
STV: Model Checking for Strategies
under Imperfect Information (Demo)

Demonstration

Damian Kurpiewski, Wojciech Jamroga, Michał Knapik
Institute of Computer Science, Polish Academy of Sciences

{damian.kurpiewski,w.jamroga,michal.knapik}@ipipan.waw.pl

ABSTRACT
We present an experimental tool for verification of strategic abil-
ities under imperfect information, as well as strategy synthesis.
The problem is well known to be hard, both theoretically and in
practice. The tool, called StraTegic Verifier (STV), implements
several recently developed algorithms to overcome the complexity.

KEYWORDS
formal methods, alternating-time temporal logic, imperfect infor-
mation, strategy synthesis, model checking

ACM Reference Format:
Damian Kurpiewski, Wojciech Jamroga, Michał Knapik. 2019. STV: Model
Checking for Strategies under Imperfect Information (Demo). In Proc. of the
18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), Montreal, Canada, May 13–17, 2019, IFAAMAS, 3 pages.

1 INTRODUCTION
As the systems around us become more complex, and at the same
time more autonomous, the need for unambiguous specification
and automated verification rapidly increases. Logics of strategic
reasoning provide powerful tools to reason about various aspects
of MAS [1, 3, 26, 31]. A typical property that can be expressed
says that the group of agents A has a collective strategy to enforce
temporal property φ, no matter what the other agents in the system
do. Specifications in agent logics can be then used as input tomodel
checking, which makes it possible to verify the correct behavior of
a multi-agent system by an automated tool [9, 10, 13, 23].

Verification of strategic abilities is difficult for a number of rea-
sons. The prohibitive complexity of model checking and strategy
synthesis is a well known factor [5, 12, 25], which can be alleviated
only to some degree by using symbolic data structures [4, 7, 13, 28].
Things become even harder for agents with imperfect information.
The complexity ranges from NP–complete to undecidable [14, 31].
Even more importantly, fixpoint equivalences do not hold [6, 11],
which makes the application of standard fixpoint algorithms invalid
and the use of symbolic methods questionable. Most known ap-
proaches boil down to iteration over all the possible strategies [8, 24,
27]. Unfortunately, the number of available strategies is enormous.

Our team at PAS has recently developed two novel techniques
that try to overcome the complexity [15, 17, 21]. In this short pa-
per, we present an experimental tool STV that implements the
techniques, together with a number of verification scenarios. The

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

implementation is still preliminary (e.g., it does not provide a flexi-
ble input specification language). Still, it already allows to “play”
with the verification problem, test the scalability of the new tech-
niques, and visualize the complexity of models and strategies on
intuitive benchmark scenarios.

2 APPLICATION DOMAIN
STV is aimed at verification of strategic abilities in multi-agent
systems, and synthesis of strategies that guarantee a given temporal
goal. Many relevant properties of MAS refer to abilities of agents
and their groups. In particular, most functionality requirements can
be specified as the ability of the authorized users to achieve their
goals. At the same time, many security properties can be phrased
in terms of the inability of unauthorized users to compromise the
system. Concrete examples include:

• Formalizations of individual and group responsibility [33, 34],
• Functionality properties for teams of logistic robots, operating
in an industrial environment [22, 30],

• Properties of receipt-freeness, coercion-resistance and voter-
verifiability in voting procedures [2, 16, 32],

• Fairness in contract-signing protocols and non-repudiation
protocols [19, 20],

• Existence of winning strategies in general games [29], as well
as specific multi-player games such as Bridge [15, 17].

3 SCENARIOS
The tool includes the following verification scenarios:

(1) Existence of awinning strategy in the ancient story of TianJi [23],
(2) Ability of a team of “workers” to defeat a given castle in the

Castles benchmark from [27],
(3) Existence of a winning strategy for the declarer in the card

game of Bridge (Bridge Endplay [15]),
(4) Ability of a team of drones to visit a given number of loca-

tions (the Drones benchmark [18]),
(5) A variant of coercion-resistance in a simple voting protocol

(Simple Voting [15]).

4 FORMAL BACKGROUND

Models. The main part of the input is given by an imperfect infor-
mation concurrent game structure [1, 31], i.e., a labeled multi-agent
transition system with the transitions labeled by synchronous ac-
tions from all the agents in the system. The knowledge of each
agent is represented by its epistemic indistinguishability relation.
An example model is shown in Figure 1.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/286378998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


q10

q11vote1,1 q12 vote1,2

q13

vote1,1
q14

vote1,1
q15

vote1,2
q16

vote1,2

q17

finish1vote1,1

q18

finish1vote1,1
pun1

q19

finish1vote1,1

q110

finish1vote1,1
pun1

q111

finish1vote1,2
pun1

q112

finish1vote1,2

q113

finish1vote1,2
pun1

q114

finish1vote1,2

(v
ot
e 1
,−

) (vote
2 ,−

)

(g
iv
e,
−)

(n
g
,−

)

(give,−
)(n

g
,
−
)

(−
,
n
p
)

(−
,
p
u
n
) (−

,
n
p
)

(−
,
p
u
n
)

(−
,
n
p
)

(−
,
p
u
n
)(−

,
n
p
)

(−
,
p
u
n
)

c

c

c
c

(wait,−)

(wait,−) (wait,−)

Figure 1: Simple voting model

Strategies. A strategy is a conditional plan that specifies what the
agent is going to do in every possible situation. Here, we consider
the case of imperfect information memoryless strategies, represented
by functions from the agent’s local states (formally, abstraction
classes of its indistinguishability relations) to its available actions.
The outcome of a strategy from state q consists of all the infinite
paths starting from q and consistent with the strategy.
Formulas. Given a modelM and a state q in the model, the formula
⟨⟨A⟩⟩γ holds in (M,q) iff there exists a strategy for A that makes γ
true on all the outcome paths starting from any state indistinguish-
able from q. For more details, we refer the reader to [1, 31].

5 TECHNOLOGY
STV does explicit-state model checking. That is, the states and tran-
sitions of the model are represented explicitly in the memory of
the tool. We have implemented model generators for the scenar-
ios presented in Section 3; the user sets the values of the scaling
parameters (e.g., the number of drones and their initial level of
energy), and the corresponding model is generated. After that, two
approaches to model checking can be selected: fixpoint approxima-
tion and dominance-based strategy search.
Approximate fixpoint verification [15, 17]. The first approach is based
on computing fixpoint approximations of the verified formula. Two
formulas are produced for ⟨⟨A⟩⟩γ :

• The lower approximation trL(⟨⟨A⟩⟩γ ) is a fixpoint expression
in an extension of alternating epistemic µ-calculus [6] such
that, if trL(⟨⟨A⟩⟩γ ) holds, then ⟨⟨A⟩⟩γ must hold as well;

• The upper approximation trU (⟨⟨A⟩⟩γ ) asks for perfect infor-
mation strategies instead of imperfect information ones in
the semantics of ⟨⟨A⟩⟩. Thus, whenever trU (⟨⟨A⟩⟩γ ) returns
false, ⟨⟨A⟩⟩γ must be false, too.

Depth-first search with removal of dominated strategies [21]. The
second technique is based on a novel notion of strategic dominance,
applied in an incremental, DFS-based search for a winning strategy.
We say that partial strategy σA dominates σ ′

A w.r.t. the context σCA
iff: (i) σA and σ ′

A share the same set of input states, and (ii) for each
input state q, the set of possible output states of σA is a subset of

Config. DominoDFS Approx. Optimized approx. MCMAS
(1, 1) 0.0006 0.0008 < 0.0001 0.12
(2, 2) 0.01 0.01 < 0.0001 8712
(3, 3) 0.8 0.8 0.06 timeout
(4, 4) 160 384 5.5 timeout
(5, 5) 1373 8951 39 timeout
(5, 5) memout memout 138 timeout
(6, 6) memout memout 4524 timeout

Table 1: Performance results for Bridge Endplay

Config. DominoDFS MCMAS SMC
(1, 1, 1) 0.3 65 63
(2, 1, 1) 1.5 12898 184
(3, 1, 1) 25 timeout 6731
(2, 2, 1) 25 timeout 4923
(2, 2, 2) 160 timeout timeout
(3, 2, 2) 2688 timeout timeout
(3, 3, 2) timeout timeout timeout

Table 2: Performance results for Castles
those for σ ′

A. In other words, σA is “tighter” than σ ′
A, and induces a

smaller set of outcome paths.
The algorithm, called DominoDFS, attempts to expand the con-

text strategy that contains the initial state by exploring its frontier.
For each state at the current frontier, DominoDFS collects all the
available one-step strategies, and then removes the dominated ones.
Besides the basic version, we have implemented several heuristics
that determine the order of the search.
Implementation and evaluation. STV is implemented in Python 3.
The algorithms have been evaluated on several benchmarks, with
very promising results [15, 17, 21]. We used the state of the art
model checkerMCMAS [23] and the experimental tool SMC [27]
as reference points. The results for Bridge endplay and Castles are
shown in Tables 1 and 2, with the irrelevant columns omitted from
the tables (fixpoint approximation is not applicable to Castles, and
Bridge Endplay cannot be correctly encoded in SMC).

6 USAGE
The current version of STV (which can be found here) allows to:

• Select a class of predefined parameterised models and a pre-
defined formula for verification (cf. Section 3),

• Set the values of the parameters that control scalability,
• Generate and display the explicit state-transition graph,
• Run the fixpoint approximation algorithm (lower and upper
approximation),

• Run the dominance-based verification (DominoDFS),
• Display the verification result (truth value of the formula in
the initial state of the model, states in the model where the
formula holds, and possibly also the winning strategy that
has been found).

7 CONCLUSIONS
Model checking strategic abilities under imperfect information is
notoriously hard. Currently, no tools exist that would handle even
toy examples in a satisfactory way. STV is our first step towards
practical verification of such properties. We believe it is worth
sharing with the MAS community even in this preliminary form.
Acknowledgements. The authors acknowledge the support of the
National Centre for Research and Development (NCBR), Poland,
under the PolLux project VoteVerif (POLLUX-IV/1/2016).

http://voteverif.ipipan.waw.pl/index.php/tools/


REFERENCES
[1] R. Alur, T. A. Henzinger, and O. Kupferman. 2002. Alternating-Time Temporal

Logic. J. ACM 49 (2002), 672–713. https://doi.org/10.1145/585265.585270
[2] F. Belardinelli, R. Condurache, C. Dima, W. Jamroga, and A.V. Jones. 2017. Bisim-

ulations for Verification of Strategic Abilities with Application to ThreeBallot
Voting Protocol. In Proceedings of the 16th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS). IFAAMAS, 1286–1295.

[3] R. Berthon, B. Maubert, A. Murano, S. Rubin, and M. Y. Vardi. 2017. Strategy
logic with imperfect information. In Proceedings of LICS. 1–12. https://doi.org/10.
1109/LICS.2017.8005136

[4] R. E. Bryant. 1986. Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Trans. on Computers 35, 8 (1986), 677–691.

[5] N. Bulling, J. Dix, and W. Jamroga. 2010. Model Checking Logics of Strategic
Ability: Complexity. In Specification and Verification of Multi-Agent Systems,
M. Dastani, K. Hindriks, and J.-J. Meyer (Eds.). Springer, 125–159.

[6] N. Bulling and W. Jamroga. 2011. Alternating Epistemic Mu-Calculus. In Proceed-
ings of IJCAI-11. 109–114.

[7] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J.
Hwang. 1990. Symbolic Model Checking: 10ˆ20 States and Beyond. In Proc. of
4th Ann. IEEE Symp. on Logic in Computer Science (LICS). IEEE Computer Society,
428–439.

[8] S. Busard, C. Pecheur, H. Qu, and F. Raimondi. 2015. Reasoning about memoryless
strategies under partial observability and unconditional fairness constraints.
Information and Computation 242 (2015), 128–156. https://doi.org/10.1016/j.ic.
2015.03.014

[9] P. Cermak, A. Lomuscio, F. Mogavero, and A. Murano. 2014. MCMAS-SLK: A
Model Checker for the Verification of Strategy Logic Specifications. In Proc. of
Computer Aided Verification (CAV) (Lecture Notes in Computer Science), Vol. 8559.
Springer, 525–532.

[10] P. Dembiński, A. Janowska, P. Janowski, W. Penczek, A. Półrola, M. Szreter, B.
Woźna, and A. Zbrzezny. 2003. Verics: A Tool for Verifying Timed Automata
and Estelle Specifications. In Proceedings of the of the 9th Int. Conf. on Tools and
Algorithms for Construction and Analysis of Systems (TACAS’03). Lecture Notes
in Computer Science, Vol. 2619. Springer, 278–283.

[11] C. Dima, B. Maubert, and S. Pinchinat. 2015. Relating Paths in Transition Systems:
The Fall of the Modal Mu-Calculus. In Proceedings of Mathematical Foundations of
Computer Science (MFCS) (Lecture Notes in Computer Science), Vol. 9234. Springer,
179–191. https://doi.org/10.1007/978-3-662-48057-1_14

[12] L. Doyen and J.-F. Raskin. 2011. Games with Imperfect Information: Theory and
Algorithms. In Lecture Notes in Game Theory for Computer Scientists. Cambridge
University Press, 185–212.

[13] P. Gammie and R. van der Meyden. 2004. MCK: Model Checking the Logic of
Knowledge. In Proc. of the 16th Int. Conf. on Computer Aided Verification (CAV’04)
(LNCS), Vol. 3114. Springer-Verlag, 479–483.

[14] W. Jamroga and J. Dix. 2006. Model Checking ATLir is Indeed ∆P2 -complete. In
Proceedings of EUMAS (CEUR Workshop Proceedings), Vol. 223.

[15] W. Jamroga, M. Knapik, and D. Kurpiewski. 2017. Fixpoint Approximation
of Strategic Abilities under Imperfect Information. In Proceedings of the 16th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS).
IFAAMAS, 1241–1249.

[16] W. Jamroga, M. Knapik, and D. Kurpiewski. 2018. Model Checking the SELENE
E-Voting Protocol in Multi-Agent Logics. In Proceedings of the 3rd International
Joint Conference on Electronic Voting (E-VOTE-ID) (Lecture Notes in Computer
Science), Vol. 11143. Springer, 100–116.

[17] W. Jamroga, M. Knapik, D. Kurpiewski, and Łukasz Mikulski. 2018. Approxi-
mate Verification of Strategic Abilities under Imperfect Information. Artificial
Intelligence (2018). To appear.

[18] W. Jamroga, B. Konikowska, W. Penczek, and D. Kurpiewski. 2019. Multi-Valued
Verification of Strategic Ability. (2019). In preparation.

[19] W. Jamroga, S. Mauw, and M. Melissen. 2012. Fairness in Non-repudiation
Protocols. In Proceedings of STM’11 (Lecture Notes in Computer Science), Vol. 7170.
122–139.

[20] S. Kremer and J.-F. Raskin. 2003. A game-based verification of non-repudiation
and fair exchange protocols. Journal of Computer Security 11, 3 (2003). https:
//doi.org/10.1007/3-540-44685-0_37

[21] D. Kurpiewski, M. Knapik, and W. Jamroga. 2019. On Domination and Con-
trol in Strategic Ability. In Proceedings of the 18th International Conference on
Autonomous Agents and Multiagent Systems AAMAS 2019. IFAAMAS, to appear.

[22] D. Kurpiewski and D. Marmsoler. 2019. Strategic Logics for Collaborative Embed-
ded Systems. Specification and Verification of Collaborative Embedded Systems
using Strategic Logics. (2019). In preparation.

[23] A. Lomuscio, H. Qu, and F. Raimondi. 2015. MCMAS: An Open-Source Model
Checker for the Verification of Multi-Agent Systems. International Jour-
nal on Software Tools for Technology Transfer (2015). https://doi.org/10.1007/
s10009-015-0378-x Availabe online.

[24] A. Lomuscio and F. Raimondi. 2006. Model checking knowledge, strategies, and
games in multi-agent systems. In Proceedings of International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS). 161–168. https://doi.org/
10.1145/1160633.1160660

[25] F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi. 2014. Reasoning About
Strategies: On the Model-Checking Problem. ACM Transactions on Computational
Logic 15, 4 (2014), 1–42.

[26] F. Mogavero, A. Murano, and M.Y. Vardi. 2010. Reasoning About Strategies. In
Proceedings of FSTTCS. 133–144.

[27] J. Pilecki, M.A. Bednarczyk, and W. Jamroga. 2017. SMC: Synthesis of Uniform
Strategies and Verification of Strategic Ability for Multi-Agent Systems. Journal
of Logic and Computation 27, 7 (2017), 1871–1895. https://doi.org/10.1093/logcom/
exw032

[28] F. Raimondi and A. Lomuscio. 2007. Automatic Verification of Multi-agent
Systems by Model Checking via Ordered Binary Decision Diagrams. J. Applied
Logic 5, 2 (2007), 235–251.

[29] J. Ruan, W. van der Hoek, and M. Wooldridge. 2009. Verification of Games in
the Game Description Language. Journal of Logic and Computation 19 (11 2009),
1127–1156. https://doi.org/10.1093/logcom/exp039

[30] B.-H. Schlingloff, H. Stubert, and W. Jamroga. 2016. Collaborative Embedded Sys-
tems - A Case Study. In Proceedings of the 3rd International Workshop on Emerging
Ideas and Trends in Engineering of Cyber-Physical Systems (EITEC@CPSWeek).
17–22. https://doi.org/10.1109/EITEC.2016.7503691

[31] P. Y. Schobbens. 2004. Alternating-Time Logic with Imperfect Recall. Electronic
Notes in Theoretical Computer Science 85, 2 (2004), 82–93.

[32] M. Tabatabaei, W. Jamroga, and Peter Y. A. Ryan. 2016. Expressing Receipt-
Freeness and Coercion-Resistance in Logics of Strategic Ability: Preliminary
Attempt. In Proceedings of the 1st International Workshop on AI for Privacy and Se-
curity, PrAISe@ECAI 2016. ACM, 1:1–1:8. https://doi.org/10.1145/2970030.2970039

[33] V. Yazdanpanah and M. Dastani. 2016. Quantified Group Responsibility in Multi-
Agent Systems. In Proceedings of WOA. 44–49.

[34] V. Yazdanpanah, M. Dastani, N. Alechina, B. Logan, and W. Jamroga. 2019. Strate-
gic Responsibility Under Imperfect Information. In Proceedings of the 18th Inter-
national Conference on Autonomous Agents and Multiagent Systems AAMAS 2019.
IFAAMAS, to appear.

https://doi.org/10.1145/585265.585270
https://doi.org/10.1109/LICS.2017.8005136
https://doi.org/10.1109/LICS.2017.8005136
https://doi.org/10.1016/j.ic.2015.03.014
https://doi.org/10.1016/j.ic.2015.03.014
https://doi.org/10.1007/978-3-662-48057-1_14
https://doi.org/10.1007/3-540-44685-0_37
https://doi.org/10.1007/3-540-44685-0_37
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1145/1160633.1160660
https://doi.org/10.1145/1160633.1160660
https://doi.org/10.1093/logcom/exw032
https://doi.org/10.1093/logcom/exw032
https://doi.org/10.1093/logcom/exp039
https://doi.org/10.1109/EITEC.2016.7503691
https://doi.org/10.1145/2970030.2970039

	Abstract
	1 Introduction
	2 Application Domain
	3 Scenarios
	4 Formal Background
	5 Technology
	6 Usage
	7 Conclusions
	References

