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Abstract. We are concerned here with how structural properties of language
may come to reflect features of the world in which it evolves. As a concrete

example, we will consider how a simple term language might evolve to sup-

port the principle of indifference over state descriptions in that language. The
point is not that one is justified in applying the principle of indifference to

state descriptions in natural language. Instead, it is that one should expect

a language that has evolved in the context of facilitating successful action to
reflect probabilistic features of the world in which it evolved.

1. Introduction

A simple term language might evolve to allow for effective communication in

the context of a Lewis-Skyrms signaling game (Lewis, 1969; Skyrms, 2006, 2010a).

Here we are concerned with how such an evolved language may reflect probabilistic

features of the world in which it evolved.

Specifically, we will consider how a simple evolutionary process might lead to a

language where unbiased priors over state expressions in the language accurately

represent the relative frequencies of the corresponding states of nature; this is a how-

possibly explanation (Hempel, 1965; Resnik, 1991).1 We examine how the structure

of a language might evolve to represent some statistical properties of the world

in such a way that a purported principle of rationality—namely, the principle of

indifference—actually obtains. The suggestion is not that there is evolutionary war-

rant for adopting a principle of indifference.2 The point, rather, is that one should

expect a language that has evolved in the context of facilitating successful action
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to reflect statistical features of the world in which it evolved. In the present case,

it does so in a way that supports a purported epistemic principle. That said, what

these features are more generally may be both subtle and difficult to determine.

We will start by considering how a language might evolve in the context of a

signaling game. We will then consider how such an evolved language might come

to reflect probabilistic properties of the world in which it evolved.

2. Basic Signaling and the Problem of Priors

In a basic two-agent 2×2×2 Lewis-Skyrms signaling game, there are two states

of nature, two types of signal, and two types of action—one matching each state

of nature. On a play of the game, one agent (the sender) sees the state of nature,

then chooses and sends one of the signals to the other agent (the receiver) who then

performs an action. The action is successful if and only if it matches the current

state of nature.
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Figure 1. A basic 2× 2× 2 signaling game

The two agents may evolve a signaling system over repeated plays of the game.

One way that this might occur is under simple reinforcement learning. Suppose that

the sender has two urns—one corresponding to each state of nature—and suppose

that each urn initially contains one ball of each of the two signal types. Similarly,

suppose that the receiver has two urns—one corresponding to each possible signal—

and suppose that each urn initially contains one ball of each of the two action types.

When the sender sees the current state of nature, she goes to her corresponding

urn, draws a ball at random, then sends the signal indicated by the ball. When the

receiver sees the signal, he goes to his corresponding urn, draws a ball at random,

and performs the action indicated by the ball. On simple reinforcement learning, if

the action matches the current state of nature (and is hence successful), then the

agents each return the ball they drew to the urn from which they drew it and add

another ball of the same type to that urn, thus making their successful action more

probable given the antecedent state or signal type. Otherwise, they just return the

ball they drew to the urn from which they drew it.
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If nature is unbiased, then the basic 2× 2× 2 signaling game will converge to an

optimal signaling system with probability one under this simple dynamics.3 Conver-

gence to a signaling system still occurs, but is less likely, under simple reinforcement

learning for an n× n× n signaling game the larger n > 2 and the more biased the

distribution of states of nature.

Language users may learn something concerning the nature of the world they

inhabit as they evolve a language appropriate for describing their world. Consider a

sender-predictor game, a slight variant of the signaling game just described.4 Sup-

pose that the state of nature is observed in the morning and that the action taken

by the receiver is a predictive action in the afternoon. One morning state might

be clear skies, with the corresponding successful afternoon action being take straw

hats to the picnic (because sun is more likely in the afternoon when it is clear in the

morning). The other morning state might be cloudy skies, with the corresponding

successful afternoon action being take umbrellas to the picnic (because rain is more

likely in the afternoon when it is cloudy in the morning). Suppose, in the present

case, that a morning state does not guarantee the corresponding afternoon state—it

just makes it probable. Finally, suppose the sender tracks how often each of her

terms, in fact, leads to successful action given the correlation between morning and

afternoon states.

In this game, under simple reinforcement learning, if the morning state deter-

mines the probability of each afternoon state, then the sender will typically both

evolve a successful signaling language and learn the probabilities of the receiver’s

prediction being true given the signal she sent him. Here precisely the same expe-

rience that allows her to evolve a successful descriptive language may also provide

her with reliable estimates that might serve as effective priors for the receiver’s

predictions.5

There is a sense in which one might take such a story to solve the problem of

priors—the worry that a belief revision model of knowledge requires one to assign

prior probabilities that are then updated over time, when there is no agreed-upon

rational principle for how to initially assign prior probabilities. In the model just

described, reliable, effective priors for success, given a description of the current

state in the evolved language, co-evolve with the meanings of such descriptions.

Indeed, if the agents evolving the language pay attention to how well it works as

they evolve it, the ‘prior’ they assign to successful action, given a description of

the current state, is not well understood as a prior at all. Rather, such ‘priors’ are

expectations that are grounded in the long experience that led to the evolution

3See Argiento et al. (2009) for details.
4See Barrett (2014b) for a discussion of such games more generally.
5See Barrett (2014a) for a detailed description of this particular sender-predictor game, its behav-
ior, a discussion of the problem of priors, and a proposed dissolution of the problem.
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of a useful predictive language. On this view, one never faces the problem of as-

signing prior probabilities to descriptions with no relevant background knowledge

whatsoever. If one is ever assigning probabilities over evolved descriptions, then one

already knows how to use a language that was forged in the context of success and

failure in action, which means that one also has substantial knowledge regarding

the world and how it works.

Here, in contrast, we will consider how the structure of an evolved language may

come to mirror the structure of the world in which it evolved. Specifically, we will

consider how a simple term language may evolve under plausible generic conditions

to make unbiased priors over descriptions in the language reliable. Again, the point

is not that one is in any way justified in accepting the principle of indifference over

a natural language. Rather, it is that a language that evolves in the context of its

usefulness will mirror features of the world where it evolved. Even so, while they

may know well that their evolved language facilitates successful action, there is no

reason to suppose that the agents who use it will know precisely how its structure

mirrors their world.6

3. The Principle of Indifference

The principle of indifference says that, in the absence of other information, one

should assign probability 1/n to each of n specifiable possibilities. If one’s language

individuates between six sides of a die, for example, the principle would recommend

that one assign a probability of 1/6 to each possible outcome on this representation.

On its face, this principle tells one how to assign prior probabilities and so appears

to provide a solution to the problem of priors; however, implementing a solution

along these lines poses serious conceptual difficulties.

As a basic principle of reason, the principle of indifference has little to recom-

mend it. As indicated by how we just characterized the principle, it depends on

how one individuates between states. This, in turn, depends on one’s language and

associated conceptual scheme. The problem is that the principle of indifference typ-

ically provides different recommendations for how one ought to assign probabilities

to a given possibility for different partitions of possibilities. Under the description

that the outcome of a toss of the six-sided die might be any of six possibilities one

to six, the principle would recommend assigning probability 1/6 to getting a one.

But under the description that the outcome of the toss might be the number one

or not the number one, the principle would recommend assigning probability 1/2

to getting the outcome the number one and probability 1/2 to getting the outcome

not the number one. If one takes there to be a matter of fact regarding whether a

6See Barrett (2007) and Purves (2018) for explanations of this sort of failure.
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probability assignment is reliable, then at most one of these recommendations can

be right.

One might object that the second partition (between the number one or not the

number one) is less natural than the first (between each of the six possibilities one to

six ). But the naturalness of a partition depends on one’s background commitments,

the context at hand, and the specific representational features of one’s language. If

one happened to believe that the die was weighted in such a way that was strongly

biased toward the number one, then the second partition might well seem the more

natural.

Bas van Fraassen’s (1989) cube factory story illustrates the general point.7 Sup-

pose one only knows that a factory produces cubes with a side between 0 and 2

meters. If one considers side-length, one might imagine that a principle of indiffer-

ence requires that one take the probability of a randomly selected cube having a

side between 0 and 1 to be 1/2, since side-lengths range from 0 to 2. If one considers

volume, one might imagine that a principle of indifference requires that one take

the probability of a randomly selected cube having a volume between 0 and 1 to

be 1/4, since volumes range from 0 to 4. But since having a side length between 0

and 1 is the same thing as having a volume between 0 and 1, the different parti-

tions, each perfectly natural given different interests, yield inconsistent probability

assignments.

The moral here has two parts: (1) the principle of indifference makes no recom-

mendations whatsoever without a specified partition since different partitions yield

inconsistent probability assignments, and (2) the partition that one finds most

natural will depend on one’s interests and the representational structure of one’s

language.

If the principle of indifference were in fact a basic principle of reason, something

should go wrong if an agent were not to use it. It is worth noting, however, that

it is entirely unclear what such bad consequences might be. A good Bayesian may

assign any set of coherent, non-dogmatic priors (that is, probabilities that satisfy

the standard axioms of probability theory and are neither zero nor one) to her n hy-

potheses without fear of finding herself committed to a Dutch Book or failing to

respond appropriately to relevant evidence. And, as she conditions on evidence, she

will expect that her degrees of belief will reflect relative frequencies in nature.8

That said, a language may evolve in such a way that it supports the principle

of indifference. More specifically, the terms in the evolved language may come to

partition nature in such a way that the principle of indifference assigns probabilities

7See also Bertrand (1889).
8Another well-known problem with the principle of indifference is that it leads to complications

and inconsistencies on infinite domains (Keynes, 1921). This will not concern us here, given that
all of our examples are finite.
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over the partitions that are, in fact, approximately equal to the observed relative

frequency of each type of state in nature. Here we will consider one way in which

this might happen. This illustrates how statistical facts concerning the nature of

the world might condition the structure of a language that evolves by way of success

and failure in the context of that world.

4. The Evolution of Indifference

Consider a signaling game just like the 2 × 2 × 2 game above, but where there

are more states of nature and corresponding acts than there are expressions that

the sender might use to signal the receiver. Here the agents lack the expressive

resources to evolve a language that perfectly communicates the current state of

nature. While an evolved language will never be perfectly successful, it might be

more or less optimal given the agents’ expressive constraints.

Note that there are several extensions of the basic signaling game which we do

not consider here. One might, for example, consider a version of the game where

there are more terms than there are relevant states, giving rise to synonyms—

namely, states may come to be represented by more than one signal so that the

sender strategy is one-to-many (Skyrms, 2010a; Hu et al., 2011). In games like this,

terms are rarely equiprobable. Here players may evolve to fully represent nature

with their communicative resources. This is not true when there are more states

than signals.

The syntactic games considered in Barrett (2006, 2007, 2009) also provide models

where the evolved language may partition nature. However, concatenating signals

in such games, again, provides a means for fully representing the states of nature.

There are many ways in which language may evolve to partition nature. Not all

of these will be relevant for a principle of indifference.9 Here we are concerned with

a simple model for how language may evolve to partition nature in cases where

the agents do not have sufficient linguistic resources to fully represent the states of

nature. As we will see, this model may lead to a language that partitions nature in

a way that supports a principle of indifference.

When there are more states than terms, a language may evolve where each

state of nature triggers the sender to send a particular corresponding term. If so,

the evolved terms partition the states of nature. Each term is associated with an

element of the partition containing the states that correspond to that term.

The most efficient signaling system the agents might evolve would be one that

communicates the most information about the current state of nature per signal.10

9See also O’Connor (2017), who discusses interactions between structures in the world and struc-
tures in language in signaling games, and Purves (2018).
10This is sometimes referred to as the maximum entropy principle. It is closely tied to the principle
of indifference, but for reasons discussed in the last section and later in the paper, we do not take
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The mean self-information of a signal on a partition of nature is given by∑
i

−pi log pi,

where pi is the probability associated with element i of the partition. This expression

is maximal when the probabilities corresponding to each element of the partition

are equal. The agents’ evolved language communicates the most information per

signal if the probability of each type of signal is equal; this occurs when the signals

partition the states of nature into equally probable sets.11

Since a language where the terms partition nature into equally probable sets

allows the agents to communicate the most information per signal, one might expect

such a language to evolve in a special context where agents are somehow rewarded

for precisely this sort of efficient communication. But a special efficiency reward

is not a necessary condition for the evolution of a simple, efficient term language.

Indeed, languages that induce an unbiased partition over states often evolve in the

context of simple reinforcement learning alone. And when the induced partition

is not precisely unbiased, it is typically very close. That this occurs is perhaps

particularly salient given the simplicity of reinforcement learning and the fact that

it is ubiquitous in nature.12

4.1. Unbiased States. We will start with an unbiased 10× 2× 10 signaling game

(a game with ten equiprobable states of nature, two terms, and ten acts, one corre-

sponding to each of the states). Here the sender has ten urns, one for each state of

nature, each starting with one ball of each of the two signal types, and the receiver

has two urns, one for each signal type, each starting with one ball for each of the

nine act types. As above, we will suppose that both the sender and receiver learn by

simple reinforcement. Since each type of natural state is equiprobable, an evolved

language on a 10×2×10 signaling game will partition the states into equiprobable

sets if and only if each term comes to be triggered by precisely five of the types

of state. We will represent this partition as (5, 5) and the other possible partitions

similarly.

The chance payoff for this game is 1/10, and the maximal payoff, if the agents

evolve a perfectly effective term language, is 1/5.13 Over 1000 runs with 106 plays

maximum entropy to provide any justification whatsoever for adopting the principle of indifference.

See Jaynes (1957); Williamson (2010) for contrary views on this issue.
11See Shannon (1948); Shannon and Weaver (1949). For a careful analysis of information in the
context of signaling games, see Skyrms (2010a,b).
12For empirical work on reinforcement learning in nature, see Rescorla and Wagner (1972); Roth
and Erev (1995); Schultz et al. (1997); Erev and Roth (1998); Schultz (2004). For an introduction

to reinforcement learning in a computational framework, see Sutton and Barto (1998).
13Every partition that takes advantage of both signals, that is, every partition except (0, 10) and

(10, 0)—which are dynamically unstable—has the same expected payoff as long as the sender and
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Figure 2. evolving an unbiased partition

per run, the average expected payoff at the end of each run is 0.1999.14 This con-

vergence is relatively quick: after 4853 plays, on average, the agents are within 5%

of their final expected payoff.15 Most runs (0.875) achieve a cumulative success rate

of at least 0.1990.16

The unbiased (5, 5) partition is indeed most common of the 9 stable partitions.

Nearly 1/3 of the time (0.310), the sender and receiver perfectly partition nature for

maximal information transfer on the equiprobable (5,5) partition. And most of the

time (0.792), the sender and receiver partition nature near-perfectly by evolving a

(5, 5), (6, 4), or (4, 6) partition. While it is rare, the sender and receiver sometimes

(0.031) fail to evolve a clear partition of nature on 106 plays.

Figure 3 gives the distribution of runs for the 10 × 2 × 10 game under simple

reinforcement. The dashed line represents the mean information per signal over the

distribution, and the smooth line represents the number of ways that each type of

partition might be achieved. A natural explanation for why simple reinforcement

typically leads to a term language that induces an equiprobable or nearly equiprob-

able partition over the possible states of nature is that there are simply more ways

to get such a partition given a maximally successful language. That said, the likeli-

hood of less even partitions drops off even faster than the number of ways to get the

less even partitions. A Kolmogorov-Smirnov (K-S) test of the empirical distribution

against a distribution sampled from the combinatorial expectation yields a p-value

receiver coordinate upon the partition and regardless of what weight the receiver puts on each

action conditional upon the relevant signal. See LaCroix (2019) for details.
14The average expected payoff is calculated from the evolved dispositions of the agents (that is,

from their actual urn contents) at the end of the run given the unbiased (or biased as in the next

section) states of nature.
15The fastest run achieves this payoff within 1801 plays and the slowest after 25995 plays. 0.90

runs are within 5% of their final expected payoff prior to the first 7500 plays.
16The cumulative success rate is a measure of success that takes account of the history of the

game. It is calculated by dividing the number of plays that led to a success by the total number
of plays in that run. When the players are successful, early failures are washed out as the number

of plays increases.
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Figure 3. Partitioning 10 states with 2 signals with unbiased na-
ture. Comparison of experimental results with combinatorial ex-
pectation and information transfer

of 0.0017 for the 10 × 2 × 10 signaling game, suggesting that the combinatorial

expectations do not by themselves explain the empirical results. See Figure 4.17

Figure 4. Comparison of the CDFs for our observed data and
the theoretical expectation

17To provide a bit more detail, the null hypothesis is that the combinatorial distribution and
the empirical distribution are identical for the 10 × 2 × 10 signaling game. The K-S test gives
the statistic D = 0.0843, which is the supremum of the set of distances between the empirical

distribution function we observe and the expected distribution function from the combinatorial
measure. This corresponds to a p-value of 0.0017; hence one might reject the null hypothesis with
high confidence.



10 JEFFREY A. BARRETT & TRAVIS LACROIX

One observes the same phenomena in the unbiased 9×3×9 signaling game (with

nine equiprobable states of nature, three terms, and nine acts, one corresponding

to each of the states). Suppose again that both the sender and receiver learn by

simple reinforcement.

nature action

receiver
a
bsender

0
1
2

8

0
1
2

8

signal

0 8 a b

c

c

Figure 5. evolving an unbiased partition

Here, the chance payoff for the 9× 3× 9 game is 1/9, and the maximal expected

payoff is 1/3. On 1000 runs with 106 plays per run, the average expected payoff at

the end of a run is 0.3332. The vast majority of runs (0.926) achieve a near-perfect

expected payoff greater than 0.333, and every run (1.000) achieves an expected

payoff greater than 0.330. Moreover, learning is fast: after 6495 plays, on average,

the agents are within 5% of their final expected payoff.18 The cumulative success

rate is 0.3323 after 106 plays per run, on average (1000 runs), and almost every

(0.990) run achieved a cumulative success rate of at least 0.330.

Again, the unbiased (3, 3, 3) partition is most common of the 28 stable partitions.

About 1/6 of the time (0.160), the sender and receiver perfectly partition nature for

maximal information transfer. And more than 2/3 of the time (0.684), the sender

and receiver partition nature near-perfectly by evolving either the (3, 3, 3) partition

or one of the six permutations of the (4, 3, 2) partition. Very rarely (0.031), the

sender and receiver fail to evolve a clear partition of nature.

Figure 5 illustrates the results of the simulation. Note again that the game tracks

equiprobable partitions even better than the combinatorial measure over the num-

ber of ways of getting each type of partition. These results are more disparate than

in the 10 × 2 × 10 game.19 In this spirit, the results in the next section further

illustrate, in a dramatic way, why the combinatorial measure alone cannot be used

to explain the partitions that evolve under simple reinforcement.

4.2. Biased States. The natural next step is to consider whether a term language

might evolve under simple reinforcement to partition states into equiprobable sets

180.90 runs are within 5% of their final expected payoff prior to the first 9500 plays.
19A K-S test of the empirical distribution against a distribution sampled from the combinatorial
expectation yields the statistic D = 0.1912, with a p-value p < 0.0001, suggesting again that the

combinatorial expectations do not by themselves explain the empirical results.
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Figure 6. Partitioning 9 states with 3 signals with unbiased na-
ture. Comparison of experimental results with combinatorial ex-
pectation and information transfer

when those states are not themselves equiprobable. This is what would be required

for the principle of indifference to be applicable in any robust sense for the present

model. Note that if this is true, then it cannot be the number of ways of achieving

a particular partition that drives the evolution of partitions as the equiprobable

partitions over strongly biased states are correspondingly special.

Consider the 10× 2× 10 game where nature is biased as indicated by the vector

〈1/2, 1/18, 1/18, 1/18, 1/18, 1/18, 1/18, 1/18, 1/18, 1/18〉

for states 0 through 9 respectively. If signals and actions are themselves random

with no bias, then the expected chance payoff is 0.10, and if the two signals are

used optimally, then the maximal expected payoff is 10/18 ≈ 0.5556.

On simulation under simple reinforcement learning, the expected payoff given the

evolved urn contents is, on average, 0.5502 after 106 plays per run over 1000 runs.

Many runs (0.8989) achieve an expected payoff of better than 0.55 with this number

of plays. Convergence here is relatively fast. After 1999 plays, on average, the agents

are within 5% of their final expected payoff.20 The cumulative success rate is, on

average, 0.5496 after 106 plays, and many runs (0.887) achieve a cumulative success

better than 0.55.

Most of the time (0.897), the players learn to partition nature, and they almost

always evolve an unbiased, or nearly unbiased, partition over the states. On the

sender end, the most common partition (0.570) is one where she uses one term

for the most common state and the other for the other eight states. Of course,

200.90 runs are within 5% of their final expected payoff prior to the first 2200 plays.
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which term evolves to be used for what on a particular run is entirely random.

Of these runs where the players do learn to partition nature, about 1/4 of the

time (0.281), she pools a second state into the signal containing the biased state.

Sometimes (0.082), she pools two extra states into the signal containing the biased

state. And rarely (0.008), she pools three extra states into the signal containing

the biased state for a (4, 6) or (6, 4) partition, with approximately equal frequency.

Given this particular natural bias, we never see the sender evolve a (5, 5) partition

on simulation. On the receiver end, when the sender pools an extra state into

the signal that contains the biased state, the receiver always chooses the action

corresponding to the biased state when he sees that signal.

Given the strength of the bias and the simplicity of the learning dynamics, it

is perhaps unsurprising that the receiver sometimes (0.083) learns to completely

ignore the signal and just do the action corresponding to the biased state. Here the

players cannot expect to do better than a success rate of 0.5. Sometimes (0.020),

we see the receiver putting nearly full weight on the action corresponding to the

biased state for one signal type and mixing over the biased state and other states

on the other signal type.

One sees similar behavior in the biased 9×3×9 game. Consider the natural bias

〈1/3, 1/3, 1/21, 1/21, 1/21, 1/21, 1/21, 1/21, 1/21〉

over the nine states 0 through 8. Here, the expected chance payoff for unbiased

random signaling is 1/9, and the maximal expected payoff is 15/21 ≈ 0.7142. On

simulation, we see an average expected payoff of 0.6970 after 106 plays per run over

1000 runs. Most runs (0.794) achieve an expected payoff of at least 0.71 after 106

plays. And again, the evolutionary speed is good. After 5406 plays, on average, the

agents are within 5% of their final expected payoff.21 Most runs (0.742) achieve a

cumulative success greater than 0.71 over 106 plays.

Most of the time (0.772), the sender and receiver evolve a clear partition of the

states. Again, the evolved partition tends to be close to unbiased and hence close

to optimal. The most common partition (0.347) is one where the sender assigns

one biased state to one signal, the other biased state to the other signal, and the

remaining seven states to the third signal. Next most often (0.325), the sender pools

an extra state with one of the signals that contains one of the biased states. More

biased natural partitions are increasingly less common. The least common partition

is one where the sender assigns three states to each of the three terms.22 Again,

when the sender pools other states into the signal containing one of the biased

210.90 runs are within 5% of their final expected payoff prior to the first 10000 plays.
22A (5, 3, 1) partition occurs 0.073, a (4, 4, 1) partition occurs 0.019, a (5, 2, 2) partition occurs

0.066, a (4, 3, 2) partition occurs 0.030, and a (3, 3, 3) partition occurs 0.005. In each case, the
distinct permutations of these partitions occur with roughly equal frequency.
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states, the receiver learns to ignore the action associated with these extra states

and puts all weight for that signal onto the act associated with the biased state.

The agents sometimes fail to evolve a clear partition on 106 plays. Sometimes

(0.034), for example, the sender pools both of the biased actions into one signal,

and the receiver mixes over the appropriate actions, given that signal. The receiver

perfectly partitions the remaining seven states into the other two signals, and the

receiver mixes over the appropriate actions, conditional upon the signal received.

This strategy has an expected payoff of 9/21 ≈ 0.4286. Mixtures between this and

the clear partition cases are also observed with somewhat higher expected success

rates.

5. Discussion

These models illustrate how expressions in a simple term language might evolve

to represent equiprobable partitions of the fine-grained states of nature in a simple

evolutionary context. From the perspective of the evolved language, it will look like

every natural possibility is equiprobable. While this is manifestly not the case for the

fine-grained states in the biased models, it is nevertheless often the case for those

models that every expressible possibility in the evolved language is equiprobable

or nearly so. Recall from the discussion in Sections 2 and 3 that the principle of

indifference, at first glance, provides a solution to the problem of priors insofar as it

tells one how to assign prior probabilities. However, in our models, the principle of

indifference holds over the partition induced by the evolved expressions not because

each fine-grained state of nature is, in fact, equiprobable but because, under the

special circumstances that obtain here, the language evolves to partition nature

into expressible states that are equiprobable.

Of course, this does not mean that one should expect the principle of indifference

to hold for natural language generally. Even the relatively simple signaling languages

of animals are often much more complex and expressive than the sort of term

languages we have been considering here.23 With a more expressive language, one

might characterize different partitions over natural states, and one may have every

reason to suppose that the principle of indifference will give the wrong probabilities

23For example, the data presented in the original studies of Seyfarth et al. (1980a,b) on vervet
monkey alarm-call systems indicated substantial variation in responses and that the responses

are probabilistic rather than deterministic. Furthermore, vervets do not just vocalize for alarm

calls. They also call when they find food, in aggressive confrontations, and during sexual activity,
among others. Vervets additionally vocalize via grunting in a variety of circumstances: (a) when
a submissive meets a dominant individual, (b) when a dominant meets a submissive individual,
(c) when one vervet goes out into an open area, and (d) when a vervet comes across an out-
group conspecific (Cheney and Seyfarth, 1982, 1990). Schlenker et al. (2016) provide a linguistic

analysis of approximately 40 years of data from experimental primatology, which displays several
complexities of monkey communication systems. This highlights but some of the myriad ways in
which the world is significantly more complex than the model which we use to represent it.
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for most of these. Even if one restricts consideration to simple term languages like

those discussed here, the language may evolve by means of something other than

simple reinforcement, and the resulting language may well not support the principle

of indifference.24 And even with simple reinforcement, as we have seen, the principle

of indifference does not always work for the evolved language—it just works on most

runs of the present special models.

The moral, then, is not that there is any evolutionary warrant for adopting the

principle of indifference or for supposing that natural language usually evolves to

be maximally informative. There isn’t, and it doesn’t. Rather, it is that however

a natural language evolves, inasmuch as it is forged in the context of success and

failure in action, those features of the world that helped to shape the language may

be reflected in the evolved language’s structure. Further, this may occur in such

a way that the principle of indifference over the evolved linguistic partition itself

evolves to be a reliable epistemic guide. As a language evolves, one should expect it

come to reflect various bits of structure in the world in which it evolved. A language

may be influenced by social factors (Lupyan and Dale, 2010) or environmental

factors (Kemp et al., 2019).25 What we have shown are the conditions under which

the structure of a language might evolve to represent statistical properties of the

world in such a way that a purported principle of rationality in fact obtains. Put

another way, we have shown how a purported principle of rationality may be reliable

contingent upon the way the world is actually partitioned by the language used to

describe that world. Concretely, we have shown the conditions under which the

principle of indifference obtains.

If one knew how the structure of a language was influenced by the world it

evolved in, one might infer properties of the world, like the relative frequencies

of natural states in the present models, from the structure of the language. But,

for real languages, these relations will be extremely subtle, as subtle as the evolu-

tionary contexts where the language was forged. And one should not expect these

relations to provide general principles of reason nor even any epistemic short cuts.

Determining precisely how the contingent structure of a natural language may re-

flect the structure of the world in which it evolved is highly nontrivial. Here we

have provided a concrete example of how one might study a very simple epistemic

relationship between the structure of the world and the evolved structure of a basic

signaling language.

24See Barrett and Zollman (2009) for several learning dynamics that typically behave very dif-

ferently than simple reinforcement learning. As a quick and very simple example, the learning

dynamics win-stay/lose-shift would not even evolve a stable language in the present games, let
alone one that supported the principle of indifference.
25There is an extensive literature in cognitive science that seeks to quantify how language might
reflect the structure of the world. See Lupyan and Dale (2016) for an overview and discussion of

the linguistic niche hypothesis.



EPISTEMOLOGY AND THE STRUCTURE OF LANGUAGE 15

References

Argiento, R., Pemantle, R., Skyrms, B., and Volkov, S. (2009). Learning to Signal:
Analysis of a Micro-Level Reinforcement Model. Stochastic Processes and Their
Applications, 119:373–390.

Barrett, J. (2006). Numerical Simulations of the Lewis Signaling Game: Learning
Strategies, Pooling Equilibria, and Evolution of Grammar. Technical Report. UC
Irvine, Institute for Mathematical Behavioral Science. Preprint MBS 06-09.

Barrett, J. (2007). Dynamic Partitioning and the Conventionality of Kinds. Phi-
losophy of Science, 74:527–546.

Barrett, J. (2009). Faithful Description and the Incommensurability of Evolved
Languages. Philosophical Studies, 147(1):123–137.

Barrett, J. (2014a). Description and the Problem of Priors. Erkenntnis, 79(6):1343–
1353.

Barrett, J. (2014b). On the Coevolution of Theory and Language and the Nature
of Successful Inquiry. Erkenntnis, 79(Suppl 4):821–834.

Barrett, J. and Zollman, K. (2009). The Role of Forgetting in the Evolution and
Learning of Language. Journal of Experimental and Theoretical Artificial Intel-
ligence, 21(4):293–309.

Bertrand, J. (1889). Calcul des probabilités. Gauthier-Villars et Fils, Paris.
Bradley, D. (2019). Naturalness as a Constraint on Priors. Mind, Forthcoming.
Cheney, D. and Seyfarth, R. (1990). How monkeys See the World: Inside the Mind

of Another Species. University of Chicago Press, Chicago.
Cheney, D. L. and Seyfarth, R. M. (1982). How Vervet Monkeys Perceive Their

Grunts: Field Playback Experiments. Animal Behaviour, 30(3):739–751.
Erev, I. and Roth, A. E. (1998). Predicting How People Play Games: Reinforcement

Learning in Experimental Games with Unique, Mixed Strategy Equilibria. The
American Economic Review, 88(4):848–881.

Hempel, C. G. (1965). Aspects of Scientific Explanation, and Other Essays in the
Philosophy of Science. Free Press, New York.

Hu, Y., Skyrms, B., and Tarrès, P. (2011). Reinforcement Learning in Signaling
Game. arXiv preprint arXiv:1103.5818.

Huemer, M. (2009). Explanationist Aid for the Theory of Inductive Logic. British
Journal for the Philosophy of Science, 60(2):345–375.

Jaynes, E. T. (1957). Information Theory and Statistical Mechanics. The Physical
Review, 106(4):620–630.

Kemp, C., Gaby, A., and Regier, T. (2019). Season Naming and the Local Envi-
ronment. In CogSci: The Annual Meeting of the Cognitive Science Society, pages
539–545.

Keynes, J. M. (1921). A Treatise on Probability. Macmillan, London.
LaCroix, T. (2019). Communicative Bottlenecks Lead to Maximal Information

Transfer. Journal of Experimental and Theoretical Artificial Intelligence. Forth-
coming.

Lewis, D. (2002/1969). Convention: A Philosophical Study. Blackwell, Oxford.
Lupyan, G. and Dale, R. (2010). Language Structure is Partly Determined by Social

Structure. PloS one, 5(1):e8559.
Lupyan, G. and Dale, R. (2016). Why Are There Different Languages? The Role of

Adaptation in Linguistic Diversity. Trends in Cognitive Sciences, 20(9):649–660.



16 JEFFREY A. BARRETT & TRAVIS LACROIX

Neth, S. (2019). Bayesian Naturalness. Unpublished Manuscript. April, 2019. PDF
File.

O’Connor, C. (2017). Games and Kinds. The British Journal for the Philosophy of
Science, 70(3):719–745.

Purves, G. M. (2018). Conventionality and Causality in Lewis-Type Evolutionary
Prediction Games. The British Journal for the Philosophy of Science, axy076.
Forthcoming.

Rescorla, R. A. and Wagner, A. R. (1972). A Theory of Pavlovian Conditions:
Variations in the Effectiveness of Reinforcement and Nonreinforcement. In Black,
A. H. and Prokasy, W. F., editors, Classical Conditioning II: Current Research
and Theory, pages 64–99. Appleton-Century-Crofts, New York.

Resnik, D. B. (1991). How-Possibly Explanations in Biology. Acta Biotheoretica,
39(2):141–149.

Roth, A. and Erev, I. (1995). Learning in Extensive Form Games: Experimen-
tal Data and Simple Dynamical Models in the Intermediate Term. Games and
Economic Behavior, 8:164–212.

Schlenker, P., Chemla, E., Schel, A. M., Fuller, J., Gautier, J.-P., Kuhn, J., Veseli-
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