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Abstract—Automotive radars usually employ multiple-input
multiple-output (MIMO) antenna arrays to achieve high
azimuthal resolution with fewer elements than a phased array.
Despite this advantage, hardware costs and desired radar size
limits the usage of more antennas in the array. Similar trade-off
is encountered while attempting to achieve high range resolution
which is limited by the signal bandwidth. However, nowadays
given the demand for spectrum from communications services,
wide bandwidth is not readily available. To address these issues,
we propose a sparse variant of Frequency Diverse Array MIMO
(FDA-MIMO) radar which enjoys the benefits of both FDA and
MIMO techniques, including fewer elements, decoupling, and
efficient joint estimation of target parameters. We then employ
the Cramér-Rao bound for angle and range estimation as a
performance metric to design the optimal antenna placement and
carrier frequency offsets for the transmit waveforms. Numerical
experiments suggest that the performance of sparse FDA-MIMO
radar is very close to the conventional FDA-MIMO despite 50%
reduction in the bandwidth and antenna elements.

Index Terms—Automotive radar, Cramér-Rao bound,
frequency diverse array, MIMO radar, optimization.

I. INTRODUCTION

Automotive radars are an increasingly essential sensor in
self-driving cars and Advanced Driver Assistant Systems
(ADASs) [1], [2]. These sensors are responsible for detecting
vehicular targets and obstacles in harsh weather and low
visibility [3], [4]. The ability to correctly ascertain these
objects is severely hampered by the limited range and angular
resolution of the radar [5]. While the radar range resolution is
restricted by its bandwidth, the angular resolution is directly
proportional to the array aperture and the number of receive
channels [6]. Increasing any one of these design parameters
- bandwidth, array aperture, receive channels - leads to high
cost and large radar footprint on the vehicle. In this paper, we
focus on the problem of reducing the bandwidth and antennas
in automotive radar arrays while maintaining the performance.

The antennas in automotive radars commonly employ
multiple-input-multiple-output (MIMO) arrays which use
several transmit (Tx) and receive (Rx) antennas [7], [8].
In a colocated MIMO radar [9], [10], the antennas are
located so close that the radar cross-section (RCS) appears
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identical to all Tx-Rx antenna pairs. Unlike a phased array,
the MIMO transmitters emit mutually orthogonal signals. The
receivers then exploit the phase difference in the signals
leading to an improved angular resolution [11], [12] and
high parameter identifiability [13]. The improved azimuth
resolution is achieved with fewer Tx-Rx antennas than a
phased array operating with the same aperture [14].

Recently, frequency diverse array (FDA) technique [15] has
received significant research interest [16]. The FDA radar
introduces a tiny frequency offset (FO) across the array
elements. The result is a beampattern that is jointly dependent
on range, angle, and time [17]. In contrast, a phased array has
only angle-dependent beampattern [18]. Such a radar is able to
efficiently localize targets in a joint range-angle domain [19].
By introducing nulls in its pattern, the radar is capable of
suppressing range-dependent interference and clutter. Recent
works [20] have also shown that further enhancement in
FDA ranging accuracy is possible through coherent integration
of multiple FDA pulses in slow-time domain. Finally, the
auto-scanning feature of FDA radar implies that phase shifters
are not required to steer the beam as in a conventional phased
array radar [21].

Given the advantages of MIMO and FDA over conventional
phased arrays, there is immense interest in hybridizing these
two technologies in a FDA-MIMO radar [19], [22], which
combines the joint range-angle-Doppler processing of FDA
with the decoupling and low footprint advantages of MIMO. In
the automotive radar scenario, conventional FDA-MIMO array
still suffers from large hardware costs. Further, introduction
of the FOs requires additional bandwidth. To this end, in
this paper, we propose a sparse FDA-MIMO which utilizes a
small fraction of the conventional FDA-MIMO spectrum and
aperture without serious performance loss.

Sparsity-based techniques have a rich heritage of research in
radar signal processing [23]. Most of these methods leverage
the presence of a limited number of targets in the region of
interest to reduce the resources such as bandwidth, sapling
rates and array size. The signal recovery and target detection
is then achieved with compressive sensing (CS) [24]. A
large body of literature exists on the spatial, temporal, and
Doppler domain applications of CS to reduce, respectively,
the array size, bandwidth, and pulses in a sparsity-based radar.
[25]–[28].

In this paper, our goal is to find an optimal antenna
placement and FOs in a sparse FDA-MIMO such that an
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accurate estimation of target’s direction-of-arrival (DoA) and
range is guaranteed. Since we use fewer antennas and limited
FOs in a sparse FDA-MIMO than its conventional counterpart,
peak performance is traded off. The exact reduction could
be determined by the tolerance to such performance loss.
Once antenna placement and FOs are determined, the signal
recovery is performed via CS. In this work, we focus
only on the joint antenna and FO selection problem for a
colocated FDA-MIMO [19], [22], [29]. A few works on FO
selection in FDA arrays have previously employed random
[30] and co-prime [31] offfsets. However, their application
in a hybrid FDA-MIMO remains unexamined. We consider
the Cramér-Rao bound (CRB) as the performance criterion
in our joint design problem which we cast as a non-convex
problem. Later, we relax this to a semi-definite program (SDP)
and propose an iterative solution to the problem. Contrary
to earlier works, our proposed FDA-MIMO automotive radar
offers lower footprint with enhanced capabilities derived from
both FDA and MIMO arrays.

The rest of the paper is organized as follows. Section II
describes the system model. The problem formulation is given
in Section III. Section IV provides the proposed algorithm
for designing the antenna placements and the set of carrier
frequencies. The simulation results and related discussions are
included in Section V. Finally, Section VI concludes the paper.

Throughout this paper, we refer the vectors and matrices by
lower- and upper-case bold-face, respectively. The superscripts
∗, T and H denote the conjugate, transpose and Hermitian
operations, respectively. ‖a‖1 stands for the `1-norm of a.
The cardinality of the set A is represented by |A|. [A]i,j and
[a]i indicate the (i, j)th and ith entry of A and a, respectively.
The M ×M identity matrix is denoted by IM . E{.} stands
for the statistical expectation. ⊗ represents Kronecker product.
vec (A) =

[
aT1 aT2 · · · aTn

]T
denotes the vectorization

operation.

II. SYSTEM MODEL

Consider a sparse colocated FDA-MIMO radar equipped
with M transmit and L receive antennas. Let the operating
wavelength of the radar be λ. The mth transmit and lth receive
antennas are situated, respectively, at λ

2 dm and λ
2ul with dm,

ul ∈ S
.
={0, 2, · · · , R− 1}. Further, the mth transmit antenna

emits narrowband pulses of frequency fm=fc+am4f , where
am ∈ H

.
= {0, 1, · · · , N − 1}. Here, fc denotes the reference

carrier frequency and 4f is the carrier frequency increment
unit across the transmit antennas. Illustrative examples of the
transceiver array configuration and the FDMA transmission
scheme are shown in Figs. 1 and 2, respectively. Accordingly,
the signal transmitted by the mth transmit antenna is

sm(t) =
√
Pth (t) e−j2π(fc+am4f)t, 0 ≤ t ≤ T, (1)

where Pt is the transmit power and h(t) denotes unit-energy
waveform, i.e.,

∫ T
0
h(t)h∗(t) = 1 with bandwidth Bh.

The target scene is composed of Q stationary point-targets,
with the qth target parameterized by the following parameters
unknown to the radar: the reflection coefficient ξq which is
directly proportional to the target’s radar cross section (RCS)
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Fig. 1. Illustration of the transceiver array geometry with M = 3 transmit
antennas and L = 4 receive antenna.

fa1∆f a2∆f a3∆f

Bh

Fig. 2. Illustration of the sparse FDMA transmission scheme with M = 3
carrier frequencies.

of the target and propagation factors; the range rq of the target
from the radar; azimuth angle θq; and the radial velocity vq .
We make following assumptions about the target and radar
parameters:
A1 “Non-overlapping bandwidths”: The carrier frequency

increment unit 4f > Bh, so that the intervals[
am4f − Bh

2 , am4f + Bh
2

]
do not overlap for all m.

This assumption enables orthogonal transmissions for
FDA-MIMO Radar.

A2 “Negligible phase-frequency distortion”: The maximum
carrier frequency increment across transmit antennas is
negligible compared to the reference carrier frequency,
i.e., max

m

am4f
fc

� 1. This assumption is valid for
millimeter wave radar where, for example, fc = 79 GHz
while max

m
am4f is, at most, of the order of a few MHz.

A3 “Small aperture”: This allows ξq’s and θq’s to be constant
over the array elements.

A4 “Far ranges”: Targets are in the far-field, i.e., rq � λ
2R.

Assuming that the propagation channel is non-dispersive
and h(t) is narrowband, the back-scattered signal from the
Q targets at the lth receive antenna is

xl(t) =

Q∑
q=1

M∑
m=1

√
Ptξqh

(
t− 2rq

c

)
× e−j2π(fc+am4f)(t−τq,m−τq,l), (2)

where τq,m =
rq+

λdm
2 sin θq
c and τq,l =

rq+
λul
2 sin θq
c are the

time delay between the mth/lth transmit/receive antenna and
the qth target. The signal xl(t) is downconverted to baseband
and sampled at rate Bh. Taking a K-point Discrete Fourier
Transform (DFT), where K = TBh, of the sampled signal
yields

Xl(k) =

Q∑
q=1

M∑
m=1

αqH

(
2π

(
k

T
− am∆f

))
(3)

× e−j4π(am4f+
Bh
T k)

rq
c e−jπ(dm+ul) sin θq ,
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where 0 ≤ k ≤ K − 1, αq =
√
Ptξqe

j4π( rqλc ), λc = c
fc

,

and H(ω) =
∞∫
−∞

hm(t)e−jωtdt is the continuous-time Fourier

transform (CTFT) of h(t). Exploiting A1, it is possible
to separate Xl(k) into components corresponding to each
transmit antenna. Passing Xl(k) through a filter bank, which
consists of M filters with central frequencies am4f and
bandwidth Bh, and then multiplying with H∗(2π( kT −am∆f))
produces

X̃m,l(k)=

∣∣∣∣H (2π

(
k

T
− am∆f

))∣∣∣∣2 Q∑
q=1

αqe
−j4π(am4f+

Bh
T k)

rq
c

× e−jπ(dm+ul) sin θq . (4)

Let ym,l(k) = 1
|H(2π( kT −am∆f)|2 X̃l,m(k) , then

ym,l(k) =

Q∑
q=1

αqe
−j4π(am4f+

Bh
T k)

rq
c e−jπ(dm+ul) sin θq . (5)

In the presence of additive noise, the filtered signal is

zm,l(k) = ym,l(k) + em,l(k), (6)

where em,l(k) is the noise trail at the output of the mth filter of
lth receiver. The em,l(k), ∀l,m, k are modeled as identical and
independently distributed (i.i.d.) zero-mean Gaussian random
variables with variance σ2. Stacking all the measurements in
a MLK × 1 vector, we obtain the measurements as

z = y + e ∈ MLK×1. (7)

Using this system model, our goal is to design antenna
placement and the set of carrier frequencies for the considered
sparse FDA-MIMO radar such that the performance loss
becomes as small as possible.

III. CRB-BASED OPTIMIZATION FRAMEWORK

The CRB provides a lower bound on the mean-squared-error
(MSE) matrix of any mean-unbiased estimator in a
non-Bayesian setting [32]. We, therefore, use it as a design
metric for finding the optimal antenna placement and the set
of carrier frequencies for the transmit waveforms. However,
the CRB depends on the unknown target parameters, which
makes the desired optimization problem highly complicated.
To alleviate this problem, we consider the CRB for two targets

which has been shown to only depend on the difference
between the parameters of two targets. This attribute of
two-target CRB is very helpful in simplifying the desired
optimization problem while delivering a good performance.
Indeed, two-target CRB is capable of controlling for both
the mainlobe width and the sidelobe level of the ambiguity
function [25].

Define D = {d1, d2, · · · , dM}, U = {u1, u2 · · · , uL} and
A = {a1, a2, · · · , aM} Further, let ρq = [rq, sin θq]

T denote
the vector of the unknown parameter of the qth target and ρ =
[ρT1 , · · · ,ρTQ]T be the vector of all the unknown parameters.
The CRB is the inverse of the Fisher Information Matrix (FIM)
[32]

F(ρ,D,U,A) = (8)

E

{
∂ ln f(z|ρ,D,U,A)

∂ρ

(
∂ ln f(z|ρ,D,D,A)

∂ρ

)H}
,

where f(z|ρ,D,U,A) denotes the conditional probability
density function of z. Since the noise is i.i.d., we obtain

ln f(y|ρ,D,U,A)=

M∑
m=1

L∑
l=1

K−1∑
k=0

ln f(zm,l(k)|ρ, dm, ul, am),

(9)

leading to [32]

F(ρ,D,U,A)=
4

σ2

M∑
m=1

L∑
l=1

K−1∑
k=0

∂ym,l(k)

∂ρ

(
∂ym,l(k)

∂ρ

)H
.

(10)

For two-target CRB, the derivative of ym,l(k) with respect to
ρ is

∂ym,l(k)

∂ρ
= −jπ


4
c (am4f + Bh

T k)y1
m,l(k)

(dm + ul)y
1
m,l(k)

4
c (am4f + Bh

T k)y2
m,l(k)

(dm + ul)y
2
m,l(k)

 , (11)

where yqm,l(k) = αqe
−j4π(am4f+

Bh
T k)

rq
c e−jπ(dm+ul) sin θq

Consequently, the two-target CRB is the inverse of

F(ρ,D,U,A) =
4π2

σ2

M∑
m=1

L∑
l=1

K−1∑
k=0

F̌k(ρ, dm, ul, am)⊗ F̄k(dm, ul, am), (12)

where

F̌k(ρ, dm, ul, am) = (13)[
|α1|2 α1α

∗
2αqe

−j4π(am4f+
Bh
T k)

r1−r2
c e−jπ(dm+ul)(sin θ1−sin θ2)

α∗1α2e
−j4π(am4f+

Bh
T k)

r2−r1
c e−jπ(dm+ul)(sin θ2−sin θ1) |α2|2

]
,

F̄k(dm, ul, am)=

[
16
c2 (am4f + Bh

T k)2 4
c (am4f + Bh

T k)(dm + ul)
4
c (am4f + Bh

T k)(dm + ul) (dm + ul)
2

]
. (14)

It readily follows that the FIM is a function of the
difference between the DoAs and ranges of the targets.

Hence, F(ρ,D,U,A) = F(∆ρ,D,U,A) where ∆ρ = [r1 −
r2, sin θ1− sin θ2]T . We discretize the two dimensional space
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P of possible values of ∆ρ. Thereafter, we cast the joint
design of antenna placement and the set of carrier frequencies
for the transmit waveforms as the following optimization
problem

min
D,U,A

max
∆ρ∈P

f(F−1(∆ρ,D,U,A))

subject to |D| ≤M,
dm ∈ S, di 6= dj , ∀i, j,
|U| ≤ L,
ul ∈ S, ui 6= uj , ∀i, j,
|A| ≤M,
am ∈ H, ai 6= aj , ∀i, j,

(15)

where f(.) is a proper scalar function of the CRB. A
multi-parameter CRB-based optimization in [25] suggested
various choices for the function f(.). In this paper, we
employ the E-optimality criteria, wherein f(.) is the maximum
eigenvalue of F−1(ρ,D,U,A). Since (15) is non-convex, we
propose to employ its convex relaxation, as discussed in the
next section.

IV. ANTENNA PLACEMENT AND CARRIER FREQUENCIES

Define the selection vector b ∈ {0, 1}R×1 and the selection
matrix T ∈ {0, 1}R×N as

[b]l =

{
1, if l − 1 ∈ U,
0, otherwise, (16)

[T]m,n =

{
1, if m− 1 ∈ T and n− 1 ∈ A,
0, otherwise. (17)

Then, the FIM in (12) becomes

F(∆ρ,b,T) =
4π2

σ2

R∑
m=1

N∑
n=1

R∑
l=1

K−1∑
k=0

[b]l[T]m,n

×
(
F̌m,n,l,k ⊗ F̄m,n,l,k

)
, (18)

where

F̌m,n,l,k =

[
|α1|2 α1α

∗
2αqe

−j4π(n4f+
Bh
T k)

r1−r2
c e−jπ(m+l)(sin θ1−sin θ2)

α∗1α2e
−j4π(n4f+

Bh
T k)

r2−r1
c e−jπ(m+l)(sin θ2−sin θ1) |α2|2

]
,

(19)

F̄m,n,l,k=

[
16
c2 (n4f + Bh

T k)2 4
c (n4f + Bh

T k)(m+ l)
4
c (n4f + Bh

T k)(m+ l) (m+ l)2

]
. (20)

Accordingly, the optimization problem (15) is recast as

min
b,T

max
∆ρ∈P

λmax(F−1(∆ρ,b,T))

subject to b ∈ {0, 1}R×1,
T ∈ {0, 1}R×N ,
‖b‖1 ≤ L,
‖vec(D)‖1 ≤ 2M.

(21)

We relax the min-max optimization problem above as

max
b,T,γ

γ

subject to F(∆ρ,b,T) � γI4, ∀∆ρ ∈ P,
‖b‖1 ≤ L,
‖vec(D)‖1 ≤ 2M
b ∈ {0, 1}R×1,
T ∈ {0, 1}R×N .

(22)

The relaxation in (22) encourages the eigenvalues of
F−1(∆ρ,b,T) to be as small as possible. However, (22) is
still non-convex because of the products of unknowns (see
(18)). To address this, introduce g = [bT , vecT (T)]T ∈
{0, 1}R(N+1)×1 and G = ggT ∈ {0, 1}R(N+1)×R(N+1), so

that (22) is recast as

max
g,G,γ

γ

subject to F(∆ρ,G) � γI4, ∀∆ρ ∈ P,
G = ggT ,∑R
j=1[g]i ≤ L,∑R(N+1)
j=R+1 [g]i ≤ 2M

g ∈ [0, 1]R(N+1)×1,

(23)

where we have also relaxed the binary constraint on the
elements of g by allowing its elements to be within [0, 1].
This problem is a SDP with an equality constraint, which
is non-convex. From [33, Lemma 1], it follows that the
equality constraint can be replaced with a rank constraint on
a semi-definite matrix. Therefore, the equivalent optimization
problem is

max
g,G,γ

γ

subject to F(∆ρ,G) � γI4, ∀∆ρ ∈ P,[
1 g
gT G

]
� 0,

rank(

[
1 g
gT G

]
) ≤ 1,∑R

j=1[g]i ≤ L,∑R(N+1)
j=R+1 [g]i ≤ 2M,

g ∈ [0, 1]R(N+1)×1.

(24)



THE 53ND ANNUAL ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, NOV. 2019. 5

We solve this problem iteratively using Algorithm 1, where
the sequential problem at the ith iteration is

max
gi,Gi,γi

γi + wiei

subject to F(∆ρ,Gi) � γiI4, ∀∆ρ ∈ P,[
1 gi
gTi Gi

]
� 0,

eiIR(N+1)−1 −VH
i−1

[
1 gi
gTi Gi

]
Vi−1 � 0,∑R

j=1[gi]j ≤ L,∑R(N+1)
j=R+1 [gi]j ≤ 2M,

gi ∈ [0, 1]R(N+1)×1

ei ≤ ei−1,
(25)

where Vk−1 contains the eigenvectors corresponding to the

R(N + 1)− 1 smallest eigenvalues of
[

1 gi
gTi Gi

]
obtained at

the previous iteration. Indeed, the optimization problem that
needs to be worked out at each step of Algorithm 1 is an
SDP for which efficient solvers exist. Further, V0 is obtained
through a relaxed solution of (24) in which the rank constraint
is dropped.

Algorithm 1 Iterative approach for solving (25)
Require: The problem information w0, t, ε1 and ε2.
Ensure: A local minimum of (24)

Begin
1) Initialization: Set i = 0, solve the relaxed problem in

(24) by dropping the rank constraint to obtain V0.
2) while: ei ≥ ε1 and |γi+wiei−γi−1−wi−1ei−1| ≥ 0.
3) Solve the sequential problem (25).
4) Update Vk−1 and set k = k + 1.
5) Update wk as wk = wk−1 ∗ t
6) end while

End

V. NUMERICAL EXPERIMENTS

We compared the performance of the proposed sparse
FDA-MIMO Radar with the conventional FDA-MIMO
Radar through numerical experiments. We set the following
parameters for the sparse FDA-MIMO radar: fc = 79 GHz,
∆f = 150 MHz, Bh = 120 MHz, R = 12, N = 6, M = 3,
L = 3. The conventional FDA-MIMO radar had similar design
parameters except that both the number of transmit and receive
antennas as well as the bandwidth were twice that of sparse
FDA-MIMO.

Figure 3 shows the two-target CRB of the sparse and
conventional FDA-MIMO radar. We observe that even though
the sparse FDA-MIMO radar uses half of transmit and receive
antennas and half of the bandwidth, its performance loss is not
significant when compared with the conventional FDA-MIMO
radar. This indicates the advantage of using the proposed
design for the sparse FDA-MIMO radar.

-10 -5 0 5 10 15 20

10
-2

10
-1

10
0

Fig. 3. Maximum θ2 versus SNR for the sparse and conventional FDA-MIMO
radar with SNR = 0 dB and K = 5.

VI. SUMMARY

Small footprint of automotive radar arrays is highly
desirable. To this end, we proposed an approach for designing
antenna placement and the portion of spectrum for a sparse
FDA-MIMO radar such that it guarantees a desired DoA and
range estimation accuracy. We considered two-target CRB as
the performance criterion for such a joint design. We cast
the resulting non-convex optimization problem as a SDP and
proposed an iterative algorithm to attain the design solution.
We demonstrated that the proposed radar system is capable of
reducing the hardware costs and bandwidth while retaining a
reasonable estimation performance.
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