shorter processing times, better production quality, synthesis of new 

materials and products as well as reduced hazards to the enviroment. These advantages have 

focused the attention on the use of electromagnetics in many fields such as materials 

processing, with special reference to polymers, ceramics and composites and enviromental 

remediation processes [14-21, I]. The use of microwave heating in organic synthesis reveals 

several features e.g. a reduction in thermal degradation, better selectivity, accelerated reaction 

rates etc. [22-28]. Medical applications are mainly related to hyperthermia therapy for the 

treatment of cancer [29, 30], In pharmaceutical industry, microwave irradiation has been used 

because of its thermal effect in drying processes, for sterilisation of injections and infusions 

and in a frozen storage-microwave thawing system for intravenous infusions [31-42, II, VII], 

In pharmaceutical technology, there is a steadily growing interest in the use of dielectric 

heating. Especially the combination of vacuum and microwave energy has received attention 

because of the possibility to dry moistened materials in a clean, fast and safe way with 

minimum handling and product loss [43-46]. 

3.3. Freeze-casting 

Tablets account for a major proportion of the drug dosage forms administered today providing 

accurate drug dosage, good drug stability and the possibility of controlled drug delivery. 

It is well known that direct compression is possible only for a limited number of substances. 

Many of the materials widely used for tablet formulation are difficult to compress because of 

their elastic compression behaviour and poor flow properties (e.g. theophylline, diclofenac-

sodium, etc.). Furthermore, the tableting process is accompanied by friction and a rise in 

temperature. Accordingly, the compression of temperature-sensitive substances (e.g. 

ibuprofen and dimenhydrinate) and active agents tending to polymorphism (e.g. barbiturates, 

hydrocortison, phenylbutazone and carbamazepine) demands due foresight [47-50]. 

Freeze-casting is a complex shape-forming technique, which has been used for the 

production of porous ceramic bodies since the 1960s [51-57]. The freeze-casting technique is 

a specially designed freezing process, which is based on the fluid-solid phase transition of 

water upon freezing. The essential steps of the process are shown in Figure 8 [58]. 
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active 
ingredient 

suspending 
agent 

mixing of 
components 

• casting into 
the moulds 

— • freezing • drying 

Figure 8 Flow chart of the freeze casting process [58], 

When an aqueous suspension containing an active ingredient and further auxiliary materials 

(water-dispersible carrier materials, water-soluble binding materials, cryoprotectants, 

preservatives, flavouring agents, etc.) moulded into a form-giving tool undergoes freezing, the 

volume expansion due to the formation of ice from water results in the 'cold compression' of 

the suspended solid particles. After evaporation of the ice crystals, a porous solid body can be 

obtained [58-60] (Fig. 9). The open pores are the negative image of the former ice crystals. 

During the freezing process 

Freezing water 

After drying 

Solid particles 

Figure 9 Formation of the pores [58], 

The process was carried out by using an experimental setup shown in Chapter 4.1. (see Fig. 

11) . 

During freezing, the aqueous suspension is only in contact with the cooling surface at the 

bottom, the upper surface is open to ambient conditions. Therefore, the temperature gradients 

created encourage the ice crystals to grow only in the vertical direction resulting in dendritic 

pore networks. As the freezing front proceeds from the cooling surface to the inferior of the 

suspension, the temperature gradient is the factor that effects the pore structure of the final 
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product. The regulation of heat transfer and the variation of the composition results in 

different pore structures, sizes and porosities. 

The frozen units may be dried either by freeze-drying or the dispersing agent can be removed 

under conditions whereby the solvent is evaporated from the solid through the liquid phase to 

a gas. This may be achieved by vacuum drying or by forced air-drying, which is carried out at 

a temperature range of 15-30 °C for 1 to 6 days. 

Consequently, the rise in temperature during tableting can be avoided by application of the 

freeze-casting technique. This process permits the drug-carrier formulation with the non-

compressible substances mentioned above. A further advantage of this method is that the 

channel-like structure of the freeze-casted solid bodies resulting from the ice-crystal growth 

allows a better matrix-solvent interaction and hence faster drug dissolution, enhanced 

bioavailability and an improved therapeutic effect of the active ingredient [61]. Furthermore, 

freeze-casting can be regarded as an environmentally friendly, so-called green technology, 

because the application of any organic solvents can be avoided. 

3.4. Isostatic ultrahigh pressure 

Ultrahigh pressure (UHP) treatment is known as a potential preservation technique for almost 

over a century, since Hite demonstrated in 1899 that microbial spoilage of milk could be 

delayed by application of high pressure. High pressure has been applied for many years for 

production of ceramics, composite materials, carbon graphite and plastics. UHP causes 

inactivation of microorganisms and enzymes while leaving small molecules, such as vitamins 

intact. Emulsions, which are sensitive to heat, can be pressure-treated without affecting the 

stability of the emulsion. Therefore, high pressure technology can be defined as mild 

technology [62-67]. 

Two principles underlie the effect of high pressure. Firstly, the principle of Le 

Chatelier according to which any phenomenon (phase transition, chemical reaction, change in 

molecular configuration) accompanied by a decrease in volume will be enhanced by pressure. 

As a result, pressure favours the crystalline state. 

Secondly, pressure is instantaneously and uniformly transmitted independent of the size and 

the geometry of the materials. This is known as isostatic pressure. 

1 bar corresponds to the pressure exerted by a water column with a height of 10 metres. 

Ultrahigh pressure begins at 1000 bar (1000 bar = 100 MPa) [68]. 

Biopolymers, such as starches and proteins, show changes of their native structure 

under high hydrostatic pressure analogous to the changes occurring at high temperati 
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effect of pressure on proteins and enzymes is related to reversible or irreversible changes of 

the native structure [69-71]. Temperature and/or chemical induced protein denaturation often 

unfold the complete protein irreversibly because of covalent bond breaking and/or 

aggregation of the molecule. In contrast, high pressure can leave parts of the molecule 

unchanged, indicating that the denaturation mechanisms are substantially different. In 

aqueous solution, pressure affects mainly the tertiary and quaternary structure of proteins. 

Covalent bonds are rarely affected by high pressure and even a-helix or P-sheet structures 

appear to be almost incompressible. Since solvent water has to be considered as an integral 

part of dissolved enzymes, the hydration patterns of side chains strongly affect the stability of 

enzymes and their catalytic reactions. In contrast to temperature which destabilizes the protein 

molecule by transferring non-polar hydrocarbons from the hydrophobic core towards the 

water, pressure denaturation is initiated by forcing water into the interior of the protein 

matrix. 

Several authors reported that high pressure could evoke gelatinization of starch 

granules in starch-water suspensions already at room temperature, although the degradation of 

granules happens in a different manner (Fig. 10) [72-78]. 

Disintegrated 

C r y s t a l l i n e R e g i o n 

Cluster 
of Amylopectsn Lamellae Amorphous Lamellae 

Complet« V 
Disintegration 

Under Compression 
Helix Structure is favoured 
a Partial A—>B conversion 

Granules: 
lativ.eJ3ianU.es 

Intact 
Swollen Granules Swelling 

Hydration of Amorphous Smectic' Structure Helix-Helix Dissociation 
Regions in Excess Water of Amylopectin Helix-Coil Transition 

Figure 10 Scheme of starch gelatinization [69]. 
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Gelatinization is generally considered to be a multi-stage process. After the swelling of the 

amorphous domains, the growth ring structure of the granule starts to disintegrate and the 

crystalline regions undergo melting simultaneously with a progressively increasing hydration. 

The smectic crystalline structure is decomposed by helix-helix dissociation followed by helix 

coil transition when the gelatinization temperature is exceeded. Increasing particle size and re-

association of solubilized amylose are producing an increase in viscosity and gel formation. 

However, different from heat gelatinization, the pressurized starch granules remain intact or 

just partly disintegrated and the solubilization of amylose is rather poor. The disintegration of 

the macromolecule is incomplete since the pressure stabilization of van der Waals and 

hydrogen bonds favours the helix conformation. Even crystalline conversion from A- to B-

isomorph under pressure has been reported (Fig. 10). 

4. MATERIALS AND METHODS 

4.1. Physical treatments 

• Microwave processing 

Microwave processing of the starch samples was achieved in two different ways: 

o by microwave irradiation for 15 minutes in a Sharp R4P58 (450 W) 

microwave oven (PSmw and MSmw), 

o by conventional heating at 130 °C for 2 hours (PSi3o°c and MSno-c) in a 

drying oven without air flow [7, 79, 80]. 

In both cases, 100.0 g powder was modified. The initial and the processed samples were 

stored in well-closed vessels at room temperature (20±2 °C; 45±5% RH) until the beginning 

of the measurements. The starch samples used for the examination of sorption behaviour and 

swelling properties were stored for 6 months (25±2 °C; 50±5% RH). 

• Freeze-casting procedure 

The binary powder mixture applied for the preparation of the suspensions was prepared by 

mixing 93% (w/w) potato starch (23.72 - 75.28 pm) (Amylum solani, Hungaropharma, 

Budapest, Hungary) and 7% (w/w) anhydrous theophylline (29.19 - 1023.64 pm) 

(Theophyllinum, Hungaropharma, Budapest, Hungary) in a Turbula mixer (Willy A. 

Bachofen, Maschinenfabrik, Basel, Switzerland) at 50 rpm during 5 minutes. The moisture 

content of the powder mixture was 5.57±0.20%. The compositions and the amount of the 

suspending agents are shown in Table 1. 
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Tabic 1 Compositions of the suspensions applied for the freeze-casting process. 

Sample Suspending agent Amount of the Viscosity of the Celatinization 

suspending suspensions temperature of the 

agent suspensions 

| % ( w / w ) l | Pas) l°CI 

Sample 1 Distilled water 48 

Sample 2 9% aqueous solution 54 

of citric acid 

Sample 3 20% aqueous solution 57 

of saccharose 

1.41±0.12 

0.72±0.03 

1.52±0.15 

58.47 

57.85 

57.70 

The aqueous suspensions were mixed and poured into cylindrical plastic forms 13 mm in 

diameter. The moulding forms were placed on a cooling cell connected with a thermostat 

(̂ freezing = -20 °C). The suspension was only in contact with the cooling surface at the bottom. 

The top of the moulding forms was open to the atmosphere at room temperature (Fig. 11). 

The resulting temperature gradient enforced vertical ice-crystal growth [58-60]. After 

freezing, the ice crystals were evaporated by forced-air drying, in an air-drier for 24 h (tdrying = 

+30 °C). 

Polyacrilic pipe 

Stainless 
steel plate 

Microscope 
and CCD 
camera 

Figure 11 Experimental setup used for the freeze-casting process [58], 

• Isostatic ultrahigh pressure (IUHP) treatment 

For the preformulation studies, approximately 4.0 g samples of starch-water suspensions 

(potato starch: 30% (w/w), maize starch: 20% (w/w)) were pressurized in a high-pressure 

device equipped with a temperature control (Mini Foodlab, Stansted Fluid Power Ltd., 
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Stansted, Essex, UK). The samples were pressure-treated at 300 or 700 MPa for 5 or 20 min 

(Table 2). 

Table 2 Conditions of processing of starch samples. 

Samples Starch Applied Duration of 

pressure pressure treatment 

[MPa] [min] 

PS300-5 PS 300 5 

PS700-5 PS 700 5 

PS700-20 PS 700 20 

MS300-5 MS 300 5 

MS700-5 MS 700 5 

MS700-20 MS 700 20 

On the basis of the preformulation studies, pressurization at 700 MPa for 5 minutes was 

chosen to prepare gel samples containing theophylline as an active pharmaceutical ingredient. 

The profile of theophylline release was investigated from hydrogels containing 8% (w/w) 

theophylline, 32% (w/w) starch and 60% (w/w) water, produced via IUHP treatment at 700 

MPa for 5 minutes (PS-T; MS-T). 

4.2. Measuring techniques 

• Moisture content 

Moisture content was determined by using the HR73 Halogen Moisture Analyzer 

(Mettler-Toledo GmbH, Greifensee, Switzerland). Approximately 4 g material was heated at 

60 °C and the change in mass was recorded with a precision of 0.1 mg. Each sample was 

measured three times under the following conditions: weight loss per unit of time'. 3-factory 

setting (Drying is automatically ended as soon as the mean weight loss (Ag in mg) per unit of 

time (At in seconds) drops below 50 seconds.); drying program: standard drying (The sample 

is heated to the drying temperature and held constant at this temperature.); display mode: 

moisture content (The moisture content of the sample is displayed as a percentage of the wet 

weight.). 

• Particle size distribution 

The particle size and its distribution for all samples were measured by laser diffraction 

(Malvern Mastersizer 2000, Malvern Ltd., Worcestershire, UK). For the measurements, the 
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samples were dispersed in air. The particle size was determined in the range of 0.02-2000 pm. 

The measurements were repeated three times. 

• Microscopic investigation 

The morphological investigations (particle form and particle surface) of the starches 

were carried out by a scanning electron microscope (SEM) (Philips XL 30 ESEM). Particles 

for scanning microscopy examination were mounted and coated with gold in a sputter coater 

(Polaron Equipment, Greenhill, UK). The air pressure was 1.3-13.0 mPa. The surfaces of the 

particles were treated with gold for 60 s (coating thickness: 18 nm). 

The morphology of the starch suspensions and gels generated by IUHP was analysed with 

a stereomicroscope (Zeiss KL 1500 LCD, Jena, Germany) after drying at room temperature. 

The texture of the pressurized samples was investigated with a SEM (Hitachi 2400 S, Hitachi 

Scientific Instruments Ltd., Tokyo, Japan). A polaron sputter coating apparatus (Bio-Rad 

SC502, VG Microtech Uckfield, UK) was applied to create electric conductivity on the 

surface of the samples. 

• Micromorphological studies 

The specific surface areas and micropore volumes of the samples were determined with 

Micromeritics ASAP 2000 equipment (Instrument Corp., Norcross, GA, USA) from the data 

of nitrogen adsorption and desorption isotherms at the boiling point of liquid nitrogen under 

atmospheric pressure (-196 °C). The specific surface was calculated in the validity range of 

the BET (Brunauer, Emmett, Teller) isotherm from the slope and intercept of a line 

characterized by five measuring points [81]. The samples (1.5-2.0 g) were degassed at 60 °C 

in a vacuum up to 1 Pa absolute pressure. After degassing, the samples were weighed again 

and the morphological parameters were calculated for the "surface-cleaned" masses of the 

samples. The micropore volumes were calculated via the BJH (Barrett, Joyner, Halenda) 

method [82]. The investigations were made in triplicate. 

Porosity parameters, total pore volume, total pore surface area and pore volume size 

distributions were determined with a high-pressure mercury porosimeter (High Pressure 

Mercury Porosimeter Porosimetro 70, Carlo Erba Apparecchi Stientifici Ltd., Italy). Low 

pressure measurements between 0.01 and 100 kPa were performed to measure pores with a 

diameter between 1.9 and 58 pm. The pressures used for high-pressure measurements varied 

from 0.1 to 200 MPa, which correspond to pore diameters in the range of 7.5 nm - 15 pm. 

Porosimeter tests were carried out in triplicate. 

Volume pore size distribution, Dv(d), is defined as the pore volume per unit interval of 

pore radius by Eq. (2) [83-85]: 
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P dV 
Dv(d) = —x——- (2) v d dP 

where P is the pressure, d is the pore diameter and V is the intruded volume of mercury. 

Total pore surface area (S) was calculated according to Eq. (3): 
, Viol 

S = ^—\PdV (3) 

where P is the pressure, V is the intruded volume of mercury, y is the surface tension, 6 is the 

contact angle of mercury and Vtot is the total intruded volume of mercury [84, 85]. The surface 

tension and the contact angle values used in calculations for mercury were 480 mN/m and 

141.3°. 

The mean pore diameter (d m e a n) was calculated via Eq. (4): 

V 
S (4) 

The porosity percentage (s) based on the porosimeter analysis was calculated by the, 

following equation (Eq. (5)) [83]: 

£ -
V 

lot 
A * — 

V Ph J 

xlOO (%) (5) 

where ph is the apparent particle density of the powder mixtures used for the preparation of the 

samples and the tablets determined by a helium pycnometer (Quantachrome SPY-2 

Stereopycnometer, Quantachrome Corp., Syosset, New York, USA). The pycnometric density 

was calculated from the mass and the pycnometric volume. Results are averages of three 

parallel determinations. 

• X-ray powder diffraction (XRPD) 

The X-ray diffraction profiles were taken using a D4 Endeavour Diffractometer (Bruker 

AXS GmbH, Karlsruhe, Germany). The measurement conditions were as follows: radiation 

source: CuKa, angle of diffraction scanned: from 1° to 30°, step size: 0.01°, step time: 8 s. 

• Preparation and investigation of the compacts 

Compacts were compressed with an instrumented eccentric tableting machine (Korsch EKO, 

Berlin, Germany). The punch holders were equipped with flat plane-parallel punches 10 mm 

in diameter. The rate of compression was 30 tablets/min at an air temperature of 24 °C and an 

air relative humidity of 45%. 
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Compacts used in the investigations connected to microwave processing were compressed 

using a binary powder mixture, which was prepared by mixing 80% (w/w) microcrystalline 

cellulose (Avicel® PH 101, FMC Corp., Philadelphia, USA) (25.30 - 93.60 qm) and 20% 

(w/w) starch in a Turbula mixer (Willy A. Bachofen, Maschinenfabrik, Basel, Switzerland) at 

50 rpm during 2 minutes. The mean compression force was 2±0.5 kN (for measurements of 

tensile strength) and 20±1 kN (for determination of contact angles). 

The properties of the freeze-casted samples were compared with those of tablets 

compressed using three different compression forces (compression force: Tablet/20 kN = 

20±2 kN; Tablet/10 kN = 10±2 kN; Tablet/5 kN = 5±1 kN). 

The composition of these tablets was as follows: anhydrous theophylline 100 g, potato starch 

40 g, magnesium stearate 1 g and Avicel PH 101 159 g for 1000 tablets. The components 

were mixed for 5 minutes with a Turbula mixer (Willy A. Bachofen, Maschinenfabrik, Basel, 

Switzerland). 

The crushing strengths of the tablets (ox) were measured with the Heberlein equipment 

(Heberlein and Co. AG, Zürich, Switzerland), while tensile strengths were calculated from 

these strength data and the geometrical parameters of the tablets (Mitutoyo OP 1-HS, Japan) 

via the following equation [86] (Eq. (6)): 

where H is the crushing strength [N], d is the diameter [mm] and h is the height of the tablets 

[mm]. 

• Contact angle and surface free energy 

Surface free energies were determined by contact angle measurements with polar 

(bidistilled water) and non-polar (diiodomethane, Merck KGaA, Darmstadt, Germany) 

liquids, using the OCA 20 Optical Contact Angle Measuring System (Dataphysics, 

Filderstadt, Germany) with the sessile drop method. Surface free energies were calculated via 

the equation of Owens-Wendt [87] (Eq. (7)): 

Where: ysl - interfacial tension of the solid and the liquid [mN/m], ysv = interfacial tension 

of the solid and the vapour [mN/m], yh = interfacial tension of the liquid and the vapour 

(7) 
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[mN/m], yd
sv = disperse part of the interfacial tension of the solid and the liquid [mN/m], yfv 

= disperse part of the interfacial tension of the liquid and the vapour [mN/m], yp
v = polar part 

of the interfacial tension of the solid and the vapour [mN/m], and y p = polar part of the 

interfacial tension of the liquid and the vapour [mN/m]. 

• Water retention capacity (WRC) 

100 ml of freshly prepared suspension (20% (w/w)) was centrifuged for 30 min at 4500 

rpm (High-speed Refrigerated Centrifuge Cenrikon T-42, Kontron Instruments). The 

supernatant was removed by suction and the residue was weighed (W)), and then dried at 60 

°C to constant mass (W2) [88, 89]. The measurements were made in triplicate. 

• Swelling capacity (SC) 

A modification of the method described by Bowen and Vadino was used [88, 90]. 

5 g of starch was poured into a 25 ml volumetric cylinder and the bulk volume was measured 

(Vi). 10 ml of deionized water was added and the suspension was well shaken for 5 min. 

Water was added up to 25 ml. The samples were allowed to stand for 24 h and the 

sedimentation volume was read off (V2). Three parallel measurements were carried out. 

• Swelling power (SP) 

SP was determined in triplicate on 0.1 g of starch by a modification of the method of Tsai 

et al. [91, 92]. Starch was weighed into a centrifuge tube with a coated screw cap, and 10 ml 

distilled water was added. The tube was heated at 80 °C in a shaking water bath for 1 h. The 

tube was cooled to room temperature in an iced water bath and centrifuged at 8800 rpm for 20 

min (High-speed Refrigerated Centrifuge Cenrikon T-42, Kontron Instruments). The 

supernatant was poured out from the tube. Only the material adhering to the wall of the 

centrifuge tube was regarded as sediment and weighed (Ws). The supernatant was dried to 

constant mass (Wi) in an air oven at 100 °C. The water-soluble index (WSI) and SP were 

calculated as follows: 

WRC = W,/W2 (8) 

SC = v2/v, (9) 

WSI = (W,/0.1)* 100 

SP = W s / [0 .1 * (100-WSI)] (g/g) 

(%) (10) 

(11) 
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• Rheological characterization of the suspensions used in the freeze-casting process 

Rheology of the aqueous suspensions was performed by using a Physica MCR 101 

Rheometer (Anton Paar GmbH, Graz, Austria). 

All measurements were carried out with a stainless steel coaxial cylinder measuring system at 

25±0.1 °C with a shear rate of 0.1 - 100 s"1 during an interval of 120 seconds. 30 data points 

were recorded for each rheogram. Five replicates were performed. Viscosity was obtained 

from the up-curve of rotational measurements at a shear rate of 100 s"1. In order to 

characterize the gelatinization behaviour of the starch suspensions, samples were heated to 

85°C (l°C/min). Gelatinization temperature was obtained from the decrease of the loss 

tangent curve, which is an indicative of the gelation process [93]. 

• Characterization of drug dissolution from the freeze-casted samples 

The dissolution profiles of the solid units were investigated according to the European 

Pharmacopoea with a paddle method (Pharma Test PTW II, Pharma Test GmbH, Germany), 

using a UV-VIS spectrophotometer (Unicam HeX,ios-a, Spectronic Unicam, UK) at 269 nm. 

The dissolution medium was 900 ml artificial gastric juice (pH=1.2±0.1) and its temperature 

was 37±0.5 °C. The paddle speed was 100 rpm. The measurements were made in triplicate. 

• In vitro drug diffusion study of the hydrogels prepared by IUHP (diffusion cell 

method) 

In vitro drug release studies were performed by means of a vertical diffusion cell method 

(Hanson SR8-Plus™ Dissolution Test Station, Hanson Research Corporation, Chatsworth 

CA, USA). 0.50 g of sample (PS-T; MS-T) was placed as a donor phase on the Porafil 

membrane filter with a pore diameter of 0.45 pm. The effective diffusion surface area was 

7.069 cm2. 70 ml buffer (pH = 5.43) was used as acceptor phase to ensure sink conditions. 

The pH of the applied buffer approaches the natural pH value of human skin. Therefore, this 

kind of buffer is usually used as dissolution medium for the investigation of transdermal drug 

delivery. The membranes were soaked in buffer for 15 min before starting the tests. 

Investigations were performed at 37 °C for 6 h. The quantitative determination of 

theophylline was carried out with a UV-VIS spectrophotometer (Unicam HeXios-a, 

Spectronic Unicam, UK) at a wavelength of X - 271 nm. In order to compare dissolution 

profiles, an aqueous suspension of theophylline was used as a reference (T). Three parallel 

measurements were carried out. 

• Characterization of the mechanism of drug release 

The following mathematical models were evaluated considering the dissolution profiles of 

the samples [94-96], 
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Zero-order model 

The drug release from the dosage form follows a 'steady-state release' running at a constant 

rate: 

M. 
M 

— = kt (12) 

where M, is the amount of drug released at time t, Mm is the initial drug amount and k is the 

rate constant of drug release. 

First-order model 

The drug activity within the reservoir is assumed to decline exponentially and the release rate 

is proportional to the residual activity: 

M, 
M 

— = 1 - exp(-&/) (13) 

Higuchi square root time model 

The most widely used model to describe drug release from matrices, derived from Higuchi for 

a planar matrix, however it is applicable for systems of different shapes too: 

M, 
= kt112 (14) 

M„ 

Weibull distribution 

A general empirical equation described by Weibull was adapted to the dissolution/release 

process. This equation can be successfully applied to almost all kinds of dissolution curves 

and is commonly used in these studies [97], 

M. 
= 1 - exp{- [(/ -1 0 ) / t Y } 

(15) 

where to is the lag time of the drug dissolution, r is the mean dissolution time, when 63.2% of 

Moo has been released and /? is a shape parameter of the dissolution curve. 

Hixson-Crowell model 

The model describes the release from systems showing dissolution rate limitation and does 

not dramatically change in shape as release proceeds. When this model is used, it is assumed 

that the release rate is limited by the drug particle dissolution rate and not by the diffusion that 

might occur through the polymeric matrix. 

M. 
1 — 

co / 
= 1 -kt (16) 
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Korsmeyer-Peppas model 

Ritger and Peppas proposed an equation to describe drug release kinetics from drug delivery 

systems controlled by swelling [98-101]. The equation is based on a power law dependence of 

the fraction released on time and has the following form: 

where n is the diffusional exponent, which can range from 0.43 to 1 depending on the release 

mechanism and the shape of the drug delivery device. Based on the value of the diffusional 

exponent, the drug transport in slab geometry is classified either as Fickian diffusion (n = 

0.5), non-Fickian or anomalous transport (0.5 < n < 1), or Case II transport (n = 1), where the 

dominant mechanism for drug transport is due to polymer relaxation during gel swelling. 

Anomalous transport occurs due to a coupling of Fickian diffusion and polymer relaxation. 

In the anomalous processes of drug release, Fickian diffusion through the hydrated layers of 

the matrix and polymer chain relaxation/erosion are both involved [99, 100]. The contribution 

of these two mechanisms to the overall release are considered to be additive. The empirical 

model of Peppas and Sahlin describes these phenomena [101]: 

= k,tm+k2t2m (18) 

where Mt/Moo represents the drug fraction released in time t (< 60%), kl and k2 the kinetic 

constants associated with diffusional and relaxational release, respectively, and m is the 

purely Fickian diffusion exponent. For the geometry of our devices m = 0.475 was 

appropriate. To calculate the percentage of drug release due to the Fickian mechanism, the 

following equation was introduced: 

F = (19) 
i+(k2/ki)-r 

F is the Fickian release fraction released due to the Fickian mechanism. The ratio of 

relaxation to the Fickian contributions (R/F) can be expressed as follows: 

F k, 
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• Release profiles comparison 

In order to compare the dissolution profiles of the samples, two fit factors were 

determined, as described by Moore and Flanner [102]. The difference factor ( f t ) measures the 

percent error between two curves over all time points: 

fl=—„ X100 

(21) 

where n is the sampling number, Rj and 7) are the percent dissolved of the reference and test 

products at each time point j. 

The similarity factor (/}) as defined by FDA and EMEA is a logarithmic reciprocal square root 

transformation of one plus the mean squared differences of drug percent dissolved between 

the test and the reference products [96, 102]: 

f2 = 50 x log- 1+(1 / „ ) £ 
7=1 

r j ~ t A 

-0.5 

x 100 (22) 

In general, fi values lower than 15 (0-15) and f2 values higher than 50 (50-100) show the 

similarity of the dissolution profiles. 

5. RESULTS 

5.1. Characterization of starch samples subjected to microwave irradiation 

The objective of the experiments presented in this chapter was to investigate the 

morphological parameters and the structural changes of potato (PS) and maize (MS) 

starches subjected to microwave irradiation. The effects of volumetric heating and following 

storage on the moisture content, sorption behaviour and swelling properties of the model 

substances were examined. The influence of the electromagnetic irradiation on the tensile 

strengths and surface free energies of compacts pressed from the modified PS and MS was 

also studied. The initial samples and samples treated by conventional heating were used to 
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compare the effects of microwave irradiation on the examined properties and parameters of 

these starches. 

The particles of the initial PS (23-75 pm) were ovoid and had a smooth surface (Fig. 

12a). The microscopic pictures of PS subjected to microwave irradiation did not reveal 

noteworthy changes (Fig. 12b). Heating of potato starch at 130 °C caused cracks in the 

surface of the particles (Fig. 12c). 

12a. PS 

1 2 b . P S m w 1 2 c . P S 130° 

Figure 12 SEM pictures of potato starch. 

The particles of the MS were smaller (9-23 pm) and had a crystalline appearance (Fig. 13a). 

The initial MS sample consisted of non-agglomerated crystalline particles. The particles were 

deformed after microwave irradiation (Fig. 13b) and conventional heating, and formed loose 

agglomerates (Fig. 13c) [II]. These observations are in good agreement with the results 

obtained by Palasinski et al. [103]. 
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13a. MS 

13b. MSmw 13c. MSno" 

Figure 13 SEM pictures of maize starch. 

The physical treatments applied did not cause remarkable changes in particle size and 

particle size distribution of the polymers (Table 3). The micromorphological parameters of PS 

and MS were entirely different (Table 3), which can be related to the structural differences of 

the samples (see Chapter 3.1.) [3]. 

The micromeritics of PS were changed slightly during the thermal processes. The specific 

surface area of the MS processed by conventional heating ( M S n c c ) became 40% larger and a 

similar significant increase was observed on evaluation of the mesopore volume data (30%). 

The changes in micromorphology of MS were considerable smaller after microwave 

irradiation (MSmw). Differences between the microstructures of the starch samples are well 

demonstrated by the cumulative mesopore volume distribution curves (Fig. 14). 
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Table 3 Parameters of starch samples (n=3). 

Samples Dio% D<w/» SBET Vp 1.7-300 lun D (4V/F) 

| pmj | p m ] lm2 /g) |mJ/g]*10"* [nm] 

PS 23.47±0.08 75.62±0.07 0 .12±0.002 1.83 11.5 

PSm w 23.16±0.02 73.86±0.07 0.10±0.003 1.66 7.55 

PSi30»c 23.82±0.30 73.16±0.04 0.11 ±0.002 1.73 8.47 

M S 9.39±0.22 23.02±0.31 0 .27±0.004 9.11 13.50 

M S ™ 9.33±0.01 22.51±0.07 0.30±0.003 9.17 13.00 

MSI3OOC 9.34±0.02 22.41 ±0.14 0.38±0.003 11.60 9.42 

Mesopore diameter (nm) 

Figure 14 Cumulative mesopore volume distributions of starch samples as a function of 

average mesopore diameter. 

Both microwave irradiation and conventional heating destroyed the crystalline structure of PS 

(Fig. 15), while MS retained its original X-ray pattern after thermal treatments (Fig. 16). 

The results of X-ray diffraction obtained on MS are in accordance with those of previous 

studies, which reported that the effect of microwave irradiation is less pronounced on cereal 
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starches containing a lower amount of water molecules in the unit cell and exhibiting an A-

type XRPD diffractogram [103-106]. 

2-Theta - Scale 

Figure 15 X-ray patterns of potato starch subjected to hydrothermal treatments. 

Lin (Counts) 

2-Theta - Scale 

Figure 16 X-ray spectra of maize starch subjected to hydrothermal treatments. 
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Both microwave irradiation and conventional heating resulted in a significant decrease in the 

moisture content of PS and of MS. The two types of thermal treatment led to significantly 

different moisture contents (Table 4) [III]. 

Table 4 Moisture contents of starch samples after thermal treatments and during storage 

(n=3). 

Sample Moisture content |mg/g starch) 

Native After Day 1 of Day 2 of Day 3 of 
sample thermal storage s torage storage 

treatment 

36.60±0.10 

37.87±0.83 

41.27±2.74 

45.10±2.18 

PS 73.60±2.11 

PSm„ - 0 .70±0.00 7.30±0.71 27.90±1.51 

PS130oc - 5.97±1.10 11.57±0.95 28 .07±1.93 

M S 66 .67±2 .35 

MS m w - 0 .00±0.00 15.40±1.31 36 .15±0.78 

MSi30«C " 7.09±0.74 17.47±1.91 32 .73±0.96 

The moisture contents after thermal processing were in accordance with the findings of 

previous studies that volumetric heating (microwave) allows sufficient energy transfer and 

hence rapid and uniform heating [9, 11]. The moisture loss resulting from these thermal 

treatments proved to be reversible, as expected [107], The processed samples readsorbed a 

considerable proportion of their initial moisture content during storage. The values of 

moisture content measured on the first three days of storage are included in Table 4. The rate, 

at which the samples adsorbed moisture, was determined by weighing the samples at given 

intervals. The moisture uptake rate (MUR) was determined as the slope of the linear segment 

[108] (Table 5). 

Table 5 MUR values of starch samples (n=3). 

Sample Equation R2 M U R 

[mg/g/dayl 

PS y = 12.83 x - 1.12 0 .9596 12.83 

PS13o»c y = 11.219 x + 4 . 0 3 9 0.9693 11.22 

MS m w y = 18.075 x - 0 . 8 9 1 7 0 .9928 18.07 

MS1 3 0°C y = 13.93 x + 6 . 2 0 3 0 .9952 13.93 
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Our measurements indicated that the first few days after thermal processing play an important 

role in the moisture uptake of the samples. PS had readsorbed 50% of its initial moisture 

content by the third day of storage, while MS had readsorbed 70%. It was noteworthy that the 

M U R of MS was always higher than that of PS. 

In the structure of starches, amorphous regions alternate with crystalline micelles, 

forming a sponge-like structure. Apart from polysaccharides, an integral part of starches is 

water. According to Bogracheva et al., the degree of crystallinity is linearly proportional to 

the water content of the polymers and the driving force for increased water uptake is the 

formation of crystallites [107], Since the water molecules are adsorbed by the amorphous 

parts of starches, the moisture content plays an important role in the crystalline - amorphous 

transformation of these biopolymers [1, 109]. Hence, it is clear that hydrothermal treatment is 

accompanied by the structural destruction and amorphous transition of PS, due to the 

dehydration of the sample [110]. 

Amorphous regions in crystals are generally thermodynamically unstable, i.e. they are in a 

higher energy state than that for the crystalline form. Within these amorphous regions, the 

substantial absorption of water vapour can occur, which can cause physical and chemical 

transitions. The amorphous regions are hot spots in which physical changes and/or chemical 

degradation can be initiated [111, 112]. Consequently, besides the hygroscopicity of starches, 

the structural conversion of PS can also contribute to the fast moisture uptake during storage. 

Since the structure of MS was not considerably influenced by the hydrothermal treatments, 

the faster water uptake and the higher M U R of MS can be attributed to the 

micromorphological parameters of the sample: the specific surface area of MS is 3 times 

higher than that of PS [II], 

Appreciable differences were observed between the WRC, SC and SP values of the 

initial samples (PS and MS), which can be explained with the structural differences between 

these starches of different botanical origins (A- and B-type starches) (Table 6) [79, 80, 88]. 

The thermal treatments increased the WRC, SC and SP values of PS significantly. The WRC 

and the SP of PS processed and stored for 6 months (WRCafter storage) was makedly higher than 

that of the initial sample. Hence, the effect of microwave irradiation on the above-mentioned 

parameters of PS may be irreversible. In contrast with the WRC and SP values, the increase in 

SC proved reversible during storage. The results included in Table 6 show that the applied 

hydrothermal processes did not have a significant influence on the WRC and swelling 

properties of MS. However, a significant decrease in WRC of MS could be detected after 

storage of the processed samples. 
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The increases in the WRC and the swelling parameters of PS may also be related to the 

crystalline - amorphous transition of the polymer structure and to the reduction in the amylose 

content ("amylose-escape") initiated by the thermal treatment [7, 92, 103-105]. Moreover, the 

damage on the surface of starch particles subjected to conventional heating (PSi3o°c) can 

facilitate the interaction of amylopectin and water molecules during swelling and hence 

contribute to the increase in SC [II]. The reversible change in SC, characterizing the ability of 

starches to swell in cold water, permits the conclusion that there is a correlation between the 

decrease of SC and the water uptake during storage. 

Table 6 Swelling parameters of starch samples (n=3). 

Sample W R C a f t e r W R C a f t e r SCafter S C a f t e r SPafter SPafter 

thermal storage thermal storage thermal storage 

treatment treatment treatment 
[g/gl [g /g | 

PS 1.19±0.01 - 1.0510.04 - 28.2011.29 

PSmw 1.73±0.03 1.80+0.21 1.3010.06 1.1010.06 37.7311.80 32.1511.21 

PSi30°c 1 7210.06 1.52±0.10 1.5310.05 1.2410.08 35.6010.71 30.8711.73 

MS 1.63±0.14 - 0.7710.06 - 13.8311.53 -

MSmw 1.53±0.03 1.35±0.24 0.8310.00 0.7910.00 15.4111.83 13.4511.57' 

MS130»C 1.85±0.05 1.3110.12 0.8410.05 0.7510.00 13.2210.49 13.0211.52 

As compared with the compacts consisting of microcrystalline cellulose only (AV), 

the application of the initial starches for tablet formulation decreased the tensile strengths of 

the compacts, and the tensile strengths were also decreased after physical treatments (Table 

7). The extent of the decrease did not depend on the type of starch applied, but the effects of 

the thermal treatments on the tensile parameters differed. The decrease in the tensile strength 

caused by the application of thermally modified PS was more significant than the decreases in 

the strength parameters of the comprimâtes containing physically treated MS. The 

experimental results of MS could be related to its special structure. MS is more resistant 

towards modifying agents than is PS, which is probably due to the occurrence of lipids in the 

surface and helical amylose complexes [79,113]. 

29 



Table 7 Influence of starches on physical parameters of compacts containing 20% starch and 

80% microcrystalline cellulose (Avicel® PH 101) (compression force = 2±0.5 kN) (n=10). 

Compacts Average mass 
[g] 

Average height 

|mm] 

Average tensile 

strength 

[MPa] 

Avicel® PH 101 (AV) 0.2157±0.0050 2.33±0.02 5.46±0.09 

AV/PS 0.2149±0.0012 2.51±0.02 4.60±0.24 

AV/PSmw 0.2237±0.0012 2.64±0.01 4.00±0.22 

A WPS no °c 0. 2172±0.0011 2.79±0.01 3.46±0.13 

AWMS 0.2099±0.0031 2.34±0.04 4.83±0.44 

AWMSmw 0.2158±0.0073 2.40±0.05 4.31±0.35 

AWMSuo-c 0.2224±0.0011 2.48±0.02 4.43±0.14 

The solids containing the initial PS had smaller contact angles than those compressed 

from the native MS (Table 8). The lower hydrophilicity of MS could be attributed to the lipid 

content and the special structure of this starch type [114]. 

Table 8 Contact angles and surface free energies of compacts with a porosity of 10±2% 

containing 20% starch and 80% microcrystalline cellulose (Avicel® PH 101) (compression 

force = 20±1 kN) (n=10). 

Compacts ®water ®diiodo-methane yd yP Y Polarity* 

1°1 [mN/ml [mN/m] [mN/m] [%] 

Avicel® PH 101 (AV) 38.83±1.77 25.02±0.66 33.69 27.81 61.49 45.23 

AV/PS 33.00±1.40 24.46±0.70 32.72 31.72 64.44 49.22 

AV/PSmw 47.20±1.97 33.08±0.77 31.81 23.28 55.09 42.26 

AV/PSUo<>c 44.84±1.02 37.59±1.65 31.87 25.21 57.08 44.17 

AV/MS 34.47±1.78 25.24±1.12 33.21 30.60 63.80 47.96 

AV/MSmw 45.03±1.48 33.13±1.20 31.44 25.33 56.77 44.62 

AV/MS130.C 53.51±1.76 32.05±1.53 30.90 20.19 51.09 39.52 

* Polarity = (yp/y) * 100 [115] 
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The effects of the microwaved PS and MS on the contact angles were significant and had the 

same scale, while application of the MS treated by conductive heating resulted in larger 

changes in the contact angles than those for the PS. The decreased hydrophilicity of the 

processed starches could be explained by the fact that thermal treatment decreases the content 

of the more hydrophilic structure polymer ('amylose-escape') [103-105]. 

Both the microwave irradiation and the conventional heating reduced the surface free energy 

and the polarity of the compacts, which was due to the water loss from the starches caused by 

the thermal treatment. The disperse and polar parts of the surface free energies of the initial 

samples were nearly equal. After the thermal processes, the polar components fell drastically, 

whereas the disperse part did not decrease significantly (Table 8). 

Conclusion 

Volumetric heating resulted in reversible moisture loss from both types of samples. The 

crystallinity of potato starch was decreased, while its water retention capacity and swelling 

power were increased irreversibly, and its swelling capacity was increased reversibly by the 

thermal process applied. The corresponding parameters of maize starch were not influenced 

significantly by volumetric heating; this may be related to its special structure resulting in the 

thermal resistance of this polymer. 

The results presented in this work allow the conclusion that the difference in response of PS 

and MS to the microwave irradiation was related to the structural difference of the initial 

starches. The changes in tensile strength, wettability and surface free energy could be 

attributed to the water loss (dehydration) during microwave treatment. On the other hand, 

irreversible structural changes caused by the physical treatments, such as crystalline-

amorphous solid phase transition and "amylose escape" may have an influence on the above 

properties. Although microwave irradiation is known not to influence molecular structure, 

these results allow the conclusion that a profound knowledge of the effects of microwave 

irradiation on the physico-chemical properties of frequently used excipients is essential in 

order to rationalize the use of dielectric heating for pharmaceutical processing. 

As concerns the practice of drug formulation, it can be concluded that, apart from the 

optimum drying parameters, adequately controlled storage conditions are also of vital 

importance in ensuring the appropriate moisture content of starches and pharmaceutical 

formulations containing starch. 
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For the microwave drying of pharmaceutical formulations, the application of maize starch is 

advisable, with regard to the thermal resistance of this polymer. Microwave irradiation can be 

regarded as a suitable and selective non-conventional method for the purposeful physico-

chemical modification of potato starch. 

5.2. Formulation and characterization of a solid dosage form prepared via the freeze-

casting technique 

The aim of the present work was to develop a fast-dissolving solid dosage form containing 

theophylline as active ingredient and potato starch as filler using the freeze-casting technique. 

The structure, the physical properties and mechanism of drug release from the freeze-casted 

units were investigated. The examined properties of the samples were compared with those of 

tablets compressed by an eccentric tableting machine using three different compression 

forces. 

Physical properties of the aqueous suspensions, such as viscosity, play an important 

role in the freeze casting process. The first step of the sample preparation was the production 

of an appropriate aqueous suspension, which exhibited a good flowability (it could be poured 

into the moulding form without difficulty), whereas the sedimentation of the suspended 

particles during the freezing process was negligible [V, VI]. The suspensions can be 

characterized by thixotropic flow (Fig. 16). Thixotropic systems exhibit easy flow at 

relatively high shear rates. However, when the shear stress is removed the system is slowly 

reformed into a structured vehicle. The usual property of thixotropy results from the 

breakdown and build up of floccules under stress. The primary advantage of thixotropic flow 

is that it confers pourability under shear stress and viscosity when the shear stress is removed 

at rest [116]. The viscosity of each system at a shear rate of 100 s"1 is included in Table 1 (see 

Chapter 4.1.). 

It is well known that starches swell and form gels in excess water during heating. 

Therefore, the pasting temperatures of the suspensions were determined and the drying 

temperatures of the samples were kept under the gelatinization temperatures. The 

gelatinization temperatures of the samples are given in Table 1 (see Chapter 4.1.). 
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Shear rate [1/s] 

Figure 16 Flow curve of an aqueous suspension containing potato starch and theophylline 

(Sample 1). 

A solid dosage form produced by freeze-casting is depicted in Figure 17. Sample 1 

was very fragile and difficult to handle. The data given in Table 9 justify that the tensile 

strength of the ffeeze-casted samples is notably lower than that of the tablets compressed with 

an eccentric tableting machine. The tensile strength values of the tablets show a very good 

correlation with the applied compression force. 

Figure 17 Picture of a starch matrix without an active ingredient produced by freeze-casting. 
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Table 9 Physical parameters of Sample 2 (n=10), Sample 3 (n=10) and the tablets (n=20). 

Samples Average weight Average Average height Average tensile Moisture 

|g) diameter strength content 

[mm] |mm| | M P a | [% (w/w) | 

Sample 2 1.447 ± 0 . 2 0 9 14.32 ± 0 . 2 1 10.34 ± 1.61 0.29 ± 0.06 6.95 ± 0 . 2 7 

Sample 3 1.456 ± 0 . 2 5 2 14.51 ± 0 . 9 3 10.04 ± 2 . 6 3 0.32 ± 0.05 7.31 ± 0 . 2 9 

Tablet/5 kN 0.248 ± 0 . 0 1 0 10.02 ± 0 . 0 1 2.81 ± 0 . 0 4 1.94 ± 0 . 3 4 

Tablet/10 kN 0.250 ± 0 . 0 2 6 10.01 ± 0 . 0 1 2.63 ± 0.07 2.92 ± 0.45 

Tablet/20 kN 0.255 ± 0 . 0 1 0 10.01 ± 0 . 0 1 2.60 ± 0 . 0 7 4.03 ± 0.33 
-

Figure 18 shows the fine porous structure of the freeze-casted matrices. Figure 19 

demonstrates the surface characteristics of the samples containing theophylline and the 

additives. The SEM micrographs exhibit the needle-like crystals of the active pharmaceutical 

ingredient and the ovoid particles of potato starch. 

Figure 18 SEM pictures of starch-based matrices without an active ingredient. 

19a. 19b. 

Figure 19 SEM pictures of the surface of Sample 2 (19a) and Sample 3 (19b). 
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The SEM pictures reveal that starch particles remained intact during drying and the freeze-

casted matrix is stabilized by contact points formed by the water-soluble additives (saccharose 

and citric acid) recrystallized during the evaporation of water (binding-effect of the additives) 

(Fig. 20) [117]. 

20a. 20b. 

Figure 20 SEM pictures of Sample 2 (20a) and Sample 3 (20b) produced by freeze-casting. 

The results of the porosity measurements confirmed the porous nature of the freeze-

casted samples compared to tablets compressed with different compression forces (Table 10). 

The total volume of mercury (VTOT) intruded into the freeze-casted units was markedly higher 

than that intruded into the tablets. Significant differences could also be observed between the 

porosity percentages (s) and the pore sizes ( d m e a n ) of the matrices and the tablets. 

Table 10 Micromorphological parameters of the freeze-casted samples and the tablets 

compressed with different compression pressures (n=3). 

Sample Total intruded 
volume 

(V to t) 

Total pore 
surface area 

( S ) 

Mean pore 
diameter 

( ^ m e a n ) 

Specific 
surface area 

(SBET) 

Apparent 
particle 
density 

(Ph) 

Porosity 
0 9 

[cm3 /g | |m2 /g] | n m | |m2 /g] [g/cm3 | | % | 
Sample 2 0 . 4 5 ± 0 . 0 2 1 . 0 7 ± 0 . 0 2 1 6 7 6 ± 6 5 0 . 1 5 ± 0 . 0 1 1 . 9 2 ± 0 . 0 1 4 6 . 2 7 

Sample 3 0 . 2 9 ± 0 . 0 2 1 . 1 9 ± 0 . 0 3 9 7 5 ± 8 0 0 . 2 0 ± 0 . 0 1 1 . 9 2 ± 0 . 0 1 3 5 . 8 1 

Tablet/5 kN 0 . 1 8 ± 0 . 0 1 1 . 2 6 ± 0 . 0 2 5 6 9 ± 2 2 0 . 8 6 ± 0 . 0 1 1 . 9 1 ± 0 . 0 1 2 2 . 8 2 

Tablet/10 kN 0 . 1 1 ± 0 . 0 1 1 . 3 7 ± 0 . 0 3 3 3 2 ± 1 9 0 . 8 0 ± 0 . 0 1 1 . 9 1 ± 0 . 0 1 1 7 . 9 2 

Tablet/20 kN 0 . 0 9 ± 0 . 0 1 1 . 3 3 ± 0 . 0 2 2 6 7 ± 1 0 0 . 7 9 ± 0 . 0 1 1 . 9 1 ± 0 . 0 1 1 4 . 4 9 
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Figure 21 shows the cumulative pore volume distribution, while Figure 22 

demonstrates the pore volume size frequency obtained by combination of the results 

determined with nitrogen adsorption and mercury porosimetry [IV], 

•f 
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E 
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Pone diameter (nm) 

Figure 21 Cumulative pore volume - size distribution curves obtained by combination of the 

results determined with nitrogen adsorption and mercury porosimetry. 
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Figure 22 Pore volume (V) - size (D) frequency curves obtained by combination of the 

results determined with nitrogen adsorption and mercury porosimetry. 

Considering the pore size, tablets contained some meso- and macropores, while the dendritic 

structure of the freeze-casted samples included only macropores (Fig. 21). The total pore 
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volume of Sample 2 and Sample 3 can be originated from the pores having a diameter larger 

than 1 gm. The larger mean pore diameter of the matrices (dmean) corresponds to higher 

porosity (e) and smaller total pore surface area (S; SBET) (Table 10). 

Pore volume size distribution curves (Fig. 22) emphasize differences of the pore volume at 

small pore size intervals. High frequency of mean pore diameters of tablets in the 2-5 nm 

range could imply some pores with this entrance diameter range and a wide inner body (ink-

bottle pores), rather than a large number of pores with these dimensions. 

The surface area values obtained by mercury porosimetry (S) are significantly higher than 

those obtained by nitrogen adsorption (SBET) (Table 10). This is due to the complex pore 

structure and the ink-bottle-shaped pores of the tablets. The surface area in mercury 

porosimetry is calculated from the volume intruded in pore diameter intervals assuming 

cylindrical pores with round pore openings. The so-called ink-bottle pores tend to increase 

surface area values calculated from mercury porosimetry data, because the volume of the 

pores with small necks can be remarkable [83-85, IV]. 

Furthermore, it should be pointed out that a significant difference was found between the 

micromeritics of Sample 2 and Sample 3. Hence, effects of the binding materials on the 

microstructure may be assumed. 

The results of the dissolution study revealed the rapid delivery of theophylline from 

the matrices as compared with the rate of dissolution from the tablets (Fig. 23). 

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 

Time (min) 

Figure 23 Profile of theophylline dissolution in artificial gastric juice. 
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Figure 23 shows that almost the total amount of the incorporated active ingredient was 

dissolved from the freeze-casted samples in the first 7 min of the study (burst effect). During 

this period, only 60% of the theophylline was delivered from Tablet/20 kN and 10% of the 

active agent was dissolved from Tablet/10 kN and Tablet/5 kN. 

The values of the characterized dissolution time (x) also evidenced the promoted dissolution 

of Sample 2 and Sample 3 as compared to the tablets (Table 11). 

Table 11 Parameters of rates of dissolution by RRSBW distribution. 

Sample P 
shape parameter 

T value 

[min] 

R2 

Sample 2 6.66 3.98 0.9998 

Sample 3 2.28 4.72 0.9438 

Tablet/5 kN 1.13 48.83 0.9988 

Tablet/10 kN 1.13 49.15 0.9988 

Tablet/20 kN 0.92 8.51 0.9392 

The T value of Tablet/20 kN, which was calculated from the slope and the intercept values 

after linearized regression and transformation of the Rosin-Rammler-Sperling-Bennett-

Weibull distribution, is two times higher than those of the freeze-casted matrices, while the 

characterized dissolution times of Tablet/5 kN and Tablet/10 kN are more than ten times 

higher than those of Sample 2 and Sample 3. 

The correlation coefficients of different kinetic equations are included in Table 12. 

Table 12 Correlation coefficients of different parameters measured and estimated applied the 

mathematical models. 

Sample Zero-order 
model 

First-order 
model 

Higuchi 
square-root of time 

model 

Sample 2 0.7634 0.9992 0.9997 

Sample 3 0.7634 0.9992 0.9997 

Tablet/5 kN 1.0000 0.9973 0.9459 

Tablet/10 kN 1.0000 0.9973 0.9459 

Tablet/20 kN 0.8306 0.9974 0.9843 
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The dissolution mechanisms of Tablet/5kN and Tablet/1 OkN can be characterized preferably 

by a zero-order kinetic revealing a constant rate of dissolution, while the release from 

Tablet/20kN fits mostly to the first-order model. The diffusion-controlled matrix release 

(Higuchi-model) is most close to Sample 2 and Sample 3. 

On the basis of the obtained values of fi and f2 (Table 13), the dissolution profiles of the 

samples can be considered different compared to the tablets used as references (fi > 15; f2 < 

50), while the profiles of Sample 2 and Sample 3 can be considered the same (fi < 15; f 2 > 50). 

Table 13 Fit factor values obtained for the freeze-casted samples and the tablets. 

Sample Difference factor (fi) 

1%] 

Similarity factor (f2) 

Sample 1 - Tablet/5 kN 122.86 7.59 

Sample 1 - Tablet/10 kN 123.19 7.56 

Sample 1 - Tablet/20 kN 29.82 26.23 

Sample 2 - Tablet/5 kN 118.78 9.55 

Sample 2 - Tablet/10 kN 119.13 9.51 

Sample 2 - Tablet/20 kN 23.51 30.15 

Sample 2 - Sample 3 6.43 56.98 

The results of the dissolution study are in accordance with the micromeritics of the samples 

and indicate that the high porosity resulted by the presence of large macropores allowed a 

good matrix-solvent interaction and enhanced the dissolution of the active pharmaceutical 

ingredient from the freeze-casted dosage forms. 

The smaller x values of the tablets may be also explained by their complex pore structure and 

are in good agreement with previous studies which reported that pores with a narrow neck and 

a large internal volume (ink-bottle pores) may have a negative influence on drug dissolution 

rates [118]. 

The results of the dissolution study indicate a difference between the dissolution kinetics of 

the tablets (Fig. 23, Table 12). Compared to Tablet/5 kN and Tablet/10 kN the x value of 

Tablet/20 kN is considerable lower (Table 11). These differences can be explained by the 

correlation of compression force and swelling force of starches. According to some authors, 

the higher the compression force is during the tableting process, the higher the swelling force 
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of the starch particles is during disintegration. Hence, higher compression force might result 

in faster disintegration and higher dissolution rates [119-121]. 

Conclusion 

The results of this study permitted the conclusion that the freeze-casting technique is suitable 

for the formulation of porous dosage forms containing theophylline as an active 

pharmaceutical ingredient and potato starch as filler. 

In accordance with previous studies, the mechanical stability of the samples could be 

improved by using water-soluble additives, which can stabilize the matrix structure by their 

recrystallization upon evaporation of the suspending agent. However, the tensile strength 

values of the freeze-casted units were markedly lower than those of the tablets compressed 

with an eccentric tableting machine. In order to protect the solid dosage form against 

mechanical stress, convenient packaging might be an appropriate alternative. 

As compared with tablets used as references, the freeze-casted matrices revealed a 

considerable difference in pore structure and micromeritics. 

The results of the dissolution studies demonstrated that the matrix-solvent interaction was 

enhanced by the large pore size and porous structure of the freeze-casted samples. The initial 

burst effect was the result of a rapid dissolution and release of theophylline from the matrices 

into artificial gastric juice. 

5.3. Preparation and characterization of starch-based hydrogels prepared by using 

isostatic ultrahigh pressure 

The purpose of this study was to investigate the applicability of ultrahigh pressure for the aim 

of drug formulation. In this work, aqueous suspensions of potato and maize starches 

containing theophylline as an active pharmaceutical ingredient were subjected to isostatic 

ultrahigh pressure (IUHP). The changes in the structure and morphology of potato and maize 

starches were investigated. The release profile of theophylline from the pressurized samples 

was also studied. 

Preformulation study 

Starch-water suspensions pressurized at 300 MPa did not exhibit visible changes. SEM 

analysis confirmed that the granules of PS and MS treated at 300 MPa retained their granular 

shape and smooth surface (Figs. 24 and 25). 
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Figure 24 Stereomicrograph (magnification lOx) and SEM picture of PS3oo-5-

Figure 25 Stereomicrograph (magnification lOx) and SEM picture of MS3oo-5-

The samples subjected to 700 MPa turned into highly viscous gels, although the temperature 

in the pressure chamber did not reach the starch gelatinization temperature known from the 

literature ( -72 °C). The majority of the particles of PS pressurized at 700 MPa did not display 

apparent changes in shape or surface characteristics. However, some particles were 

characterized by significant surface damage and deformations (Fig. 26). 

Treatment at 700 MPa led to an irreversible loss of the particle structure of MS. M S 7 0 0 - 5 and 

M S 7 0 0 - 2 0 revealed a high level of destruction of the particle integrity. Figure 27 demonstrates 

clear network-like gel structures. These observations are closely related to those of a previous 

study on high pressure-treated starches [1, 69], 
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Figure 26 SEM micrographs of PS7oo-s-

Figure 27 SEM pictures of M S 7 0 0 - 5 . 

As expected from the previous findings, MS (possessing an A-type X-ray powder diffraction 

pattern) proved to be more sensitive to UHP, while PS (with a B-type crystal structure) was 

more stable toward IUHP treatment [3, 75, 76]. PS pressurized in aqueous medium retained 

its original X-ray pattern. Nevertheless, the intensity of the peaks was decreased after 

treatment at 700 MPa, which can be attributed to the loss of crystallinity during pressurization 

(Fig. 28). 

The X-ray diffractogram of MS pressurized at 300 MPa indicates marked changes (Fig. 29). 

Figure 29 demonstrates the change in the crystalline structure of MS from A to B type upon 

treatment at 700 MPa ( M S 7 0 0 - 5 ) . The single peak at 22° 20 characteristic of A-type starches 

remained unchanged. The X-ray curve of M S 7 0 0 - 5 reveals a peak at around 6° 20 and the 

transformation from a double peak to a single peak at around 17.5°, which are characteristic 

of the B-type pattern (peaks denoted by arrows) [77, XIII]. 
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Figure 28 X-ray curves of potato starch samples (*Peak of the sample protection foil). 

* 
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Figure 29 X-ray curves of maize starch samples (*Peak of the sample protection foil). 

These observations might be explained in terms of the differences in amylopectin structure 

and water content of the A-type and B-type starches. In the B-type crystallite, water fills up 

the channel in the unit cell and stabilizes the crystalline structure. For A-type starches, the 
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more scattered branching structure of amylopectin is more flexible and allows rearrangements 

of the double helices, which permits a structure transformation [77], 

On the basis of the preformulation studies, pressurization at 700 MPa for 5 minutes was 

chosen in order to formulate gel samples containing theophylline as an active pharmaceutical 

ingredient, since the gelatinization of the starch suspensions and the structural conversion of 

MS occurred completely using the given process parameters. 

Investigation of theophylline dissolution from starch gels prepared by IUHP treatment 

A considerable difference could be observed between the profiles of theophylline release from 

the starch gels (PS-T; MS-T) and the reference (T) (Fig. 30). The correlation coefficients of 

different kinetic equations are included in Table 14. 

Time (min) 

Figure 30 Dissolution profile of theophylline from the gels and the reference (XVIII). 

The dissolution mechanism from the aqueous theophylline suspension used as a reference (T) 

can be characterized preferably by a first-order kinetic, while the release from PS-T fits 

mostly to the Hixson-Crowel model. On the basis of these results, it can be assumed that the 

drug release from PS-T occurs only in vertical direction relative to the matrix surface and the 

matrix maintains its original shape during the release progress [96], The release mechanism of 

theophylline from MS-T can be characterized with the Korsmeyer-Peppas model. 
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Table 14 Correlation coefficients of different kinetic equations. 

Sample First order Higuchi model Hixson-C rowel Korsmeyer-Peppas 

kinetics model model 

MS-T 0 . 9 7 3 5 0 . 9 4 6 8 0 . 9 7 0 9 0.9943 

PS-T 0 . 9 8 6 7 0 . 9 3 2 1 0.9922 0 . 9 6 0 6 

T 0.9990 0 . 9 9 5 8 0 . 9 9 7 6 0 . 9 9 8 9 

The results of fitting to Eq. 17 are summarized in Table 15. The diffusional exponent (n = 

0.6351) signified a non-Fickian or anomalous mechanism of drug release. Drug dissolution 

occurring via Fickian diffusion proved to be essential, because the diffusional rate constant 

(ki) is much larger than the relaxational constant (k2) [98-101], 

Table 15 Diffusional exponent (nj (Eq. 16), diffusional (kj) and relaxational {k2) kinetic 

constants (Eq. 17) and Pearson's coefficient (R2) for MS-T. 

n R 1 ki 

[%h-°- 4 7 5 ] 

k 2 

[»/oh"0 9 5] 

R J 

MS-T 0.6351 0 . 9 9 4 3 4.2088 0.3754 0 . 9 9 8 7 

As shown in Figure 31, the Fickian contribution to the overall release process decreased with 

increasing amount of released drug. Hence, the relaxation of the polymer chains became more 

pronounced (Fig. 32). 

released drug (%) 

Figure 31 Fickian release fraction (F) (Eq. 19) as a function of released theophylline from 

MS-T. 
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Figure 32 Ratio between relaxational (R) and diffusional (F) contributions to release of 

theophylline from MS-T (Eq. 20). 

These results can be explained with the simultaneous water up-take during the dissolution 

process, which enables polymer relaxation [99], It must be noted that the first three measuring 

points of the dissolution curve of MS-T coincide with those of T, which may be probably due 

to the presence of free drug particles on the sample's surface easily accessible for the 

dissolution medium. 

The values of the characterized dissolution time (x) evidenced the promoted drug 

release from PS-T as compared to the reference (T) (Table 16). The x value of PS-T is 

significantly smaller than those of the reference, while the characterized dissolution time of 

MS-T is more than seven times higher than the x value of T [97], 

Table 16 Parameters of rates of dissolution by RRSBW distribution. 

Sample P 

shape parameter 

T value 

[min] 

R* 

MS-T 0 . 6 5 8 2 5324 0 . 9 9 3 8 

PS-T 0 . 7 1 7 1 734 0 . 9 9 8 2 

T 0 . 9 1 0 8 1023 0 . 9 9 8 8 

On the basis of the obtained values of f ( and f2 (Table 17), the dissolution profiles of 

the gels can be considered different compared to each other and the reference [102], 
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Table 17 Fit factor values obtained for the gels prepared by IUHP processing. 

Sample Difference factor (fi) Similarity factor (f2) 

[%1 

MS-T/T 42.86 56.06 

PS-T/T 68.25 51.86 

MS-T/PS-T 66.04 30.47 

According to the literature, the process of drug release in an aqueous medium is 

strongly influenced by the wettability of the sample's surface [122]. The results of contact 

angle measurements shown in Table 18 confirmed that the gels containing starches as 

hydrophilic polysaccharides exhibit smaller contact angle values compared to the pure active 

drug substance. 

Table 18 Contact angle of the samples measured with bidistilled water (©water)-

Sample © w a t e r 

1°) 

MS-T 16.12±0.86 

PS-T 16.73±0.81 

T 36.13±2.22 

Smaller contact angles correspond to better wetting properties, which can contribute to the 

faster drug release from PS-T. However, the improved wettability of MS-T did not result in 

promoted drug dissolution. Therefore, it is reasonable to assume that the sustained drug 

release from MS-T can be attributed to the changes in morphology and structure of the gel-

forming polymer caused by IUHP processing. 

Conclusion 

IUHP treatment of potato and maize starch in presence of water generated highly viscous gels. 

The process was accompanied by the structural conversion of maize starch. The results of the 

morphological and structural studies carried out in this work were in good agreement with 

previous studies, which reported a difference in pressure sensitivity depending on the 

botanical origin of starch as one of the major benefits of pressure-induced gelatinization. 
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The profile of drug release from the gels prepared by IUHP processing could be characterized 

by different kinetics. The hydrogel containing potato starch as a gel-forming polymer 

exhibited faster drug dissolution compared to the aqueous theophylline suspension used as a 

reference, while the pressurization of maize starch resulted in a gel exhibiting sustained drug 

release. Our experimental results allow the conclusion that the morphological and structural 

changes caused by pressurization have a significant influence on the dissolution process. 

The different pressure sensitivities of the starches permit the use of IUHP treatment as a 

selective non-conventional means of starch modification. The modified features of the 

pressurized starches might well promote their application in drug formulation and 

development. 

6. SUMMARY 

The objective of this thesis was to investigate the applicability of three non-conventional 

methods - microwave processing, freeze-casting and isostatic ultrahigh pressure - as possible 

alternatives for pharmaceutical processing and drug formulation using potato and maize 

starches as model substances. 

The structures and the habits of the native and the microwaved starches were studied. The 

effects of microwave irradiation and storage on the moisture content, adsorption behaviour 

and swelling properties of the polymers were investigated. The contact angles and the tensile 

strengths of the compacts prepared from the initial and the processed starch samples were 

measured and their surface free energies and polarities were calculated. Samples treated by 

conventional heating were used to compare the effects of microwave irradiation on the 

examined properties and parameters of these starches. The investigations proved that 

microwave irradiation and conventional heating changed the structure of the applied 

biopolymers irreversibly and influenced their physico-chemical properties in different ways. 

Volumetric heating resulted in reversible moisture loss from both types of samples. The 

crystallinity of potato starch was decreased, while its water retention capacity and swelling 

power were increased irreversibly, and its swelling capacity was increased reversibly by the 

thermal process applied. The corresponding parameters of maize starch were not influenced 

significantly by volumetric heating; this may be related to its special structure resulting in the 

thermal resistance of this polymer. These results allow the conclusion that for the microwave 
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drying of pharmaceutical formulations containing starch, the application of maize starch is 

advisable, with regard to the thermal resistance of this polymer, while microwave irradiation 

can be regarded as a suitable and selective non-conventional method for the purposeful 

physico-chemical modification of potato starch. 

The aim of the experiments concerning the freeze-casting technique was to develop a fast-

dissolving solid dosage form containing theophylline as active ingredient and potato starch as 

a diluent. The structure, the physical properties and mechanism of drug release from the 

freeze-casted units were investigated. The examined properties of the samples were compared 

with those of tablets compressed by an eccentric tableting machine using three different 

compression pressures. The freeze-casting technique proved to be an appropriate alternative 

for the development of porous solid drug-delivery systems. The mechanical strength of the 

matrices could be improved by using water-soluble additives, which stabilized the solid 

bodies during recrystallization upon drying. As compared with the tablets, the freeze-casted 

units revealed a highly porous nature and a remarkable difference in pore volume size 

distribution. The results demonstrated that the drug-solvent interaction, enhanced by the 

structural properties, resulted in a rapid delivery of the theophylline from the solid units into 

artificial gastric juice. 

The purpose of this study was to investigate the applicability of isostatic ultra high pressure 

(IUHP) for the aim of drug formulation. Aqueous suspensions of potato and maize starches 

containing theophylline as an active pharmaceutical ingredient were subjected to IUHP. The 

changes in the structure and morphology of potato and maize starches were investigated. The 

release profile of theophylline from the pressurized samples was also studied. 

The aqueous suspensions subjected to IUHP turned into highly viscous gels. The crystalline 

structure of maize starch was changed, while potato starch pressurized in aqueous medium 

retained its original X-ray pattern. The sample containing potato starch as a gel-forming 

polymer exhibited faster drug dissolution compared to an aqueous theophylline suspension 

used as a reference, while the pressurization of maize starch resulted in a gel exhibiting 

sustained drug release. The results of the dissolution study can be explained with the changes 

in structure and morphology of the starches caused by IUHP processing and with the different 

pressure sensitivities of the two polysaccharides. 
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Practical relevance of the experimental results 

It is known from the literature that the energy of microwave photons is very low relative to 

the typical energies of chemical bonds. Hence, microwaves do not directly affect molecular 

structure. However, as observed in this study, moisture content has a major influence on the 

crystalline structure of potato starch and the water removal from this polymer is accompanied 

by irreversible structural changes, which result in modified physico-chemical properties. The 

results presented in this thesis allow the conclusion that a profound knowledge of the effects 

of microwave irradiation on the physico-chemical properties of frequently used excipients is 

essential in order to rationalize the use of dielectric heating for pharmaceutical processing. As 

concerns the practice of drug formulation, it can be concluded that, apart from the optimum 

drying parameters, adequately controlled storage conditions are also of vital importance in 

ensuring the appropriate moisture content of starches subjected to volumetric heating. 

The freeze-casting technique and the processing by isostatic ultrahigh pressure proved to be 

promising new alternatives for the aim of drug formulation and design. The final product 

properties, which can be notably influenced by the process parameters, promote their 

application for specific therapeutic aims, like immediate or sustained drug delivery. 

The susceptibility of the biopolymers against microwave irradiation and ultrahigh pressure 

strongly depended on their botanical origin, which enables a selectivity regarding the resulted 

effects. 

As concerns the practical advantages, it should be emphasized that all non-conventional 

methods investigated in this work can be considered as green and mild technologies. 
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