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ABSTRACT
Location-based services form an important use-case in emerging
narrowband Internet-of-Things (NB-IoT) networks. Critical to this
offering is an accurate estimation of the location without overlaying
the network with additional active sensors. The massive number
of devices, low power requirement, and low bandwidths restrict the
sampling rates of NB-IoT receivers. In this paper, we propose a novel
low-complexity approach for NB-IoT target delay estimation in cases
where one-bit analog-to-digital-converters (ADCs) are employed to
sample the received radar signal instead of high-resolution ADCs.
This problem has potential applications in the design of inexpensive
NB-IoT radar and sensing devices. We formulate the target estimation
as a multivariate fractional optimization problem and solve it via
Lasserre’s semi-definite program relaxation. Numerical experiments
suggest feasibility of the proposed approach yielding high localization
accuracy with a very low number of 1-bit samples.

Index Terms— Fractional optimization, localization, narrow-
band internet-of-things, one-bit quantization, passive radar.

1. INTRODUCTION

With the rapid proliferation in wireless and web-based services, the
Internet of Things (IoT) is envisioned to connect the physical and
digital world through extensive instrumentation of the former with
sensing, wearable, and intelligent devices [1]. Since IoT framework
is defined by a massive number of largely battery-powered devices,
that rarely transmit or receive data, the underlying challenges for any
communications link here are low power, low data rate, wide coverage
and scalability [2]. In this context, the 3rd generation partnership
project (3GPP) recently introduced narrowband (NB) IoT system
specifications to support wide coverage area, long user lifetime, and
low power/cost devices over a narrow bandwidth of 180 kHz [3].

One of the most attractive IoT applications is localization-based
service [4], wherein a large network of devices collects and trans-
mits data in order to determine the position of targets-of-interest. A
common localization technique is deployment of passive sensor tags
that augment existing IoT deployments through backscatter commu-
nications [5]. This is a feasible approach given that it is difficult to
repurpose the IoT network sensing modalities that are usually fixed
before the deployment and comprise millions of devices [6]. Addi-
tion of passive sensors does not require changing the deployed IoT
hardware or addition of new communications and power sources [7].
In this paper, we focus on the passive localization for NB-IoT.

While not fully backward compatible with existing 3GPP de-
vices, the NB-IoT harmoniously coexists with legacy networks by
reusing the functionalities of the latter’s design. Since the NB-IoT
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bandwidth is limited, its transmit power spectral density is enhanced
within the existing 3GPP specifications. This, combined with a soft
re-transmission strategy, enhances the coverage of NB-IoT over con-
ventional IoT solutions [8]. The ultra-low complexity and low power
consumption features of NB-IoT are advantageous for location-based
services such as smart parking, smart tracking, and smart home [9].
At the same time, low NB-IoT bandwidth severely limits the data rate.
The massive number of devices also render deployment of the Global
Positioning System (GPS) device at every node very expensive. Fi-
nally, low battery-power of NB-IoT devices is insufficient to handle
high sampling rates required to attain necessary localization accu-
racy [10–13]. These drawbacks are often compensated by employing
advanced algorithms for NB-IoT localization [4].

A popular NB-IoT localization technique is to employ finger-
printing, wherein the received signal strength indicator (RSSI) mea-
surements are collected at specified locations during the training
phase and then compared with online measurements to determine the
location of the target [10, 14]. This approach requires prior knowl-
edge of RSSI database. Some recent NB-IoT works also explore
RSSI-independent signal processing methods such as successive in-
terference cancellation [11], maximum likelihood estimation [12],
and frequency hopping [13]. In this paper, we adopt a technique in-
spired by localization in passive radar arrays [15] that does not require
prior RSSI measurements. Further, in order to combat the problem of
achieving high accuracy under low bandwidths, we leverage recent
advances in 1-bit signal processing [16, 17] in NB-IoT localization.

Ideally, the analog-to-digital conversion requires an infinite num-
ber of bits to accurately represent the continuous-time signal in the
digital domain [18]. In practice, the signal is quantized to a finite
number of bits leading to errors in digital approximation of the orig-
inal analog signal. If the sampling resolution is large enough, this
error has negligible effect on digital signal processing. However, in
NB-IoT, the measurements are quantized to very low bit-rates and the
high-precision data is rarely available. Further, the cost and power
consumption of ADCs increases linearly with the number of quan-
tization bits and sampling frequency [19]. Therefore, to support the
low cost feature of NB-IoT, the number of quantization bits should
be reduced. This necessitates development of algorithms for low-bit
scenario which, in the extreme case, is just a single bit per sample.

Originally proposed [16, 20, 21] in the context of compressive
sensing [22], the 1-bit sampling has a rich heritage of research in
statistical signal processing [23–26] and signal reconstruction [27,
28]. In the past few years, the 1-bit processing has received signif-
icant attention in numerous modern applications such as classical
communications [29–31], massive multiple-input multiple-output
(MIMO) [32, 33], deep learning [34], dictionary learning [35, 36],
and radar [37–39]. In nearly most of these works, the approach is to
repeatedly compare the signal of interest with a time-varying thresh-
old reference [40]. For example, the single-bit sampling scheme
in [41] records the positions of zero-crossings of the input signal
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added to a deterministic dither function. It was shown here that, for
band-limited bounded-amplitude square-integrable input signal, suffi-
cient number of one-bit samples lead to recovery of full-precision data
with locally bounded point-wise error, resulting in an exponentially
decaying distortion-rate characteristic.

In this paper, we model target localization using one-bit mea-
surements obtained from passive sensors in NB-IoT systems. We
cast the localization problem using bistatic range-difference model
which results in a system of several equations solved conventionally
by least squares (LS) method [15]. However, unlike the conventional
case where infinite precision range measurements are available, we
assume only 1-bit samples. We then provide a novel formulation of
an optimization problem to jointly estimate the infinite precision data
as well as the target location. Contrary to previous works on 1-bit
radar [40], our proposed method solves the resulting optimization
problem efficiently using the Lasserre’s semi-definite program (SDP)
relaxation [42] that benefits from a small feasibility set. To the best of
our knowledge, ours is the first work that investigates 1-bit sampling
in a passive radar array setting.

Throughout this paper, we refer the vectors and matrices by lower-
and upper-case bold-face letters, respectively. The superscript (·)T
indicates the transpose operation. The notations ‖a‖2 and â denote
`2-norm and the estimate of a, respectively. A diagonal matrix with
the diagonal vector a is represented by diag(a). Further, A† and
Π⊥A = AA† indicate the pseudo-inverse and the projection matrix
onto the null space of the full column rank matrix A, respectively;
whereas the null space of A is N (A). When all elements of a
vector a are greater than or equal to zero, we indicate this as a � 0.
The symbol � represents the Hadamard (element-wise) product and
sng(·) stands for the sign function.

2. SYSTEM MODEL

Consider a source, say a communications base station, transmits
a known signal that is bounced off a target and the backscattered
signal is received by M different NB-IoT nodes, which are syn-
chronized with the base station but are not synchronized with each
other (Fig. 1). The ith sensor is located at the Cartesian coordinates[
xi, yi, zi

]T
, i ∈ {1, 2, · · · ,M}. The target is characterized by its

location
[
x, y, z

]T . In a typical NB-IoT setting, a target could be a
subject carrying a mobile phone, an intelligent vehicle or a robot.

We focus on the time-of-arrival (ToA) measurements to achieve
the 3-dimensional localization using the measurements from these M
passive sensors. The ToA is defined as the one-way signal propagation
time from the source to a sensor. Assuming the propagation is non-
dispersive, the ToA measured at ith sensor is given by

yi(t) = s(t− τi) + ni(t), (1)

ti =
di + α

c
= argmin

τ

∫ ∞
−∞

yi(t)s
∗(t− τ), (2)

where c = 3 × 108 m/s is the speed of light in vacuum, α is the
distance between the source and the target, di is the distance between
the target and the ith sensor described as

di =
√

(xi − x)2 + (yi − y)2 + (zi − z)2, (3)
where we assume ToA estimates are available accurately, i.e., in the
absence of noise. Accordingly, the corresponding range is

ri = cti = di + cα. (4)

The ith sensor converts its own range measurements into 1-bit
data γi after comparing it to an appropriate positive threshold λi > 0:

γi = sng(ri − λi). (5)

Fig. 1. Illustration of the localization scenario. The nodes represent
passive sensors that receive the signal from the source bounced off
from a target-of-interest.

These measurements are then forwarded to a fusion center where
target localization takes place.

2.1. Localization with infinite precision sampling

Without loss of generality, consider the first sensor as the reference
sensor. Computing the difference between the range measurements
of ith and reference sensors yields

r̃i = ri − r1 = di − d1, (6)
For the case of ideal (noiseless) ToA estimation,

r̃i + d1 = di. (7)
Squaring both sides of (7) and substituting di from (3) produces the
following system of equations, which are linear in

[
x, y, z

]T ,

(x− x1)(xi − x1) + (y − y1)(yi − y1) + (z − z1)(zi − z1) + r̃id1

=
1

2

[
(xi − x1)2 + (yi − y1)2 + (zi − z1)2 − r̃2

i

]
. (8)

Collecting all linear equations specified by (8) for i ∈ 1, 2, · · · ,M ,
we obtain the following compact matrix form

Gθ = h, (9)
where

G =

 (x2 − x1) (y2 − y1) (z2 − z1) r̃2

...
...

...
...

(xM − x1) (yM − y1) (zM − z1) r̃M

 ∈ R(M−1)×4,

(10)

h =
1

2

 (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 − r̃2
2

...
(xM − x1)2 + (yM − y1)2 + (zM − z1)2 − r̃2

M


∈ R(M−1)×1, (11)

and θ =
[
x− x1, y − y1, z − z1, d1

]T .
Even in case of infinite precision quantization, various non-ideal

conditions such as receiver noise leads to perturbations in ToA es-
timate. We consider a simplified model, where these perturbations
denoted by ε, are related to ToA measurements as

ε = Gθ − h. (12)
Solving (12) provides meaningful results when the range measure-
ments r̃i, for i ∈ {1, 2, · · · ,M}, at the fusion center faithfully
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represent those at the sensors. Then, the LS solution provides an
estimation of the target location as

θ̂ = G†h. (13)
In a 1-bit sampling scenario, the actual (full precision) values of range
measurements are not available. Instead, the fusion centre receives
only one-bit samples, i.e., γ1, · · · , γM−1 wherein LS method is in-
applicable. Our goal is to recover both range measurements and the
target location with one-bit samples.

3. ONE-BIT TOA FORMULATION

Define r̃ =
[
r̃2 r̃2 · · · r̃M

]T ∈ R(M−1)×1. We rewrite G
and h as

G =
[
A r̃

]
, (14)

h = h̃− 1

2
r̃� r̃, (15)

where

A =

 (x2 − x1) (y2 − y1) (z2 − z1)
...

...
...

...
(xM − x1) (yM − y1) (zM − z1)

 ∈ R(M−1)×3,

(16)
and

h̃ =
1

2

 (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

...
(xM − x1)2 + (yM − y1)2 + (zM − z1)2

 ∈ R(M−1)×1.

(17)
From the above, the LS objective is a function of both the desired
target location and the full precision range measurements. We refor-
mulate the LS cost function as

J(r̃,θ) = ‖Gθ − h‖22 =

∥∥∥∥[A r̃
]
θ − h̃ +

1

2
r̃� r̃

∥∥∥∥2

2

. (18)

The solution of LS objective with respect θ for a given r̃ is given in
(13). Substituting (13) into (17) yields

J(r̃) = J(r̃, θ̂) = ‖Π⊥Gh‖22

=

∥∥∥∥(Π⊥A −ΠΠ⊥
A

r̃

)(
h̃− 1

2
r̃� r̃

)∥∥∥∥2

2

, (19)

where the last equality in (19) is obtained by making use of the
projection decomposition theorem [43]. Since Π⊥Ar̃ ∈ N (AH), it is
easily confirmed that Π⊥AΠΠ⊥

A
r̃ = ΠΠ⊥

A
r̃. Hence, (19) is simplified

as,

J(r̃) =

(
h̃− 1

2
r̃� r̃

)T (
Π⊥A −ΠΠ⊥

A
r̃

)(
h̃− 1

2
r̃� r̃

)
. (20)

Considering the fact that

ΠΠ⊥
A

r̃ =
Π⊥Ar̃r̃TΠ⊥A
r̃TΠ⊥A, r̃

, (21)

we have J(r̃) = f(r̃)
g(r̃)

where

f(r̃) =‖Π⊥Ar̃‖2
[
‖Π⊥Ah̃‖2 +

1

4
‖Π⊥A(r̃� r̃)‖2 − h̃TΠ⊥A(r̃� r̃)

]
−
(
h̃TΠ⊥Ar̃

)2

− 1

4

(
(r̃� r̃)TΠ⊥Ar̃

)2

+ h̃TΠ⊥Ar̃r̃TΠ⊥A(r̃� r̃), (22)

g(r̃) =‖Π⊥Ar̃‖2. (23)

Note that f(·), g(·) are multivariate polynomial functions of r̃. It
follows from r̃i = ri − r1∀i that f(·), g(·) are multivariate polyno-
mial functions of r =

[
r1 r2 · · · rM

]T ∈ RM×1 as well. In
consequence, the joint estimation problem of finding θ and r̃ reduces
to

minimize
r

f(r)

g(r̃)
subject to Γ(r− λ) � 0,

r � 0.

(24)

where Γ = diag(γ) with γ =
[
γ1, γ2 · · · γM

]T ∈ {0, 1}M×1.
The above formulation is a fractional optimization problem solv-

ing which yields r. and, subsequently, the target location estimate via
(13).

4. ESTIMATION VIA LASSERRE’S SDP RELAXATION

In order to solve the fractional optimization in (24), we reformulate it
as an equivalent polynomial optimization problem. Then, we derive
a smaller feasible set for this equivalent problem so that it is solved
efficiently by exploiting the Lasserre’s SDP relaxation method [42].

Theorem 1. The optimization problem in (24) is equivalent to the
following problem

minimize
r,u

u6f(r/u)

subject to u4g(r) = 1,

Γ(r− uλ) � 0,

r � 0,

u > 0. (25)

Proof. Let define the sets K and K̃ as follows

K =
{

r ∈ RM≥0 | Γ(r− λ) � 0
}
, (26)

K̃ =
{

r ∈ RM≥0, u > 0 | Γ(r− uλ) � 0
}
. (27)

It is then possible to rewrite optimization problems (24) and (25) as

p∗ = minimize
r

f(r)

g(r)
,

subject to r ∈ K,
(28)

p̃∗ = minimize
r,u

u6f(r/u),

subject to u4g(r) = 1,[
rT u

]T ∈ K̃, (29)

where p∗ and p̃∗ denote the minimums of optimization problems (24)
and (25), respectively. Further, let r∗ ∈ K and

[
r̄∗T u∗

]T ∈ K̃
stand for the minimizers of optimization problems (24) and (25),
respectively.

We first show that p∗ ≤ p̃∗. It readily follows from u∗ > 0 that
r̄∗/u∗ ∈ K. Hence, exploiting that fact that u∗4g(r̄∗) = 1, we have

p∗ ≤ f(r̄∗/u∗)

g(r̄∗/u∗)
= u∗6f(r̄∗/u∗) = p̃∗. (30)

Therefore, to show p∗ = p̃∗, we simply need to prove that p∗ ≥ p̃∗

as well. It is easily confirmed that
[
r∗T 1

]T ∈ K̃. Thus, resorting
to g(r∗) = 1 yields

p̃∗ ≤ f(r∗) =
f(r∗)

g(r∗)
= p∗, (31)

This concludes the proof.
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The problem (25) is a polynomial optimization problem which
can be solved by applying the Lasserre’s SDP relaxation [42]. How-
ever, applying the Lasserre’s SDP relaxation directly to the optimiza-
tion problem (25) may need the high order Lasserre’s SDP relaxation
which could render solving the optimization problem computationally
inefficient. In this regard, to solve the problem (25) in a more efficient
manner, we first obtain a smaller feasible set for the optimization
problem (25) exploiting the KKT conditions. Then, we apply the
Lasserre’s SDP relaxation to the new problem.

Let
[
r̄∗ u∗

]T be a mininmizer of (25). Since the objective and
constraint functions are differentiable, the KKT conditions hold at[
r̄∗ u∗

]T . This implies that the Jacobbian matrix of the objective
and constraint functions, denoted by F (r̄, u) ∈ RM×4, should be
rank deficient at

[
r̄∗ u∗

]T . Let denote the determinant variety of
F (r, u) being rank deficient by

G =
{[

rT u
]T ∈ RM≥0 | rank (F (r, u)) ≤ 4

}
. (32)

Then, it follows that
[
r̄∗ u∗

]T ∈ G∩M withM being the feasible
set obtained from the constraints set of the optimization problem
(25). Hence, it is possible to minimize the objective function in (25)
over the new smaller feasible set G ∩ M instead of M. Before
proceeding further, we first need to find a more tractable description
for G. It is well-known that if a matrix is singular, all its maximal
minors should vanish [44]. Let HI be the maximal minor of F (r, u)
corresponding to the rows whose indices are determined by the set
I ⊂ S .

= {1, 2, · · · ,M} where |I| = 4. Then,

G =
{[

rT u
]T ∈ RM≥0 |HI = 0, ∀I ⊂ S, |I| = 4

}
. (33)

It was shown in [45, 46] that (33) has only 4M − 15 generating
equations each of which is given by

hp(r, u) =
∑

ii+i2+i3+i4=p+9

HI , (34)

where ii, i2, i3, i4 ∈ S. Hence,
G ={[

rT u
]T ∈ RM≥0 | hp(r, u) = 0, ∀p ∈ {1, 2, · · · , 4M − 15}

}
.

(35)
Accordingly, the optimization problem (25) is equivalent to

minimize
r,u

u6f(r/u)

subject to u4g(r) = 1,

hp(r, u) = 0, ∀p ∈ {1, 2, · · · , 2M − 15},
Γ(r− uλ) � 0,

r � 0,

u > 0. (36)
Now the above optimization can be solved by using the Lasserre’s
SDP relaxation. Since the optimization problem (36) has a smaller
feasible set compared to (25), it will need a lower-order Lasserre’s
SDP relaxation compared to (25). Hence, efficiency significantly
increases by making use of (36).

5. EXPERIMENTS AND DISCUSSION

We investigated the performance of our proposed method through
numerical simulations. We compared the 1-bit performance with the
infinite precision range measurements (denoted by∞-precision). For
all experiments, 10000 Monte Carlo trials were conducted for any
given number of 1-bit samples. We used 4th-order Lasserres SDP

20 40 60 80 100 120
0
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0.3

0.4
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0.6

Fig. 2. The MSE in the estimate of target location with respect to the
number of IoT devices, i.e., M .

relaxation to solve the optimization problem (25).
Figure 2 shows the mean-squared error (MSE) of the target loca-

tion estimate versus the number of one-bit samples (the number of
radar nodes), i.e., M , for both 1-bit and full-precision measurements.
The MSE is defined as(

J∑
j=1

(x− x̂j)2 + (y − ŷj)2 + (z − ẑj)2

)
/J, (37)

where
[
x̂j ŷj ẑj

]T denotes the target location estimate at jth

Monte Carlo trial and J is the number of Monte Carlo trials. We
observe that the performance of the proposed method approaches that
of∞ -precision with increase in M . This implies that the proposed
one-bit localization method is a proper choice for target localization in
IoT systems where large number of radar nodes are always available.

In summary, the 1-bit sampling offers an attractive solution to
the challenges posed by the NB-IoT for location-based services. The
1-bit samplers are integral to developing low cost and low power
devices. We proposed a 1-bit passive sensor array formulation to
estimate the ToA in an NB-IoT network. Our approach is helpful
in addressing the problem of maintaining high localization accuracy
while deploying reduced-rate ADCs at the nodes to conform with a
reduced-bandwidth NB-IoT. Further, our novel method casts the ToA
estimation algorithm as a multivariate fractional optimization problem
and solves it via the Lasserre’s SDP relaxation. This approach is
computationally more efficient than the prior works and our numerical
experiments demonstrated its feasibility.
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[6] C. Pérez-Penichet, F. Hermans, A. Varshney, and T. Voigt, “Augmenting
IoT networks with backscatter-enabled passive sensor tags,” in ACM
Workshop on Hot Topics in Wireless, 2016, pp. 23–27.

[7] J. F. Ensworth and M. S. Reynolds, “Every smart phone is a backscatter
reader: Modulated backscatter compatibility with Bluetooth 4.0 Low
Energy (BLE) devices,” in IEEE International Conference on RFID,
2015, pp. 78–85.

[8] L. Zhang, Y. Liang, and M. Xiao, “Spectrum sharing for internet of
things: A survey,” IEEE Wireless Communications, vol. 26, no. 3, pp.
132–139, 2019.

[9] B. Kellogg, A. Parks, S. Gollakota, J. R. Smith, and D. Wetherall, “Wi-
Fi backscatter: Internet connectivity for RF-powered devices,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 4, pp. 607–
618, 2015.

[10] Q. Song, S. Guo, X. Liu, and Y. Yang, “CSI amplitude fingerprinting-
based NB-IoT indoor localization,” IEEE Internet of Things Journal,
vol. 5, no. 3, pp. 1494–1504, 2017.

[11] S. Hu, A. Berg, X. Li, and F. Rusek, “Improving the performance
of OTDOA based positioning in NB-IoT systems,” in IEEE Global
Communications Conference, 2017, pp. 1–7.

[12] S. Hu, X. Li, and F. Rusek, “On time-of-arrival estimation in NB-IoT
systems,” arXiv preprint arXiv:1711.03832, 2017.

[13] W. S. Jeon, S. B. Seo, and D. G. Jeong, “Effective frequency hopping
pattern for ToA estimation in NB-IoT random access,” IEEE Trans-
actions on Vehicular Technology, vol. 67, no. 10, pp. 10 150–10 154,
2018.

[14] H. Sallouha, A. Chiumento, and S. Pollin, “Localization in long-range
ultra narrow band IoT networks using RSSI,” in IEEE International
Conference on Communications, 2017, pp. 1–6.

[15] A. Noroozi and M. A. Sebt, “Target localization from bistatic range
measurements in multi-transmitter multi-receiver passive radar,” IEEE
Signal Processing Letters, vol. 22, no. 12, pp. 2445–2449, 2015.

[16] P. T. Boufounos and R. G. Baraniuk, “1-bit compressive sensing,” in
Annual Conference on Information Sciences and Systems, 2008, pp.
16–21.

[17] Z. Li, W. Xu, X. Zhang, and J. Lin, “A survey on one-bit compressed
sensing: Theory and applications,” Frontiers of Computer Science,
vol. 12, no. 2, pp. 217–230, 2018.

[18] K. V. Mishra and Y. C. Eldar, “Sub-Nyquist radar: Principles and proto-
types,” in Compressed Sensing in Radar Signal Processing, A. D. Maio,
Y. C. Eldar, and A. Haimovich, Eds. Cambridge University Press, 2019,
in press.

[19] K. V. Mishra, M. R. Bhavani Shankar, V. Koivunen, B. Ottersten, and
S. A. Vorobyov, “Toward millimeter wave joint radar communications:
A signal processing perspective,” IEEE Signal Processing Magazine,
2019, in press.

[20] A. Zymnis, S. Boyd, and E. Candes, “Compressed sensing with quan-
tized measurements,” IEEE Signal Processing Letters, vol. 17, no. 2, pp.
149–152, 2009.

[21] K. Knudson, R. Saab, and R. Ward, “One-bit compressive sensing with
norm estimation,” IEEE Transactions on Information Theory, vol. 62,
no. 5, pp. 2748–2758, 2016.

[22] M. Cho, K. V. Mishra, and W. Xu, “Computable performance guarantees
for compressed sensing matrices,” EURASIP Journal on Advances in
Signal Processing, vol. 2018, no. 1, p. 16, 2018.

[23] H. Fu and Y. Chi, “Quantized spectral compressed sensing: Cramér-
Rao bounds and recovery algorithms,” IEEE Transactions on Signal
Processing, vol. 66, no. 12, pp. 3268–3279, 2018.

[24] C. Gianelli, L. Xu, J. Li, and P. Stoica, “One-bit compressive sampling
with time-varying thresholds for sparse parameter estimation,” in IEEE
Sensor Array and Multichannel Signal Processing Workshop, 2016, pp.
1–5.

[25] O. Dabeer and A. Karnik, “Signal parameter estimation using 1-bit
dithered quantization,” IEEE Transactions on Information Theory,
vol. 52, no. 12, pp. 5389–5405, 2006.

[26] O. Dabeer and E. Masry, “Multivariate signal parameter estimation under
dependent noise from 1-bit dithered quantized data,” IEEE Transactions
on Information Theory, vol. 54, no. 4, pp. 1637–1654, 2008.

[27] H. Chen and P. K. Varshney, “Performance limit for distributed estima-
tion systems with identical one-bit quantizers,” IEEE Transactions on
Signal Processing, vol. 58, no. 1, pp. 466–471, 2009.

[28] X. Huang and B. Liao, “One-bit MUSIC,” IEEE Signal Processing
Letters, vol. 26, no. 7, pp. 961–965, 2019.

[29] O. Bar-Shalom and A. J. Weiss, “DOA estimation using one-bit quan-
tized measurements,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 38, no. 3, pp. 868–884, 2002.

[30] C.-L. Liu and P. Vaidyanathan, “One-bit sparse array DOA estimation,”
in IEEE International Conference on Acoustics, Speech and Signal
Processing, 2017, pp. 3126–3130.
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